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Abstract— This paper presents a robust multi-loop airborne
SLAM structure which also augments wind information. The
air velocity observation from an air data system can be used to
estimate the error of the on-board Inertial Navigation System
(INS). However, due to a priori unknown wind velocity, it
cannot directly be used for this purpose. This can be tackled by
augmenting the unknown wind velocity into the state vector of
SLAM, simultaneously estimating INS, map and wind. This paper
proposes a multi-loop SLAM architecture, where the periodic
velocity-level SLAM loop limits the INS errors of the velocity
effectively, and the aperiodic position-level SLAM loop bounds
the overall position error growth. This can significantly increase
the consistency of airborne SLAM at the time of loop closure.
Simulation results show that the unknown wind vector can be
estimated consistently and the robustness of airborne SLAM
improves significantly.

I. INTRODUCTION

SLAM has been demonstrated and verified in many robotic
applications in indoor, land and underwater environments
[1][2][3]. Airborne SLAM expands on this concept to 6-DoF
(Degrees of Freedom) platforms. Due to the 6-DoF nature,
conventional dead reckoning sensors cannot be applied here.
Instead, an Inertial Measurement Unit (IMU) or Inertial Navi-
gation System (INS) needs to be incorporated as demonstrated
in [4]. Using INS however, introduces additional computa-
tional complexity to SLAM, since the INS has to run with a
sufficiently high-update rate to track vehicle motions and to
suppress vibrations. An efficient form of airborne SLAM based
on a error dynamic model has thus been introduced improving
the efficiency and complexity [5].

The current obstacle in implementing robust airborne SLAM
is the statistical inconsistencies which arise during loop closure
after extended flight times. The limited field of view of the air-
borne sensor and the sparse nature of the ground features can
inevitably increase the vehicle’s uncertainties before revisiting
any previous feature. The position error growth rate of unaided
INS is typically a cubic function of flight time. This means
that if feature aiding is not effective, then inertial SLAM
will develop large uncertainties exceeding acceptable levels
for linearisation. Moreover, any over-confident correction in
INS attitude can lead to a failure in inertial based SLAM.
This is because even a small attitude error will misinterpret
the gravitational acceleration as the dynamic acceleration,
resulting in rapid divergence in the position and velocity.

This, in turn, will invalidate and reject successive observations
afterward.

This problem can be tackled by using a higher quality IMU,
nonlinear filtering techniques, or stabilising the attitude by
adding additional information. If a high-quality IMU is an
available option, it should be selected in such a way that
the INS error remains within a reasonable bound before loop
closure. The INS error growth, however, depends on the avail-
ability of the ground features which is difficult to predict in
advance. Additionally, many high-quality inertial sensors may
not be suitable for most robotic platforms which are typically
payload limited. Nonlinear filtering, such as the particle filter,
can reduce the chance of divergence during loop closure. It
was observed that it can improve the performance compared
to the standard Kalman filter, but still showed divergences
during loop closure, but more importantly suffers from the
dimensionality problem. The effectiveness of this approach
needs further investigation in airborne SLAM applications.

The stability of the attitude estimate is of importance for
reliable SLAM loop closure. Hence if there exists any constant
stream of information to limit the attitude uncertainty, it
will improve the robustness of airborne SLAM. In many
airborne applications, the air velocity observation is directly
available from the onboard air-data system, which comprises
a pitot tube, alpha/beta vanes, and data acquisition system. It
provides airspeed, angle of attack and side-slip angle, which
are important parameters in maintaining aircraft stability. The
air velocity, which is a relative velocity with respect to the
surrounding wind mass, can be constructed from these ob-
servations. The wind velocity, however, is typically unknown
a-priori and thus the air observations cannot directly be used
for inertial aiding. One solution, proposed in this paper, is to
augment this unknown wind velocity into the existing SLAM
state vector, running SLAM both in position and velocity
levels. This method adds extra information to the system, but
it does not require further physical hardware but only simple
modification to software. In addition, the air-data system is
self-contained, and thus the autonomy of airborne SLAM can
be maintained.

Fig. 1 describes this multi-loop SLAM architecture within
the indirect framework (that is, based on error dynamic model).
The high frequency INS loop (≥ 100Hz) delivers real-time
vehicle states to the external guidance and control logic.
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Fig. 1. Multi-loop architecture of airborne SLAM: the inner-periodic SLAM
loop (within a broken box) is for velocity/attitude stabilisation and the outer-
aperiodic SLAM loop is for feature observation update.

The medium frequency loop with air-data observations (≥
10Hz) estimates the wind velocity and stabilises the INS
velocity/attitude, forming a velocity level SLAM loop. The
attitude error is estimated through the correlations between
the velocity and attitude errors. It however does not provide
any information to position, and thus the position level SLAM
loop is used with aperiodic feature observations. The indirect
formulation makes an efficient means for this multi-loop
configuration.

This paper is organised as follows: Section 2 will briefly
present the high speed inertial navigation loop. Section 3 will
provide a Bayesian formulation of the indirect airborne SLAM
with unknown wind velocity augmentation. Section 4 will
describe the Kalman Filter implementation with the details
of the air-data observation. Sections 5 and 6 will provide
the results of simulation analysis for the Brumby MkIII UAV
platform. Section 8 will conclude with future work.

II. INERTIAL NAVIGATION LOOP

In the indirect airborne SLAM architecture, a determinis-
tic INS loop predicts the high-dynamic vehicle states from
IMU measurements in real-time. The SLAM filter resides
outside this loop, performing a complementary aiding role.
The quaternion-based strapdown INS algorithm is used with
an assumption of flat and non-rotating Earth-frame. This
is a reasonable assumption for the applications with a low
quality inertial, low speed, and short coverage (typically within
100Km). The discrete equation can be written as

 pn(k + 1)

vn(k + 1)
qn(k + 1)


 =


 pn(k) + vn(k)�t

vn(k) + [(Cn
b (qn(k))f̄ b(k)) + gn]�t

qn(k) ⊗�qn(k)




with pn(k), vn(k), qn(k) representing position, velocity, and
quaternion respectively at discrete time k, �t being the time

for update interval, qn(k) being the attitude quaternion with
⊗ for the quaternion multiplication, and �qn(k) being a
delta quaternion computed from gyroscope readings during
the attitude update interval.

The wind velocity and feature map are maintained outside
the SLAM filter and are treated as external databases.

III. BAYESIAN MODEL FOR INDIRECT SLAM

The airborne SLAM problem with unknown wind velocity
and unknown map position needs to compute the probability
density function given all observations and control inputs up to
current time k. In indirect SLAM, only the probability function
for the error variables are of interest:

p (δxk, δm, δw | δZk,Uk) (1)

where,
δxk is a vehicle state such as position, velocity and attitude
δm is a stationary map position
δw is a wind velocity
δZk is a feature and air velocity observation:
δZk = {δZf
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Uk is an inertial sensor observation:

Uk = {u0, u1, · · · , uk}

From the Bayes theorem, a posterior distribution can be
obtained from the likelihood and predicted distribution,

p (δxk, δm, δw | δZk,Uk)

∝ p (δzf
k , δz

a
k | δxk, δm, δw)p (δxk, δm, δw | δZk−1,Uk)

= p (δzf
k | δxk, δm, δw)p (δza

k | δxk, δm, δw)
× p (δxk, δm, δw | δZk−1,Uk)

= p (δzf
k | δxk, δm) × p (δza

k | δxk, δw, δZk−1,Uk)︸ ︷︷ ︸
high velocity-obs update︸ ︷︷ ︸

low feature obs-update

where the property of conditional independence between the
feature and air velocity observation is used and it is assumed
that the feature observation is synchronised to velocity ob-
servation. Thus the periodic velocity based inner SLAM loop
can be separated from the aperiodic feature based outer SLAM
loop which was shown in Fig. 1.

IV. INDIRECT SLAM IMPLEMENTATION

In this paper, a Kalman filter is used to implement the
indirect airborne SLAM by using the linearised SLAM error
model [5].

The linearised SLAM system in discrete time can be written
as

δx(k + 1) = F(k)δx(k) + G(k)w(k) (2)

δz(k) = H(k)δx(k) + v(k), (3)

where δx is the error state vector, F(k) is the time-varying
state transition matrix, G(k) is the system noise input matrix
and w(k) is the system noise vector which represents any un-
modelled instrument errors with noise strength Q(k). H(k) is



the linearised observation Jacobian and v(k) is the observation
noise with noise strength matrix R(k). The error observations
are generated by subtracting the measured quantity z̃(k) from
the INS predicted quantity ẑ(k),

δz(k) = ẑ(k) − z̃(k). (4)

The state consists of the errors in INS, wind velocity, and
map:

δx(k) = [ δxins(k) δvwind(k) δxmap(k) ]T . (5)

The error state of INS, δxins(k), comprises the errors in
the INS indicated position, velocity and attitude expressed in
the navigation frame which is defined along north, east and
down axes at the current vehicle position:

δxins(k) = [ δpn(k) δvn(k) δψn(k) ]T . (6)

The error state vector of the wind velocity is also defined
in the navigation frame. Although a more sophisticated model
can be incorporated [6], a constant wind model is used in
this paper for an initial demonstration. The error state of map,
δxmap(k), comprises the errors in 3D feature positions in the
navigation frame. A stationary model is used and the size of
the state is dynamically augmented with the new feature.

The resulting detailed discrete state transition matrix F(k)
and the noise transfer function G(k) can be found in [4].

A. Feature Observation

The on-board feature observation sensor provides range (ρ),
bearing (ϕ), and elevation (ϑ) between the vehicle and feature.
The nonlinear observation equation relates these observations
to the state through the Cartesian to polar transformation,
and the navigation to sensor frame transformation [4]. The
sensor frame is assumed to be aligned to the body frame. The
observation can then be predicted from the relative position
vector between the feature and vehicle:

ẑs
feature(k) = [ ρ̂ ϕ̂ ϑ̂ ]T (7)

=




√
x̂2 + ŷ2 + ẑ2

arctan (ŷ/x̂)
arcsin (ẑ/ρ̂)


 (8)

where the relative position vector is

[ x̂ ŷ ẑ ]T = Cb
n[m̂n − p̂n] (9)

The linearised H(k) with respect to the current vehicle and
map state can be derived from the Jacobian of these nonlinear
observation equations,

H(k) =




∂ρ
∂pn

∂ρ
∂vn

∂ρ
∂ψn 01×3 · · · − ∂ρ

∂pn · · ·
∂ϕ
∂pn

∂ϕ
∂vn

∂ϕ
∂ψn 01×3 · · · − ∂ϕ

∂pn · · ·
∂ϑ

∂pn
∂ϑ

∂vn
∂ϑ

∂ψn 01×3 · · · − ∂ϑ
∂pn · · ·


 (10)

with corresponding sensor noise variance

R(k) =


 σ2

ρ 0 0
0 σ2

ϕ 0
0 0 σ2

ϑ


 . (11)

B. Air-Data Observation

The on-board air-data system can deliver air speed (V ),
angle of attack (α), and side slip angle (β) from the pitot
tube and alpha/beta vanes [6]. Fig. 2 describes the typical pitot
system and the geometry of the aerodynamic angles. The pitot
tube is typically installed on the front nose or wing tip in push-
prop type vehicles.

(a)

(b)

Fig. 2. a) A pitot tube for pressure measurement with alpha/beta vanes
for aerodynamic angles. b) The geometry of the air velocity vector with the
aerodynamic angles.

The pressure measurements can be converted into the air-
speed which is the vehicle velocity with respect to the ambient
air mass. By using the observation geometry, the air velocity
vector in the body frame vb

air can be constructed,

vb
air = [u v w]T (12)

=


 V cos(α) cos(β)

V sin(β)
V sin(α) cos(β)


 . (13)

By taking an inverse of this equation, the air velocity
observation (V̂ , α̂, β̂) can be predicted from the relative air
velocity in the body frame (û, v̂, ŵ),

ẑb
air =

[
V̂ α̂ β̂

]T

(14)

=




√
û2 + v̂2 + ŵ2

arctan (ŵ/û)
arcsin (v̂/V̂ )


 , (15)

where, the relative air velocity is predicted by subtracting the
estimated wind velocity from the estimated INS velocity, and
by transforming it into the body frame,

[û v̂ ŵ]T = Cb
n[v̂n

ins − v̂n
wind]. (16)



The linearised observation model is obtained by taking the
Jacobian of these nonlinear equations,

H(k) =




01×3
∂V
∂vn

∂V
∂ψn − ∂V

∂vn 01×3m

01×3
∂α
∂vn

∂α
∂ψn − ∂α

∂vn 01×3m

01×3
∂β

∂vn
∂β

∂ψn − ∂β
∂vn 01×3m


 (17)

R(k) =


 σ2

V 0 0
0 σ2

α 0
0 0 σ2

β


 . (18)

Note the similarity between the feature and air velocity
observation models due to the nature of the three dimensional
vector observations. Hence minimal software modification is
required.

C. Error Feedback Correction

The corrected position, pn(k|k), and velocity, vn(k|k), are
computed by subtracting the estimated INS errors from the
current INS outputs:

pn(k|k) = pn(k) − δpn(k|k) (19)

vn(k|k) = vn(k) − δvn(k|k). (20)

The corrected quaternion, q(k|k), is obtained by pre-
multiplying the error quaternion to the current quaternion:

q(k|k) = δq(k|k) ⊗ q(k) (21)

δq(k|k) ≈ [1 δψx/2 δψy/2 δψz/2]T (22)

The wind velocity is directly corrected by subtracting the
estimated wind velocity error from the current wind velocity:

vn
w(k|k) = vn

w(k) − δvn
w(k|k). (23)

The map positions are also corrected by subtracting the
estimated map position errors from the current positions:

xn
m(k|k) = xn

m(k) − δxn
m(k|k). (24)

V. SIMULATION DESCRIPTION

A computer simulation is performed to verify the robustness
of the proposed method. The flight scenario is the vehicle
undertaking two racehorse tracks approximately 100m above
the ground. The flight time is 340 seconds and the average
flight speed is 40m/s. There are 40 features placed on the
ground.

The wind is a prior unknown to the vehicle and has a
magnitude of 5.0m/s with a southerly direction. Inside the
SLAM filter, this unknown wind velocity is estimated from
the relative velocity observation. The air data sensors run at
20Hz. The airspeed has a noise value of 1m/s and the alpha
vane and beta vane angles have noise values of 2◦ respectively.

A low-cost IMU is simulated with a sampling rate of
400Hz and has an average noise value of 0.5m/s2 for the
accelerometers and 0.5◦/s for the gyros. The vision sensor
is used to measure the range, azimuth and elevation angles
to each feature on the ground. The vision sensors run at 10
frames/s and have a horizontal field of view of 40◦ and a
vertical field of view of 30◦. In the simulation we assume
known data association of the map features.

VI. SIMULATION RESULTS

Fig. 3 compares the horizontal position results between
unaided inertial, velocity based SLAM and velocity/feature-
based, or multi-loop, SLAM. The velocity based SLAM can
limit the error growth of the velocity and attitude but not the
position error. By fusing the feature observation the multi-loop
SLAM can estimate the position error.

Fig. 4 compares the 1σ covariances between the unaided
inertial, velocity based SLAM, and multi-loop SLAM. The
position and velocity along the north axis are plotted and the
attitude along the yaw axis is shown. It can be observed that
the velocity and attitude performances are improved in the
velocity based SLAM loop. It however shows that the posi-
tion error increases without bound. The feature observation
provides additional position information to the vehicle state
and improves overall performance.

Fig. 5 shows the Monte-Carlo analysis results for the wind
velocity and attitude estimates in the multi-loop SLAM. The
Monte-Carlo method is used to see the statistical consistency
of the SLAM filter particulary during the loop closure. Fig.
5(a) shows ten runs along the north axis with 3σ bound. The
true wind velocity was [−5, 0, 0]T (m/s). It can be observed
that the unknown wind vector can be estimated consistently
during the first loop closure which is around 70 seconds. An
interesting thing is the loop closure also improves the wind
velocity estimate. This is because the INS has developed a
cross-correlation between the position and velocity during the
flight and any position improvement affects the velocity as
well. Fig. 5(b) and (c) show Monte-Carlo results for the roll
and yaw angles during the first loop closure. Angles from
ten runs are plotted with 3σ bounds respectively. These show
consistent angle estimates of the vehicle within the bounds.
This is important in airborne SLAM since the attitude estimate
can now be less susceptible to the availability and quality of
the ground feature observations.

These results show that the multi-loop SLAM has a capabil-
ity to estimate the unknown wind velocity reliably and more
importantly the consistency of SLAM can be significantly
improved when it tries to close the loop.

VII. CONCLUSIONS

This paper presented a multi-loop SLAM structure to im-
prove the consistency of airborne SLAM. The inner SLAM
loop was configured by using the periodic air-velocity update
and the outer SLAM loop by the aperiodic feature update. The
unknown wind velocity was augmented and estimated from the
inner SLAM loop to stabilise the INS velocity and attitude.
The feature observation update was still required to estimate
the error growth in the INS position. The Monte-Carlo analysis
verified that multi-loop SLAM is statistically consistent during
the loop closure. This result can also be directly applicable to
the underwater inertial SLAM problem. That is, the relative
velocity measurement with respect to the underwater current
can be used to stabilise SLAM. Future work is to build a
geographical wind map in multi-loop SLAM to account for
the terrain variations in near-Earth flight.
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Fig. 3. A comparison of 2D position results between unaided inertial, velocity
based SLAM, and velocity/feature based SLAM. The velocity based SLAM
improves the velocity and attitude estimates but the position still drifts. The
multi-loop SLAM overcomes this and improves the filter stability.

(a)

(b)

(c)

Fig. 4. Comparisons of error covariances between unaided inertial, velocity
based SLAM, and velocity/feature-based SLAM. The multi-loop SLAM
improves the overall performances in the position, velocity and attitude.
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Fig. 5. a) A wind velocity estimation result in multi-loop SLAM from
the Monte-Carlo analysis. The true wind velocity is 5m/s southward. The
estimated wind velocities from ten runs are plotted with 3-σ uncertainty.
Monte-Carlo analysis results for b) roll and c) yaw angles with 3-σ bounds
showing a consistent loop closure.
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