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Wiring Things Up

[circuit diagram of a classical electronic amplifier]



[quantum optics lab - E. Huntington,  ADFA/UNSW]



[quantum computing network - (teleportation with loss 
detection) - Knill, Laflamme, Milburn, 2001]
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• Capture the quantum physics

• Be capable of representing classical components

• Include dissipative mechanisms 
     - noise, uncertainty, decoherence

• Preserve canonical structure 
     - e.g. commutation relations, energy

• Network of interconnected components should also be a 
quantum system
      - recursive

• Efficient methods for representation, interconnection, 
manipulation, and physical realization

• Efficient methods for analysis and synthesis

Quantum network models - desirable attributes



Concatenation

Elementary network constructs:

G1

G2

G = G1 ! G2

1

G1

G2

G = G1 ! G2

1

G1

G2

G = G1 ! G2

1



Series (cascade)

G1

G2

G = G1 ! G2

1

G1

G2

G = G1 ! G2

1

G1

G2

G = G1 ! G2

G = G2 ! G1

1

History:
  Gardiner, 1993
  Carmichael, 1993



G1

G2

G = G1 ! G2

G = G2 ! G1

1

Mathematical definitions:

Multichannel open quantum system:

G =

 −1
2L

†L− iH −L†S

L S− I


where

• H is a Hamiltonian (self-adjoint operator)

• L is a vector of field coupling operators

• S is a scattering matrix (self-adjoint matrix of operators)

Shorthand:

G = (S,L, H)

2



Mathematical definitions:

Multichannel open quantum system:

G =

 −1
2L

†L− iH −L†S

L S− I


where

• H is a Hamiltonian (self-adjoint operator)

• L is a vector of field coupling operators

• S is a scattering matrix (self-adjoint matrix of operators)

Shorthand:

G = (S,L, H)

2

Concatenation product

G1 ! G2 = (

 S1 0

0 S2

 ,

 L1

L1

 , H1 + H2)

Series product

G2 ! G1 = G1 + G2 + G2ΠG1

where

Π :=

 0 0

0 I

 ,

or using the shorthand,

G2 ! G1 = (S2S1, L2 + S2L1, H1 + H2 +
1

2i
(L†

2S2L1 − L†
1S

†
2L2))

3



Example: beamsplitter and cavity

2

methodology. The appendices contain a proof of the principle of loading components, and an explanation of a method for

representing classical systems as commutative subsystems of quantum systems.

II. OPEN QUANTUM SYSTEMS

This paper is concerned with the modeling of networks consisting of both quantum and stochastic components, and this

section is concerned with presenting the concepts and tools that are required; in particular, the concatenation and loading

products are defined in subsection II-B. Before presenting the general mathematical model, we begin with some preliminary

discussion to help orient the reader.

A. Preliminary Example

We consider a simple physical situation which captures some (but not all) of the features of the models used in this paper;

it will be helpful for the reader to have this in mind as preparation for the general models discussed below, which may at first

sight seem rather abstract. Figure 1 shows an optical cavity driven by one of the light beams exiting a beam splitter. Here

the system of interest is the cavity and beam splitter, and the environment is the optical fields. Detailed physical modeling of

situations like this is discussed in, e.g. [9], [10], and it turns out that a simple quantum white noise model can be used which

is very accurate and embodies the quantum mechanical behavior of the cavity, beam splitter and optical fields.

B1 = Ã1!"
"

""
!

#
$

$

a

cavity

A1

A2

B2 = B̃2 = Ã2

B̃1

Fig. 1. Beam splitter (left) and cavity (right) network.

In a rotating reference frame, the optical mode inside the cavity is represented by an annihilation operator a, and the optical
fields presented to the beam splitter as inputs are quantum stochastic signals A1 and A2. The outputs of the network are B̃1 and

B̃2. If the inputs are independent canonical quantum noises (see subsection II-C.1 for the definition), then the cavity operator

a and the output fields B̃j evolve in time according to the quantum stochastic differential equations

da(t) = (−γ

2
+ i∆)a(t)dt−√γ dB1(t) (1)

Ã1(t) = βA1(t)− αA2(t) (2)

Ã2(t) = αA1(t) + βA2(t) (3)

B1(t) = Ã1(t) (4)

B2(t) = Ã2(t) (5)

dB̃1(t) =
√

γa(t)dt + dB1(t) (6)

dB̃2(t) = dB2(t). (7)

Here, α and β are complex numbers describing the beamsplitter relations, and they satisfy α∗α + β∗β = 1 (the asterisk
indicates the conjugate of a complex number), γ is a real number describing the strength of the coupling between the cavity
and input field, ∆ is a measure of the “detuning” or frequency mismatch between the fields and the cavity, and i =

√−1.
The differential equation for a can be expressed in terms of the input signals Aj by substitution of equations (2), (3), (4)

and (5) into (1), as can the equations for the output fields. It can be seen that algebraic manipulations are required to describe

the complete system (in general such manipulations may be simple in principle, but complicated in practice). It is also evident

that the beam splitter effects a “scattering” between the input field channels.

In this paper we make extensive use of vector-matrix notation to describe and manipulate systems. For the example at hand,

we use vectors

A =
(

A1

A2

)
, B =

(
B1

B2

)
, Ã =

(
Ã1

Ã2

)
, B̃ =

(
B̃1

B̃2

)
to represent the quantum signals. The beamsplitter is represented by a unitary matrix

S =
(

β −α
α β

)
,
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Complete network

G =

 −1
2L

†L− iH −L†S

L S− I

 =


−γ

2a∗a− i∆a∗a −√γ βa∗
√

γ αa∗
√

γ a β − 1 −α

0 α β − 1


or using the shorthand

G = (S,L, H) =

 β −α

α β

 ,

 √
γ a

0

 , ∆a∗a



4

3

and the coupling of the field B to the cavity is given by the vector

L =
( √

γ a
0

)
(note that the second component represents a trivial coupling). As we will discuss below, the system parameters are described

by a matrix

G =
( − 1

2L
†L− iH −L†S

L S− I

)
=

 −γ
2 a∗a− i∆a∗a −√γ βa∗ √

γ αa∗√
γ a β − 1 −α
0 α β − 1

 , (8)

where the asterisk indicates the Hilbert space adjoint. The complete system consisting of the input and output fields, the beam

splitter, and the cavity is described by the triple

(Â,G, ˜̂A). (9)

As will be discussed in general below, this is an example of a cascade of two components constituting a network; indeed, we

can write

G = (C ! N) $ B, (10)

where C is a matrix of cavity parameters

C =
( −γ

2 a∗a− i∆a∗a −√γ a∗√
γ a 0

)
, (11)

N =
(

0 0
0 0

)
, (12)

is a trivial system (pass-through), and

B =

 0 0 0
0 β − 1 −α
0 α β − 1

 , (13)

is an ampliation of the beamsplitter S. The meaning of the concatenation ! and loading $ products will be explained below in
sections II-B (Definitions 2.1 and 2.2) and III (the principle of loading components, Theorem 3.1). A schematic representation

of the network is shown in Figure 2.

√
γ a

B̃2
0

!

! !

!A1

A2

B̃1
!
!

Fig. 2. Beam splitter-cavity system represented as a network.

For the purposes of network modeling and design, it can be useful to perform manipulations of the network to yield equivalent

networks; this, of course, is common practice in classical electrical electrical engineering. For instance, in our example we

could move the beam splitter to the output, but the cavity should be modified as follows (see Remark 3.5):

G = (C ! N) $ B = B $ (C′ ! N′). (14)

Here, the modified cavity (see Figure 3) is described by the subsystems

C′ =
( −γ

2 |β|2a∗a− i∆a∗a −β
√

γ a∗

β∗√γ a 0

)
, N′ =

( −γ
2 |α|2a∗a α

√
γ a∗

−α∗√γ a 0

)
. (15)

As will be explained in subsection II-C.4, it is quite convenient to use a shorthand notation for specifying systems. For

example, for the system G the shorthand notation

G = (S,L,H) =
((

β −α
α β

)
,

( √
γ a
0

)
,∆a∗a

)
can be used; this simply lists the system parameters.

The interactions described here so far are unidirectional field mediated interactions. Components interact indirectly via

a quantum field, which acts as a quantum “wire”. One can also consider bidirectional direct interactions, which can be

accommodated by using interaction Hamiltonian terms in the models. Our emphasis in this paper will be on field mediated

interactions, with direct interactions readily available in the modeling framework if required. See subsection III-C.



Complete network

G =

 −1
2L

†L− iH −L†S

L S− I

 =


−γ

2a∗a− i∆a∗a −√γ βa∗
√

γ αa∗
√

γ a β − 1 −α

0 α β − 1


or using the shorthand

G = (S,L, H) =

 β −α

α β

 ,

 √
γ a

0

 , ∆a∗a



4

Description in terms of concatenation and series products:

G = (C ! N) $ B,

where C is a matrix of cavity parameters

C =

 −γ
2a∗a− i∆a∗a −√γ a∗
√

γ a 0

 ,

N =

 0 0

0 0

 ,

is a trivial system (pass-through), and

B =


0 0 0

0 β − 1 −α

0 α β − 1

 ,

is a representation of the beamsplitter S.

5



Network manipulations (try to pull beamsplitter through):

G = (C ! N) ! B = B ! (C′ ! N′).

Here, the modified cavity is described by the subsystems

C′ =

 −γ
2 |β|2a∗a− i∆a∗a −β

√
γ a∗

β∗√γ a 0

 , N′ =

 −γ
2 |α|2a∗a α

√
γ a∗

−α∗√γ a 0

 .

6

5

B̃1

! "

#
#

##

$

$
! !a

cavity

B1 = Ã1
A1

A2
modified

B̃2

Fig. 5. Equivalent beam splitter and cavity network.

As will be explained in subsection II-D.4, it is quite convenient to use a shorthand notation for specifying systems. For

example, for the system G the shorthand notation

G = (S,L,H) =
((

β −α
α β

)
,

( √
γ a
0

)
,∆a∗a

)
can be used; this simply lists the system parameters.

The interactions described here so far are unidirectional field mediated interactions. Components interact indirectly via

a quantum field, which acts as a quantum “wire”. One can also consider bidirectional direct interactions, which can be

accommodated by using interaction Hamiltonian terms in the models. Our emphasis in this paper will be on field mediated

interactions, with direct interactions readily available in the modeling framework if required. See subsection III-C.

C. Matrices with Operator Entries and the Concatenation and Series Products

It is clear from the previous subsection that matrices (and vectors) with operator entries play an important role in this paper.

In this subsection we provide some relevant definitions that will be used in this paper, including the concatenation and series

products.

We are interested in models for open systems, with initial space h, a Hilbert space. The initial space contains the state
vectors for the system of interest (e.g. the cavity of subsection II-B), and the word “initial” refers to the idea that variables

defined on the initial space will evolve in time from their initial values in response to interaction with a field (and possible

external influences). We shall use multichannel fields, and to accommodate this we write K = Cn for an n-dimensional field
channel. We write B (H,K) denote the set of bounded linear operators from H to K. As usual, the C*-algebra B (H,H) will
simply be denoted as B (H) and we write U (H) for the subset of its unitary elements.
We are interested in matrices X = {Xjk} with operator entries Xjk. The transpose, conjugate and adjoint are defined

respectively by XT = {Xkj}, X∗ = {X∗
jk}, and X† = {X∗

kj} = (X∗)T = (XT )∗. We write

M+1 (H;K) := M (H; C⊕ K) (19)

for the space of matrices of the form

X =
(

X00 X0!

X!0 X!!

)
, (20)

where

X00 ∈ B (H)
X0! ∈ B (K,H⊗ K)
X!0 ∈ B (H⊗ K,K)
X!! ∈ B (H⊗ K) .

Since K = Cn, the components may be represented as follows: X!0 is a column vector of length n with entries in B (H), X0!

is a row vector of length n with entries in B (H), and X!! is an n× n matrix with entries in B (H). The matrix G given by

(12) in the previous subsection is of the form (20). We denote the identity by I and introduce the projection operator Π onto

H⊗ K:

Π :=
(

0 0
0 I

)
. (21)



Theorem

(Principle of Series Connections) The generator G2←1 for the feedback system

obtained from G1 ! G2 when the output of the first subcomponent is fed into the

input of the second is the series product G2←1 = G2 ! G1.
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Fig. 7. Direct feedback
“
A1,G2 ! G1, Ã2

”
.

A. Feedback

Let us consider a system reducible with internal space Ktotal = K1 ⊕ K2, where K1
∼= K2, and G = G1 ! G2 (recall

the concatenation product !, Definition 2.1, and Definition 2.6). The setup is sketched in Figure 6. We investigate what will
happen if we feed one of the outputs, say Ã1 back in as the input A2. Either of the two diagrams in Figure 7 may serve to

describe the resulting feedback system. Note that the outputs will be different after the feedback connection has been made.

We now state our main result applying the series product to feedback.

Theorem 3.1: (Principle of Series Connections) The generator G2←1 for the feedback system obtained from G1 ! G2

when the output of the first subcomponent is fed into the input of the second is the series product G2←1 = G2 ! G1.

A proof of this theorem is given in the appendix.

There are mathematically appealing ideas underlying this result. To begin with G2!G1 is just about the simplest asymmetric

combination of Itō matrix generators we could consider; something that is even more in evidence when we look at the

higher dimensional matrices! Moreover, the form of the eventual output Ã2 is precisely what we would expect: we will have

dÃαβ
2 (t) ≡ j2←1

(
Mαµ†

2←1M
βν
2←1, t

)
dAµν

1 (t) where M2←1 = I + ΠG2←1 is the Galilean matrix associated with G2←1 and

j2←1 (X, t) = V2←1 (t)† (X ⊗ 1) V2←1 (t), but we observe that

M2←1 = I + ΠG1 + ΠG2 + ΠG2ΠG1

= (I + ΠG2) (I + ΠG1)
= M2M1 (43)

which is the result of successive Galilean transformations associated with the first and then the second subsystem.

At first sight, the form of the series generator G2←1 = G1 + G2 + G2ΠG1 might suggest that V2←1 is somehow related

to the unitary process V2V1, the product of the unitaries for each individual component. The latter process however has

the Itō matrix V2G1V1 + G2V2V1 + G2V2ΠG1V1 which can be rearranged as V2 (G1 + j2 (G2) + j2 (G2)ΠG1)V1 where

j2 (X) = V †
2 (X ⊗ 1) V2. As j2 (G2) is rarely going to be G2 - we cannot expect the coefficients of the QSDE to be invariant

under their own dynamics—the process V2←1 is generally not just trivially equal to V2V1.

Remark 3.2: As the series product is associative, the generator GN←···←2←1 for a series of N consecutive plants is given

by

GN←···←2←1 = GN ! · · · ! G2 ! G1

=
N∑

k=1

∑
N≥jk>···>j1≥1

GjkΠ · · · ΠGj2ΠGj1 ,

where Gj is the Itō matrix generator associated to the jth plant. If we have Gj = (Sj ,Lj ,Hj) then we have explicitly

GN ! · · · ! G2 ! G1 = (Sn!1,
n∑

j=1

Sn!j+1Lj ,
n∑

j=1

Hj +
∑

1≤j<k≤n

Im
{
L†

kSk!j+1Lj

}
)

where we introduce the notation Sk!j := SkSk−1 · · · Sj for j < k and Sk!k := Sk, Sk!k+1 := 1. !
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Ã1, Ã2
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=
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∑
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Reducible Networks

A reducible quantum network N = ({Gj}, K, {Gj ! Gk}) consists of

• A reducible decomposition G = !jGj, where S = diag{S1, . . . ,Sn},
• a direct interaction Hamiltonian K of the form

K = i
∑

k

(N∗
kMk −M∗

kNk)

• a compatible list of field-mediated connections L = {Gj ! Gk} such that (i)

the field dimensions of the members of each pair are the same, and (ii) each

input and each output has at most one connection.

8

12

Proof: Clearly, if (44) is satisfied, then both cascade systems are described by the same parameters, which implies that

they are equivalent. To find G′
2, we solve equation (44) to get

G′
2 = (I + G1Π)−1 (G2 ! G1 −G1)

= (I + G1Π)−1 (G2 + G2ΠG1)
= (I + G1Π)−1 G2 (I + ΠG1) .

Substituting in the parameter values yields (45).

Remark 3.5: A useful special case of this result is moving a scattering matrix from the input to the output of a modified

system:

(S,L,H) = (I,L,H) ! (S, 0, 0) = (S, 0, 0) ! (I,S†L,H). (46)

!

C. Reducible Networks

In general, a network can be specified by a family {Gj} of components together with interconnections determined by direct
and field-mediated interactions. We now define a class of networks, which we call reducible networks, which are compatible

with the concatenation and series products, and by Theorem 3.1 are describable by an Ito generator matrix. We now explain

this in some detail, and also mention networks outside this class.

Let G = !jGj be a reducible system, Definition 2.6. Direct interactions are specified by a direct interaction Hamiltonian

K = i
∑

k

(N∗
k Mk −M∗

k Nk), (47)

where Mk, Nk are operators defined on the initial Hilbert space forG. Field mediated interactions relative to the decomposition
(35) are specified by a list of series connections

L = {Gj ! Gk} (48)

of series pairs, such that (i) the field dimensions of the members of each pair are the same, and (ii) each input and each output

(relative to the decomposition (35)) has at most one connection. Such a list of series connections is said to be compatible with

the decomposition (35).

Given any collection {Gj} of components, a network can be formed by concatenating the components into a reducible
system and specifying the direct and indirect connections.

Definition 3.6: A reducible quantum network N = ({Gj},K, {Gj ! Gk}) consists of
• A reducible decomposition G = !jGj ,

• a direct interaction Hamiltonian K of the form (47), and

• a compatible list of field-mediated connections L of the form (48).

!

An example of a reducible network is shown in Figure 10.

4

!
!
!

!

!

!

"

!

1

2

3

!

Fig. 10. A reducible network N = G1 ! (G4 ! G3 ! G2) specified by the list {G3 ! G2,G4 ! G3}.

Theorem 3.7: Let N = ({Gj},K, {Gj ! Gk}) be a reducible network. Then N can be described by an Ito generator

matrix N whose components can be determined by applying the concatenation and series products. The network model N is

a reducible system in the sense of Definition 2.6.

Symbolically, one could write

N = !jGj/(K, {Gj ! Gk}), (49)

meaning the network formed by interconnecting the subsystems as specified.
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cavity at time . Expanding the unitary operator to the lowest

order in , we have

(74)

This relation indicates that the output is no longer in-

dependent of the cavity, because the cavity system and the

signal system are entangled with each other through the in-

teraction .

From (74), one can see that the motion of the operator

is essentially responsible for describing the output . As-

sume here that . Taking in (71) yields

(75)

Fortunately, the output is linear in the operator . From (74) and

(75), we have

(76)

This is the transfer function of the quantum system coupling

to the traveling field through the Hamiltonian (61). It is worth

noting that this transfer function is unitary and, hence, power

preserving. The relation (76) is represented in Fig. 3, where the

“black box” denotes the cavity, and the input and output sig-

nals are carried by the bosonic modes. This is identical with

the input/output representation in system theory. The essential

difference between classical and quantum systems is that the

input, output, and state variables of the quantum system are rep-

resented by operators.

IV. QUANTUM MECHANICAL FEEDBACK

A cavity is thought of as a unit of quantum system with a

single operator-valued state variable, an operator-valued input

and output on the associated Hilbert space. A quantum mechan-

ical feedback is constructed through the input–output which

store the information of the cavity. Here, we consider two cav-

ities, and , that are positioned to interact with each other

through the external field, shown in Fig. 4. Let and be the

annihilation operators for the modes of and , respectively.

Usually, spatially separated fields are treated as statistically in-

dependent. The distinctive feature of the quantum mechanical

feedback is that because of the closed loop of the traveling field,

spatially separated quantum systems are entangled, i.e., is in-

fluenced by and vice versa. Then, the entanglement supplies

control resources.

Unlike the classical case, there are physical limitations in ma-

nipulating quantum signals, such as sum and split of signals. A

beam splitter is a useful optical device which allows us to per-

form the manipulations of quantum signals. In Fig. 4, the input

field is sent to one port of a beam splitter, which is chosen

to have reflectivity and transmissivity , and is from

to the other input port. Meanwhile, one of the transmitted fields

from the beam splitter is sent back to . Assume that the time of

propagation between the systems is negligible as the feedback

system does not include time delay in the closed loop. This is

an ideal physical situation, but it will be the case when the intra-

cavity separation is of the same order as a length of the system.

Fig. 3. Block diagram of the cavity.

Fig. 4. Schematic representation of fully quantum mechanical closed loop.
The annihilation operators for the system and are denoted by and ,
respectively, while , and represent traveling waves.

The input signals and to the beam splitter are related to

the outputs and by

(77)

where and are real and satisfy . From the

input–output relation of each system, we have

(78)

These relations determine each signal in the feedback loop as

(79)

The evolution of the feedback system is then given by the fol-

lowing theorem.

Theorem 1: An arbitrary operator on the feedback system

shown in Fig. 4 obeys the evolution law

(80)

where is a unitary operator given by

(81)

where

(82)

An example of a network that is not reducible

[Yanagisawa-Kimura, 2003]



Examples

All-optical feedback [Wiseman-Milburn, 1994]
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Proof: First form the concatenation

N0 = (!jGj) ! (0, 0,K),

or equivalently, absorb K into the component Hamiltonians. Next, run through the list L of field-mediated connections and

apply the series product at each stage. By applying the principle of series components, Theorem 3.1, the Ito generator matrix

N can be formed.

Remark 3.8: We mention that there are important examples of quantum networks that are not reducible. An example of a

non-reducible network was considered by Yanagisawa and Kimura, [20, Fig. 4], which consists of two systems in a feedback

arrangement formed by a beam splitter, as occurs if in Figure 3 we connect the output B̃1 to the input A2 (i.e. setting A2 = B̃1).

The feedback loop formed in this way is “algebraic”, and the resulting in-loop field is not a free field in general. !

IV. EXAMPLES

In this section we look at a number of examples from the literature which can be represented by reducible networks.

A. All-Optical Feedback

We consider a simple situation first introduced by Wiseman and Milburn as an example of all-optical feedback, [19, section

II.B. A]. Referring to Figure 11, vacuum light field A1 is reflected off mirror 1 to yield an output beam Ã1 which results

from interaction with the internal cavity mode a. This beam is reflected onto mirror 2, as shown, where it constitutes the input

A2. It is assume that both mirrors have the same transmittivity, so that we can model the coupling operators for the two field

channels as L1 = L2 = √γ a, where γ is the damping rate. We may also assume that the light picks up a phase S = eiθ when

reflected by the cavity mirror.

cavity

!

"

!

light beam

mirror 1 mirror 2

A1

Ã1

A2

Ã2

a

Fig. 11. All-optical feedback. The feedback path is a light beam from mirror 1 to mirror 2, which can be realized experimentally with the aid of a Faraday
isolator (not shown).

Before feedback, the cavity is described by

G = (I,
(

L1

L2

)
, 0) = (1, L1, 0) ! (1, L2, 0).

The phase shift between the mirrors is described by the system (S, 0, 0).

L1

L2

! !
! !! Ã2

A1

!
(S, 0, 0)

L′
1

L′
2

! !
! !! Ã2

A1 !
(S, 0, 0)

Fig. 12. Network representations of the all-optical feedback scheme of Figure 11.

Two equivalent network representations are shown in Figure 12. From the left diagram in Figure 12, we see that the closed

loop system is described by

Gcl = (1, L2, 0) " (S, 0, 0) " (1, L1, 0)

= (S, SL1 + L2,
1
2i

(L∗
2SL1 − L∗

1S
∗L2)).

Before feedback, the cavity is described by

G = (I,

 L1

L2

 , 0) = (1, L1, 0) ! (1, L2, 0),

and S = eiθ (phase shift).

After feedback, we have

Gcl = (1, L2, 0) ! (S, 0, 0) ! (1, L1, 0)

= (S, SL1 + L2,
1

2i
(L∗

2SL1 − L∗
1S

∗L2)).

9
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IV. EXAMPLES

In this section we look at a number of examples from the literature which can be represented by reducible networks.

A. All-Optical Feedback

We consider a simple situation first introduced by Wiseman and Milburn as an example of all-optical feedback, [19, section

II.B. A]. Referring to Figure 11, vacuum light field A1 is reflected off mirror 1 to yield an output beam Ã1 which results

from interaction with the internal cavity mode a. This beam is reflected onto mirror 2, as shown, where it constitutes the input

A2. It is assume that both mirrors have the same transmittivity, so that we can model the coupling operators for the two field
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Fig. 11. All-optical feedback. The feedback path is a light beam from mirror 1 to mirror 2, which can be realized experimentally with the aid of a Faraday
isolator (not shown).

Before feedback, the cavity is described by

G = (I,
(

L1

L2

)
, 0) = (1, L1, 0) ! (1, L2, 0).

The phase shift between the mirrors is described by the system (S, 0, 0).
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Fig. 12. Network representations of the all-optical feedback scheme of Figure 11.

Two equivalent network representations are shown in Figure 12. From the left diagram in Figure 12, we see that the closed

loop system is described by

Gcl = (1, L2, 0) " (S, 0, 0) " (1, L1, 0)

= (S, SL1 + L2,
1
2i

(L∗
2SL1 − L∗

1S
∗L2)).



Direct measurement feedback [Wiseman, 1994]
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Here we have twice applied the formulas (38) given in Lemma 2.8.

Alternatively, we may use our theory of equivalent components (Theorem 3.4) to move the phase change (S, 0, 0) to the
very end, as shown in the right diagram in Figure 12. Then

Gcl = (S, 0, 0) ! (1, S∗L2, 0) ! (1, L1, 0)

= (S, SL1 + L2,
1
2i

(L∗
2SL1 − L∗

1S
∗L2)),

as before.

Either way, the closed loop feedback system is described by Gcl = (Scl, Lcl,Hcl) where

Scl = S ≡ eiθ,

Lcl = SL1 + L2 ≡
(
1 + eiθ

)√
γa,

Hcl = Im {L∗
2SL1} ≡ γ sin θ a†a.

From this we obtain the Heisenberg dynamical equation for the mode

da = − [
a,

(
1 + eiθ

)√
γa†

]
dA1 − γ

2
(
1 + eiθ

) (
1 + e−iθ

)
adt

−iγ sin θ adt

≡ − (
1 + eiθ

)
(
√

γdA1 + γadt) ,

and the input/output relation

dÃ2 = eiθdA1 +
(
1 + eiθ

)√
γadt.

This is in agreement with [19, eq. (2.29)] who deduce the same relations by a time-lag argument based on [8].

B. Direct Measurement Feedback

In the paper [18], Wiseman considers two types of measurement feedback, one involving photon counting, and another based

on quadrature measurement using homodyne detection (which is a diffusive limit of photon counts). In both cases proportional

feedback involving an electrical current was used. We describe these feedback situations in the following subsections using

our network theory.

1) Photon Counting: Consider the measurement feedback arrangement shown in Figure 13, which show a vacuum input

field A, a control signal c, a photodetector PD, and a proportional feedback gain k.

feedback gain

!

" "

"

PD

i(t)

control signal photocurrent

input field output field

k

quantum system

A(t)

c(t)
G

Fig. 13. Direct feedback of photocurrent obtained by photon counting using a photodetector (PD).

Before feedback, the quantum system is described by

G = (1, L,H0 + Fc), (50)

where H0 and F are self-adjoint, and c represent a classical control variable. The photocurrent i(t) resulting from ideal

photodetection of the output field is given by

‘i(t)dt′ = dΛ + LdA∗ + L∗dA + L∗Ldt, (51)

where, mathematically, the photocurrent i(t) is the formal derivative of a self-adjoint commutative jump stochastic process
Λ̃(t) (the output gauge process) whose Ito differential is given by the RHS of (51) (which contains the input gauge process
Λ). The feedback is given by

c(t) = ki(t), (52)

Controlled Hamiltonian

H0 + Fc

Before feedback, the quantum system is described by

G = (1, L, H0) ! (S, 0, 0)

where S = e−iF is unitary.

After feedback, we have

Gcl = (S, 0, 0) ! (1, L, H0) = (S, SL, H0)

dX = (−i[X, H0]+Le−iF L(X))dt+[L∗, X]e−iF dA+eiF [X, L]dA∗+(eiF Xe−iF−X)dΛ.

10
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where k is a (real, scalar) proportional gain. The feedback gain can be absorbed into F , and so we assume k = 1 in what
follows.

Due to the singular nature of the jump process differentials, we interpret the formal control Hamiltonian differential Fc(t)dt
in the Ito calculus by (e−iF − 1)dΛ. Therefore we can represent the system before feedback as

G = (1, L,H0) ! (S, 0, 0)

where S = e−iF , a unitary operator. The second subsystem (S, 0, 0) captures the gauge coupling of the control signal, viewed
as a field. The self-adjoint commutative nature of the output gauge Λ̃ means that it describes the outcome of the photon

counting measurement, and only this part of the field is coupled to the system. The closed loop system after feedback is given

by

Gcl = (S, 0, 0) ! (1, L,H0) = (S, SL,H0)

using formulas (38) from Lemma 2.8. This is illustrated in Figure 14. This agrees with the results obtained by Wiseman, [18,

eq. (3.44)], which we write in our notation as

dX = (−i[X, H0] + Le−iF L(X))dt + [L∗, X]e−iF dA + eiF [X, L]dA∗ + (eiF Xe−iF −X)dΛ. (53)

S

!!

! !

A

C C̃

ÃL!

Fig. 14. Network representation of the direct photocount feedback scheme of Figure 13.

2) Quadrature Measurement: We again consider the quantum system G given by (50), but replace the photodetector PD

in Figure 13 with a homodyne detector HD.3 The homodyne detector produces a photocurrent i(t) given by

‘i(t)dt′ = dI(t) = (L(t) + L†(t))dt + dA(t) + dA∗(t).

The feedback is given by (52) as above, with feedback gain can be absorbed into F , as above. The measurement result I(t) is
a self-adjoint commutative diffusive process. We replace the formal control Hamiltonian differential Fc(t) in the Ito calculus
by a field coupling with operator M = −iF .
We can now describe the system before feedback as

G = (1, L,H0) ! (1,M, 0).

After feedback, the closed loop system is

Gcl = (1,M, 0) ! (1, L,H0) = (1, L− iF, H0 +
1
2
(FL + L∗F ))

using (38). This is illustrated in Figure 15.

This agrees with [18, eq. (4.21)], which we write as

dX = (−i[X, H0 +
1
2
(FL + L†F )] + LL−iF (X))dt + [(L− iF )∗, X])dA + [X, (L− iF )]dA∗. (54)

C. Realistic Detection

Consider a quantum systemGq continuously monitored by observing the real quadrature of an output field. This measurement

can ideally be carried out by homodyne detection, but due to finite bandwidth of the electronics and electrical noise, this

measurement could be more accurately modeled by introducing a classical system (low pass filter) and additive noise as shown

in Figure 16, as analyzed in [17]. Here, B is a vacuum field, I is the output of the ideal homodyne detector (HD), v is a
standard Wiener process, and Y is the (integral of) the electric current providing the measurement information. We wish to

derive a filter to estimate quantum system variables Xq from the information available in the measurement Y .

3An ideal homodyne detector HD takes an input field A and produces a quadrature, say A + A∗, thus effecting a measurement. This is achieved routinely
to good accuracy in optics laboratories, [10, Chapter 8].

(can also do quadrature measurement)

Controlled Hamiltonian

H0 + Fc

Before feedback, the quantum system is described by

G = (1, L, H0) ! (S, 0, 0)

where S = e−iF is unitary.

After feedback, we have

Gcl = (S, 0, 0) ! (1, L, H0) = (S, SL, H0)

dX = (−i[X, H0]+Le−iF L(X))dt+[L∗eiF , X]e−iF dA+eiF [X, e−iF L]dA∗+(eiF Xe−iF−X)dΛ.
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Realistic detection [Warszawski-Wiseman-Mabuchi, 2002]
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Fig. 15. Network representation of the direct homodyne feedback scheme (Figure 13 with HD replacing PD).
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Fig. 16. Model of a realistic detection scheme for a quantum system, showing ideal homodyne detection followed by a classical system (e.g. low pass filter)
and additive classical noise.

The quantum system is given by

Gq = (1, Lq,Hq), (55)

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),
dY (t) = h(x(t))dt + dv(t), (56)

where x(t) ∈ Rn, y(t) ∈ R, f̃ , g are smooth vector fields, h is a smooth real-valued function, and w and v are independent
standard classical Wiener processes. As described in the Appendix B, this classical system is equivalent to Gc = (1, Lc1,Hc)!
(1, Lc2, 0), where Lc1 = −igT p − 1

2∇T g, Lc2 = 1
2h and Hc = 1

2 (fT p + pT f). We represent the system of Figure 16 as a

network, as shown in Figure 17.
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!

!

classical system

A2

A1 = B̃

quantum system

B Lc1

Lc2

Gq Gc

Lq
Ã1

Ã2
HD

!

Fig. 17. Network representation of the realistic detection scheme of Figure 16.

Here, the classical noises are represented as real quadratures w = A1 + A∗
1, v = A1 + A∗

2. Note that since Lc1 is skew-

symmetric, only the real quadrature w = A1 + A∗
1 = B̃ + B̃∗ affects the classical system (this captures the ideal homodyne

detection). The complete cascade system is

G = ((1, Lc1,Hc) ! (1, Lq,Hq)) ! (1, Lc2, 0)

= (I,
(

L1 + Lc1

Lc2

)
,Hq + Hc +

1
2i

(L∗
c1Lq − L∗

qLc1)) (57)

The quantum system is given by

Gq = (1, Lq, Hq),

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t),

11
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where x(t) ∈ Rn, y(t) ∈ R, f̃ , g are smooth vector fields, h is a smooth real-valued function, and w and v are independent
standard classical Wiener processes. As described in the Appendix B, this classical system is equivalent to Gc = (1, Lc1,Hc)!
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2 (fT p + pT f). We represent the system of Figure 16 as a

network, as shown in Figure 17.

Y!
! !!

!!

!

!

classical system

A2

A1 = B̃

quantum system

B Lc1

Lc2

Gq Gc

Lq
Ã1
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Here, the classical noises are represented as real quadratures w = A1 + A∗
1, v = A1 + A∗

2. Note that since Lc1 is skew-

symmetric, only the real quadrature w = A1 + A∗
1 = B̃ + B̃∗ affects the classical system (this captures the ideal homodyne

detection). The complete cascade system is

G = ((1, Lc1,Hc) ! (1, Lq,Hq)) ! (1, Lc2, 0)

= (I,
(

L1 + Lc1

Lc2

)
,Hq + Hc +

1
2i

(L∗
c1Lq − L∗

qLc1)) (57)

The quantum system is given by

Gq = (1, Lq, Hq),

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t),

The classical system is equivalent to

Gc = (1, Lc1, Hc) ! (1, Lc2, 0)

where Lc1 = −igT p− 1
2∇T g, Lc2 = 1

2h and Hc = 1
2(f

T p + pT f).

The complete cascade system is

G = ((1, Lc1, Hc) ! (1, Lq, Hq)) ! (1, Lc2, 0)

= (I,

 L1 + Lc1

Lc2

 , Hq + Hc +
1

2i
(L∗

c1Lq − L∗
qLc1))
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The quantum system is given by

Gq = (1, Lq, Hq),

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t),

The classical system is equivalent to

Gc = (1, Lc1, Hc) ! (1, Lc2, 0)

where Lc1 = −igT p− 1
2∇T g, Lc2 = 1

2h and Hc = 1
2(f

T p + pT f).

The complete cascade system is

G = ((1, Lc1, Hc) ! (1, Lq, Hq)) ! (1, Lc2, 0)

= (I,

 L1 + Lc1

Lc2

 , Hq + Hc +
1

2i
(L∗

c1Lq − L∗
qLc1))
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The unnormalized quantum filter for the cascade system is

dσt(X) = σt(−i[X, Hq + Hc +
1

2i
(L∗

c1Lq − L∗
qLc1)] + L0BB@ L1 + Lc1

Lc2

1CCA
(X))dt

+σt(L
∗
c2X + XLc2)dy.

For instance, X = Xq ⊗ φ, where φ is a smooth real valued function on Rn.

Filtered estimate of quantum variables:

πt(Xq) = σt(Xq)/σt(1)

12



Quantum Dissipative Systems

• quantum physics
 - damping, commutation relations
 - quantum noise 
             (e.g. Gardiner-Collett, 1985, etc)

• control theory
 - behaviours
 - signals, disturbances, uncertainty
 - passivity, gain  
           (e.g. Zames, 1965,  Willems, 1972, 1997, etc)

Combine perspectives from

in order to develop analysis and synthesis tools.



The plant is the system of interest, interacting with its 
environment.

Environment can include infinite heat baths, as well as 
other systems - a network.



4

Direct Hamiltonian interactions between systems G1 = (S1,L1,H1) and G2 = (S2,L2,H2) are given by an interaction
Hamiltonian Hint, which we can express with the aid of an auxiliary system Gint = (1, 0,Hint) as

G1 ! G2 ! Gint. (12)

It is important to note that we have not assumed that operators in different subsystems commute. Indeed, we wish to explicitly

include cases where subsystems do not commute.

A system G = (S,L,H) is called reducible system [10] if it can be expressed as a decomposition

G = !jGj , (13)

where the decomposition is relative to a block diagonal representation S = diag(S1, . . . ,Sd), so that Gj = (Sj ,Lj ,Hj). Such
decompositions are not unique, and the subsystems need not commute.

Field mediated interactions relative to the decomposition (13) are specified by a list of loading connections

L = {Gj ! Gk} (14)

representing loading pairs Gj ! Gk, such that (i) the field dimensions of the members of each pair are the same, and (ii)

each input and each output (relative to the decomposition (13)) has at most one connection. Such a list of loading connections

is said to be compatible with the decomposition (13). By applying the loading product a number of times, a decomposition

!jGj , an interaction Hamiltonian Hint, and a compatible list of loading connections {Gj ! Gk} determines a network N
which is itself a reducible system, [10, Theorem 3.7]. Such networks are called reducible.

In particular, given two reducible systems P = !jPj and G = !j′Gj′ , an interaction Hamiltonian

K = −i
∑

k

(N∗
k Mk −M∗

k Nk),

where Nk ∈ AP, Mk ∈ AG, and a list of loading connections L = {Gk !Pj , Pk′ !Gj′}, one can form a network N = P∧G
(here we use the wedge notation from [27] for interconnections of systems). This type of network will be used extensively in

what follows. An example is shown in Figure 1.

K

!
!

!
!

!

!

!

!

!

"

!!

#

$

1

2

3

1

2

P

G

!

Fig. 1. The network P ∧G = P1 ! (P3 ! G1 ! P2) !G2 ! K specified by the interaction Hamiltonian K and loading list {G1 ! P2,P3 ! G1}.

For future reference, we mention that the Lindblad generators for the systems formed with these products are

GG1!G2(X) = LL1(X) + LL2(X)− i[X, H1 + H2] = GG1(X) + GG2(X), (15)

GG2!G1(X) = LL2+S2L1(X)− i[X, H1 + H2 +
1
2i

(L†
2S2L1 − L†

1S
†
2L2)]

= LS2L1(X) + LL2(X) + L†
1S

†
2[X,L2] + [L†

2, X]S2L1 − i[X, H1 + H2]
= LL1(X) + LL2(X) + L†

1(S
†
2XS2 −X)L1 + L†

1S
†
2[X,L2] + [L†

2, X]S2L1 − i[X, H1 + H2]. (16)

Given two reducible systems P = !jPj and W = !j′Wj′ , an interaction

Hamiltonian

K = −i
∑

k

(N∗
kMk −M∗

kNk),

where Nk ∈ AP, Mk ∈ AG, and a list of loading connections

L = {Wk ! Pj, Pk′ ! Wj′},
one can form a network

N = P ∧W.

We call W an exosystem, and keeping the interconnection structure fixed, we let

W vary in a class W of exosystems.

13

Given two reducible systems P = !jPj and W = !j′Wj′ , an interaction

Hamiltonian

K = −i
∑

k

(N∗
kMk −M∗

kNk),

where Nk ∈ AP, Mk ∈ AG, and a list of series connections

S = {Wk ! Pj, Pk′ ! Wj′},
one can form a network

N = P ∧W.
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We call W an exosystem, and keeping the interconnection structure fixed, we let

W vary in a class W of exosystems.

Lindblad generator for a system G = (S,L, H):

GG(X) = LL(X)− i[X, H]

where

LL(X) =
1

2
L†[X,L] +

1

2
[L†, X]L.

Then

Es[X(t)] = X(s) +

∫ t

s

Es [GG(X(r))] dr

for all t ≥ s.

Note that

GG1!G2(X) = LL1(X) + LL2(X)− i[X,H1 + H2] = GG1(X) + GG2(X),

GG2!G1(X) = LL1(X) + LL2(X) + L†
1(S

†
2XS2 −X)L1

+L†
1S

†
2[X,L2] + [L†

2, X]S2L1 − i[X, H1 + H2],

which is useful for network calculations.
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Plant

P = (S,L, H)

Exosystem

W = (R,w, D) ∈ W

Supply rate

rP(W) ∈ AP ⊗Aex

a self-adjoint symmetrically ordered function of the exosystem parameters,

depending on the plant parameters.

We say that the plant P is dissipative with supply rate r with respect to a class W

of exosystems if there exists a non-negative system observable V ∈ AP such that

E0

[
V (t)− V −

∫ t

0

r(W)(s)ds

]
≤ 0

for all exosystems W ∈ W and all t ≥ 0.
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Plant

P = (S,L, H)

Exosystem

W = (R,w, D) ∈ W

Supply rate

rP(W) ∈ AP ⊗Aex

a self-adjoint symmetrically ordered function of the exosystem parameters,

depending on the plant parameters.

We say that the plant P is dissipative with supply rate r with respect to a class W

of exosystems if there exists a non-negative system observable V ∈ AP and a

non-negative real number λ such that

E0

[
V (t)− V −

∫ t

0

r(W)(s)ds

]
≤ 0

for all exosystems W ∈ W and all t ≥ 0.

15

Infinitesimal characterization

The plant P is dissipative with supply rate r with respect to a class W of

exosystems if and only if there exists a non-negative system observable V ∈ AP

such that

GP∧W(V )− r(W) ≤ 0

for all exosystem parameters W ∈ W .

Special case from now on:

P ∧W = P " W

and

W = (I,L, H)

16



passivity
(energy flow 
into plant)

dissipation due to 
quantum noise

dissipation due to 
exosystem

Consider

W = (R,L,−i(v†K−K†v))

where v commutes with plant variables.

Open quantum systems are dissipative with respect to the “natural” supply rate

r0(W) = GP!W(V0)

= Lw(V0) + LL(V0) +
(

w† v†
)

Z + Z†

 w

v

 ,

where V0 ≥ 0 commutes with H.

Z = [V0,

 L

K

]

17

Consider

W = (R,w,−i(v†K−K†v))

where v commutes with plant variables and KP ∈ AP.
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Transformation under series product

Let P1 and P2 be dissipative with respect to supply rates rP1(W) and rP2(W),

storage functions V1 and V2, and exosystem classes W1 and W2 respectively.

The series system P2 ! P1 is dissipative with storage function V1 + V2 and supply

rate

rP2!P1(W) = rP1(P
′
2 ! W) + rP2(P1 ! W),

with respect to the exosystem class

W = {W : P′
2 ! W ∈ W1 and P1 ! W ∈ W2},

where

P′
2 = (S†

1S2S1, S†
1 (S2 − 1)L1 + S†

1L2, H2 + Im
{
L†

2 (S2 + 1)L1 − L†
1S2L1

}
).

18



Example

Open harmonic oscillator (e.g optical cavity)

P = (1,
√

γa, ωa∗a)

Let V0 = H/ω = a∗a.

r0(W) = GP!W(V0) = −γa∗a−√γ(w∗a + a∗w) + Lw(V0)− i[V0, D]

By completion of squares the supply rate can be re-written

r0(W) = −(
√

γ a + w)∗(
√

γ a + w) + w∗w + Lw(V0)− i[V0, D]

and hence the system has gain 1 relative to the output quantity
√

γ a + w and

commuting inputs w.

Note that if we include ground state energy and write V = a∗a + 1
2 = q2 + p2 (here

q = a + a∗, p = −i(a− a∗), then passivity and gain holds but with λ = γ > 0.

19
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Feedback Control by Interconnection

• Inspired by behavioural ideas of J.C. Willems and energy-
based design methods for classical mechanical systems (e.g. 
robotics)
                  (e.g. Ortega and Spong, 1989, etc)

• Control design as network design

• Controller may be classical, quantum, or a mixture of the 
two

• Design focusses on the physical structure

• Interconnections can be field-mediated and/or direct 
interactions

• Covers standard problems of stabilization, regulation, 
robustness



The plant and the controller may interact with their 
environment.



Specify the control objectives by encoding them in

• a non-negative observable Vd ∈ AP ⊗AC,

• a supply rate rd(W),

• and a class of exosystems Wd for which a network (P ∧C) ∧W is well defined.

One then seeks to find, if possible, a controller C such that

G(P∧C)∧W(Vd)− rd(W) ≤ 0

for all exosystem parameters W ∈ Wd.

20
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ExampleExample

Cavity P = (1, a, 0) with vacuum input.

Wish to maintain steady-state photon number α∗α.

Consider simple direct plant-controller interaction

C = (1, 0,−i(K∗
P ν − ν∗KP )) ,

where Kp is a plant operator and ν is a complex number, both to be chosen.

Closed loop system

P ∧C = P ! C.

We set

Vd = (a− α)∗(a− α) = a∗a− α∗a− a∗α + α∗α,

and for a positive real number c,

rd(W) = −cVd,

with Wd = {( , , 0)}, which consists only of the trivial exosystem.

21



The design problem is to select, if possible, KP , a plant operator, and ν, a complex

number, such that

GP!C(Vd) + cVd ≤ 0

for suitable c > 0. We choose KP = a.

Evaluate LHS, and set c = 1/2, ν = −α/2.

Physically, this control design corresponds to a classical energy source connected

to the cavity, such as when the vacuum field is replaced by a coherent field (signal

plus noise), i.e. a laser beam.

22
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We use a simple plant-controller network

P ∧C = (1,
√

γ2 σ−, 0) # C # (1,
√

γ1 σ−,
1
2
ωσz),

and set Vd = σ1. We choose rd(W) = −cVd, with c ≥ 0 to be chosen as small as possible, and Wd = {(1, 0, 0)}. Our
objective is then

GP∧C(Vd) + cVd ≤ 0.

If we simply set

C = (−1, 0, 0),

i.e. a 180◦ phase shift, then we have
GP∧C(σ1) = −(γ − 2

√
γ1γ2)σ1,

so that c = γ − 2√γ1γ2 ≤ γ. Therefore the energy decay has been reduced, and can be eliminated if γ1 = γ2 = γ/2. This
controller simply effects a destructive interference which reduces the energy flowing out. !

The next example shows that care must be exercised when attempting to use classical control design methods. Difficulties

can arise due to the presence of quantum noise and the fact that physical quantities do not in general commute.

Example 4.5: (Stabilization) Suppose we wish to stabilize the plant of Example 3.12, which is not asymptotically stable,

using the standard method from classical control theory for stabilizing Hamiltonian systems, [25, sec. 4.1]. We set D = 0
to illustrate what happens when one uses field-mediated couplings, and for simplicity κ = 1. The classical Hamiltonian
stabilization procedure is to use negative feedback

w = −k(a∗ + a). (71)

We will explain the physical meaning of this feedback shortly.

Now from (64) with V0 = a∗a, we have

GP!W(V0)|w=−k(a∗+a) = 1− 2k(a− a∗)(a∗ − a) + k2

= 1− 2k(2a∗a + 1− a2 − (a∗)2) + k2 (72)

which is not in general negative, and so stabilization is not assured, in contrast to the classical case.

The physical meaning of the control law (76) is that one is implementing a closed loop system

P ∧C = P # (1,−k(a∗ − a), 0),

which means that it must be physically possible to introduce a field coupling −k(a∗ − a) to the system. The controller
C = (1,−k(a∗ − a), 0) is simply implementing this coupling.
A preferable method of stabilization for this system would be to introduce a coupling

√
γ a, if possible, which would allow

the system to loose energy to a heat bath. The plant-controller system in this case is simply

P ∧C = P ! (1,
√

γ a, 0).

Other methods like this could also be considered where energy can be lost via a controller, using direct or field-mediated

interactions. !

Linear open quantum systems are those for which the conjugate variables for position and momentum satisfy linear stochastic

differential equations. Such systems include many examples in quantum optics. The next example illustrates how the H∞
synthesis results of [15] fit into the present network design framework by considering one of the examples from that paper,

where both the plant and controller were optical cavities.

Example 4.6: (H∞ robust control, [15, sec. VII-A]) Consider the plant-controller network of Figure 2. The control objective

is to reduce the gain from input w to output z by an appropriate choice of controller C.
The plant is a cavity with annihilation operator a and three mirrors (three field channels)

P = P1 ! P2 ! P3

= (1,
√

κ1 a, 0) ! (1,
√

κ2 a, 0) ! (1,
√

κ3 a, 0),

and the controller is assumed to have the form

C = C1 ! C2 ! C3.

The plant-controller network is

P ∧C = P1 ! (C3 # P2) ! (P3 # C1) ! C2.

The supply rate is

r(W) = g2w∗w − (
√

κ3 a + w)∗(
√

κ3 a + w)
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Fig. 2. A plant-controller network for H∞ control.

for exosystems W ∈ Wd, where

Wd = {W = (1, 0, 0) ! (1, w, 0) ! (1, 0, 0) ! (1, 0, 0) : w commutes with AP ⊗AC} .

The control objective is now in the form (67).

For the plant parameters κ1 = 2.6, κ2 = 0.2, κ3 = 0.2, a controller was found in [15, sec. VII-A] for a gain value of
g = 0.1. It was realized as a cavity with annihilation operator b:

C = (−1,−√0.2 b, 0) ! (1,
√

1.8 b, 0) ! (1,
√

0.2 b, 0).

!

APPENDIX

A. Orderings

In this appendix we review some definitions and results concerning operator ordering.

Let A and B be self-adjoint operators on a Hilbert space h.
Then by definition A ≥ 0 means 〈ψ, Aψ〉 ≥ 0 for all vectors ψ ∈ h. Using this, we say A ≥ B to mean A−B ≥ 0.
Now suppose

w∗Aw ≤ B + w∗C + C∗w (73)

for all operators w acting on h. We claim that A ≤ 0.
To verify this claim, suppose by contradiction there exists ψ0 ∈ h such that

〈ψ0, Aψ0〉 > 0. (74)

Now set w = αI , where α is an arbitrary real number. Then (73) implies

α2〈ψ0, Aψ0〉 ≤ 〈ψ0, Bψ0〉+ α〈ψ0, (C + C∗)ψ0〉. (75)

Since α is arbitrary, this contradicts (74), establishing the claim.

B. Superoperators/quadratic forms

Consider the quadratic form ΓV defined by (51). We say that ΓV ≥ 0 if w†ΓV w ≥ 0 for all w. The meaning of this second
inequality is the operator ordering of Appendix A.

??????????? comment to JG

At present I am not sure how to construct Γ−1
V , or at least y†Γ−1

V y. Looks like a non-commutative quadratic equation is
involved.

I’m happy enough to drop the bits that need this inverse, although in the bounded real lemma it is nice to have an equation

independent of the exosystem variables.

??????? end comment

Example

H-Infinity Control
Example

H∞ robust control

The control objective is to reduce the gain from input w to output z by an

appropriate choice of controller C.
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Example

H∞ robust control

The control objective is to reduce the gain from input w to output z by an

appropriate choice of controller C.
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Plant

P = P1 ! P2 ! P3

= (1,
√

κ1 a, 0) ! (1,
√

κ2 a, 0) ! (1,
√

κ3 a, 0),

Controller

C = C1 ! C2 ! C3.

The plant-controller network is

P ∧C = P1 ! (C3 " P2) ! (P3 " C1) ! C2.

The supply rate is

r(W) = g2w∗w − (
√

κ3 a + w)∗(
√

κ3 a + w)

for exosystems W ∈ Wd, where

Wd = {W = (1, 0, 0) ! (1, w, 0) ! (1, 0, 0) ! (1, 0, 0) : w commutes with AP ⊗AC} .
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Plant, an optical cavity.

16
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Fig. 1. An optical cavity (plant).

v(t) = (v1(t), v2(t))T , w(t) = (w1(t), w2(t))T , u(t) = (u1(t), u2(t))T . The quantum noises v, w̃ have Hermitian

Ito matrices Fv = Fw̃ = I + iJ . This leads to a system of the form (21) with the following system matrices:

A = −γ

2
I; B0 = −√κ1I; B1 = −√κ2I; B2 = −√κ3I;

(γ = κ1 + κ2 + κ3)

C1 =
√

κ3I; D12 = I;

C2 =
√

κ2I; D21 = I. (40)

In this model, the boson commutation relation [a, a∗] = 1 holds. This means that the commutation matrix for this

plant is ΘP = J .

In our example, we will choose the total cavity decay rate κ = 3 and the coupling coefficients κ1 = 2.6,

κ2 = κ3 = 0.2. With a disturbance attenuation constant of g = 0.1, it was found that the Riccati equations (27) and

(28) have stabilizing solutions satisfying Assumption 5.2. These Riccati solutions were as follows: X = Y = 02×2.

Then, it follows from Theorem 4.2 that if a controller of the form (23) is applied to this system with matrices AK ,

BK , CK defined as in (29) then the resulting closed loop system will be strictly bounded real with disturbance

attenuation g. In our case, these matrices are given by

AK = −1.1I, BK = −0.447I, CK = −0.447I.

In this case, the controller (23) can be implemented with another optical cavity with annihilation operator aK

(with quadratures ξ1 = qK = aK + a∗K , ξ2 = pK = (aK − a∗K)/i, ξ = (qK , pK)T ), corresponding to ΘK = J ,

connected at the output with a 180o phase shifter (see Remark 3.6). The controller cavity has coupling coefficients

κK1 = 0.2, κK2 = 1.8, κK3 = 0.2, and κK = 2.2 and is a physically realizable system with dynamics:

dξ(t) = AKξ(t)dt + [ BK1 BK ][ dvT
K dyT ]T

dũ(t) = −CKξ(t)dt + [ I2×2 02×4 ][ dvT
K dyT ]T ,

May 3, 2007 DRAFT



For the plant parameters κ1 = 2.6, κ2 = 0.2, κ3 = 0.2, a controller was realized as

a cavity with annihilation operator b:

C = (−1,−√0.2 b, 0) ! (1,
√

1.8 b, 0) ! (1,
√

0.2 b, 0).

This construction had two steps:

1. Evaluation of quadratic forms with respect to Gaussian states, and using some

classical results. This gives part, not all, of the solution.

2. Completing the design by adding field couplings to ensure commutation

relations preserved. This is algebraic.
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where BK1 = [ −0.447I −1.342I ], vK(t) = (vK11(t), vK12(t), vK21(t), vK22(t)y(t))T are the quadratures of

two independent canonical quantum noise sources, and ũ(t) is the output of the cavity. The overall output of the

controller is u(t), given by u(t) = Ksũ(t), where Ks = −I2×2. Here Ks models the 180o phase shift at the output

of the cavity. Thus, the overall controller (an optical cavity cascaded with a 180o phase shifter) is of the form (23)

with BK0 = [− I 0 ] and BK1 as given before. This controller is illustrated in Figure 2.
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Fig. 2. An optical cavity quantum realization of the controller (ΘK = J) for the plant shown in Figure 1.

B. Robust Stability in Quantum Optics

We now modify the above example to allow for uncertainty in one of the optical cavity parameters using the

results of Section VI. Indeed, we consider the same set up as in Figure 1 and assume that there is uncertainty in

the value of the coupling coefficient κ1 corresponding to the optical channel v. In this case, the equations (21)

describing the optical cavity now have matrices

A = −γ + δ

2
I; B0 =

√
κ1 + δI; B1 = −√κ2I; B2 = −√κ3I;

C1 =
√

κ3I; D12 = I;

C2 =
√

κ2I; D21 = I. (41)

This is our true system which depends on the unknown parameter δ.

In order to apply our H∞ theory together with the results of Section VI to this system, we must overbound the

uncertainty in the matrix A. Indeed, let S be any non-singular matrix. If |δ| ≤ µ, then we can write − δ
2I = B̃1∆C̃1

where B̃1 = µ
2 S, C̃1 = S−1 and ∆ = − δ

µI satisfies ∆T ∆ ≤ I . Hence, if we consider a family of systems of the

May 3, 2007 DRAFT

Controller, specified to be quantum, 
realized as a cavity.
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BK0 =
[
−I 02×2 02×2

]
,
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Fig. 7. Quantum-classical controller (ΘK = diag(J, 02×2)) for the plant of Figure 6.

VIII. CONCLUSION

In this paper we have formulated and solved an H∞ synthesis problem for a class of non-commutative stochastic

models. Models important to quantum technology, such as those arising in quantum optics, are included in this class.

We have provided results for the physical realization of the controllers. Our results are illustrated with examples from

quantum optics, which demonstrate the synthesis of quantum, classical and quantum-classical controllers. Future

work will include further development of the approach initiated here, and application of the synthesis methods to

particular problems in quantum technology.

APPENDIX A

PROOFS

Proof of Theorem 2.1. To preserve the commutation relations for all i, j = 1, . . . , n and all t ≥ 0, we must

have d[xi, xj ] = 0 for all i, j = 1, . . . , n. We now develop a general expression for d[xi, xj ]. Indeed, let ek =

[ 0 . . . 0 1 0 . . . 0 ]T , where the 1 is in the k-th row. It is easy to see that for any i, j ∈ {1, . . . , n},
[xi, xj ] = eT

i xxT ej − eT
j xxT ei. Therefore, d[xi, xj ] = eT

i d(xxT )ej − eT
j d(xxT )ei. Now, we expand d(xxT ) using

May 3, 2007 DRAFT

Here, the controller, specified to have quantum and 
classical degrees of freedom.

Another example, plant 
(not shown) was an 
optical amplifier in 
series with a cavity.



Conclusion
• Concatenation and series products 

facilitate quantum network analysis and 
design (reducible networks).

• Combined quantum physics and 
control engineering perspectives on 
dissipation.

• Control design by interconnection 
based on direct physical description.

• Controllers may be quantum, classical, 
or a mixture.

• Allows designers to focus more on 
systems, less on equations.

• Physical realization a key issue.

• Network paradigm powerful and likely 
to be helpful for quantum technology.


