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1 Introduction

H∞ control of nonlinear system has received much attention during the 1990’s. In the
case where the system state is available for control, called the state feedback case, the
solution of the problem reduces to the solution of a certain Hamilton Jacobi PDE [15]. In
general, however, solving this PDE is computationally a hard problem, with complexity
increasing rapidly (exponentially) as the state dimension grows.

The receding horizon technique has been developed for linear time varying and non-
linear systems as a feasible way of calculating optimal controls online without having to
solve a PDE at every state, see [9], [10] and [11], and the survey paper on model predictive
control [12]. The optimal control problem considered in [9] is an H2 type problem, and
was shown to be stabilizing. The receding horizon approach has been in used for many
years and is of considerable practical importance.

The aim of this note is to describe an application of the receding horizon control
approach to the state feedback H∞ control of nonlinear systems. The goal is to combine
the virtue of the robust stability guaranteed by the H∞ objective, and the computational
feasibility of the receding horizon technique.

The paper is organized as follows. In Section 2 we state the H∞ problem to be solved
and review some basic facts. The receding horizon controller is defined in Section 3, and
calculation of it is discussed in Section 4. Properties of the H∞ receding horizon controller
are given in Section 5. An example is studied in Section 6, and several points concerning
the approach are discussed in Section 7.

2 State Feedback H∞ Control

The state feedback nonlinear H∞ control problem has been well-studied in the literature.
In this section we review the problem and its solution in terms of a HJB equation. For
further details, see [15], [1], [3], and the references therein.

Consider a plant model

G :

{

ξ̇ = A(ξ) +B1(ξ)w +B2(ξ)u
z = C1(ξ) +D12(ξ)u

(2.1)

Assumption 2.1 We assume that all the problem data are smooth functions with bounded
first derivatives, that B1, B2 and D12 are bounded, and that the origin is an equilibrium
state: A(0) = 0 and C1(0) = 0.

A state feedback controller u = K(x) is said to solve the H∞ control problem for G
provided the closed-loop system (G,K) is dissipative and internally stable. The closed-
loop system is dissipative (with gain γ > 0) if

1
2

∫ T

0

|z(s)|2ds ≤ 1
2
γ2
∫ T

0

|w(s)|2ds+ β(x0) (2.2)
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where ξ(0) = x0, for some non-negative finite function β with β(0) = 0 and every w ∈
L2[0, T ], for all T ≥ 0. Internal stability means that if w ∈ L2[0,∞) then u(·), z(·), ξ(·) ∈
L2[0,∞), and consequently ξ(t)→ 0 as t→∞.

If there exists a static state feedback controller u = K(x) such that the closed-loop
system is dissipative (with gain γ > 0) there exists a storage function V (x) ≥ 0 which
satisfies V (0) = 0 and the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation

∇V (A−B2D
′
12C1)+

1
2
∇V (γ−2B1B

′
1−B2E

−1
1 B′2)∇V ′+ 1

2
C ′1(I−D12E

−1
1 D′

12)C1 = 0. (2.3)

The function V (x) need not necessarily be smooth, in which case the PDE (2.3) can be
interpreted in the viscosity sense, [14].

For notational convenience we write

H(x, λ) = λ(A(x)−B2(x)D12(x)
′C1(x)) +

1
2
λ(γ−2B1(x)B1(x)

′ −B2(x)E1(x)
−1B2(x)

′)λ′

+1
2
C1(x)

′(I −D12(x)E1(x)
−1D12(x)

′)C1(x)
(2.4)

for any x ∈ Rn and (row) vector λ ∈ Rn where E1 = D′
12D12 > 0. Then (2.3) becomes

H(x,∇V (x)) = 0. (2.3)′

Note that

H(x, λ) = min
u∈Rm

max
w∈Rs

{λ(A(x)+B1(x)w+B2(x)u)+
1
2
C1(x)+D12(x)u|

2−γ2 1
2
|w|2} (2.5)

with optimal u given by

u∗(x, λ)
4
= E1(x)

−1(D12(x)
′C1(x) +B2(x)

′λ′). (2.6)

On the other hand, if (2.3) has a smooth solution V (·) ≥ 0, V (0) = 0, then the state
feedback controller

K∗
state(x)

4
= u∗(x,∇V (x)) (2.7)

renders the closed loop (G,K∗
state) dissipative (with gain γ > 0), since integration yields

the dissipation inequality

V (ξ(t)) + 1
2

∫ t

0

|z(s)|2ds ≤ 1
2
γ2
∫ t

0

|w(s)|2ds+ V (ξ(0)). (2.8)

The function β in the definition (2.2) can be taken to be V . Since the control law
depends on ∇V , we assume that V (·) is differentiable in some sense (C1 with globally
Lipschitz derivative is enough). The stability of the closed loop follows from the dissipation
inequality and detectability. By detectability we mean that w, z ∈ L2[0,∞) implies ξ ∈
L2[0,∞).

Thus to solve the nonlinear state feedback H∞ control problem, one needs to solve
the PDE (2.3). Actually, it is enough to solve the PDI

H(x,∇V (x)) ≤ 0 (2.9)
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for a function V ≥ 0, with V (0) = 0, since integration of (2.9) also gives the dissipation
inequality (2.8).

The minimal solution Va of (2.3) or (2.9) is called the available storage, and is the
solution usually used, since it corresponds to the optimal minimax controller (obtained
by using V = Va in (2.7)). Indeed:

Va(x) = inf
K

sup
T≥0, w∈L2[0,T ]

{1
2

∫ T

0

[|z(s)|2 − γ2|w(s)|2]ds : ξ(0) = x} (2.10)

where u(s) = K(ξ(s)), and ξ, z are solutions of (2.1).

3 Receding Horizon H∞ Control

Receding horizon control is an important and applicable technique for finding optimal
state feedback controllers online without having to solve dynamic programming PDEs for
all states. The technique is shown to give a stable closed loop in [9]; see also [10], [11]. In
this section we adapt this technique to the nonlinear state feedback H∞ control problem.
For similar results for linear systems, see [7].

The receding horizon controller is constructed from a finite time horizon optimal con-
trol problem which we now describe. Let Φ be a smooth solution of the PDI (2.9) satisfying
Φ(x) ≥ 0, Φ(0) = 0. Let T > 0 be a fixed time horizon. Define a finite horizon optimal
control problem on [0, T ]:

V Φ,T (x, 0) = inf
u∈PC[0,T ]

sup
w∈L2[0,T ]

{1
2

∫ T

0

[|z(s)|2 − γ2|w(s)|2]ds+ Φ(ξ(T )) : ξ(0) = x} (3.1)

where the control u(·) is piecewise continuous and square integrable, and ξ, z are solutions
of (2.1) on [0, T ] with initial condition ξ(0) = x. Let

s 7→ u∗Φ,Tx,0 (s), 0 ≤ s ≤ T, (3.2)

denote the optimal control. The optimal control value at the initial time s = 0 is then
u∗Φ,Tx,0 (0).

The receding horizon controller is defined as follows: when in state x, apply the control
value u∗Φ,Tx,0 (0). To elaborate, suppose now that ξ(·) is the trajectory of (2.1) on [0,∞)
with initial condition ξ(0) = x0 corresponding to the receding horizon controller. At time
t ≥ 0 the current state is x = ξ(t) and consider the time horizon [t, t+ T ] and the above
finite time horizon optimal control problem shifted to this interval. By time invariance,
the optimal control for this time-shifted problem on [t, t+ T ] is

s 7→ u∗Φ,Tx,0 (s− t), t ≤ s ≤ t+ T. (3.3)
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This control is not applied, but rather the receding horizon control policy is to apply at
time t the “initial” control value corresponding to s = t:

Krh(x)
4
= u∗Φ,Tx,0 (0) (3.4)

where x = ξ(t) is the current state. To be specific, the control at time t ≥ 0 is

u(t) = Krh(ξ(t))
4
= u∗Φ,T

ξ(t),0(0) (3.5)

This process is repeated at each time t, so we are repeatedly applying the initial optimal
control value for a sequence of finite horizon control problems, indexed by the current
state x = ξ(t). Associated with the controller Krh(x) is a function

Vrh(x) = V Φ,T (x, 0). (3.6)

4 Calculating the Receding Horizon Controller

We turn now to the issue of determining the control values u∗Φ,Tx,0 (0). By the invariance
principle of optimal control, define the value function for the finite time horizon problem
(for t ∈ [0, T ]) by

V Φ,T (x, t) = inf
u∈PC[t,T ]

sup
w∈L2[t,T ]

{1
2

∫ T

t

[|z(s)|2 − γ2|w(s)|2]ds+ Φ(ξ(T )) : ξ(t) = x} (4.1)

where the control u(·) is piecewise continuous and square integrable, and ξ, z are solutions
of (2.1) on [t, T ] with initial condition ξ(t) = x. By dynamic programming, V Φ,T is the
unique solution of the PDE problem:

∂V
∂t
(x, t) +H(x,∇V (x, t)) = 0

V (x, T ) = Φ(x)
(4.2)

If V Φ,T is smooth, the optimal control for the starting point (x, t) ∈ Rn × [0, T ] is given
by

u∗Φ,Tx,t (s) = u∗(ξ(s),∇V Φ,T (ξ(s), s)) (4.3)

for s ∈ [t, T ], where u∗(x, λ) is defined by (2.6), and ξ is the corresponding solution of
(2.1) with ξ(t) = x. Then we have

Krh(x)
4
= u∗Φ,Tx,0 (0)
= u∗(x,∇V Φ,T (x, 0))
= u∗(x,∇Vrh(x))

(4.4)

Thus the receding horizon controller can be found from the solution to the PDE (4.2).
The receding horizon methodology seeks to avoid this, and only computes the needed

5



values as the system evolves online. This can be done using the characteristic equations
for (4.2):

ξ̇(s) = ∇λH(ξ(s), λ(s)), ξ(0) = x,

λ̇(s) = −∇xH(ξ(s), λ(s)), λ(T ) = ∇xΦ(ξ(T )).
(4.5)

Thus
Krh(x) = u∗(x, λ(0)), (4.6)

so the online implementation requires repeated solution of the two point boundary value
problem (4.5) as the system evolves.

5 Properties of the Receding Horizon Controller

Before establishing properties of the receding horizon controller, we collect together some
results concerning the finite horizon problem.

For t1 ≤ t2, define the operator St1,t2 by

(St1,t2Φ)(x) = inf
u∈PC[t1,t2]

sup
w∈L2[t1,t2]

{1
2

∫ t2

t1

[|z(s)|2 − γ2|w(s)|2]ds+ Φ(ξ(t2)) : ξ(t1) = x}

(5.1)
where the control u(·) is piecewise continuous and square integrable, and ξ, z are solutions
of (2.1) on [t1, t2] with initial condition ξ(t1) = x.

Assumption 5.1 Assume Φ ≥ 0 is finite, smooth, satisfies Φ(0) = 0, and solves

H(x,∇Φ(x)) ≤ 0. (5.2)

Lemma 5.2 Make Assumption 2.1. Then:

(i) If Φ1 ≤ Φ2, then
St1,t2Φ1 ≤ St1,t2Φ2 (5.3)

(ii) For any τ ,
St1,t2Φ = St1+τ,t2+τΦ (5.4)

If in addition Assumption 5.1 holds, we have

(iii) For all 0 ≤ t ≤ T ,
V Φ,T (x, t) ≤ Φ(x) (5.5)
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(iv) For 0 ≤ t1 ≤ t2 ≤ T ,
V Φ,T (x, t1) ≤ V Φ,T (x, t2) (5.6)

v) For all 0 ≤ t ≤ T ,

V Φ,T (x, t) ≥ inf
u∈PC[t,T ]

sup
w∈L2[t,T ]

{1
2

∫ T

t

[|z(s)|2−γ2|w(s)|2]ds+V Φ,T (ξ(T ), t) : ξ(t) = x}

(5.7)
where the control u(·) is piecewise continuous and square integrable, and ξ, z are
solutions of (2.1) on [t, T ] with initial condition ξ(t) = x.

Proof. Item (i) follows immediately from the definition (5.1), and item (ii) is a
consequence of time invariance.

By Assumption 5.1, upon integration we have

Φ(x) ≥ inf
K

sup
w∈L2[t,T ]

{1
2

∫ T

t

[|z(s)|2 − γ2|w(s)|2]ds+ Φ(ξ(T )) : ξ(t) = x} (5.8)

where u(s) = K(ξ(s)), and ξ, z are solutions of (2.1). But the RHS of (5.8) is bounded
below by V Φ,T (x, t); hence item (iii).

Next, write τ = t2 − t1. Then by dynamic programming and the above items,

V Φ,T (x, t1) = St1,T−τV
Φ,T (·, T − τ)(x)

≤ St1,T−τΦ(x)
= St2,TΦ(x)
= V Φ,T (x, t2)

(5.9)

This proves item (iv).

To prove item (v), set t1 = t, t2 = t1+τ , where τ > 0. Then by dynamic programming
and item (iv)

V Φ,T (x, t) = St,t+τV
Φ,T (·, t+ τ)(x)

≥ St,t+τV
Φ,T (·, t)(x)

(5.10)

which is just (5.7). ¤

Assumption 5.3 Assume V Φ,T (x, t) is smooth for (x, t) ∈ Rn × [0, T ], and solves the
PDE (4.2) (uniquely) when Φ is smooth.

Theorem 5.4 Make Assumptions 2.1, 5.1 and 5.3. Let Krh be the receding horizon
controller as specified by (3.4) above, and let Vrh be given by (3.6). Then the closed loop
system (G,Krh) is dissipative, with storage function Vrh. Further, if (G,Krh) is detectable,
then (G,Krh) is internally stable.
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Proof. By Lemma 5.2, item (iv), (5.6), we have

∂V

∂t

Φ,T

(x, 0) ≥ 0,

and hence by definition of Vrh we have

H(x,∇Vrh(x)) ≤ 0 (5.11)

Now by (2.5), (2.6) and (4.4), the PDI (5.11) gives

sup
w∈Rs

{∇V (A+B2Krh) +
1
2
|C1 +D12Krh|

2 − γ2 1
2
|w|2} ≤ 0. (5.12)

Integration of (5.12) gives the dissipation inequality (2.8) for V = Vrh, u = Krh(ξ). ¤

6 Example

In this section we shall show the viability of the approach for control proposed above.
Consider the following system

ẋ(t) = (1 + 0.25arctan(|x|2))Ax(t) +B1w(t) +B2u(t),

z(t) = C1x(t) +D12u(t), (6.1)

with

A =

(

0.98 0.96
0.18 1.16

)

, B1 =

(

0.87 0.28 0.46
0.34 0.37 0.67

)

, B2 =

(

0.79 0.22
0.92 0.84

)

,

C1 =





0.98 0.20
0.98 0.51
0.16 0.40



 , D12 =





0.93 0.90
0.45 0.30
0.12 0.70



 .

For the simulations the following perturbation was chosen:

w(t) = sin(2t)/(3 + t3); (6.2)

its graph is shown in Figure 6.1. Further, we have chosen the horizon T = 1.

An important point is how to select or compute the function Φ(·) (Assumption 5.1).
In this example we use an approximation of it, which may be useful in general, namely,

Φ(x) = 1
2
x′Xinfx, (6.3)

where the matrix

Xinf =

(

3.3053 −2.0712
−2.0712 3.4639

)

≥ 0
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0.3

t

w(t)

Figure 6.1: Graph of perturbation w(t).

is the solution, in this case with γ = 2.871, of the Riccati equation:

Alsf
′Xinf +XinfAlsf +X

′

infBlsfXinf + Clsf = 0,

where Alsf , Blsf and Clsf are matrices given by

Alsf := A−B2E
−1
1 D′

12C1,

Blsf := γ−2B1B
′
1 −B2E

−1
1 B′2,

Clsf := C ′1(I −D12E
−1
1 D′

12)C1.

The heuristic behind this choice is that (6.3) approximates a true storage function in a
neighborhood of the origin [15, Section 7.4] (linearization). The matrix Xinf can be easily
computed with the help of modern control software, for example [5].

0 1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

t

x1

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2

t

x2

Figure 6.2: Closed loop state ξ(·) trajectory.

Figure 6.2 represents the trajectories of the closed loop (G,Krh) with w given by (6.2).
We have used the package mumus [4] in the computations associated to (4.5). We see
that the approach is feasible and works efficiently. The initial approximations needed in
mumus were obtained using homotopy. Its convergence was always fast and reliable.
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7 Discussion

In this note we make no attempt to weaken the smoothness assumptions for the functions
Φ and V Φ,T . For work on relaxing such assumptions in related contexts, see [2] and [10].

The approach we have described relies on the calculation or approximation of the
function Φ (a similar assumption is made in the linear case [7]). This is bothersome for
several reasons. If such a Φ has been found, then a suitable controller can be computed
from it, as described in Section 2. However, the receding horizon construction results
in an improvement, since it yields a storage function of lower minimax cost; indeed,
Va ≤ Vrh ≤ Φ, and in fact the value of Vrh is monotonically decreasing with respect to
the horizon length T . (The value Va is the optimal minimax cost, and is approached
as T → ∞, see (2.10).) Another point is that the calculation or approximation of the
function Φ may not be possible, and indeed we seek to avoid completely the solution of
a PDE or PDI at each state. In general, it seems that an approximation, such as the one
resulting from linearization in Section 6, will suffice. This works well in the examples we
have tried to date, and merits further investigation and analysis.

We remark that the receding horizon technique described in [9] does not use a finite
function Φ as an end point cost, but instead uses a constraint that the final state be the
origin (or a target region [11]). Use of such a constraint does not appear straightforward
in the H∞ context.

We have also experimented with this receding horizon approach for measurement feed-
back problems under the certainty equivalence conditions of [1]. The results have been
encouraging and will be pursued further.
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