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Abstract

In this paper we address the issue of autonomous navigation, that is, the ability for a navigation system to provide information
about the states of a vehicle without the need for a priori infrastructuressuch as GPS, beacons, or preloaded maps of the area
of interest. The algorithm applied is known as Simultaneous Localisation and Mapping (SLAM). It is a terrain aided navigation
system which has the capability for online map building, while simultaneously utilising the generated map to bound the errors in the
navigation solution. As no a priori terrain information nor initial knowledge of the vehicle location is required, this algorithm presents
a powerful navigation augmentation system. More importantly, it can be implemented as an independent navigation system. This
paper also describes a decentralised SLAM algorithm which allows multiple vehicles to acquire a joint 3D map via a decentralised
information fusion network. The key idea behind this decentralised SLAM isto represent the map in information form (negative
log-likelihood) for communication. Experimental results are provided using computer simulation to demonstrate the single-vehicle
and multi-vehicles SLAM without the use of GPS and preloaded maps.
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I. I NTRODUCTION

Airborne navigation systems can generally be divided into two categories: inertial (or dead-reckoning) based navigation, and
reference (or absolute) based navigation.

An Inertial Navigation System (INS) makes use of an InertialMeasurement Unit (IMU) to sense the vehicle’s rotation rateand
acceleration. This data is then used to obtain vehicle states such as position, velocity and attitude. The IMU provides this data at
high rates which is crucial for guidance and control. However this sensor error diverges in nature due to the integrationprocess.
Hence absolute sensors are required in order to constrain the drift.

Absolute sensors are categorised into two groups: beacon based or terrain based. The most common beacon based navigation
system is a Global Positioning System (GPS). There has been extensive research activities in the fusion of INS and GPS systems
[1]-[4]. The GPS aided inertial navigation system provideslong-term stability with high accuracy in addition to worldwide
coverage in any weather condition. The main drawback is its dependency on external satellite signals which can be easilyblocked
or jammed by intentional interferences.

As a result, research into Terrain Aided Navigation Systems(TANS) as an alternative to relieve the dependency on GPS is an
active area [5]-[8]. This type of navigation system typically makes use of onboard sensors and a terrain database. The TERrain
COntour Matching (TERCOM) system has been successfully applied in cruise missile systems [5]. It combines onboard radar-
altimeter readings with a pre-stored Digitised Terrain Elevation (DTE) map to estimate the INS errors as well as guidingthe
low-flying missile at a fixed height above the ground. The TERrain PROfile Matching (TERPROM) system correlates passive
sensor data with a terrain database. It can provide terrain proximity and avoidance information as well as INS aiding capability
and it has been widely adapted as a navigation system within various aircrafts. [9] presents a scene or image matching correlation
system which makes use of a passive camera or an infrared camera with an onboard image correlator. The observed image is
matched with the pre-stored digital image database. If a correlation peak exists above a given threshold, the position of the image
centre can be identified and used to estimate the INS errors. Due to its passive and non-jamming nature, it has been adaptedin the
terminal guidance stages of missiles.

Both forms of satellite and terrain based absolute navigation systems have their advantages and disadvantages, and in fact
the more robust navigation system would have a combination of the two. However, if the mission exists within a GPS denied
environment, whether within a military scenario, or for underwater systems, or whether on another planet, then one is left with
the implementation of the TAN system. In TANS, the DTE is the key element. However it usually requires some sort of Space



mapping infrastructure as it is typically built from high resolution satellite radar images around the mission area. Furthermore,
it has a constrained degree of autonomy since the mission is bound to the knowledge of the terrain database. One would likea
system which can further expand on the existing DTE, by either augmenting information in the form of new frontiers that have
been seen outside of the spatial scope of the DTE, or by addinginformation in terms of higher quality data within the existing
map. The objective however is to use this information to thenbound the uncertainty in the navigation solution. Thus in order
to extend the benefit of TANS the navigation system requires the ability to augment map data as it is generated, and to use the
newly generated map to constrain the drift of the INS, that is, to simultaneously build a map and to localise the vehicle within
it. If implemented properly, this concept can be used when there is no a priori information whatsoever about the map, about the
landmarks within the map, or about the vehicle location within the map as well.

Simultaneous Localisation And Mapping (SLAM) was first addressed in the paper by Smith and Cheeseman [10] and has
evolved from the indoor robotics research community to explore unknown environments, where absolute information is not avail-
able [11]-[16].

The SLAM structure can be described as shown in Fig. 1. The vehicle starts its navigation at an unknown location in an
unknown environment. The vehicle navigates using its dead-reckoning sensors or vehicle model. As the onboard sensors detect
features from the environment, the SLAM estimator augmentsthe landmark locations to a map in some global reference frame
and begins to estimate the vehicle and map states together with successive observations. The ability to estimate both the vehicle
location and the map is due to the statistical correlations which exist within the estimator between the vehicle and landmarks, and
between the landmarks themselves. As the vehicle proceeds through the environment and re-observes old landmarks, the map
accuracy converges to a lower limit which is a function of theinitial vehicle uncertainty when the first landmark was observed
[15]. In addition, the vehicle uncertainty is also constrained simultaneously.

The SLAM architecture has four interesting characteristics:
• Point feature: In the context of SLAM, landmarks are the features of the environment that can be consistently and reliably

observed using the vehicle’s onboard sensors. Landmarks must be described in parametric form so that they can be incorpo-
rated into a state model. Point feature representation is a simple but efficient representation for this purpose, while conners,
lines and polyline feature models which are useful in indoorenvironments have also been implemented [13].

• Correlation: The key element in SLAM is that an error in estimated vehicle location leads to a common error in the estimated
location of landmarks as shown in Fig. 2. The vehicle starts at an unknown location and begins to estimate landmark locations
from relative observations. As the vehicle traverses, the integrated data from the internal dead-reckoning sensors drift which
in turn causes a common error in the landmark location as well. Indeed, it is possible to show that the correlation caused by
this common error between landmarks tends to unity with sufficient observations, and thus in the limit a perfect relativemap
of landmarks can be constructed [13]. It is because of this correlation between the landmarks and the vehicle, that when a
re-observation of a previously known stationary landmark occurs, then vehicle state estimation can proceed given thismap
data.

• Map complexity: The need to maintain these correlations is an integral part of the SLAM solution. This leads to enormous
computational problems, as the location of each landmark inthe environment must, in theory, be updated at each step in
the estimation cycle. To retain all correlations requiresO(n3) computation andO(n2) storage requirement, wheren is the
number of features, which is intractable as the size of the operation environment is increased. This leads inevitably for a need
to find effective map management policies for large scale problems [13][16].

• Revisiting Landmarks: The most interesting aspect of SLAM is “closing-the-loop” or the revisiting process. The vehicle’s
error grows without bound due to the drifting nature of the dead-reckoning sensor and this affects the generated map accuracy
as well. However if the vehicle has a chance to revisit a former registered landmark, the accumulated vehicle error can be
estimated which in turn, improves the overall map accuracy as well. This process makes it possible to build a perfect relative
map of landmarks in the limit.

There have been substantial advances over the recent years in developing the SLAM algorithm for field robotics particularly
for land and underwater vehicles [12][14][16], all of whichhowever assume a flat and 2D environment. The research conducted
has illustrated the problems and remedies associated with the construction of the algorithm, the requirement for re-observing
landmarks for model drift containment, and issues relatingto data association.

Decentralised SLAM addresses the problem in which large numbers of vehicles cooperatively acquire a joint map, while
simultaneously localising themselves in the map. Previouswork has been carried out on decentralised SLAM on a flat 2D
environment [17]. Here, the Extended Information Filter (EIF) is used to represent information acquired by the vehicle. The EIF
is the information form of the EKF. The update of this information is additive. Hence, the incremental new information can be
integrated across different vehicles with arbitrary network latencies.

In this paper, we will present the first implementation of thedecentralised SLAM algorithm for a 6DoF platform navigating
within a 3D environment, thus providing a revolutionary step for navigation systems for airborne applications.

The work described in this paper is part of the Autonomous Navigation and Sensing Experimental Research (ANSER) project
which aims at developing a multiple flight vehicle demonstration of decentralised SLAM. The system consists of four uninhabited
air vehicles, each equipped with inertial sensors, GPS and one or two payloads; consisting of either a vision system, a mm-wave
radar or a vision/laser hybrid sensor.



Fig. 1. SLAM system is building a relative map of feature-based landmarks using relative observations, defining a map, and using this map to localise the vehicle
simultaneously.

Fig. 2. The vehicle starts at an unknown location with no a priori knowledge of landmark locations and estimates the vehicleand landmark locations (left). The
landmark estimates are subject to a common error from the vehicleuncertainty and eventually, all landmarks will be completelycorrelated (right).

Section II will formulate the airborne SLAM algorithm and filter structure using an extended Kalman filter. Section III will
describe the decentralised architecture. Section IV will describe the platform and sensors on which SLAM and decentralised
SLAM will be applied. Section V simulation results are provided using a high fidelity simulator based on the flight vehicles. In
particular the focus of the simulation results is to determine the impact on the map and localisation accuracy based on variability
in landmark spatial density and the quality of both the inertial and observation sensor. The simulation results consistof a single
vehicle SLAM and two aircraft decentralised SLAM. Section VI will finish with conclusion and future work.

II. A IRBORNE SLAM A LGORITHM

The mathematical framework of the SLAM algorithm is based onan estimation process which, when given a kinematic/dynamic
model of the vehicle and relative observations between the vehicle and landmarks, estimates the structure of the map andthe
vehicle’s position, velocity and orientation within that map. In this work, the Extended Kalman Filter (EKF) is used as the state
estimator.

A. Nonlinear Process Model

The process model includes the vehicle and map dynamic modeland can be written as a first-order vector difference equation
in discrete time,

x(k) = f(x(k − 1),u(k),w(k), k) (1)



wheref(·, ·, k) is a non-linear state transition function at timek which forms the current vehicle and map state,x(k), from the
previous state,x(k − 1), and the current control input,u(k). w(k) is the process noise vector. The state can be partitioned into
vehicle state and map state and the process model can be separated in each state as,

[

xv(k)
xm(k)

]

=

[

fv(xv(k − 1),u(k),wv(k), k)
fm(xm(k − 1),wm(k), k)

]

, (2)

wherexv(k) is the vehicle state comprising of position, velocity and attitude andxm(k) is the landmark position. The new
landmark position,xmi(k) = [ x y z ]T , is augmented into the state vector so its size increases during flight time, that is,

xm(k) = [ xTm1(k) xTm2(k) . . . xTmN (k) ]T , (3)

whereN is the current number of landmarks in the filter.
The nonlinear vehicle model is a strapdown INS algorithm andit represents the position, velocity and attitude of the UAV. In

this paper it is mechanized in the earth fixed tangent frame with Euler angle parameters:




Pn(k)
Vn(k)
Ψ(k)



 =





Pn(k − 1) + Vn(k − 1)4t
Vn(k − 1) + [Cn

b (k − 1)f b(k) + gn]4t
Ψ(k − 1) + Enb (k − 1)ωb(k)4t



 ,

wherePn(k) andVn(k) is the position and velocity respectively, andΨ(k) represents the Euler angles: roll (φ), pitch (θ) and
yaw (ψ). f b(k) andω

b(k) are acceleration and rotation rates measured in the body frame. Cn
b is the direction cosine matrix and

Enb is the matrix that transforms the rotation rates in the body frame to the Euler angle rates:

Cn
b =





CθCψ −CφSψ + SφSθCψ SφSψ + CφSθCψ
CθSψ CφCψ + SφSθCψ −SφCψ + CφSθSψ
−Sθ SφCθ CφCθ



 , Enb =





1 SφSθ/Cθ CφSθ/Cθ
0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ



 ,

whereS(·) andC(·) representssin(·) andcos(·) respectively.
The landmark dynamic model is a stationary model which has nodisturbance input noise. Hence the state transition equation

for theith landmark simply becomes

xmi(k) = xmi(k − 1). (4)

B. Nonlinear Observation Model

The onboard range/bearing sensor provides relative observations between vehicle and landmarks. The nonlinear observation
model relates these observations to the state as

z(k) = h(x(k)) + v(k), (5)

whereh(·) is the non-linear observation model at timek, andv(k) is the observation noise vector.
Since the observation model predicts the range, bearing, and elevation for theith landmark, it is only a function of theith

landmark and the vehicle state. Therefore equation 5 can be further simplified as

zi(k) = h(xv(k),xmi(k)) + vi(k), (6)

wherezi(k) andvi(k) is theith observation and its associated noise in range, bearing and elevation with zero mean and variance
of R(k).

To formulate the observation model in equation 6, the landmark position in the navigation frame should be related to the sensor
observation in the sensor frame as shown in Fig. 3. The landmark position in the navigation frame is

xnmi(k) = Pn(k) + Cn
b (k)P

b
sb + Cn

b (k)C
b
s(k)P

s
ms(k), (7)

wherePb
sb is the lever arm offset from the vehicle’s centre of gravity in the body frame,Cb

s(k) is a direction cosine matrix which
transforms the vector in the sensor frame to the body frame, andPs

ms(k) = [ x y z ]T is the relative distance of the landmark
in the sensor frame which is converted from range, bearing and elevation observations,

Ps
ms(k) =





ρ cos(ϕ) cos(ϑ)
ρ sin(ϕ) cos(ϑ)

ρ sin(ϑ)



 . (8)



Fig. 3. The range, bearing and elevation observations from the onboard sensor can be related to the location of the landmark in the navigation frame through the
flight platform’s position and attitude as provided in equation 7.

ρ, ϕ andϑ are the range, bearing and elevation values respectively, measured from the onboard sensor.
The predicted range, bearing and elevation between the vehicle and theith landmark in equation 6 can be obtained by rearrang-

ing equation 8,

zi(k) = [ ρ ϕ ϑ ]T

=





√

x2 + y2 + z2

tan−1(y/x)

tan−1(z/
√

x2 + y2)



 , (9)

where[ x y z ]T is obtained from the vehicle and landmark position in the navigation frame in equation 7 as,

Ps
ms(k) = Cs

b(k)C
b
n(k)

[

xnmi(k) − Pn(k) − Cn
b (k)P

b
sb

]

. (10)

C. Estimation Process

The EKF is implemented for the estimation of both the vehicleand map states. With the state and observation models defined
in the previous section, the estimation procedure can proceed. The state and its covariance are predicted using the control input
which typically runs at a high-frequency to track the maneuvering UAV. Whenever a landmark is observed, a data association
process is conducted to check to see if the landmark has been previously observed. If the landmark has been previously registered
in the filter the observation is used to update the state and covariance, and if the landmark is a new one then a new landmark state
is augmented to the filter state.

The state covariance is propagated using the Jacobians of the state transition model and process noise matrix by,

P(k|k − 1) = ∇fx(k)P(k − 1|k − 1)∇fTx + ∇fw(k)Q(k)∇fTw (k),

where the terms∇fx(k) and∇fw(k) are Jacobians of the non-linear state transition function with respect to the state and sensor
noise respectively and they are defined in Appendix A.

When an observation occurs, the state vector and its covariance are updated according to

x̂(k|k) = x̂(k|k − 1) + W(k)ν(k)

P(k|k) = [I − W(k)∇hx(k)]P(k|k − 1)

×[I − W(k)∇hx(k)]T + W(k)R(k)WT (k),

where the innovation vector, Kalman gain, and innovation covariance are computed as,

ν(k) = z(k) − h(x̂(k|k − 1))

W(k) = P(k|k − 1)∇hT

x (k)S−1(k)

S(k) = ∇hx(k)P(k|k − 1)∇hT

x (k) + R.

∇hx(k) is the Jacobian of the non-linear observation functionh(·) with respect to the predicted statex(k|k − 1) and is defined
in Appendix B.



D. Data Association and New landmark Augmentation

Data association is a process that finds out if there is a correspondence between observations at timek and landmarks registered
within the filter state. Correct correspondence of sensed landmark observations to mapped landmarks is essential for consistent
map construction. A single false match may invalidate the entire estimation process.

As a statistical validation gate, the Normalised Innovation Square (NIS) (also known as theMahalanobis distance) is used to
associate observations [18]. Association validation is performed in observation space. Given an innovation and its covariance with
the assumption of Gaussian distribution, the NIS forms aχ2 (chi-square) distribution. If the NIS has a value within a threshold

ν(k)TS(k)−1ν(k) ≤ λn, (11)

wheren is the dimension of the innovation, the observation and the landmark that were used to form the innovation are then
associated. The associated innovation is used to update thestate and covariance.

If the landmark is reobserved then the estimation cycle proceeds, otherwise it is a new landmark and must be augmented into
both the state vector and the covariance matrix by

xaug(k) =

[

x(k)
g(x(k), z(k))

]

(12)

Paug(k) =

[

I 0
∇gx(k) ∇gz(k)

] [

P(k) 0
0 R(k)

] [

I 0
∇gx(k) ∇gz(k)

]T

(13)

where∇gx(k) and∇gz(k) are Jacobians for the landmark initialisation function with respect to the current state and observation
respectively and are defined in Appendix C. In equation 13 thenew landmark state becomes strongly correlated to the vehicle
state and the map states become fully correlated to each other as time progresses. This correlation exhibits a unique characteristic
in the SLAM implementation: the revisiting process. When thevehicle revisits a former landmark, the accumulated INS drift
during this period can be identified and the uncertainties inlandmark states can also be reduced due to the strong cross correlation
between landmarks.

This completes the EKF cycle for the single vehicle SLAM implementation.

III. D ECENTRALISEDA IRBORNE SLAM A LGORITHM

The decentralised architecture and decentralised data fusion (DDF) technique used in this application is based on the informa-
tion (or inverse covariance) form of the Kalman filter. This builds on the work of Grime [19] on decentralised tracking.

This “information” is propagated to all vehicles or nodes inthe network via point-to-point links with no loops in the network,
as illustrated in Figure 4. The internal structure of each ofthese sensing nodes is illustrated in Fig. 5. This section gives an
overview of the key elements of the architecture such as the local filter, channel filters and the channel manager as detailed in
[20]. For a decentralised SLAM application, the landmark map information in each SLAM node or platform, determined using
the algorithms in Section II, has to be communicated to the other node or platforms in the network. Map information received by
one node from another has to be fused with its local map to get abetter estimate. This section will describe the algorithm applied
to achieve these requirements.

A. The Information Filter

The state,̂x(i|j), and its covariance,P(i|j), of each node is communicated in its information form which is given by the
information vector,̂y(i|j), and information matrix,Y(i|j). The relation between the state and covariance and the information
vector and matrix is given as:

ŷ(i|j) = P−1(i|j)x̂(i|j) (14)

Y(i|j) = P−1(i|j) (15)

In integration of the information, all the update operations are additive. As a result, the specific order in which updates from
other vehicles are applied is irrelevant to the results, provided the features do not change over time. This observationis of central
importance in multi-vehicle SLAM, as the map features are specially selected to be stationary. If map update messages from other
vehicles arrive under arbitrary latency, they can still simply be added on in the information form regardless of their “age”.

B. The Local Filter

The local information filter, also known as the nodal filter, generates information state estimates on the basis of observed,
predicted and communicated information. Other infrastructure such as the channel filter and channel manager exist onlyto
support the correct implementation of the local filter.

The local filter takes map information from local SLAM node (if present) and from the channel manager (if connected). The
state estimates and covariance estimates of these landmarks are converted into information form to produce an information vector,
ŷ(k|k), and information matrix,Y(k|k). This information vector and information matrix are then output to the channel manager
for transmission to neighbouring nodes.



Fig. 4. A decentralised architecture

Fig. 5. A decentralised sensor node structre

C. The Channel Manager

The channel manager serves as the interface between the local filter and the channel filters (and through these, the other nodes
or platforms in the network). On each platform, a channel filter would be allocated to each remote platform it is connectedto.

Incoming data is collected from the channels at a time horizon and assimilated using the additive update equations. The result
is communicated to the local filter which updates the SLAM estimate in a single step. Outgoing updated information statesfrom
its local filter are also received by the channel manager. This information is disseminated to the channel filters for transmission.

D. The Channel Filter

The channel filter is a conventional information filter whichis used for maintaining an estimate of common data passed through
a particular channel. A channel filter on nodei that is connected to nodej maintains a common information matrix,Y(i|j), and a
common information vector,̂y(i|j), between the two nodes.

Channel filters have two important characteristics. Firstly, incoming data from remote sensor nodes is assimilated by the local
sensor node before being communicated on to subsequent nodes. Therefore, regardless of the number of incoming messages, there
is only a single outgoing message to each platform. Secondly, a channel filter compares what has been previously communicated
with the total local information at the node. Thus, if the operation of the channel is suspended, the filter simply accumulates infor-
mation in an additive fashion. When the channel is re-opened,the total accumulated information in the channel is communicated
in one single message.

Information previously communicated is used to compute newinformation gain from other vehicles in the network. The map
information from remote vehicles arrives asynchronously at each channel. The channel filter calculates the new information
received on any given channel and transmits this to the channel manager, before updating itself. In the event that the channel



becomes blocked or disconnected, the channel filter effectively fuses the new data and cycles to the next available communication
time.

E. Communication of map information

The channels take the total local information,ŷi(k|k), and subtract out all information that has previously been communicated
down the channel,̂yij(k|k), thus transmitting only new information obtained by nodei since the last communication. Intuitively,
communicated data from nodei thus consists only of map information not previously transmitted to a nodej. As common map
information has already been removed from the communication, nodej can simply assimilate incoming information measures by
addition.

The vehicle information is never communicated. Hence, the channel filters will never maintain any states other than the map.
As the full map of all the features is being transmitted, the channel filter update is a simple update of all the features:

YChan(k|k) = Y∗(k|k) (16)

ŷChan(k|k) = y∗(k|k) (17)

This update is only possible as the map informationY∗(k|k) andy∗(k|k) are of the dimension of the complete map and all
cross information terms are being transmitted.

When the receiving node obtains the new submap information, it updates its own channel filter using exactly the same update
steps as above. Once updated, it calculates the increment ofnew information it has just received from nodei that has not already
been fused locally at nodej.

I∗ij(k|k) = YChan(k|k) − YChan(k|k − 1) (18)

i∗ij(k|k) = ŷChan(k|k) − ŷChan(k|k − 1) (19)

This information increment is then sent to the local filter tobe fused into the SLAM estimate.

F. Fusing Information from other nodes

When the local filter receives the informationI∗ij(k|k) andi∗ij(k|k) from the channel filter, this information is used in the SLAM
estimate. In order to do this, it is necessary to firstly definea matrixGs that inflates the map to the dimension of the entire SLAM
state by padding vehicle elements with zeros. The update is then done by adding the new information from the other node as:

ŷ(k|k) = ŷ(k|k − 1) + Gsŷij(k|k) (20)

Y(k|k) = Y(k|k − 1) + GsYij(k|k)GT
s (21)

It is worth noting that this update step is identical to updating with information from locally attached sensors.

G. Data Association

In decentralised SLAM, map information about the same landmark could come from different sources. Data association is
necessary to correctly match this information. When an observation is made, it is necessary to determine if the landmark is same
as one that has already been seen. Also, in a decentralised system, it is necessary to associate information from other nodes with
that stored locally.

Figure 6 illustrates this notion where two nodes are estimating the same landmark set, but the landmarks are ordered differently
on each node. When node 1 communicates information about its landmark-1, node 2 must correctly associate it with its own
landmark-4.

The information gate [21] can be used for data association with the information filter. Shown in equation below, it is the
information equivalent of the state space innovation gate.The primary advantage of this algorithm is that it is cast in terms of the
information states.

vT (k)B(k)+vT (k) < λn, (22)

wheren is the dimension of the innovation, the observation and the landmark that were used to form the innovation are then
associated.

v(k) = I(k)[I(k)
+
i(k) − Y−1(k | k − 1)ŷ(k|k − 1)] (23)

B(k) = I(k)[I(k)Y−1(k | k − 1)]I(k) (24)

B+(k) = HT (k)[H(k)B(k)HT (k)]H(k) (25)

I+(k) = HT (k)[H(k)I(k)HT (k)]H(k) (26)



Fig. 6. Different nodes may have the same physical landmarks stored in different orders.

The nodes would also include a data association index with each information communication. The data association index is
the location of the landmark at the transmitting node. When received for the first time, the landmarks will pass through thedata
association algorithm to determine if they match any landmarks at the receiving node. Once the receiving node knows the index
of that landmark locally, it can store the relationship between the landmarks on different nodes. In this way, a look up table is
generated once landmarks are identified rather than having to apply a computationally expensive association algorithmat each
update iteration.

IV. T HE PHYSICAL SYSTEM

The physical system of the UAVs, on which decentralised SLAMwill be demonstrated, comprises of the flight platform, payload
sensors and mission sensors.

Fig. 7. Two Brumby Mk3 aircrafts

The flight platform shown in Fig. 7 is a delta fixed wing platform with a pusher prop configuration and is capable of flying
at 50m/s and up to 500m. The payload sensors are part of the flight platform. The platform can carry up to 11kg of additional
mission sensors.

The payload sensors comprise of an INS/GPS/Baro navigationsystem. This system provides the position, velocity and attitude
solutions at 100Hz for the flight control system. The IMU developed by Inertial Science is installed in the fuselage as shown in
Fig. 8. The GPS unit is a 12 channel AllStar receiver. Data from these sensors have a rated accuracy of 0.5m in position, 0.1m/s
in velocity and 0.5◦ in attitude. The data output is at 100Hz.

The mission sensor used in this paper is a vision payload sensor connected to a PC104 computer. Range is estimated from the
size of the landmarks and hence poor range information is obtained. The vision sensor is a passive and low cost sensor withgood
bearing accuracy. The frame rate can be up to 50Hz and the images are captured in monochrome. The landmarks placed on the
ground are 2×2m and are painted white for ease of detection.



Fig. 8. The IMU and tilt sensors are installed for the PC-104 flight control computer (FCC). A low cost camera is installed next to the IMU to minimise sensor
offset. Two GPS receivers are stacked on the FCC

V. EXPERIMENTAL RESULTS

A. Simulation Environment

The simulation parameters and assumptions are based on a real UAV implementation and are shown in Table I. In the simulation,
UAV undergoes a figure-of-eight trajectory approximately 100m above the ground with average flight speeds of 40m/s. A low-cost
(or equivalently low quality) IMU is simulated with a passive vision sensor. The IMU implemented in the real system has a gyro
bias of 0.01◦/s and an accelerometer bias of 0.01m/s2 which can be rated as a low-cost tactical grade inertial unit. The biases
are calibrated precisely using onboard inclinometers in the real implementation, hence the biases are not explicitly modelled and
studied in this simulation analysis and only white noise is modelled. The vision sensor is a passive and low-cost sensor.It has
good bearing accuracy but it can only provide poor range dataif the size of landmark is known otherwise it cannot provide range
information at all. In this paper vision with poor range quality is incorporated.

TABLE I
THE PARAMETERS USED IN SIMULATION.

Sensor Type Spec.

Sampling rate 400 Hz
IMU Accel noise 0.1m/s2/

√
Hz

Gyro noise 0.1◦/s/
√
Hz

Frame rate 25Hz
Vision FOV angle ±15◦

Bearing noise strength 0.1604◦

Elevation noise strength 0.1206◦

Range noise strength ≥20m
Alignment Horizontal axis 0.5◦

error Vertical axis 0.0◦

B. Single-vehicle SLAM results

The vision sensor detects landmarks below the flight paths and registers 19 landmarks from the total 50 landmarks on the
ground. The landmark extraction rate is 25Hz which is typical in most monochrome cameras.
The SLAM result using a vision sensor is shown in Figs 9 to 11. The first round is mainly an exploration stage since new landmarks
are detected and augmented into the state. In the second round the map is improved dramatically because of the revisitingprocess
and the vehicle error begins to be effectively constrained.Figure 9a shows the estimated flight path and landmark positions with
5σ uncertainty bounds for clarification. The revisiting effect can be seen in Fig. 9b with a correction of approximately 20m.
During the second revisiting process the corrections were much smaller than that of the first visit since less information is added
to the map. Figure 10 depict the estimation errors in position, and attitude with the 1σ uncertainties (the velocity is similar to the
position, hence it is not plotted). The plot shows that the navigation errors are estimated and maintained within 1σ bound from the
relative vision observations. Furthermore, the covariance of the heading state is always increasing in the first round,and only after
the second round during the revisiting process does the heading error improve. This is primarily due to the change in observability



(a) (b)

Fig. 9. (a) Vehicle and map 2D position estimated from SLAM filter. The UAV starts from (0,0) and flies following a figure eight shape to maximise the chance
of reobservation. (b) Enhanced view of the vehicle and 2D map position at revisiting. The accumulated vehicle errors are corrected approximately 20m at the first
revisit.

(a) (b)

Fig. 10. (a) SLAM Position errors and (b) attitude errors with 1σ uncertainties.

because of the addition of landmarks into the state vector. Figure 11 illustrates the evolution of the vehicle and map uncertainty
along the north axis. During the first round, most of the initialised landmarks have large uncertainties because of the embedded
vehicle uncertainty. After the second round, the map accuracy improves dramatically and begins to constrain the error drift of the
vehicle effectively whenever the vehicle detects the landmarks. The final map accuracy with a worst case landmark uncertainty of
approximately 5.8m. The initial vehicle uncertainty was 5mwhich is the lowest limit in map accuracy that SLAM could ideally
achieve [15].

C. Decentralised SLAM results

In decentralised SLAM simulation, two UAVs fly two separate segments of the figure-of-eight trajectory, communicating map
information. UAV-1 starts from the origin and flies over the right part of the figure-of-eight trajectory, while UAV-2 starts from
the right lower part (around landmark-3 in Fig. 12a) and fliesover the left part of trajectory. They share some common landmarks
around the origin. The DDF update occurs every 2sec. Two different communication strategies were compared which were:

• No DDF communication between the nodes where each vehicle operates independently using only the observations it detects.
• Full DDF communication of all the observations detected by each vehicle to the other nodes.
Figures 12 and 13 show the DDF SLAM results in UAV-1 and UAV-2.Although two vehicles fly different regions, they build

a common and global map from to the DDF communication. Hence the final landmark uncertainties in two vehicles are identical.
Figures 14 and 15 show the standalone SLAM results without communication for comparison. As predicted, each map has a
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Fig. 11. (a) Evolution of uncertainties of the vehicle and landmarks on north position. During the first round, the vehicleregistered new landmarks. After the
second round however, the vehicle begins to re-observe the former landmarks and the map accuracy begins to improve, which in turn suppresses the vehicle errors.
(b) Final map building performance achieved from SLAM navigation.

(a) (b)

Fig. 12. (a) Decentralised SLAM result in UAV-1 with the estimated vehicle and landmark position. UAV-1 flies over the rightpart of the figure-of-eight and
UAV-2 flies over the left part of it communicating map information(5σ uncertainty ellipses of map are used). (b) Final landmark uncertainty from decentralised
SLAM (the large uncertainty along the down axis in landmark-3results from the high banking of the vehicle).

reduced number of landmarks that the vehicle detected. It should be noted that the associated landmark number is different
between DDF and standalone mode map due to the separated dataassociation process, hence they can not be compared directly
from the plots. However it can be observed that the overall landmark uncertainties in DDF mode are significantly lower than the
uncertainty in the standalone operation. This is because both vehicles observe some common landmarks and fuses them across
information network. The large uncertainty in landmark-3 in DDF map results from the high banking of the vehicle at observation
time and corresponds to landmark-9 in Fig. 14 and landmark-1Fig. 15 respectively.

Figures 16 and 17 compare the vehicle’s position uncertainty along the north axis with and without DDF communication. Itcan
be seen clearly that DDF map communication can enhance the vehicle’s position accuracy as well. This is due to the correlation
structure between the vehicle and map. Once the map accuracyis improved from the DDF communication, the vehicle accuracy
can also be improved via the correlation. This can also be observed in the vehicle’s attitude plot (only the heading is presented in
this plot) as in Fig. 17. The UAV-1 shows more rapid decrease in heading uncertainty than UAV-2, and it is due to the different
trajectories and dynamics in each vehicle. The UAV-1 undergoes high banking at the start time while UAV-2 undergoes relatively
straight line and this enhances the heading observability on UAV-1. To compare the landmark improvement in DDF mode,
three dimensional uncertainty ellipsoids of landmark-1 are shown in Fig 18. This corresponds to landmark-1 in UAV-1 without
communication and landmark-2 in UAV-2. From this plot it is clear that the DDF communication enhances the map accuracy.



(a) (b)

Fig. 13. (a) Decentralised SLAM result in UAV-2 with the estimated vehicle and landmark position. Due to DDF map communication, both UAVs build a
common combined map. (b) Final landmark uncertainty which is identical to that of UAV-1.

(a) (b)

Fig. 14. (a) Standalone SLAM result in UAV-1 without DDF communication for comparison and (b) the final landmark uncertainty in UAV-1. Only a limited
map is built with 11 landmarks and larger uncertainties than DDF map (The landmark-9 with large uncertainty corresponds to the landmark-3 in DDF map).

These results illustrate that navigation errors of two highly non-linear 6DoF platforms can be effectively constrained using
SLAM algorithm, and its performance can be enhanced using the decentralised information fusion approach.

VI. CONCLUSION AND FUTURE WORK

This paper has presented the SLAM and decentralised SLAM algorithms applied to a 6DoF airborne platform. The simulation
analysis illustrates that the SLAM navigation system with vision sensor can perform navigation in unknown 3D terrain environ-
ments. The results also show that sharing map information reduces the navigation errors on the whole vehicles. However,should
one node have higher navigation errors than the other, the errors in the first node will be reduced while there would be a slight
increase in error in the second node. The uncertainty of the landmarks are reduced in the DDF communication strategy compared
to the case without communication. One of the issues in multiple airborne vehicle is the limited bandwidth. Hence, only part of
the map could be communicated. Strategies to maximise the amount of information to transmit will have to be investigatedand
applied.
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Fig. 15. (a) Standalone SLAM result in UAV-2 without DDF communication for comparison and (b) the final landmark uncertainty in UAV-2. The resulting map
contains only 8 landmarks with larger uncertainties (the landmark-1 with large uncertainty corresponds to the landmark-3in DDF map).

(a) (b)

Fig. 16. Comparison of the position uncertainties along the north axis in (a) UAV-1 and (b) UAV-2 with and without DDF communications. The enhancement of
map in DDF mode causes both vehicle’s positions to be also improved.
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APPENDIX A

The Jacobian∇fx(k) of the nonlinear vehicle model with respect to the vehicle state in equation 4 can be computed as,

∇fx(k) =






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where the sub-matrix can also be computed by using Jacobiansof Cn
b andEnb with respect to the Euler angles(ρ, ψ, θ). They are

three element matrices and are computed as,
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where,
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The Jacobian∇fw(k) of the nonlinear vehicle model with respect to the input noise (or inertial sensor noise) in equation 4 is
obtained by,

∇fw(k) =
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APPENDIX B

The observation Jacobian∇hx(k) of equation 5 with respect to the vehicle and map state can be derived from the nonlinear
observation equations 9 and 10 by applying a chain rule,

∇hx(k) =


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= ∇h1(k)∇h2(k) (31)

whereh1(k) is defined as equation 9 andh2(k) is defined as equation 10. The Jacobians of these functions are obtained as,
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whereρ, ϕ andϑ are range, bearing and elevation respectively andx, y andz are computed fromh2(k).



APPENDIX C

The Jacobian∇gx(k) and∇gz(k) used in equation 12 can be obtained from the new landmark initialisation function in equation
7,

∇gx(k) =
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APPENDIX D

The information observation quantitiesi(k) andI(k) are of dimension the state space, whereas the innovation andinnovation
variance are of dimension the observation space. In the innovation gate, the inverse innovation covariance is used to normalise
the gate. In the information gate, the inverse of the corresponding information matrix is required. This, however will generally
be singular as it is of dimension the state but has rank of onlyobservation dimension. A generalised inverseI+(k) is therefore
defined in the following manner.

I(k)I+(k) = E (33)

whereE is an idempotent matrix which acts as the identity for bothI(k) andI+(k)

I(k)E = I(k) (34)

I+(k)E = I+(k) (35)

and

I(k)I+(k)I(k) = I(k) (36)

I+(k)I(k)I+(k) = I+(k) (37)

One generalised inverse which satisfies these requirementsis calculated by exploiting the observation modelH(k) as a projec-
tion operator. This matrix projects a state space into an observation space and conversely its transpose projects observations back
to state space.

The generalised inverse is then
I+(k) = HT

k [HkI(k)H
T
k ]−1Hk (38)

The appropriateness of this selection of projection matrixis apparent as

HkI(k)I
+(k) = HkI(k)H

T
k [HkI(k)H

T
k ]−1Hk (39)

The innovation which is used for data association is defined as the difference between the observed and predicted observation
and given in Equation 40 below:

ν(k) = z(k)Hkx̂(k|k − 1) (40)

The information residual vector is:
v(k) , HT

kR−1
k ν(k) (41)

Substituting Equation 40 into Equation 41 gives

v(k) = HT
kR−1

k z(k) − HT
kR−1

k Hkx̂(k|k − 1)

= i(k) − I(k)Y−1(k | k − 1)ŷ(k|k − 1)
(42)

The covariance of this information residual is now calculated fromE{v(k),vT (k)|Zk−1(k)}
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= I(k)[I+(k) + Y−1(k | k − 1)]−1I(k)

(43)

The normalised information residual is now given by



Γ(k) = vT (k)B+(k)vT (k) (44)

whereB+(k) is the generalised inverse ofB(k) and is again calculated using the projection operationHk as

B+(k) = HT
k [HkB(k)HT

k ]−1Hk (45)

The relationship between the information gate to the state space innovation gate can be illustrated by noting that this equation
above can be written as:
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The normalised information residual is thus an informationform of the conventional innovation residual.



f(·) non-linear state transition function
h(·) non-linear observation function
g(·) landmark initialisation function
x,u,w state vector, control input and system noise
Pn,Vn aircraft position and velocity in NED axes
Ψ aircraft attitude (roll, pitch and yaw)
f b,ωb acceleration and rotation rate measurement in the body frame
Cn
b direction cosine matrix between body and NED axes

Enb angular rate transform matrix
z,v observation vector and noise
ρ, ϕ, ϑ range, bearing and elevation
Pb
sb sensor’s lever arm offset

Cb
s sensor’s direction cosine matrix

Ps
ms relative position of the landmark from the sensor

∇fx,∇fw Jacobians of the non-linear state function with respect to the state and noise
∇hx,∇hv Jacobians of the observation function with respect to stateand noise
∇gx,∇gz Jacobians of the landmark initialisation function
P(k|k) system covariance matrix
Q(k),R(k) system and observation noise matrix
ν(k),S(k) innovation vector and innovation covariance
W(k) filter gain (or weight) matrix
λn threshold value in chi-square distribution with n-dimension
y(k|k),Y(k|k) information vector and information matrix
yij(k|k),Yijkk cross information vector and its matrix
i∗ij(k|k), I∗ij(k|k) information vector and matrix in the full dimension of the map
v(k),B(k) innovation vector and matrix in information space




