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Abstract

In this paper we address the issue of autonomous navigation, that ijilibhefar a navigation system to provide information
about the states of a vehicle without the need for a priori infrastruceuwels as GPS, beacons, or preloaded maps of the area
of interest. The algorithm applied is known as Simultaneous Localisation appibg (SLAM). It is a terrain aided navigation
system which has the capability for online map building, while simultaneouslyingltte generated map to bound the errors in the
navigation solution. As no a priori terrain information nor initial knowled@the vehicle location is required, this algorithm presents
a powerful navigation augmentation system. More importantly, it can béemgnted as an independent navigation system. This
paper also describes a decentralised SLAM algorithm which allows multipielgs to acquire a joint 3D map via a decentralised
information fusion network. The key idea behind this decentralised SLAM iepresent the map in information form (negative
log-likelihood) for communication. Experimental results are providedgisomputer simulation to demonstrate the single-vehicle
and multi-vehicles SLAM without the use of GPS and preloaded maps.
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I. INTRODUCTION

Airborne navigation systems can generally be divided into tategories: inertial (or dead-reckoning) based naiigaand
reference (or absolute) based navigation.

An Inertial Navigation System (INS) makes use of an IneMaksurement Unit (IMU) to sense the vehicle’s rotation eatéd
acceleration. This data is then used to obtain vehiclestateh as position, velocity and attitude. The IMU provides tlata at
high rates which is crucial for guidance and control. Howeies sensor error diverges in nature due to the integrationess.
Hence absolute sensors are required in order to constiaritt.

Absolute sensors are categorised into two groups: beas®ula terrain based. The most common beacon based namigatio
system is a Global Positioning System (GPS). There has beéensive research activities in the fusion of INS and GP$esys
[1]-[4]. The GPS aided inertial navigation system providi@sg-term stability with high accuracy in addition to wonlitle
coverage in any weather condition. The main drawback issggeddency on external satellite signhals which can be dalsitked
or jammed by intentional interferences.

As a result, research into Terrain Aided Navigation SystEFANS) as an alternative to relieve the dependency on GP8 is a
active area [5]-[8]. This type of navigation system typigahakes use of onboard sensors and a terrain database. RraifE
COntour Matching (TERCOM) system has been successfulllieabm cruise missile systems [5]. It combines onboard rada
altimeter readings with a pre-stored Digitised Terrainvit®n (DTE) map to estimate the INS errors as well as guidirey
low-flying missile at a fixed height above the ground. The T&RPROfile Matching (TERPROM) system correlates passive
sensor data with a terrain database. It can provide terraiximity and avoidance information as well as INS aiding aaifity
and it has been widely adapted as a navigation system witliaus aircrafts. [9] presents a scene or image matchingletion
system which makes use of a passive camera or an infrared@awth an onboard image correlator. The observed image is
matched with the pre-stored digital image database. If eetaifon peak exists above a given threshold, the positidheoimage
centre can be identified and used to estimate the INS errarstd®its passive and non-jamming nature, it has been adeiptieel
terminal guidance stages of missiles.

Both forms of satellite and terrain based absolute navigasystems have their advantages and disadvantages, aact in f
the more robust navigation system would have a combinatigheotwo. However, if the mission exists within a GPS denied
environment, whether within a military scenario, or for endater systems, or whether on another planet, then oné isith
the implementation of the TAN system. In TANS, the DTE is tley klement. However it usually requires some sort of Space



mapping infrastructure as it is typically built from highsmution satellite radar images around the mission aregh&umore,

it has a constrained degree of autonomy since the missioouiscbto the knowledge of the terrain database. One wouldalike
system which can further expand on the existing DTE, by eiffugmenting information in the form of new frontiers thavéa
been seen outside of the spatial scope of the DTE, or by adidiognation in terms of higher quality data within the exist
map. The objective however is to use this information to theand the uncertainty in the navigation solution. Thus ideor

to extend the benefit of TANS the navigation system requitesability to augment map data as it is generated, and to ese th
newly generated map to constrain the drift of the INS, thatasimultaneously build a map and to localise the vehicliiwi

it. If implemented properly, this concept can be used wheretlis no a priori information whatsoever about the map, atheu
landmarks within the map, or about the vehicle location inithe map as well.

Simultaneous Localisation And Mapping (SLAM) was first agkfred in the paper by Smith and Cheeseman [10] and has
evolved from the indoor robotics research community to @gunknown environments, where absolute information iswail-
able [11]-[16].

The SLAM structure can be described as shown in Fig. 1. Thébeehtarts its navigation at an unknown location in an
unknown environment. The vehicle navigates using its deakening sensors or vehicle model. As the onboard senstestd
features from the environment, the SLAM estimator augm#r@dandmark locations to a map in some global referencedram
and begins to estimate the vehicle and map states togettieswdgcessive observations. The ability to estimate battvéthicle
location and the map is due to the statistical correlatiomigkvexist within the estimator between the vehicle and haauds, and
between the landmarks themselves. As the vehicle prockeaisgh the environment and re-observes old landmarks, e m
accuracy converges to a lower limit which is a function of ithiéal vehicle uncertainty when the first landmark was alied
[15]. In addition, the vehicle uncertainty is also consteal simultaneously.

The SLAM architecture has four interesting charactegstic

« Point feature: In the context of SLAM, landmarks are the features of the rmment that can be consistently and reliably
observed using the vehicle’s onboard sensors. Landmarkshbeuwescribed in parametric form so that they can be ineorpo
rated into a state model. Point feature representationimsles but efficient representation for this purpose, whoerers,
lines and polyline feature models which are useful in indaarironments have also been implemented [13].

« Correlation: The key elementin SLAM is that an error in estimated vehiotation leads to a common error in the estimated
location of landmarks as shown in Fig. 2. The vehicle stagsmanknown location and begins to estimate landmark looati
from relative observations. As the vehicle traverses, ikegrated data from the internal dead-reckoning sensitswhich
in turn causes a common error in the landmark location as Welked, it is possible to show that the correlation caused b
this common error between landmarks tends to unity with@efit observations, and thus in the limit a perfect relatnap
of landmarks can be constructed [13]. It is because of thigetaion between the landmarks and the vehicle, that when a
re-observation of a previously known stationary landmarguos, then vehicle state estimation can proceed givenrtajs
data.

« Map complexity: The need to maintain these correlations is an integral panedSLAM solution. This leads to enormous
computational problems, as the location of each landmatkénenvironment must, in theory, be updated at each step in
the estimation cycle. To retain all correlations requit§s®) computation and)(n?) storage requirement, whereis the
number of features, which is intractable as the size of tleeadjpn environment is increased. This leads inevitablyafoeed
to find effective map management policies for large scalblpros [13][16].

« Revisiting Landmarks: The most interesting aspect of SLAM is “closing-the-loop’tlwe revisiting process. The vehicle’s
error grows without bound due to the drifting nature of thadieeckoning sensor and this affects the generated mapsaycu
as well. However if the vehicle has a chance to revisit a fomagistered landmark, the accumulated vehicle error can be
estimated which in turn, improves the overall map accuraayell. This process makes it possible to build a perfectivela
map of landmarks in the limit.

There have been substantial advances over the recent yedegdloping the SLAM algorithm for field robotics partictiia

for land and underwater vehicles [12][14][16], all of whibbwever assume a flat and 2D environment. The research deaduc
has illustrated the problems and remedies associated gticdnstruction of the algorithm, the requirement for reeshing
landmarks for model drift containment, and issues relaiingata association.

Decentralised SLAM addresses the problem in which largebarsnof vehicles cooperatively acquire a joint map, while
simultaneously localising themselves in the map. Previgagk has been carried out on decentralised SLAM on a flat 2D
environment [17]. Here, the Extended Information FiltelR)Es used to represent information acquired by the vehithe EIF
is the information form of the EKF. The update of this infotioa is additive. Hence, the incremental new information ba
integrated across different vehicles with arbitrary netwatencies.

In this paper, we will present the first implementation of trezentralised SLAM algorithm for a 6DoF platform naviggtin
within a 3D environment, thus providing a revolutionarypster navigation systems for airborne applications.

The work described in this paper is part of the Autonomousidddion and Sensing Experimental Research (ANSER) project
which aims at developing a multiple flight vehicle demortstraof decentralised SLAM. The system consists of four bahited
air vehicles, each equipped with inertial sensors, GPS ardotwo payloads; consisting of either a vision system, awave
radar or a vision/laser hybrid sensor.
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Fig. 1. SLAM system is building a relative map of feature-lillsedmarks using relative observations, defining a map, angd tiis map to localise the vehicle
simultaneously.
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Fig. 2. The vehicle starts at an unknown location with no arpknowledge of landmark locations and estimates the vehiotelandmark locations (left). The
landmark estimates are subject to a common error from the velnclertainty and eventually, all landmarks will be completaiyrelated (right).

Section Il will formulate the airborne SLAM algorithm andtéit structure using an extended Kalman filter. Section Il wi
describe the decentralised architecture. Section IV véladibe the platform and sensors on which SLAM and decésechl
SLAM will be applied. Section V simulation results are pred using a high fidelity simulator based on the flight velsicla
particular the focus of the simulation results is to detamthe impact on the map and localisation accuracy basedriability
in landmark spatial density and the quality of both the iaéend observation sensor. The simulation results consistsingle
vehicle SLAM and two aircraft decentralised SLAM. Sectionwill finish with conclusion and future work.

II. AIRBORNESLAM ALGORITHM

The mathematical framework of the SLAM algorithm is basedoestimation process which, when given a kinematic/dyoami
model of the vehicle and relative observations between éhécle and landmarks, estimates the structure of the maghend
vehicle’s position, velocity and orientation within thagm In this work, the Extended Kalman Filter (EKF) is usedhasdtate
estimator.

A. Nonlinear Process Model

The process model includes the vehicle and map dynamic naodietan be written as a first-order vector difference egnatio
in discrete time,

x(k) = f(x(k—1),uk),w(k),k) (1)



wheref(-, -, k) is a non-linear state transition function at tiaevhich forms the current vehicle and map stat€), from the
previous statex(k — 1), and the current control inputy(k). w(k) is the process noise vector. The state can be partitioned int
vehicle state and map state and the process model can bateeliareach state as,

Xv(k) _ fU(XU(k - 1)v u(k),wv(k), k)
{xmw} = [ £ (o (k — 1) Won (R), ) | @

wherex, (k) is the vehicle state comprising of position, velocity anttede andx,, (k) is the landmark position. The new
landmark positionx,,;(k) = [z y =z]7, is augmented into the state vector so its size increasésgdiight time, that is,

Xm (k) = | X£1(k) Xgﬂ(k’) XTN(k) ]Tv 3
whereN is the current number of landmarks in the filter.

The nonlinear vehicle model is a strapdown INS algorithm iamelpresents the position, velocity and attitude of the Uk
this paper it is mechanized in the earth fixed tangent frantie Baler angle parameters:

P" (k) P (k—1)+ V" (k- 1)At
vr(k) | = [ Vi (k—1)+ [C(k — D (k) + g"|At |,
(k) U(k—1)+ErEk— 1w (k)At

whereP™ (k) and V" (k) is the position and velocity respectively, adid k) represents the Euler angles: rall)( pitch ¢) and
yaw (). f°(k) andw®(k) are acceleration and rotation rates measured in the boahefi@?' is the direction cosine matrix and
E} is the matrix that transforms the rotation rates in the bodsne to the Euler angle rates:

Cng —C¢S¢ + S¢S.90w S¢S¢ + O;;)SQOQ/,
OQS¢ C¢C¢ + S¢S§C¢ *S¢C¢ + C¢SQS¢,
Sy S4Co CyCo

Ccr = 0 Cy —S,

0 Sy/Cy Cy/Co

1 S450/Cy CySe/Co
, By =

whereS.y andC|.) representsin(-) andcos(-) respectively.
The landmark dynamic model is a stationary model which hadistorbance input noise. Hence the state transition egjuati
for thei'” landmark simply becomes

Xmi(k) = Xmi(k —1). (4)

B. Nonlinear Observation Model

The onboard range/bearing sensor provides relative oftsemg between vehicle and landmarks. The nonlinear oatsenv
model relates these observations to the state as

z(k) = hx(k)+v(k), (5)

whereh(+) is the non-linear observation model at tifaeandv (k) is the observation noise vector.
Since the observation model predicts the range, bearirdjebavation for the® landmark, it is only a function of thé"
landmark and the vehicle state. Therefore equation 5 cauartieef simplified as

zi(k) = b, (k). X (R)) + Vi(k), (6)

wherez; (k) andv; (k) is thei’" observation and its associated noise in range, bearinglavatien with zero mean and variance
of R(k).

To formulate the observation model in equation 6, the larrérpasition in the navigation frame should be related to #essr
observation in the sensor frame as shown in Fig. 3. The laridpwsition in the navigation frame is

x:(k) = P"(k) + CJ (k)P + Cf (k)CL (k)P3, (k) )

whereP?, is the lever arm offset from the vehicle’s centre of gravitylie body frameC? (k) is a direction cosine matrix which
transforms the vector in the sensor frame to the body framPg, (k) = [z y 2z ]7 is the relative distance of the landmark
in the sensor frame which is converted from range, bearidgetavation observations,

[ pcos(p) cos() ]

P5.(k) = | psin(p)cos(d) (®)

psin(9)
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Fig. 3. The range, bearing and elevation observations frenohboard sensor can be related to the location of the lakdmtre navigation frame through the
flight platform’s position and attitude as provided in eqoaty.

p, ¢ andy are the range, bearing and elevation values respectivelysuared from the onboard sensor.
The predicted range, bearing and elevation between theleeind the*” landmark in equation 6 can be obtained by rearrang-
ing equation 8,

zi(k) = [p ¢ 0]
VETET R
= tan~!(y/x) , (9)
tan~1(z/\/22 + y?)

where[z y =z |7 is obtained from the vehicle and landmark position in thegetion frame in equation 7 as,

(k) = Ci(k)Ch (k) [x0y; (k) — P" (k) — C} (K)PY] . (10)
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C. Estimation Process

The EKF is implemented for the estimation of both the vehérid map states. With the state and observation models defined
in the previous section, the estimation procedure can prbc&he state and its covariance are predicted using theot@amput
which typically runs at a high-frequency to track the mareging UAV. Whenever a landmark is observed, a data assogiatio
process is conducted to check to see if the landmark has be@oysly observed. If the landmark has been previouslistegd
in the filter the observation is used to update the state avatiemce, and if the landmark is a new one then a new landnbaid s
is augmented to the filter state.

The state covariance is propagated using the Jacobians sfate transition model and process noise matrix by,

P(kl|k — 1) = Vi (k)P(k — 1|k — 1)VET + V£, (k) Q(k) VET (k),

where the term&f, (k) andVf, (k) are Jacobians of the non-linear state transition functih respect to the state and sensor
noise respectively and they are defined in Appendix A.
When an observation occurs, the state vector and its cozariae updated according to
k(klk) = x(klk—-1)+W(k)r(k)
P(klk) = [I—W(k)Vhy(k)P(k|k - 1)
x[I — W (k)Vhy (k)" + W(k)R(K)WT (k),

where the innovation vector, Kalman gain, and innovatioradance are computed as,

v(k) = z(k)—h(x(klk—1))
W(k) = P(klk—1)VhE(k)S™ (k)
S(k) = Vhy(k)P(k|k —1)VhX(k) +R.

Vhy (k) is the Jacobian of the non-linear observation funciigr) with respect to the predicted staték|k — 1) and is defined
in Appendix B.



D. Data Association and New landmark Augmentation

Data association is a process that finds out if there is agporelence between observations at tinaad landmarks registered
within the filter state. Correct correspondence of sensediteark observations to mapped landmarks is essential faistent
map construction. A single false match may invalidate th@erstimation process.

As a statistical validation gate, the Normalised InnovatBguare (NIS) (also known as thMahalanobis distance) is used to
associate observations [18]. Association validation ifgpmed in observation space. Given an innovation and iagance with
the assumption of Gaussian distribution, the NIS formg &hi-square) distribution. If the NIS has a value within eeghold

v(k)TS(k) " (k) < A, (11)

wheren is the dimension of the innovation, the observation and ainelhark that were used to form the innovation are then
associated. The associated innovation is used to updastatieeand covariance.

If the landmark is reobserved then the estimation cycleg®ds, otherwise it is a new landmark and must be augmented int
both the state vector and the covariance matrix by

= | giuiirahy | e
T
Pus) = | gy vety || 00 B || Ve ® Vel 13

whereVg, (k) andVg, (k) are Jacobians for the landmark initialisation functiorhwitspect to the current state and observation
respectively and are defined in Appendix C. In equation 13the landmark state becomes strongly correlated to the keehic
state and the map states become fully correlated to eachasitiene progresses. This correlation exhibits a uniqueacieristic
in the SLAM implementation: the revisiting process. When tkaicle revisits a former landmark, the accumulated IN& dri
during this period can be identified and the uncertaintidandmark states can also be reduced due to the strong croskation
between landmarks.

This completes the EKF cycle for the single vehicle SLAM iempkntation.

IIl. DECENTRALISEDAIRBORNE SLAM ALGORITHM

The decentralised architecture and decentralised datanf(BDF) technique used in this application is based ontfarima-
tion (or inverse covariance) form of the Kalman filter. Thigls on the work of Grime [19] on decentralised tracking.

This “information” is propagated to all vehicles or nodegha network via point-to-point links with no loops in the werk,
as illustrated in Figure 4. The internal structure of eachhefe sensing nodes is illustrated in Fig. 5. This sectivasgan
overview of the key elements of the architecture such asata filter, channel filters and the channel manager as ddtail
[20]. For a decentralised SLAM application, the landmarkprivdormation in each SLAM node or platform, determined gsin
the algorithms in Section II, has to be communicated to theratode or platforms in the network. Map information reediby
one node from another has to be fused with its local map to gettar estimate. This section will describe the algorithpplied
to achieve these requirements.

A. The Information Filter

The statex(i|j), and its covarianceR(i|j), of each node is communicated in its information form whistgiven by the
information vectory(i|j), and information matrixY (i|7). The relation between the state and covariance and themafan
vector and matrix is given as:

y(ilj) = PTNilj)x(il) (14)
Y(ilj) = P(il) (15)

In integration of the information, all the update operati@me additive. As a result, the specific order in which uplatem
other vehicles are applied is irrelevant to the resultsyigem the features do not change over time. This observatiohcentral
importance in multi-vehicle SLAM, as the map features aecilly selected to be stationary. If map update messagasdther
vehicles arrive under arbitrary latency, they can stillgiyrbe added on in the information form regardless of theje'a

B. The Local Filter

The local information filter, also known as the nodal filtegngrates information state estimates on the basis of aakerv
predicted and communicated information. Other infragtme such as the channel filter and channel manager existtonly
support the correct implementation of the local filter.

The local filter takes map information from local SLAM nodégiesent) and from the channel manager (if connected). The
state estimates and covariance estimates of these lanslararkonverted into information form to produce an infororavector,
y(k|k), and information matrixY (k|k). This information vector and information matrix are theriput to the channel manager
for transmission to neighbouring nodes.
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C. The Channel Manager

The channel manager serves as the interface between théltecand the channel filters (and through these, the otbeen
or platforms in the network). On each platform, a channarfitould be allocated to each remote platform it is conneited

Incoming data is collected from the channels at a time haraud assimilated using the additive update equations. dtr
is communicated to the local filter which updates the SLAMneste in a single step. Outgoing updated information stintes
its local filter are also received by the channel managess iffibrmation is disseminated to the channel filters forgraission.

D. The Channel Filter

The channel filter is a conventional information filter whislused for maintaining an estimate of common data passedghr
a particular channel. A channel filter on nddéat is connected to nodenaintains a common information matriX;(i|j), and a
common information vectog; (i|j), between the two nodes.

Channel filters have two important characteristics. Birgticoming data from remote sensor nodes is assimilatetidiotal
sensor node before being communicated on to subsequerd.niduerefore, regardless of the number of incoming messtyaes
is only a single outgoing message to each platform. Secpadiyannel filter compares what has been previously comaguic
with the total local information at the node. Thus, if the igi®n of the channel is suspended, the filter simply accateslinfor-
mation in an additive fashion. When the channel is re-opeiedotal accumulated information in the channel is commcated
in one single message.

Information previously communicated is used to compute imd@armation gain from other vehicles in the network. The map
information from remote vehicles arrives asynchronouslgach channel. The channel filter calculates the new infboma
received on any given channel and transmits this to the @ananager, before updating itself. In the event that thenchia



becomes blocked or disconnected, the channel filter effdgtiuses the new data and cycles to the next available conuation
time.

E. Communication of map information

The channels take the total local informatign(k|%), and subtract out all information that has previously besmrounicated
down the channefy;; (k|k), thus transmitting only new information obtained by nédece the last communication. Intuitively,
communicated data from nodehus consists only of map information not previously traitsd to a nodg. As common map
information has already been removed from the communicatiode] can simply assimilate incoming information measures by
addition.

The vehicle information is never communicated. Hence, ttannel filters will never maintain any states other than th@.m
As the full map of all the features is being transmitted, tharmel filter update is a simple update of all the features:

Ycnan(klk) = Y*(k[k) (16)
Ycnan(klk) = y*(k|k) (17)

This update is only possible as the map informafon(k|k) andy*(k|k) are of the dimension of the complete map and alll
cross information terms are being transmitted.

When the receiving node obtains the new submap informatiapdates its own channel filter using exactly the same update
steps as above. Once updated, it calculates the incremaatoihformation it has just received from nodinat has not already
been fused locally at node

I;'kj (k|k) = YChan(klk) - YChan(k|k - 1) (18)
I;kj(k|k) = yChan(k|k) - yChan(k|k - ]-) (19)

This information increment is then sent to the local filteb&ofused into the SLAM estimate.

F. Fusing Information from other nodes

When the local filter receives the informatibf)(k|k) andiy; (k|k) from the channel filter, this information is used in the SLAM
estimate. In order to do this, it is necessary to firstly dedimeatrixG ; that inflates the map to the dimension of the entire SLAM
state by padding vehicle elements with zeros. The updateisdone by adding the new information from the other node as:

y(klk) = y(klk—1) 4+ Gyi;(k|k) (20)
Y(klk) = Y(klk—1)+ G,Y,;(klk)GT (21)

It is worth noting that this update step is identical to upaatvith information from locally attached sensors.

G. Data Association

In decentralised SLAM, map information about the same laarttncould come from different sources. Data association is
necessary to correctly match this information. When an ofgien is made, it is necessary to determine if the landnmgame
as one that has already been seen. Also, in a decentraliseargyit is necessary to associate information from othdesavith
that stored locally.

Figure 6 illustrates this notion where two nodes are estigdhe same landmark set, but the landmarks are orderextetitly
on each node. When node 1 communicates information abowritsriark-1, node 2 must correctly associate it with its own
landmark-4.

The information gate [21] can be used for data associatidh thie information filter. Shown in equation below, it is the
information equivalent of the state space innovation galte primary advantage of this algorithm is that it is casemmts of the
information states.

vI(E)B(k) TV (k) < A, (22)

wheren is the dimension of the innovation, the observation and dinelhark that were used to form the innovation are then
associated.

v (k) I(k)[I(k)i(k) = Y ! (k | k — 1)y (klk — 1)] (23)
B(k) = I(k)I(k)Y (k| k- 1K) (24)
Bt (k) = HT(k)[H(k)B(k)H" (k)H(k) (25)
It (k) HY (k) [H(k)I(k)H" (k)] H(k) (26)



Landmarks Registered Landmarks Registered

For Vehicle 1 For Vehicle 2
Landmark 1 Landmark 1
Landmark 2 Landmark 2
Landmark 3 Landmark 3
Landmark 4 Landmark 4
Landmark n Landmark n

Fig. 6. Different nodes may have the same physical landmarkedsio different orders.

The nodes would also include a data association index with gdormation communication. The data association index i
the location of the landmark at the transmitting node. Whemived for the first time, the landmarks will pass throughdhta
association algorithm to determine if they match any lamttat the receiving node. Once the receiving node knowsnithexi
of that landmark locally, it can store the relationship bextw the landmarks on different nodes. In this way, a look bfetes

generated once landmarks are identified rather than hawviagply a computationally expensive association algorigtraach
update iteration.

IV. THE PHYSICAL SYSTEM

The physical system of the UAVs, on which decentralised SL#iNMbe demonstrated, comprises of the flight platform, pad
sensors and mission sensors.

Fig. 7. Two Brumby Mk3 aircrafts

The flight platform shown in Fig. 7 is a delta fixed wing platfowith a pusher prop configuration and is capable of flying
at 50m/s and up to 500m. The payload sensors are part of the gligtform. The platform can carry up to 11kg of additional
mission sensors.

The payload sensors comprise of an INS/GPS/Baro navigayistem. This system provides the position, velocity aritLdg
solutions at 100Hz for the flight control system. The IMU deped by Inertial Science is installed in the fuselage asvshio
Fig. 8. The GPS unitis a 12 channel AllStar receiver. Datmftbese sensors have a rated accuracy of 0.5m in positian/®.1
in velocity and 0.5 in attitude. The data output is at 100Hz.

The mission sensor used in this paper is a vision payloadsensnected to a PC104 computer. Range is estimated from the
size of the landmarks and hence poor range information &irdd. The vision sensor is a passive and low cost sensogatth
bearing accuracy. The frame rate can be up to 50Hz and theeraag captured in monochrome. The landmarks placed on the
ground are 22m and are painted white for ease of detection.
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Fig. 8. The IMU and tilt sensors are installed for the PC-1@hflcontrol computer (FCC). A low cost camera is installedtniexthe IMU to minimise sensor
offset. Two GPS receivers are stacked on the FCC

V. EXPERIMENTAL RESULTS
A. Smulation Environment

The simulation parameters and assumptions are based drifkéimnplementation and are shown in Table I. In the simwati
UAV undergoes a figure-of-eight trajectory approximated@ih above the ground with average flight speeds of 40m/s. Aclost
(or equivalently low quality) IMU is simulated with a passivision sensor. The IMU implemented in the real system has@ g
bias of 0.02/s and an accelerometer bias of 0.013ghich can be rated as a low-cost tactical grade inertial UFiite biases
are calibrated precisely using onboard inclinometersérréal implementation, hence the biases are not explicitigetied and
studied in this simulation analysis and only white noise adeiled. The vision sensor is a passive and low-cost settsioas
good bearing accuracy but it can only provide poor rangeifiiie size of landmark is known otherwise it cannot providege
information at all. In this paper vision with poor range qtyais incorporated.

TABLE |
THE PARAMETERS USED IN SIMULATION

Sensor Type Spec.
Sampling rate 400 Hz

IMU Accel noise 0.1mA/vVHz
Gyro noise 0.YshWHz
Frame rate 25Hz

Vision FOV angle +15°

Bearing noise strength 0.1604

Elevation noise strength  0.1206

Range noise strength  >20m
Alignment  Horizontal axis 05
error Vertical axis 0.0

B. Sngle-vehicle S AM results

The vision sensor detects landmarks below the flight patdsregisters 19 landmarks from the total 50 landmarks on the
ground. The landmark extraction rate is 25Hz which is tylditanost monochrome cameras.
The SLAM result using a vision sensor is shown in Figs 9 to e first round is mainly an exploration stage since new lamkisna
are detected and augmented into the state. In the seconditteeimap is improved dramatically because of the revisjiingess
and the vehicle error begins to be effectively constrairiégure 9a shows the estimated flight path and landmark pasitwith
50 uncertainty bounds for clarification. The revisiting effean be seen in Fig. 9b with a correction of approximately 20m
During the second revisiting process the corrections waretnsmaller than that of the first visit since less informmaimadded
to the map. Figure 10 depict the estimation errors in positmd attitude with thedluncertainties (the velocity is similar to the
position, hence it is not plotted). The plot shows that thégetion errors are estimated and maintained withkirbdund from the
relative vision observations. Furthermore, the covaeasfdhe heading state is always increasing in the first roand only after
the second round during the revisiting process does thargeador improve. This is primarily due to the change in olaability
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Fig. 10. (a) SLAM Position errors and (b) attitude errorswiiz uncertainties.

because of the addition of landmarks into the state vecigur€ 11 illustrates the evolution of the vehicle and mapeutainty
along the north axis. During the first round, most of the atisied landmarks have large uncertainties because of thedaad
vehicle uncertainty. After the second round, the map acguraproves dramatically and begins to constrain the enrifiraf the
vehicle effectively whenever the vehicle detects the laads The final map accuracy with a worst case landmark uasingytof
approximately 5.8m. The initial vehicle uncertainty was imich is the lowest limit in map accuracy that SLAM could ithga
achieve [15].

C. Decentralised SLAM results

In decentralised SLAM simulation, two UAVs fly two separaggents of the figure-of-eight trajectory, communicatiregpm
information. UAV-1 starts from the origin and flies over thight part of the figure-of-eight trajectory, while UAV-2 sts from
the right lower part (around landmark-3 in Fig. 12a) and ftiesr the left part of trajectory. They share some commonrtearéts
around the origin. The DDF update occurs every 2sec. Twerifft communication strategies were compared which were:

« No DDF communication between the nodes where each vehielatgs independently using only the observations it detect

« Full DDF communication of all the observations detected &ghevehicle to the other nodes.

Figures 12 and 13 show the DDF SLAM results in UAV-1 and UAVA2though two vehicles fly different regions, they build
a common and global map from to the DDF communication. Helnedimal landmark uncertainties in two vehicles are ideitica
Figures 14 and 15 show the standalone SLAM results withootneonication for comparison. As predicted, each map has a
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Fig. 12. (a) Decentralised SLAM result in UAV-1 with the estited vehicle and landmark position. UAV-1 flies over the rigtt of the figure-of-eight and
UAV-2 flies over the left part of it communicating map informati(ie uncertainty ellipses of map are used). (b) Final landmark tiaicgy from decentralised
SLAM (the large uncertainty along the down axis in landmaresults from the high banking of the vehicle).

reduced number of landmarks that the vehicle detected. olildtbe noted that the associated landmark number is differe
between DDF and standalone mode map due to the separateasdataation process, hence they can not be compared girectl
from the plots. However it can be observed that the overafiaark uncertainties in DDF mode are significantly lowenttize
uncertainty in the standalone operation. This is becautde\mhicles observe some common landmarks and fuses thessacr
information network. The large uncertainty in landmarlka®IDF map results from the high banking of the vehicle at oketeyn
time and corresponds to landmark-9 in Fig. 14 and landmdflg115 respectively.

Figures 16 and 17 compare the vehicle’s position unceytaiohng the north axis with and without DDF communicatiorcdh
be seen clearly that DDF map communication can enhance tiele/s position accuracy as well. This is due to the cotreta
structure between the vehicle and map. Once the map acdsraaproved from the DDF communication, the vehicle accyrac
can also be improved via the correlation. This can also berubd in the vehicle’s attitude plot (only the heading isspreed in
this plot) as in Fig. 17. The UAV-1 shows more rapid decreadeeiading uncertainty than UAV-2, and it is due to the diffiere
trajectories and dynamics in each vehicle. The UAV-1 undescigh banking at the start time while UAV-2 undergoestiradby
straight line and this enhances the heading observabitityJ&/-1. To compare the landmark improvement in DDF mode,
three dimensional uncertainty ellipsoids of landmark-4 strown in Fig 18. This corresponds to landmark-1 in UAV-1haiit
communication and landmark-2 in UAV-2. From this plot it Isar that the DDF communication enhances the map accuracy.
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Fig. 14. (a) Standalone SLAM result in UAV-1 without DDF comnization for comparison and (b) the final landmark uncertainty AV-1. Only a limited
map is built with 11 landmarks and larger uncertainties thafrDiap (The landmark-9 with large uncertainty correspondsedathdmark-3 in DDF map).

These results illustrate that navigation errors of two higion-linear 6DoF platforms can be effectively constrainging
SLAM algorithm, and its performance can be enhanced usiegétentralised information fusion approach.

VI. CONCLUSION AND FUTURE WORK

This paper has presented the SLAM and decentralised SLAbfittigns applied to a 6DoF airborne platform. The simulation
analysis illustrates that the SLAM navigation system wition sensor can perform navigation in unknown 3D terrawviren-
ments. The results also show that sharing map informatiduces the navigation errors on the whole vehicles. Howsbheld
one node have higher navigation errors than the other, tihesan the first node will be reduced while there would be gtgli
increase in error in the second node. The uncertainty ofth@rharks are reduced in the DDF communication strategy amedp
to the case without communication. One of the issues in plaltirborne vehicle is the limited bandwidth. Hence, oraytof
the map could be communicated. Strategies to maximise tle@inof information to transmit will have to be investigatead
applied.
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APPENDIXA
The JacobiaVf, (k) of the nonlinear vehicle model with respect to the vehichesin equation 4 can be computed as,
P (k)
SRR TS R 0T agere
Vi (k) = B(P(k—l),\afék(;)l),\ll(k—l)) =0 T oW (k—1) ~ J (27)

(B (k)w" (k)
PN V(=19 k=1)) 0 0 I+=Sguy Ot



where the sub-matrix can also be computed by using Jacobianig andE} with respect to the Euler anglés, ¢, §). They are
three element matrices and are computed as,

oCp 2 oCy oCy o0Cp OE} A OE} OE} OE} (28)
Ao b8 |00 00 09 0pe.0) |0 00 00
where,
ocn [0 S¢S¢ —|—O¢SQC,¢, C¢Sw — S¢S@C¢
ab = 0 *S¢C¢+C¢590w *C¢C¢*S¢SQS¢
¢ 0 CCo —5,Cy
oCcnr I _SQCw S¢CQC¢ C¢C@O¢
o = | =5uSs SsCoCy CuCoS,
i —Cy —54S50 —CySy
80” [ —OgSw —C¢C¢,—S¢SQS¢, S¢C¢-C¢S§S¢
3 b= 0901/} —C¢S¢—S¢SQS¢ S¢S¢+C¢SQC¢
v 0 0 0
OE™ [0 C¢Sg/09 *54)59/09
5 b= |0 =S —Cy
¢ 0 Cu/Cy —84/Co
B 2 2
OE} _ 8 S¢éca C¢éce
a9 0 SyS5/C2 —CySy/C2
OE}
= 0
oY

The JacobiaVf, (k) of the nonlinear vehicle model with respect to the input edi inertial sensor noise) in equation 4 is
obtained by,

OP (k)
6(1”’((9137(7;;(@) 0 0
0% (k) 0 Ep(k—1)
o(£0 (k),w®(k))
APPENDIXB

The observation Jacobidwih, (k) of equation 5 with respect to the vehicle and map state carebieed from the nonlinear
observation equations 9 and 10 by applying a chain rule,

Op(k)
O(P(k—1),V(k—1),%(k—1),%xmi(k—1))
Op(k)

Vh,(k) =

(
AP —T), V=D (i—T) % s (F=1)) (30)
96 (k)
A=)V (1), (=T o (= 1))

= Vhy(k)Vhy(k) (31)

whereh; (k) is defined as equation 9 ahd (k) is defined as equation 10. The Jacobians of these functierab#ained as,

z Yy z
p p p
Ly e 0
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wherep, ¢ andd are range, bearing and elevation respectivelyandandz are computed fronhs (k).



APPENDIXC
The JacobiaVg, (k) andVg, (k) used in equation 12 can be obtained from the new landmaralisétion function in equation

7,
Ve k) = |1 0 %]
Ve.(k) = Cgcgagjﬁs 32)
APPENDIXD

The information observation quantiti#g:) andI(k) are of dimension the state space, whereas the innovatiomaadation
variance are of dimension the observation space. In thevaiiom gate, the inverse innovation covariance is used tmalise
the gate. In the information gate, the inverse of the comedimg information matrix is required. This, however widrgerally
be singular as it is of dimension the state but has rank of obervation dimension. A generalised invetsék) is therefore
defined in the following manner.

I(k)IT(k)=E (33)

whereE is an idempotent matrix which acts as the identity for gty andI* (k)

I(HE = I(k) (34)
I"(Kk)E = TI%(k) (35)
and
I(R)IT(k)I(k) = I(k) (36)
It (B)I(k)IT (k) = TIt(k) (37)

One generalised inverse which satisfies these requirenseratculated by exploiting the observation mo#Elk) as a projec-
tion operator. This matrix projects a state space into armhtion space and conversely its transpose projects\vaisers back
to state space.

The generalised inverse is then

It (k) = HE [H,I(k)HT | 7' H, (38)

The appropriateness of this selection of projection madgrapparent as
HL(k)I (k) = HX(k)H [HL(k)HT] ™ H, (39)

The innovation which is used for data association is defirgettha difference between the observed and predicted oliserva
and given in Equation 40 below:

v(k) = z2(k)Hx(k|k — 1) (40)

The information residual vector is:
v(k) £ H{R; 'v(k) (41)

Substituting Equation 40 into Equation 41 gives

v(k) = HI R, 'z(k) - HI R, "H;x(k|k — 1)

. . (42)
=i(k) —I(k)Y Yk | k- 1)y (klk—1)
The covariance of this information residual is now caleedefromE{v (k), vT (k)|Zy_1(k)}
B(k) = H{ R, 'E{v(k),v" (k)| Zk(k)} R;"H]
=H/R,'H}IP(k | k- 1)H;, + Ry]R; 'H} 43)

=I(k) + (k)Y L (k | k — 1)I(k)
=I(k)[I" (k) + Y (k [ k= 1)]7'L(k)

The normalised information residual is now given by



(k) = vT (k)BT (k)vT (k) (44)

whereB™ (k) is the generalised inverse Bf{ k) and is again calculated using the projection operatiaras

Bt (k) = H [H,B(k)H} | 'H, (45)

The relationship between the information gate to the stadeesinnovation gate can be illustrated by noting that thisaéon
above can be written as:

B* (k) = H] [H,B(k)H] ] 'H,

= H][HH/R, 'S, R, 'H,H| 'H, (46)
= H} [H,H] |7 'R;S; 'R [HH} | 'H,,

vI(k)BT (k)T (k) = vT (k)R 'HHY [H,HE 'R, S, 'Ry [HHE | ' H HE R v (k)

47
=T (k)S; v (k) “7

The normalised information residual is thus an informafimm of the conventional innovation residual.
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g(-)

PTL7 Vn

y(k|k), Y (k[F)
ij; (k|k), I (k[k)
v(k), B(k)

non-linear state transition function

non-linear observation function

landmark initialisation function

state vector, control input and system noise

aircraft position and velocity in NED axes

aircraft attitude (roll, pitch and yaw)

acceleration and rotation rate measurement in the bodyefram
direction cosine matrix between body and NED axes
angular rate transform matrix

observation vector and noise

range, bearing and elevation

sensor’s lever arm offset

sensor’s direction cosine matrix

relative position of the landmark from the sensor

Jacobians of the non-linear state function with respedidéastate and noise
Jacobians of the observation function with respect to statenoise

Jacobians of the landmark initialisation function

system covariance matrix

system and observation noise matrix

innovation vector and innovation covariance

filter gain (or weight) matrix

threshold value in chi-square distribution with n-dimemsi
information vector and information matrix

cross information vector and its matrix

information vector and matrix in the full dimension of thepna
innovation vector and matrix in information space





