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What is “quantum control”?

Watt used a governor to control steam
engines - very macroscopic.

Now we want to
control

things at the
nanoscale - e.g.
atoms.




Quantum Control:

Control of physical systems whose
behaviour is dominated by the laws
of quantum mechanics.

2003: Dowling and Milburn,

“The development of the general
principles of quantum control theory is an
essential task for a future quantum
technology.”



Types of Quantum Control:

—— Open loop - control actions are predetermined, no feedback is
involved.
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—— (losed loop - control actions depend on information gained as
the system is operating.
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Boulton and Watt, 1788 (London Science Museum)



Types of Quantum Feedback:
—— Using measurement

The classical measurement results are used by the controller (e.g. classical electronics) to provide a classical control signal.
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—— Not using measurement

The controller is also a quantum system, and feedback involves a direct flow of quantum information.
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The study of quantum feedback control has
practical

and fundamental value.
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A Little History

——— To the best of my knowledge, Slava Belavkin was the first to

publish results concerning quantum feedback control (late
1970°s).

—— However, there were independent pioneers in the physics
community in the 1990s including Wiseman, Milburn, Doherty
and Jacobs, who also made fundamental contributions.



Quantum Feedback Chronology

Late 1970's Belavkin Linear, Gaussian filtering and control
Farly 1980 Belavkin Optimal Control using Quantum
Operations
Optimal Filtering and Control using
Late 1980’ Belavkin Quantum Stochastic Differential
Equations
, : . Quantum optical measurement
Early 1990’ Wiseman, Milburn

feedback

Mid-late 1990’s

Doherty, Jacobs
Mabuchi et al

LQG optimal control
Experiments

2000's

Ahn, Belavkin, D'Helon, Doherty,
Edwards, Gough, Bouten, van Handel,
James, Kimura, Lloyd, Thomsen,
Petersen, Schwab, Wiseman,
Yanigisawa, and others

Optimal control
Lyapunov control
robust control
applications
experiments




From Slava Belavkin's webpage...

Quantum Filtering and Control (QFC)

as a dynamical theory of quantum feedback was initiated in my end of 70's papers and
completed in the preprint [1]. This was my positive response to the general negative
opinion that quantum systems have uncontrollable behavior in the process of
measurement. As was showen in this and the following discrete [2] and continuous time
[3] papers, the problem of quantum controllability is related to the problem of quantum
observability which can be solved by means of quantum filtering. Thus the quantum
dynamical filtering first was invented for the solution of the problems of quantum optimal
control. The explicit solution [4] of quantum optimal linear filtering and control problem
for quantum Gaussian Markov processes anticipated the general solution [5, 6] of
quantum Markov filtering and control problems by quantum stochastic calculus technics.
The derived in [5, 6] quantum nonlinear filtering equation for the posterior conditional
expectations was represented also in the form of stochastic wave equations. The general
solution of these filtering equations in the renormalized (in mean-square sense) linear
form was constructed for bounded coefficients in [7] by quantum stochastic iterations.
Quantum Filtering Theory (QFT) and the corresponding stochastic quantum equations
have now wide applications for quantum continuos measurements, quantum dynamical
reductions, quantum spontaneous localizations, quantum state diffusions, and quantum
continuous trajectories. All these new quantum theories use particular types of stochastic
Master equation which was initially derived from an extended quantum unitary evolution
by quantum filtering method.



Slava Belavkin's quantum feedback control papers (pre-2000)
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Nondemolition Measurement and Control

¥Yor instance, let try to choose the optimal measure-
ment of the controlled quantum oscillator (2.2) with trans-
mission line (2.5), so that to minimize its energy
Z0x(6)x(t)) at the final instant of time t=% by means of
the control strategy, the norm S\ u(t)ledt of which should
& ,

not be too great. Assume, that the initial state x is Guas~
sian with the mathematical expectation {x)=% and
((x-2)(x=2)) = 0, ((x~2)"(x~2)) =% ,
v(t) is quantum Gaussian white noise [19] which is descri-
bed by the following correlations
() v(ED) =0, (v v ~hEF (t-t1),
what corresponds to the equilibrium state with the tempera-
ture T:ﬁ’:j‘(exp(ﬁﬁ)/kT) - 1™, Thnis problem is characte-
rized by the quality criterion

Qex(xY x(e) + K161 2a(x(t)-u(e)F (x(b)-ult))yat, (2.6)
o

where(},ivz O are parameters responsible for the measure-
ment quality: when =5l - 0 (2.6) corresponds to the prob-
lem of pure filtration, when w = 0, 0 £ 0 it corresponds

to the control problem.
3) that the optimal measu~

rement minimising criterion (2.6) is statistically equiva-
lent to the measurement of the stochastical process (%)=
=X(t)+x(t) described by the Kalman-Bucy filter:

dX()/dtrR () =fult)+2 (£) (y(£)-P(X(6)-ult))). (2.7)
Here x(0)=2, (t)=(‘5‘2(t)-6’)/()« +68), 2.(t) is the solu~-
tion of the equation

4 2(6)/at=(6"=p 26+ p 26/ (p+ ), %(0)=Z,
(2.8)

ax(£)/dt+ xk(t)= ¥ (£) (V(t)- Fx(t)), Xx(0) = O,




gt ¢mining the controllable Markov dynamics of the quantum system (1.9), (2.10) in the absence of observation:
o not described by the propagators Ty (u7), with the excpetion of the degenerate case in which the a poste-
:nri states coincide mod py" with a priori states, i.e., actually do not depend on the results of the observations

"
3. OPTIMAL QUANTUM C
we now discuss the optimal control of a quantum dyna SysSten T observation {Ht"'}, the perfor-
sance of which as a function of the initial time ¢=R is determined by the mathematical expectation (p, Q¢ (ug.
sy ofa certain physical quantity Q.(u., dv:) =¥ depending on the input state ug = {ut+7)};=, continuously™and

o the output event dvg = d{vit + 7)}7 », according to the equation int
Q1 (g, dve) =TI (e, do0) Quin (s o) +ScF (ud, dvl). (3.1)

Here S (u., dv;)=¥ denotes Hermitian operators having the integral formt

S (us, dvr) = _f I (a dol ) S(a (i), i) dv, (3.2)
0

ohere Siu, t) =S(u, t)* denotes Hermitian operator functions completely determining (3.1) for a certain boundars
condition QT (up, dvy) =Q at the final time T > t, corresponding to the specification of a terminal risk (op, Q)

-Q- is a certain Hermitian operator).

Definition 3. A measurable mapping v~u(v,)=U: is called a nonadvanced control strategy if its com-
srents wit +7, ) ¢o—u(t+1) are determined by functions independent of}t T and it is called a retarded con-
t-al strategy if all uit +7, +) are determined by functions v (ttr, v,) for some measurable 7' = T'(L iT<T.
‘v womadvanced strategy ug(+) is called admissible if the integral

Qu(9)]= !. Quu(w), dvy)

cuists in strong operator topology, and it is called optimal for an initial state py = p if it realizes the extremum
glp,ty=inf <p, Q)] (3.3)

PASELMS]
abere Ug(s) is a certain set of admissible strategies uc(+} -optimal if (p, Qt[“t(‘m exceeds (3.3) at most by €].
We note that in accordance with (3.1) a strategy uy(+) is admissible with respect to Q¢(+, -) if and only if it:
w:gments up..(+) for fixed vy are admissible strategies with respect to Qg (-, -} and for the segments u;7(-)
Bere exist measures
;o) = § T (e (0, do0),

SN

(3.4)

specifying operator-valued integrals
Sl () = _[ e (vl ) S 1+, a1, 0 )). (3.5)
e
The latter holds for any delayed strategy that is admissible for a given boundary condition Qp(+, *) = Q.
THEOREM 3. ILet the sets Uy (-) of segments of admissible strategies satisfy the condition
U)X Ui () SUFY() VIER, 7, v2>0. - 3.8
Then the minimum risk (3.3) as a function of the state p and the time t satisfies the functional equation

dlo.0= il [0, STe O D [ @)a@e). 3.7
EHE sUi)

“here 0™ (- )=<p, H(-)1>, o=p®, (1" (v7), ) denotes probability measures (1.7) and a posteriori states (1.f

“rresponding to an admissible strategy u= ugT(-) and an initial state p=p;.

"7 strong operator topology.

“The conditions for the existence of the integral (3.2), its continuous dependence on utT, and its o-additivity wi’
ct to dvy7, requiring of the operator function {u,t) -S(, u)=% continuity in u€ U and measurability with re-

feetto 1= » ynder strong operator topology, are presumed to be fulfilled.




u(t) is defined by strategi = v R
n) egderninel v strategies uy = dy(w Vi) = (o (s,w7, v V(s) sy,
w W)y Ve Ve, v o= {v(t)\r{ t< s} are the results of non-
demolition measurements v(t) on the intervel {r,s( , vy = v: , descri-
bed by aﬁcommutatire process Y(t) , satisfying the equations either
dY(:) ““(t)g"t f~°(°)dg’ or; dY(z) = 2Re b(t)dBt + o(t)dt with invor-
table a(t,u®), B, u¥), S(t,ub)e BY - Q(s)\ast}” defined by
tke corr . - N NSRS - N ARA Ve
1 . rresponding rcal-valued function®™ a{w ,v(t)), BTWt,v(t)),
G(w 'V<b)).
Let %i consider the optimal control problem with the operator-valued
i — /
risk ue . Ht(u)eﬁt(u) = ts(ﬁ ,us)\s>t} satisfaing the equation

t
Rto(u) = S Sy (u”,u(t))ds + th(u), (4.9)
. T2
where S¢(u”,u(t)) = 1. (S(u(t)), @) for a continuous H -valued self-

adjoint function 3(u(t)) = S(u(t))*. The optimal control strategy
of the extremal problem E

(o0, B (¥, dpwbv,))> = inf, (4.10)

where ? is an initial normal state on A , and «w is the vacuum state
on A = B (F). This solution can be found by the dynamic program-
ming method as a solution of the following Bellman continuous inverse-
time equation.

DHEOREM 10. Let R(t,w", d,) be the averaged A -valued risk uniquely
defined for the strategy ot by

t t
Cuoy 4 (W R(E,WE, d()) > = {gow | By @ d " ve))
due to the Farkov condition for Xt(ut) with respect to w =u)*su%, and

- t ty t t 2 t

v (w ,dt) = & LRt(u ,dt(w ,vt))J = (G v ).R(ttho dt)>
be the posterior risk, corresponding to the strategy Jt' where dt is
the condxtional expectation on \At\/§3t with respect to the commutativ
algebra B° and

Pt ve)) = &% ¢ e

be controlled a posterior state on A fora W= (ut,vb). Then

1989
1

PNE RORIGN IR ISP ICHE HCARTCOPR

t
where the functional s(t,? ) satisfies the following Bellman equation:

-3s(¢) = %%<¢ ,SCu(t)) + A u(),8)s(@)> + (P27 2)8s($) (4a11)
u(t
in casc of counting observation and
Qe = ine (p8Cu0)) + W(®),$)s@)) + 34,0 V@) (4.12)

in case of diffusion observation.

Here 9,-0/0t, &-38/8¢ , £s(9) - (292 WP ,272)) = 3(P)s
Aus), $)s@) = 8s(@) - 2ReK(u(6))' Ss@)
T (u(8), 8 )s(®) =Z8s@)2- 2rek(u(6))'§ 5@
0(5)s($) = 2nez -(p 2> ) §3@)
and K(u(t)),K(u(t))" are defined by 1+ ik(u(t)) + z*z/2 end $,(w,)
is e posterior state on ¥ for controlled and observed data w- = (uv®)

satisfying the corresponding nonlinear filtering equations: either
(4.3) or (4.7) written respectively in the form:

~

ahy + dpA u(2he B any 5 ad g+ 87 ent 3,94,

A
where ¢ o = ¢ »

TUT—

S(u(t)) was considered in (3]. The general formuletion of quantum dyna-=
mic programming for the partially observable controlled quantum objects

in operational approach wes given in [16].
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Optimal Control Using Quantum Stochastic

Differential Equations

——— Quantum Langevin equations (QLE) provide a general
framework for open quantum systems and contain considerable
physical information.

——  QLEs expressed in terms of quantum stochastic differential
equations (QSDE) are very well suited for control engineering.

——— Quantum operation models arise naturally after suitable
conditioning

—— The system Hamiltonian may depend on a classical control
parameter.



Model:

Belavkin, 1988; Bouten-van Handel, 2005; Edwards-Belavkin, 2005; Gough-Belavkin-Smolyanov, 2005; James, 2005

Quantum probability space (Z @ # ,p ® ¢), where B = Z(h) is the algebra of system
operators with state p, and # = Z(F) is the algebra of operators on Fock space with

vacuum state ¢.

Unitary dynamics

1
dU, = {LdA;; — L*dA, — S L*Ldt - z’H(u(t))dt}Ut, [l

System operators X € % evolve according to
Xt = ]t(X) = Ut*XUt

djp(X) = 4 (L£*0(X)) dt + jo([L*, X]) dA + 5:([X, L]) dA;

where Lindblad

£H(X) = i[H(w), X] + L*XL — %(L*LX + XI'L)



Measurements Y; = U/ (A, + AU,
dY, = j,(L + L) dt + dA, + dA!.

%, = vN{Y,, s <t} is a commutative family of von Neumann algebras, so Y is

equivalent to a classical process, which can be measured via homodyne detection.

¢, = vN{Z, = A, + A%, s <t} is also commutative, and

@t m Ut*cgtUt

Belavkin non-demolition condition:
RIS =] [ X021 L) = O O] i<t | et f
so that ALLERRIREN
Xet, X)) e
Thus conditional expectations
PX|€], PlX¢%]

are Wel |—def| ned . (hence filtering is possible)



With respect to the state [P, the process Z; = A; + A} is equivalent to a standard
Wiener process. Furthermore, with respect to the state P, defined by

P)LX] =P[UrXU;|, X € BRQW,

the measurement process Y; is equivalent to a standard Wiener process (cf. reference
measure in classical filtering).

A controller is a causal function from measurement data to control signals:
u(t) = K(t, y[o,t])

The coefficients of the stochastic differential equations are now adapted to the

measurement filtration %;. The filtering theory continues to apply.

Belavkin, 1988; Bouten-van Handel, 2005



The Optimal Control Problem:

Cost operators pRtELisI LI LEE
Cl (U), 02
used to specify performance integral
g
/ Cy(t)dt + Co(T),
0

where C1(£) = ji(u, C1(u(t)), Ca(t) = ji(u, Cs).

We wish to minimize the expected cost

over all controllers K.



Dynamic Programming:
First, we represent the expected cost in terms of filtered quantities, as follows.

Deﬁne Ut by Holevo, 1990; Belavkin, 1992; Bouten-van Handel, 2005; James, 2005

| 1 | l
dU, = {L(dA;; +dA;) — SL*Ldt — z’H(u(t))dt}Ut, il

Then U XU, € €/ (X € A) and the unnormalized filter state
o.(X) = UP[U; XU, |%,]U,
is well-defined. It evolves according to Belavkin, 1992

doy(X) = oy (L*D(X))dt + oy (L* X + X L)dY,

This is the form of the Belavkin quantum filter we use. It is analogous to the

Duncan-Mortensen-Zakai equation of classical filtering.

o, is an information state (control theory terminology).



/622 i V.P. Belavkin

data v' for the nondemolition observation (7) with a given initial wave function
w e has the density

= [IE@)y | du(@lv) = (| P)w) = 6(v).

where £(v,) = &,{I} (v) = P°. The non-Gaussian measure dv = gdu defines the
factorial generating functlonals 0} = (& (y)) for the process Y' as (v | D, {I} w)
and the mean values (X (2)) of the operators X (¢) at the initial states v/eyf as
(v | B {X} ) by the averaging

W@y {X}y) = [e @ 2 2, (X} (v) dv(v) = $;{X}
of the product & (v 7 { X} (v), where 7, {X} (v) = (v | &, {X} (%) ¥)/0 v,), overall
the observed in the past trajectories v'. [

Let us derive the correspondxné linear stochastic equation for the non-
normalized posterior map (18) X'— AX } defining the a posterlorl transforma-
tion ¢ — ¢, o I for any initial ¢, by II {X} &,{X}/4,, 6, = o {B}.In the case
of a complete nondemolition observatlon it can be obtained in the Schrodinger
picture from (13) in the same way as (11) from (5) by using Ito’s formula for
E*XF, = &,{X):

d(E*XE) + F,(XK,+ KX~ | L;‘jxXL,‘,dA)F,dt
A

= | BX(XL, o+ LE,X) RdY,(dx).
A4
In the general case the stochastic differential equation for (18) gives the following

Theorem 2. The conditional expectation (18), defining in (17) the absolutely
continuous operatmnal measure D, { X } (v,) du(w) with respect to the Wiener process
v.(w), represented in Fock space by Y,= {Y,(E)|Ec®}, satisfies the linear
stochastic equation

b, (X} + &, {XK,+K;*X— j L;‘jxXLt,,d,l} dt
A
= j XL,  + L} X} dY,(dx) (19)

corresponding to Eq.(15) for the Wick symbol ®}{X} = {f|¢ &\, g=2R].
Here L, , are #B-measurable operator-valued functzons ofxed, L, , =0, tf x ¢ E for
any E€ B, defined for almost all t as a conditional averaging of L, « With respect to

B <l by I s 00 dh = | Ly g0 d2

for any B-measurable square-integrable g: A+ R and f(1,X) is defined similary by

the averaging of f(t,x). In particular, L, = (1 E) {g, Ly cdA for all x€E;, if
= (Eesd |iel} is a o-partition M =Y ;. E; of M = A and A(E;) # 0.
Proof. By the classical Ito’s formula
d@d,{X}) = détd (X} + é,dd, (X} + détdd {X}
= ig(t, X) 6, {X + XL, ,+ L¥ X} dY(dx) — 6D, { XK, + K*X } dt

+éid, { f @ XL, ,+ (XL, + Lx,X) g(1,%)) di} dt




We derive the following representation in terms of oy:
T
JK) = B[ OrCiw(®)Tidt + U3C0
0
T ~ ~ ~ ~
_ P / P[0 Cy (w(t)) D%l dt + BIURCTr| %]
0
T ~ ~ ~ ~
= IP[/ UUPIUCy (u(t)) Uy |6 U U dt + UpULP|UFCoUr |67 |Ur U7
0

_ P /0 72(C (u(t)))dt + o (C)]

This last expression is equivalent to classical expectation with respect to Wiener
measure:

J(K) = B9 / 52 (O (u(t)))dt + o (C)

The fact that the information state o; is computable from dynamics driven by the

measured data means that the methods of dynamic programming are applicable.



Define the value function
1
S(o.1) = inf EL, | / 0o (C1(w(s)))ds + o7 (C)]
[

which quantifies the optimal cost to go from a current state o at time ¢.

The dynamic programming principle states that

el i%f Eg,t[/: a-(Cy(u(r)))dr + S(os, s)]

At least formally, S(o,t) satisfies the Hamilton-Jacobi-Bellman equation

S50+ B500+ Cw) = o
S, T E2 @)

where Z* is the Markov generator of o, (for fixed value u € U).



Optimal Controller:

Suppose we have a solution S(o,t) of the HJB equation. Define
u*(o,t) = arg min {Z*S(o,t) + C1(u)}
This defines the optimal feedback controller:

doy(X) = oy(L*D(X))dt + 0y (L* X + X L)dY,
u(t) =1l izh

AL

This controller has the separation structure, with filter dynamics the Belavkin quantum

filter for the information state o;.




Another Type of Optimal Control Problem - Risk Sensitive

Classical: Jacobson, 1973; Whittle, 1980; Bensoussan-van Schuppen, 1985; James-Baras-Elliott, 1993

ClaSSical Criterion: [Note the exponential]

J(K) = Elexp{u( / Oy (ult), )t + Co(T))}

Here, 11 > 0 is a risk parameter.

Quantum criterion: James, 2004, 2005
JMK) = P[R*(T)e*> D) R(T)]

where R(t) is the time-ordered exponential defined by

dR(t)
Ml

R(t) =exp (g /O t C’l(s)ds) |

= SCi(t)R(H), R(0)=1



In general, it does not appear possible to solve this problem using the unnormalized
conditional state o;. Accordingly, we introduce a risk-sensitive information state

ot (X) = UPVF X VG0, X € B,
where V; € € is given by

| 1 ] A
dV; = {L(dA; +dAy) = SD°L — =H + SCi(u()}Ve

We then have the representation
JHK) = Prlof ("))

which facilitates dynamic programming.

The Hamilton-Jacobi-Bellman equation for this problem is

o,
W ' pu G L
(%S (0,1) +521fj{$ Slat s 0

SH (e, I || S (E T

where Z#" is the Markov generator of o} (for fixed value u € U).



Optimal Risk-Sensitive Controller:

Suppose we have a solution S¥(o,t) of the risk-sensitive HJB equation. Define
uitidenleh & lanel min ISt S e el

This defines the optimal feedback controller:

dot'(X) = ol (LrO(X))dt + of (L*X + X L)dY;

ut)  =u"(gy, 1)

K** .

where
LX) = LX) + 5 (Ci(w)X + XCi(w))

[Note the inclusion of the cost observable in the modified Lindblad.]

This controller also has the separation structure, with filter dynamics the modified
Belavkin quantum filter for the risk-sensitive information state o}".



Comments: The risk-sensitive problem is of interest for at least two reasons:

—— Robustness: Risk-sensitive controllers have the practical benefit that they can

cope with uncertainty better than standard.

—— Fundamentals of quantum mechanics: The risk-sensitive informa
be viewed as a subjective state that includes knowledge anc

extending the Copenhagen interpretation in the feedback context.

ion state can

purpose,



H-Infinity Control for Linear Quantum

Systems

—— "H-Infinity” refers to the Hardy space 2°° which provides the
sefting for a frequency domain approach to robust control
system design (initiated by Zames, late 1970's).

—— Robustness refers to the ability of a control system to folerate
uncertainty, noise and disturbances, to some extent at least.

—— Feedback is fundamental to this, and in fact is the raison
d’etra for feedback.



Motivation: Feedback Stability

Even when individual components are stable, feedback interconnections need not be.

us

A

\Y
Y
N

AN

M

wy)
7y
N

Y yS

The small gain theorem asserts stability of the feedback loop if the loop gain is less
than one:

gagp < 1

Classical: Zames, Sandberg, 1960's

Quantum: D’'Helon-James, 2006



Stability is quantified in a mean-square sense as follows.

g

dU(t) = Bu(t)dt + dBy(t)
dY () = B,(t)dt+dB,(t)

| By i< w+ Xt +g° || Bu Il

Y



The H-Infinity Robust Control Problem:

Given a system (plant), find another system (controller) so that the gain from w to z is

small. This is one way of reducing the effect of uncertainty or environmental influences.

uncertainty

/environment

———————————————————————————————————

| |
| |
| |
| > |
I w z I
I > = I
| P plant |
I I
| u y |
| |
| |
| |
| |
I I
I I
I I
| |
| |
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| |
I I
| controller |
I - < I
| UK |
| |

___________________________________

Classical: Zames, late 1970's

Quantum: D’'Helon-James, 2005; James-Nurdin-Petersen, 2006



Linear/Gaussian Model:

Plant:
dr(t) = Ax(t)dt + Bodv(t) + Bidw(t) + B2du(t); x(0) = x;
Controller:

dé(t) = Agé&(t)dt + Bidvk(t) + Bgdy(t)
du(t) = Cké&(t)dt + Bgodvg(t)
Signals: w, u, v, 2, y, vk are semimartingales, e.g.
dw(t) = B, (t)dt + dw(t)
where w(t) is the noise which is assumed white Gaussian with Ito table
dw(t)dw' (t) = Fydt

where F3; is non-negative Hermitian. (aklib B ShG LAY



Idea of Result:

Under some assumptions, then roughly speaking:

James-Nurdin-Petersen, 2006

(i) If the closed loop system regarded as an operator w +— z has gain less than ¢ then

there exists solutions X and Y to the algebraic Riccati equations

(A BB DO X X (A= BBy DL, O o X(BLBY | = gt BolE B,
LanfOflCn | D Bt on B

GRARNEN WO Y Y (A — By DI ExT0L) + Yi(gTa G @ 181G s aoig
+ B (I — D Egimaiis e

satisfying stabilizability conditions and XY has spectral radius less than one.



(i) Conversely, if there exists solutions X, Y of these Riccati equations satisfying
stabilizability conditions and XY has spectral radius less than one, then the controller
defined by

A = A+ ByCx — BgCy+ (B) — BgDy1)Bi X
ER N P s (oD B w2 e
Cx = —Er'(¢°B; X + Di,Ch).
and an arbitrary choice of v, Bxi1, Bko, achieves a closed loop with gain less than g.

Note: Physical realizability may impose conditions on the controller noise terms vy,
Bk1, Bko.



Example with Quantum Controller:

________________________




Example with Classical Controller:

|||||||||||||||||

HD

plant

VK

controller



Comments:

—— These results provide the beginning of a robust control theory
for quantum systems.

—— Controllers themselves may be quantum or dassical.

—— |t is important to note that the controller may need quantum
noise inputs - this broadens the concept of controller, like
randomization in classical optimal control.



Discussion

—— We have sketched some recent work in quantum conirol Ihut |
have been involved with.

—— Slava Belavkins work was a crucial foundation.

—— Quantum control has practical and foundational importance.

—— Controllers may themselves be quantum, and may require
additional quantum noise

—— There is an important and exciting future for “feedback control
of quantum systems.”



