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Wiring Things Up
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[circuit diagram of a classical electronic amplifier]




[quantum optics lab - E. Huntington, ADFA/UNSWV]
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[quantum computing network - (teleportation with loss
detection) - Knill, Laflamme, Milburn, 2001]



Quantum network models - desirable attributes

e Capture the quantum physics
® Be capable of representing classical components

® Include dissipative mechanisms
- noise, uncertainty, decoherence

® Preserve canonical structure
- e.g. commutation relations, energy

® Network of interconnected components should also be a
quantum system
- recursive

® Efficient methods for representation, interconnection,
manipulation, and physical realization

® Efficient methods for analysis and synthesis



Elementary network constructs:

Concatenation




Series (cascade)

...........................................................................................................

History:
Gardiner, 1993
Carmichael, 1993



Mathematical definitions:

Multichannel open quantum system:

—ILIL —iH —LiS
L S 1

G-:

where
e H is a Hamiltonian (self-adjoint operator)
e L is a vector of field coupling operators

e S is a scattering matrix (self-adjoint matrix of operators)

Shorthand:
G=(S,L,H)




Concatenation product

Sl 0 L1
G H Gy = ( ; , Hy + H>)
0 Ss L

Series product

G2<1G1 = G1 + G2 + G’QHG’l

where

or using the shorthand,

1
Gy <Gy = (S5S1, Lo+ S,Ly, Hi+ Hy+ Z(Lgsng — LISIL,))



Example: beamsplitter and cavity

A
Aq B; = Ay
>
B, cavity
-~ a
Ao
da(t) = (—%HA)@( )dt — /7 dB (t)
1211(75) = ﬁAl(t)—OzAg(t)
Ay(t) = aAi(t) + BAs(t)
By(t) = As(t)
dBi(t) = /Aa(t)dt+ dBi(t)
dBy(t) = dBs(t)



Complete network

—3a*a —1Aa*a | — /vy Ba* /yaa”
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or using the shorthand

GosLm=|[" )V V) Aca
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Description in terms of concatenation and series products:

G = (CEBN)4B,

where C is a matrix of cavity parameters

o —3a*a —1Aa*a ‘ —/ya*
V7 a ‘ 0
010
N = ,
010
is a trivial system (pass-through), and
0 0 0
B=|0/-1 -—-a ,
0] o p[B-1

is a representation of the beamsplitter S.



Network manipulations (try to pull beamsplitter through):

G=(CEHN)xB=B<«(C'HN).

Here, the modified cavity is described by the subsystems

o [ Hsraa-inaa| -gaa ) —jlaPate]ayya

G/ a ‘ 0 | —a*\/ya ‘ 0

By
A

By =A A
A Ly modified < 2

cavity B
a >
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Theorem

(Principle of Series Connections) The generator Gao.1 for the feedback system
obtained from G H Go when the output of the first subcomponent is fed into the
input of the second 1s the series product Go_1 = G <1 Gy.
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Reducible Networks
A reducible quantum network N = ({G;}, K,{G,; < Gy}) consists of

e A reducible decomposition G = H,G;, where S = diag{S;,...,S,},

e a direct interaction Hamiltonian K of the form

K =i) (NpMy— M;Ny)
k

e a compatible list of field-mediated connections .2 = {G, < G} such that (i)
the field dimensions of the members of each pair are the same, and (ii) each

input and each output has at most one connection.

®
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An example of a network that is not reducible

Y

aA

ap

r 3

[Yanagisawa-Kimura, 2003]



Examples

All-optical feedback

Ay

Ay

[Wiseman-Milburn, 1994]

Ay

cavity

A

a

mirror 1

mirror 2

light beam

Before feedback, the cavity is described by

and S = ¢ (phase shift).

,0) = (1, Ly,0) B (1, Ly, 0),



After feedback, we have
Gcl = (1, LQ, O) < (S, O, O) < (1, Ll, O)
1
= (S,S5Ly + Lo, Q_Z'(L;SLl — L1S"Ls)).
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Direct measurement feedback

A(t)

c(t)

input field
—_—

—

quantum system

G

output field

| EEEE—

PD

i(t)

[Wiseman, 1994]

control signal

Controlled Hamiltonian

Before feedback, the quantum system is described by

where S = ¢

— F i

s unitary.

k <

photocurrent

feedback gain

H0+FC

G = (1, L, Hy) B (S,0,0)



After feedback, we have
Gcl = (S, 0, O) < (]., L, Ho) = (S, SL, Ho)

dX = (—i[X, Hy|+Lo—ir (X)) dt+[L*e", X]e T dA+e [ X, e " LJdA*+(e" Xe ™ —X)dA.
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(can also do quadrature measurement)



Realistic detection [Warszawski-Wiseman-Mabuchi, 2002]

| quantum system HD

classical system

Gy

W
Y
~
Y
g
k<

detection system G,

The quantum system is given by
G, = (17 Ly, Hq)v
and the classical detection system is given by the classical stochastic equations

dx(t) = f(z(t)dt + g(x(t))dw(?),
dY(t) = h(z(t))dt + do(t),



The classical system is equivalent to
G.=(1,La,H.) B (1, Ls,0)

where Loy = —ig"p — 5V7g, Lo = th and H. = 3(f"p+p" f).

The complete cascade system is

G = ((1,La,H)<(1,Ly H,)) B (1, Le,0)

L1+ Lg 1
* *
= (L g+ He + ?(Lcqu - LqLcl))
L62 ¢
B A, =B Lt
> @ > @ — >
A
Lg
Ag
> L = » HD —> Y
Lc2 A2
quantum system classical system

G, G.



The unnormalized quantum filter for the cascade system is

2 Ly+ La

doy(X) = o(—i|X,H,+ H. + 2—(L61Lq — Ly Ley)] + L
( Lc2

)(X))dt

+o (L7 X + X Leo)dy.

For instance, X = X, ® ¢, where ¢ is a smooth real valued function on R".

Filtered estimate of quantum variables:

7Tt(Xq) — Ut(Xq)/Ot(l)



Quantum Dissipative Systems

Combine perspectives from
® quantum physics
- damping, commutation relations
- quantum noise

(e.g. Gardiner-Collett, 1985, etc)

® control theory
- behaviours
- signals, disturbances, uncertainty
- passivity, gain
(e.g. Zames, 1965, Willems, 1972, 1997, etc)
in order to develop analysis and synthesis tools.



The plant is the system of interest, interacting with its
environment.

Environment can include infinite heat baths, as well as
other systems - a network.



Given two reducible systems P = H,P; and W = H; W/, an interaction

Hamiltonian

K =—iY (NyMy— M;Ny),
k
where N, € op, M, € g, and a list of series connections

S = {Wk <]Pj, Pk:’ <IVVj/}7

one can form a network

N=PAW.
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We call W an exosystem, and keeping the interconnection structure fixed, we let

W vary in a class # of exosystems.

Lindblad generator for a system G = (S, L, H):
Ga(X) = Lo(X) — X, H]

where

Lp(X) = %LT[X, L] + %[LT,X]L.

Then t
E.LX ()] = X(5) + | E.[Ga(X()dr

for all ¢ > s.



Plant
P=(S,L,H)

Exosystem
W=R,w,D)e¥W

Supply rate
p (W) < JZ%P @ %w

a self-adjoint symmetrically ordered function of the exosystem parameters,

depending on the plant parameters.

We say that the plant P is dissipative with supply rate r with respect to a class #

of exosystems if there exists a non-negative system observable V' € o such that

E, [va) V- /Otr(W)(s)ds] <0

for all exosystems W € # and all t > 0.




Infinitesimal characterization

The plant P is dissipative with supply rate r with respect to a class # of
exosystems if and only if there exists a non-negative system observable V € .o
such that

gP/\W(‘/) — 7”<W) <0

for all exosystem parameters W € 7.

Special case from now on:

PAW=P«W

and
W= (L, H)




Consider
W =R, w,—i(v K -K'v))

where v commutes with plant variables and Kp € 2.

Open quantum systems are dissipative with respect to the “natural” supply rate

T (W) = Opsw (%)

A%
_ EW(VO)—i—EL(VO)—I—(wT VT)Z+ZT |

| (A

where Vy > 0 commuteg with H. passivity
(energy flow
into plant)
dissipation due to
quantum noise
dissipation due to 7 = [V, L ]

exosystem



Transformation under series product

Let P, and P be dissipative with respect to supply rates rp, (W) and rp,(W),

storage functions V] and V5, and exosystem classes #) and %5 respectively.

The series system P, < Py is dissipative with storage function V; + V5 and supply

rate

7°P2<1P1(W) = TP1<P,2 <]W) + TPQ(Pl <1W),

with respect to the exosystem class
W ={W : P,aW € %) and P1<W € #;},
where

P, = (S1S,S,, St (Sy — 1)L, + SiLy, Hy + Im {L; (Sy +1)L; — LW{SQLl}).



Example

Open harmonic oscillator (e.g optical cavity)
P = (1, \/va, wa a)
Let Vo = H/w = a*a.

ro(W) =Gpaw (Vo) = —vya'a— 7y (w'a+aw)+ Lu(Vo) = i[Vo, D

By completion of squares the supply rate can be re-written
ro(W) = —(v7va+w)" (Vya+w) +ww+ L, (Vo) — |V, D]

and hence the system has gain 1 relative to the output quantity /v a + w and

commuting inputs w.

Note that if we include ground state energy and write V = a*a + % = ¢* + p* (here

q=a+a*, p=—i(a— a*), then passivity and gain holds but with A =~ > 0.



Feedback Control by Interconnection

Inspired by behavioural ideas of ].C.Willems and energy-
based design methods for classical mechanical systems (e.g.
robotics)

(e.g. Ortega and Spong, 1989, etc)

Control design as network design

Controller may be classical, quantum, or a mixture of the
two

Design focusses on the physical structure

Interconnections can be field-mediated and/or direct
interactions

Covers standard problems of stabilization, regulation,
robustness



The plant and the controller may interact with their
environment.




Methodology

Specify the control objectives by encoding them in
e a non-negative observable V; € o ® ¢,
e a supply rate r4(W),

e and a class of exosystems #; for which a network (P A C) AW is well defined.

One then seeks to find, if possible, a controller C such that

Gencaw (V) —ra(W) <0

for all exosystem parameters W € %#.



Example
Cavity P = (1, a,0) with vacuum input.
Wish to maintain steady-state photon number a*a.

Consider simple direct plant-controller interaction
C = (1, 0, —’L< ;V — V*Kp)) ,

where K, is a plant operator and v is a complex number, both to be chosen.

Closed loop system
PAC=PHC.

We set

Vi=(a—a)(a—a)=a"a—a"a—aa+a’a,

and for a positive real number c,
ra(W) = —cVy,

with #y = {(_, .,0)}, which consists only of the trivial exosystem.



The design problem is to select, if possible, Kp, a plant operator, and v, a complex

number, such that
Gpmc(Va) +cVa <0

for suitable ¢ > 0. We choose Kp = a.

Evaluate LHS, and set c =1/2, v = —a/2.

Physically, this control design corresponds to a classical energy source connected
to the cavity, such as when the vacuum field is replaced by a coherent field (signal

plus noise), i.e. a laser beam.



Example

-|nﬁnit)/ Control [James-Nurdin-Petersen, 2006]

The control objective is to reduce the gain from input w to output z by an

appropriate choice of controller C.




Plant

P = P,HP,HP;
(1,y/k1a, 0)B (1,\/kea, 0) B (1,/k3a, 0),

Controller

C=C,HGC, HC ;.

The plant-controller network is

PANC=P H(C3<9Py)H (P3<C;)H Cs.
The supply rate is

r(W) = g*w*w — (\/rz a +w)* (ks a + w)
for exosystems W € #;, where

Wy;=4{W =(1,0,0)H (1,w,0)H (1,0,0)H (1,0,0) : w commutes with o ® A} .



|

K1 = 2.6 Ko = 0.2

K3 — 0.2

7\

z u

Plant, an optical cavity.



For the plant parameters k1 = 2.6, ko = 0.2, k3 = 0.2, a controller was realized as

a cavity with annihilation operator b:
C=(-1,—-v0.2b,0)H (1,V/1.8b, 0) H (1,v/0.2b, 0).
This construction had two steps:

1. Evaluation of quadratic forms with respect to Gaussian states, and using some

classical results. This gives part, not all, of the solution.

2. Completing the design by adding field couplings to ensure commutation

relations preserved. This is algebraic.



180°
Phase
Shift

VK1

_

ki1 = 0.2 kKrksg = 0.2
aK

RK2 = 1.8
/ \ -

Controller, specified to be quantum,
realized as a cavity.



Another example, plant " y
(not shown) was an
optical amplifier in 180°

. . . phase shift
series with a cavity. T

VK1 \
> - \Y
f AN

Y

K1 = 0.2 Krgq = 0.2
aK
Mg \\ Y Cq
REK2 = 21788T l KK3 = 0.2
VK2
Mod [—
VK4
\ Tc1 A
—_— '\—> HD(Re) o —V2 > classical system
v
K dé. = —0.25¢.dt — 0.1355dn, :
o HDam) |} v2 [T dCe = Ecdt ‘
50 - 50 beam homodyne classical
splitter detection gains

Here, the controller, specified to have quantum and
classical degrees of freedom.



Conclusion

Concatenation and series products
facilitate quantum network analysis and
design (reducible networks).

Combined quantum physics and
control engineering perspectives on
dissipation.

Control design by interconnection
based on direct physical description.

Controllers may be quantum, classical,
or a mixture.

Allows designers to focus more on
systems, less on equations.

Physical realization a key issue.

Network paradigm powerful and likely
to be helpful for quantum technology.




