
INCREMENTAL COMPILATION

AND ITS IMPLEMENTATION IN THE

PECAN PROGRAMMING ENVIRONMENT

GENERATOR

JAMES POPPLE

A thesis submitted in partial fulfilment of the

requirements for the degree of Bachelor of Arts (Honours)

at the Australian National University.

November 1987

Abstract

The methodology and developmental history of incremental compilation i s

discussed. The implementation of incremental compilation i n the PECAN

programmmg environment generator i s discussed m detail. The PECAN

environment generated for Pascal has been modified to support procedure-by-

procedure compilation, and complete (traditional) compilation. The time efficiency

of these compilation methods is compared with that, of incremental compilation.

i i

Declaration

Except where otherwise indicated

this thesis is my own work.

James Popple

November 1987

i i i

Acknowledgements

Many thanks to my supervisor, Dr Chris Johnson, for much valuable advice and

assistance, and for helping me plough through C code which (like [Ghezzi 80]) was

never actually meant to be read; to Dr Brian Molinari for technical information; to

Dr Malcolm Newey, (soon to be Dr) John Ophel and Sandra Dutton for help with

references; to Harriet Michell for help with the Scribe document preparation

system; to Gerry Blanch and Roger Poulier for help preparing diagrams with

MacDraw; to lnta Skriveris for help with laser-printing; to Tim Findlow who

worked with PECAN during the year; and to Norval Hope for fruitful discussion

and mind expansion.

IV

To my parents.

Me literulas stulti docuere parentes.

Marcus Valerius Martialis

Epigrams, book ix, epig. 74.

v

Table of Contents

Abstract
Declaration
Acknowledgements
1. Introduction
2. Incremental Compilation

2.1. Definition of Incremental Compilation
2.2. Deciding What to Recompile

2.2.1. The Recompilable Unit
2.2.2. Choosing the Smallest Recompilable Unit
2.2.3. Problems Caused by Names

2.3. Development of In cremental Systems
2.3.1. Programming Environments
2.3.2. Syntax-Directed Editors

2.3.2.1. Advantages and Disadvantages
2.3.2.2. Triggering Recompilation

3. Examples of Incremental Systems
3.1. Early Incremental Systems

3.1.1. Incremental BASIC - 1968
3.1.2. Languages with Nested Statements - 1972

3.2. Conversational Systems
3.2.1. CONA and COP AS - 1978 and 1981

3.3. Incremental Systems in Programming Environments
3.3.1. The Cornell Program Synthesizer - 1978
3.3.2. Smalltalk-80 - 1980
3.3.3. IPE - 1981
3.3.4. PECAN - 1984
3.3.5. Magpie - 1984
3.3.6. PSG - 1986

3.4. Attribute Grammars and Environment Generators
4. The PECAN Programming Environment Generator

4.1. Introduction
4.1.1. Documentation
4.1.2. Lan guage Specification
4.1.3. Views

4.1.3.1. The Syntax-Directed Editor
4.1.3.2. The Flow View

4.2. Internal Structure
4.2.1. Modules
4.2.2. The Abstract Syntax Tree
4.2.3. Events

5. Incremental Compilation in PECAN
5.1. Semantic Specification Statements
5.2. Specifying a Construct
5.3. Data Structure

5.3.1. SEMCOM_STMTs and the Abstract Syntax Tree

ii
iii
1
3
3
3
3
4
5
6
6
7
8
9

11
11
11
12
13
13
13
13
14
14
15
15
16
17
18
18
18
18
20
21
21
23
23
24
24
26
26
28
30
30

v i

5.3.2. SEMCOM_STMTs and the Flow Graph Representation
5.4. Execution and Unexecution
5.5. Incremental Compilation in PECAN

5.5.1. General Algorithm
5.5.2. Implementation Details

5.5.2.1. head_merge
5.5.2.2. tail_merge
5.5.2.3. extend
5.5.2.4. remove and insert
5.5.2.5. The Current Items and Execution and Unexecution
5.5.2.6. Updating the Semantics
5.5.2.7. Driving Routines - The Outer Level of SEMCOM

6. Modifications to PECAN
6.1. Aim of the Modifications
6.2. Generality of the Modifications
6.3. Ideal Modifications
6.4. Actual Implementation Details

6.4.1. The Compilation Monitor
6.4.2. Incremental Compilation
6.4.3. Procedure Compilation
6.4.4. Complete Compilation

6.5. Drawing Comparisons
6.5.1. Choosing an Appropriate Benchmark

6.5.1.1. Elapsed Time
6.5.1.2. Code Complexity
6.5.1.3. Counting SEMCOM_STMTs

6.5.2. A Cautionary Note
6.6. Testing

6.6.1. Choosing Test Programs
6.6.2. Modifications
6.6.3. Comparison of Results

7. Conclusions
Appendix A. The Semantic Actions View

A.l. The View and its Functions
A.2. Implementation Details
A.3. Program Listing: sawdust.h
A.4. Program Listing: sawdust_local.hi
A.5. Program Listing: sawdustmain.c
A.6. Program Listing: sawdustbutton.c

Appendix B. The SEMCOM Module
B.l. The Compilation Monitor
B.2. Implementation Details
B.3. Program Listing: semcom.h
B.4. Program Listing: semcom_local.hi
B.5. Abridged Program Listing: semcomstmt.c
B.6. Abridged Program Listing: semcomeval.c
B. 7. Program Listing: semcomwindow.c
B.8. Program Listing: semcombutton.c

Appendix C. Test Programs
C.l. Program Listing: test1.p
C.2. Program Listing: test2.p
C.3. Program Listing: test3.p
C.4. Program Listing: test4.p

30
31
37
37
38
38
38
38
41
42
42
43
45
45
46
47
48
48
49
49
50
50
50
50
51
51
52
52
53
53
56
61
63
63
65
67
68
70
80
85
85
87
88
89
93

103
108
115
120
120
121
122
122

Appendix D. Earley's Algorithm
D.l. Introduction
D.2. The Recognizer
D.3. The Recognizer's Operations

v i i

D.4. Application of the Recognizer to an Example
D.5. Constructing a Parser from the Recognizer

References
Index

123
123
123
124

Grammar 126
129
134
144

Figure 4-1:
Figure 4-2:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:

Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:

Figure 6-1:
Figure A-1:
Figure B-1:
Figure D-1:
Figure D-2:
Figure D-3:
Figure D-4:

v i i i

List of Figures

PECAN Views
Hierarchy of Modules in PECAN
Semantic Specification Statements
Specification of Pascal WHILE Statement
Small Pascal Program with an Example WHILE
Abstract Syntax Tree with Pointers into
SEMCOM_STMTs

statement
List of

22
23
27
28
31
32

Parse Tree for Example WHILE Statement 33
List of SEMCOM_STMTs for Example WHILE Statement 34
Flow Graph Representation of Example WHILE Statement 36
Effect of head_merge, tail_merge and extend upon the old 39
and new lists
Results of Modifying Test Programs 57
The Semantic Actions View 64
The Compilation Monitor 86
Definition of the Grammar G 126
State Sets for the Example Input String 130
Linked States for the Example Input String 132
Parse Tree for the Example Input String 133

1

Chapter 1

Introduction

Incremental compilers are designed so that only part of a program under

development need be recompiled after a change has been made to its source code.

This can be effected in one of two ways:

by choosing a structure of the language and recompiling that whole
structure whenever part of the structure is edited; or

by determining the smallest amount of recompilation required after each
individual editing change and recompiling only that section of the source
code.

Using the first method (generally) involves unnecessary recompilation, but

determining what source code to recompile is trivial. The second method performs

no unnecessary recompilation, but requires extra computation to determine what

source code to recompile.

The aim of this thesis project i s to compare the relative efficiencies of these two

approaches. To this end, an existing system (the PECAN programmmg

environment generator) has been modified s o that it allows compilation to be

performed using either of the two methods of incremental compilation. Several

example programs were chosen and edited so that comparisons could be made.

Chapter 2 discusses these two approaches i n detail, and exammes the difficulties

caused by a programming language's ability to use names. Factors which affected

the development of incremental compilers, and their relationship to programming

environments and syntax-directed editors are discussed.

Chapter 3 g1ves examples of a number of incremental systems, and discusses the

role of attribute grammars in generating programming environments.

Chapter 4 g1ves a description of the PECAN programmmg environment generator.

Chapter 5 g1ves a detailed description of the implementation of incremental

compilation within the PECAN system .

2

PECAN takes the second of the two approaches mentioned above; it determines

the smallest amount of compilation necessary after each change to the source.

Chapter 6 describes how the PECAN environment for Pascal has been modified to

allow procedure-by-procedure compilation and complete compilation, in addition to

its incremental compilation. A benchmark was chosen for comparing these

methods, and the results of a number of tests are included.

Conclusions are drawn m Chapter 7.

Part of the project involved the implementation of a new window for PECAN

which provides a view of the internal data structure used by PECAN's compilation

module. That v1ew IS described in Appendix A. Listings of the files that provide

the view are included.

Details of the modifications made to PECAN 's compilation module, with program

listings, are given in Appendix B.

Appendix C lists the programs used i n the tests described m Chapter 6.

Appendix D g1ves a detailed description of Earley's parsmg algorithm (the

algorithm used by PECAN).

3

Chapter 2

Incremental Compilation

2.1. Definition of Incremental Compilation

The development of a program can usually be characterized by an extended

sequence of repeatedly editing and compiling source code. The programmer will

often recompile a program after having made only a small change to the source

code. If there is a large amount of source code, and the changes made are

relatively minor, the compiler will be wasting much time and effort compiling

source code which has not been changed since the last time that the program was

compiled.

It is desirable that the programmer should have the convemence of a recompiled

version of the program, ready to execute, as soon as possible after a change is

made to the source code. This is particularly true when the program is being

debugged and the programmer wants to monitor the effect upon the program's

behaviour of a small modification.

A compiler i s incremental if it provides the programmer with a recompiled

version of the program "by expending an amount of effort which is proportional to

the size of the change made by the programmer." 1

2.2. Deciding What to Recompile

2.2.1. The Recompilable Unit

Ideally an incremental compiler will recompile as little of the source code as

possible after each modification. In this thesis, the term recompilable unit will be

used to describe that structure in a programmmg language which is recompiled by

an incremental compiler when a change is made. 2

1per Earley and Caizergues in [Earley 72].

2The term minimal separately compilabl e unit is used in [Reiss 84a] , and the term smallest compilation
unit is used in [Fritzson 83a].

4

Consider the following hypothetical language: a program i s composed (inter alia)

of statements; statements may be composed (inter alia) of expressions; and

expresswns may be composed (inter alia) of integers, which are sequences of digits.

If the language is defined so that no change to a statement can affect the meaning

of any part of the program outside that statement, then the statement is chosen as

the recompilable unit.

However, if the programmer changes the value of an integer by altering a single

d igit, it may be that the code produced by recompiling the enclosing statement

differs from the corresponding previously-compiled code only in the manner in

which it represents that integer. Even though the compiler is incremental, it has

performed unnecessary recompilation; it could have achieved the desired effect

merely by replacing the code representing the original integer with code

representing the modified integer. Alternatively , altering a single digit may

radically change the code which will be produced for the enclosing expression, and

possibly the enclosing statement.

For example, assume that the following i s a valid statement i n this hypothetical

language

IF X < 10 THEN
GOTO Label1

ELSE
GOTO Label2

If the integer constant Is changed from a 10 to a 9, the object code generated for

the entire (modified) statement will differ from the previously-compiled code only in

its representation of the integer 9. However, if the variable X is changed to the

integer constant 9, the object code generated to evaluate the new boolean

expression (9 < 10) will be quite different from the code generated to evaluate the

old boolean expression (X < 10); no code will be required to look up the value of

X. Furthermore, if the compiler performs simple code optimization then the object

code for the entire statement can be replaced by object code to represent the

statement

GOTO Label1

because the new boolean expression (9 < 10) 1s tautologous.

2.2.2. Choosing the Smallest Recompilable Unit

Incremental compilers can be usefully divided into two classes based upon their

approach to the problem of deciding what to recompile after each change. Some

choose a syntactic unit of the language (independent of any particular program) as

the recompilable unit. This recompilabl e unit is recompiled whenever a change is

5

made within that unit. Others attempt to determine the smallest recompilable

unit (specific to the change being made) in order to be able to recompile as little

as possible.

respectively.

These two approaches will be referred to as α-type and β-type

α-type incremental compilers will generally perform unnecessary recompilation

after each change. 3 β-type incremental compilers will recompile only what i s

necessary, but ID Cur considerable overheads in time and (usually) space ID order to

determine the smallest recompilable unit. The Magpie system (see §3.3.5) is an

example of an α-type system. PECAN (see Chapter 4) is an example of a β-type

system.

Balancing the costs of these two approaches is the fundamental question ID

incremental compiler design, and the crux of this thesis project as discussed m

Chapter 6.

2.2.3. Problems Caused by Names

In the example g1ven ID §2.2.1, the statement was chosen as the recompilable unit

on the basis that a change to a statement could not affect the meaning of any

part of the program outside that statement. Unfortunately, the ability to use

names in a programming language complicates t he task of incremental compilation.

If the part of the source code that is being modified i s a declaration then that

modification may well affect the meaning of statements throughout the rest of the

program. Statements within the scope of the declaration will need to be checked

to ensure that the modification to the declaration has not invalidated references to

the declared name. If the part of the source code that is being modified is a

statement which refers to a name then the validity and meaning of that reference

is dependent upon declarations and references elsewhere in the program.

The manner in which vanous incremental systems have dealt with this problem is

discussed in Chapters 3 and 5. The recompilable unit remains (as defined above)

that structure which will be recompiled.

that further checking may be necessary.

However, it is important to remember

3 Note that a normal compiler (ie. a "non-incremental" compiler) can be thought of as an α-type
compiler with the entire program or (as in the case of Modula-2 or C) a componen t module as its
recompilable unit.

6

2.3. Development of Incremental Systems

2.3.1. Programming Environments

The idea of building a compiler which compiles incrementally was mooted as long

ago as the lat e 1960s [Braden 68, Katzan 69, Peccoud 69, Rishel 70]. Even so,

relatively sophisticated incremental compilers were not implemented until the (fairly

recent) development of programming environments. Programming environments use

copious amounts of computer resources and it is only with the advent of powerful,

single-user computers that the implementation of programming environments has

become feasible.

A programmmg environment provides the user (the programmer) with a number

of integrated, interactive tools so that she/he may create, modify, execute and

debug a program. 4 If the environment is to be highly interactive then the

programmer must be regularly informed of errors in the program and given the

opportunity to correct them. In order for program development to be practicable,

the compiler must have a fast response time.

compilation should be done incrementally.

To ensure a fast response, the

The environment should provide more than just a suite of tools which share a

common database of information abou t the program. The vanous tools should be

presented to the programmer as a singl e tool; there should be no "fire walls"

separating the various functions of the environment. The programmer should be

able to develop programs within the environment without having to "perform

mental context switches " [Delisle 84].

This amalgamation can be achieved by linking the compiler to the editor (as

described in §2.3.2), and by allowing debugging commands to be entered using the

language which is being supported by the environment. 5 This latter step obviates

the need for a programmer to learn a series of special debugging commands, and

makes it easier for the programmer to view the environment as a single paradigm. 6

4Cedar [Teitelman 84, Swinehart 86] is an example of a complete environment ; as well a s providing a
programming environment, facilities exist for document processing, electronic mail and graphics image
edi t ing.

5For example, the Jnt erlisp system [Tei t elman 81 J provides a single command language for
prog ramming, debugging and editing.

6The authors of [Delisle 84] make th e point that , in such a. system , "The debugging mechanisms
inhe rently follow not only the notation and semantics of the programming language, but also its
philosophy."

7

Debugging commands entered in the supported language can be (incrementally)

compiled and executed. However, this approach may prove to be disadvantageous

i n some cases. If the programmmg language which i s supported by the

environment is highly-readable but verbose, it will be difficult for the programmer

to construct concise debugging commands. The disadvantage of having a verbose

debugging language must be balanced against the advantage of allowing the

programmer to view the environment as a single paradigm.

2.3.2. Syntax-Directed Editors

A syntax-directed editor (or SDE) allows the programmer to edit the program

within the context of the language in which that program is being written.

Programs are stored internally not as a list of characters but as a parse tree. The

program is edited in terms of that parse tree, rather than in terms of the textual

representation of the program. This means that the operation of the SDE can be

strongly linked with that of an incremental compiler, which i s one reason why

programming environments usually employ SDEs.

An SD E can be generated from the specifications of a programmmg language. 7 It

is often expedient to modify that specification so that commonly-used constructs

can be created in the SDE without having to move through an inordinately large

number of levels. 8 Conversely, it i s often useful to modify the language

specification by adding new levels of structure to save the programmer from being

offered a surfeit of choice at each level.

SDEs provide the programmer with two types of command: genenc tree

manipulation (e.g. deleting a sub-tree from the parse tree; traversing a sub-tree),

and language specific commands (e.g. creating a specific statement) . Cursor

movement can be structural or textual. Structural movement is constrained by the

structure of the parse tree that represents the program. Although such movement

is often sufficient, it can be frustrating for the programmer if the destination is

"virtually close but structurally far away" [Garlan 84].

SDEs allow both structural and textual movement. 9

For this reason, most

7The Cornell Synthesizer Generator [Reps 84] and the PSG system (see §3.3.6) use attribute grammars
(see §3.4) to generate syntax-directed editors for arbitrary languages.

8Examples of this are given in [Garlan 84].

9Textual movement is often implemented using a pointing device (e.g. a mouse).

8

2.3.2.1. Advantages and Disadvantages

SDEs simplify the programmers editing task m a number of ways. Keywords can

be specified in an abbreviated form. The SDE will be able to determine which

keyword i s desired from the syntactical context of the cursor position.

Alternatively, a list of those keywords which could validly appear at the current

cursor position can be displayed (as a menu) and the desired keyword chosen using

some pointing device. This feature can help a programmer to learn the rules of

the language.

SDEs make large demands upon computer resources, especially on space required

to store the program as a parse tree. However, the main disadvantage of SDEs

anses from their insistence that the program be consistently correct before and

after each editing change. The shortest or most natural sequence of editing

commands which change a legal program P1 into a legal program P 2 may take the

source code through a series of invalid programs. If all errors are flagged as they

are detected, the programmer is left to distinguish between substantial errors in the

program and those transitional errors caused by the editing changes.

One solution to this problem would be to allow the programmer to effectively

turn off the error checking mechanism, and to turn it back on when she/he

believes that the code is valid again. This approach makes the programmmg

environment less interactive. Some programming environments solve the problem

by not allowing the programmer to move the cursor past the first error detected m

the code. 10 In this manner the validity of all of the code above the cursor can be

guaranteed, although the programmer may be forced to follow a convoluted path of

editing commands to change the program. 11

Another solution i s to use templates. This means that the SDE can maintain a

syntactically valid program, even though some of the constructs may be shells,

from which details are m1ssmg.

10 e.g. the system discussed in [Morris 81].

llln such an environment , the only error which need be flagged is the first ; subsequent errors will be
flagged when the first is corrected. This may seem an inappropriate manner in which to display errors.
However, it must b e remembered that the first compilers which gave as many error messages as possible
were developed a t a time when compilers were run in batch queues, and system resources were scarce.
Programmers required as many error messages a s possible from each attempted compilation. Such
considerations are not rel ev ant to the question of when to flag error messages in an interactive ,
incremental programming environment.

9

A further difficulty with usmg SDEs i s that the programmer has to adapt

herself/himself to entering expressions in a prefix manner. The developers of the

GNOME programming environment claim that those students using GNOME who

had programming experience found this awkward at first, while those who had no

prev1ous programming experience found it easy [Garlan 84]. 12

2.3.2.2. Triggering Recompilation

Given that the aim of an incremental compiler is to update the object code after

each change to the program, it follows that recompilation should be triggered by

the SDE. It is important to decide exactly what constitutes an editing change.

The SDE will allow the programmer to indicate, in some way, that a change has

been made and can now be processed (e.g. by typing the RETURN key). A β-type

incremental compiler will proceed immediately to find the smallest recompilable

unit in order to recompile that. Such a prompt response may be premature if the

compiler is α-type. It may be that the programmer wants to make two or more

changes within the same recompilable unit. The changes are reflected immediately

in the SDE's parse tree, but the α-type incremental compiler may be triggered by

the SDE only after the programmer has finished making changes within that

recompilable unit. This may be when the SDE cursor is moved out of the

recompilable unit, or when the programmer chooses a comp£le option.

Implementing such a system reqmres that a distinction be drawn between the two

main tasks of a compiler:

syntact£c checking - ensurmg that the program (or program fragment) i s

syntactically correct; and

translat£on - converting the program (or program fragment) into an
executable form.

The syntactic checking is performed by the SDE when it constructs its parse tree.

I t is the translation phase of compilation which is triggered after the recompilable

unit has been edited.

The use of SDEs makes it difficult to postpone syntactic error checking (as

discussed in §2.3.2.1) unless it i s possible to store syntactically incorrect code in

the parse tree (flagged i n some way so as to indicate that the code contains

syntax errors).

translation.

Static semantic error checking can easily be postponed until

12 See also [Chandhok 85].

10

There is a sense m which this approach departs from the ideal of incremental

compilation. After all, the compiler is no longer providing a compiled version after

each editing change to the source code. 13 However, such a system remains

incremental insofar as it does not require complete recompilation after modifications

have been made to a program. It also has the advantage of delaying error

checking, effectively turning error checking off until the recompilable unit has been

edited.

This approach is adopted in the MAGPIE system (see §3.3.5) and forms the basis

of the modifications made to the PECAN system as part of this thesis project (as

described in Chapter 6).

13Unless one takes the somewhat tenuous view that several editing changes within the one recompilable
unit constitute a single editing change.

11

Chapter 3

Examples of Incremental Systems

3.1. Early Incremental Systems

3.1.1. Incremental BASIC - 1968

An implementation of an incremental system for the BASIC language i s described

in [Braden 68]. This system uses α-type incremental compilation. As each line of

code is entered, it is compiled into machine code and a reference to that code i s

stored in a program vector. When a line is modified it is recompiled. Most

statements are executed i n machine code, but statement-to-statement code1 is

handled interpretively, by moving through the program vector.

There are difficulties in implementing such a system even for a language as

context-independent as BASIC. For example, if the user enters the following lines

100 DIM X(10)
200 LET X(1)=0
100 DIM X(10,10)

the assignment statement i n line 200 was valid when first entered but, due to the

change in the definition of the X array, it has become invalid. Yet, the system

will not recompile the offending line because it was valid when first entered. If

the compiler was forced to compile the entire source file i n order to rectify this

problem then any time saved due to incremental compilation would be lost. One

solution would be to treat a reference to an element of a one-dimensional array as

a special case of a reference to an element of a two-dimensional array. This would

mean that the code generated when line 200 is first entered will still work

correctly after the X array is redefined. The authors of [Braden 68] give this

solution serious consideration, rejecting it only because it is not sufficiently general

to handle all such problems.

The only remammg solution is to recompile only the statement that was changed

and check references to the X array for validity at run-time. This solution moves

Ii.e . branching statements (GOTO, GOSUB).

12

the implementation a little away from the ideal of an incremental compiler because

the context-sensitive checking is being deferred from compile-time to run-time. But

the authors justify using this solution on the grounds that it is preferable to the

other options and that the system is intended for use by students who will usually

write small programs that are run correctly only once.

3.1.2. Languages with Nested Statements - 1972

Earley and Caizergues describe another α-type incremental compilation system

in [Earley 72]. The authors make the point that it is a relatively easy task to

incrementally compile programs which have been written in a language which does

not allow nested statements. In such a language the meaning of each statement is

usually independent of those statements around it, so it is necessary to recompile

only the lines that are actually altered. If a declaration i s changed, the

recompilation can be limited to those statements within the scope of the

declaration. However, if the language allows nested statements then the question

of statement independence can be greatly complicated.

The authors' solution to this problem i s to distinguish between simple and nested

statements. The language is redefined so that single statements may only appear

on a single line, while nest ed statements may appear on several lines. Skeleton

entries are maintained for each line of code. These entries link the source line

with the corresponding compiled code and each includes a poi nter to the next line's

skeleton entry. If the line is the beginning of a nested statement, a pointer in the

skeleton entry refers to the entry for the line which ends the -nested statement. If

part of a nested statement is modified, only the body of that nested statement

need be recompiled. Although the authors see the structure as a list of

statements, the skeleton entries could just as easily have been thought of as nodes

of a tree. 2

The authors identify a problem with this method where the language being

implemented does not have an explicit end for each nested statement. However, it

would seem that such languages could be implemented simply by defining an end

(with a null production) for each nested statement.

The appropriate lines are recompiled only when all of the editing is complete.

This delay is for two reasons: it avoids duplicating recompilation, and it doesn't

force the user to keep the source code syntactically correct at all times.

21ndeed it is difficult to see why a tree structure was not used ; it would seem t o be a preferable
paradigm.

13

3.2. Conversational Systems

Conversational systems were precursors of the more sophisticated incremental

compilers. A conversational system can be distinguished from a system which

incorporates incremental compilation by the fact that, although it aims to provide

a high level of interactivity, it still compiles all of the source code when changes

are made.

3.2.1. CONA and COP AS - 1978 and 1981

The CONA and COPAS systems [Atkinson 78 , Atkinson 81a] are implementations

of conversational Algol and conversational Pascal respectively. The program's

source code is converted into an intermediate form which can be efficiently

interpreted. When changes are made to the .program, the entire program (that is

the intermediate representation and the new text) i s converted into the

intermediate form. Modifications to the code are checked for validity immediately.

If the source contains an error, the compiler halts and waits until the error is

corrected before the rest of the text is scanned.

Neither of these systems i s significantly faster than a system which has a

separate text editor and compiler, but the designers point out that the

conversational systems were designed for use by novices who write small programs.

For small programs this method compiles code quickly enough, and both systems

do provide the user with recompiled code after each modification.

3.3. Incremental Systems in Programming Environments

3.3.1. The Cornell Program Synthesizer - 1978

The Cornell Program Synthesizer [Teitelbaum 81] was the first majo r

programming environment to treat programs as "a hierarchical composition of

syntactic objects, rather than (as) a sequence of characters." The Synthesizer

supports the development of programs in PL/CS (a dialect of PL/I). Programs

are edited using an SDE. Templates are used for all but the lowest level language

structures (or phrases) which are entered as a character string and parsed.

Phrases are checked for syntactic and semantic errors. Compilation (into an

interpretable form) is performed each time a template or phrase is inserted.

Incomplete programs may be executed. Execution halts when an unfilled

template is encountered, but can be resumed after editing changes have been made

(unless a declaration is altered). If a change is made to a declaration , all of the

phrases within the scope of that declaration are re-checked .

14

The Synthesizer has been generalized with the development of the Synthesizer

Generator [Reps 84] which generates SDEs from languages specified using attribute

grammars.

3.3.2. Smalltalk-80 - 1980

Smalltalk-80 [Goldberg 83, Goldberg 84] is an interactive, integrated programmmg

environment. Smalltalk-80 i s also an object-oriented programmmg language

supported by the Smalltalk-80 environment. The environment is defined in terms

of the language so the programmer is presented with a single paradigm.

The basic element i n the Smalltalk-80 language is the object, which has its own

data (not accessible by other objects) and methods. Methods are programs which

respond to messages passed between objects. Programming in Smalltalk-80 i s a

matter of creating objects and specifying how those objects will communicate with

each other. Methods are edited usmg a simple text editor. Smalltalk-80 uses

α-type incremental compilation, usmg the method as the recompilable unit.

Methods are translated into sequences of instructions for a stack-oriented

interpreter.

3.3.3. IPE - 1981

The IPE (Incremental Programming Environment) system i s described

in [Medina-Mora 81]. IPE supports the development of programs in the language

GC (a variant of the language C, with module structure and type checking).

Programs are edited using a SDE which i s completely template-driven; textual

input is not supported.

semantic checking.

The editor ensures syntactic correctness and performs

IPE uses an α-type incremental compilation strategy. Only when a procedure is

semantically correct, is code produced. The procedure is automatically compiled,

loaded and linked into the existing executable code for the program. If a

subsequent change outside the procedure (e.g. to the declaration of another

procedure) makes an already compiled procedure semantically incorrect, that

procedure code is replaced by a code stub. If executing the program causes that

code stub to be executed (i.e. if the semantically incorrect procedure is invoked)

then execution halts so that the procedure may be modified.

IPE was designed "to provide the comfort of a flexible and interactive

programming environment for compiler-based languages." To this end it maintains

two internal representations of the program under development: the tree

15

representation and the executable representation. The executable representation is

generated from the tree representation, and may be generated so that it can be

executed on a different system from that on which the IPE system is being run.

3.3.4. PECAN - 1984

The PECAN programmmg environment generator i s discussed, m considerable

detail, in Chapter 4.

3.3.5. Magpie - 1984

The Magpie programmmg environment supports the development of Pascal

programs on an experimental workstation. The system's method of incremental

compilation is described in [Schwartz 84]. Magpie uses a sophisticated α-type

compilation technique.

Magpie divides Pascal programs into fragments: statement bodies, variable

declarations, constant definitions, type definitions, label declarations and headings

(of procedures, functions and the mam program). The text of these fragments is

stored as a sequence of tokens. Use of an uninterpreted token (representing an

incomplete token, an incorrect token or un-scanned text) means that all of the text

can be tokenized at any time.

Magpie breaks the compilation process into three distinct phases: scanmng,

parsmg and recompilation (translation into machine code). Each of these phases

has its own unit of incrementality. Scanning will respond to a changed character,

but the parser will not respond to that change unless it m e a n s a change to a

token. For example, changing the value of an integer constant means only a small

change t,o the appropriate token. However, if the change to the text changes the

type of the token (say, from an integer constant to a real constant) then the

parser is invoked.

Any single change to the source code is bounded by a single fragment, not by

the entire text, so the parser can confine itself to that fragment. Each fragment is

edited separately, and has its own cursor. Magpie uses a textual editor. This

precludes static semantic checking beyond the first syntax error within each

fragment. The syntactic structure of each fragment is maintained as a sequence of

partial parse trees.

Recompilation is performed on a procedure-by-procedure basis, and is triggered

when a cursor leaves a fragment. Recompilation of a procedure is performed in

16

the background when the processor is not busy providing the programmer with

interactive response. 3 If execution commences before all of the compilation has

been finished then Magpie executes the existing code, pausing to generate code for

uncompiled procedures that are invoked during program execution.

Magpie uses Pascal as a debugging language. The programmer is able to invoke

code in a given activation record, and to define demons (procedures that can be

set up so that they are invoked whenever reference is made to a specified

identifier). These demons can be disabled, although the "hook" into the compiled

code remains.

3.3.6. PSG - 1986

The PSG programming system generator i s described m [Bahlke 86]. lt produces

programming environments for a language given a definition of the language

specified using an attribute grammar (see §3.4).

The language definition Is divided into three parts:

syntax

context conditions (scope and visibility rules, data attribute grammar,
basic context relations)

dynamic semantics (domain definitions, auxiliary functions, meamng of
executable parts of program, meaning functions).

The syntax of the language is mandatory. If the context conditions are not

specified then the editor which is generated will be context-free. If the dynamic

semantics are not defined then the environment which is generated will have no

means of compiling programs written in that language.

The editor that is generated allows both structure editing and text editing.

Where structure editing is used, the programmer is only given menu options which

are syntactically and semantically valid . Hence the editor can guarantee the

prevention of syntax errors and semantic errors. When textual editing is used,

such errors will be recognized immediately and flagged, but not prevented.

Programs are interpreted using the dynamic semantics information provided.

Incomplete programs can be interpreted until an attempt is made to interpret a

syntactically incomplete structure. The PSG system has been used to produce

3During the programmer 's "think time" (sic) [Delisle 84].

17

environments for Pascal, Algol-60, Modula-2 and for its own formal language

definition language.

3.4. Attribute Grammars and Environment Generators

An attribute grammar4 is a cont ext-free grammar which has been augmented with

information which specifies context-dependent aspects of the language. Trees

generated from attribute grammars are called attributed structure trees. Each node

of a structure tree has an associated attribute which describes properties of that

node.

At t ribute grammars have been used i n parser generating systems5 and to generate

SDEs. 6 As explained i n §3.3.6, the PSG system can generate an entire

programmmg environment for a language specified using an attribute grammar.

However, there are several drawbacks associated with using attribute grammars in

generator systems.

Specifying a language usmg an attribute grammar requires that a substantial

number of functions be specifically designed for that specification. These functions

provide the language's semantics, and the attribute grammar provides the

dependency information used when finding the smallest recompilable unit. This

dichotomy between semantics and dependency information adds to the complexity

of a language specification. Language specification in PECAN (see §4.1.2) uses a

specification language which provides dependency information and (almost) all the

semantic information without recourse to additional functions.

If a language specification is based upon an attribu te grammar, the sy mbol table

is usuall y represented by a set of state variables at each node of the structure tree.

This has the inherent disadvantage that a large part of the program has to be

recompiled whenever a change is made to a declaration. PECAN avoids this

problem by determining exactly what references are affected by a change to a

declarat ion , and processing only those references .

4For a comprehensive discu ss ion of attribute grammars see Chapter 8 of [Waite 84].

5
e.g. GAG [Kastens 82].

6e.g. (as already mentioned) the Corn ell Synthesizer Generator [Reps 84].

18

Chapter 4

The PECAN Programming Environment Generator

4.1. Introduction

The PECAN programmmg environment generator was developed at Brown

University, Providence, U.S.A., under the direction of Steven Reiss. It i s a large

collection of large modules written in the C programming language and executable

under the UNIX operating system. PECAN was initially designed to run on

Apollo workstations, but has been adapted for use on Sun workstations. 1

4.1.1. Documentation

The PECAN system i s very poorly documented. Although a user guide

exists [Barlow 86a], there is little information available about the internal workings

and structure of PECAN. Apart from a few papers on PECAN's component

modules, the main sources of information are [Reiss 83, Rei ss 84a, Reiss 84b].

Various aspects of the system ·are discussed in [Barlow 86b, Leung 86, Nearhos

86, Purdue 86] . This relative dearth of information about the PECAN system

leaves anyone interested in its workings with no choice but to examine the code.

Unfortunately, the internal documentation is terse, bordering on the Trappist.

4.1.2. Language Specification

PECAN i s a programmmg environment generator. A language's syntax and

semantics are specified m PECAN's own high-level specification language. 2,3

PECAN produces language-specific code from the specifications, which is merged

with existing language-independent modules to form code which provides the

programming environment.

1The project that is the subject of this thesis was developed using PECAN on a Sun-2 workstation at
the Computer Science Department, Australian National University_

2PECAN does not use attribute grammars to specify languages for the reasons given in §3.4 _

3The specification of the Pascal WHILE statement is given in Figure 5-2.

19

The specification of a language is broken into four parts:

an abstract syntax of the language and the semantics of each construct
in the language;

the properties of its symbols;

a definition of the types allowed m the language, and details of type
coercions for resolving expressions; and

details of how to build and resolve expressions.

Theoretically, PECAN can generate an environment for any language that is

algorithmic, block-structured and makes no explicit use of parallel processing.

However, an extended version of Pascal (based on [Jensen 78]) i s the only

sophisticated programming language for which a reasonable environment has been

generated. An environment for the mini-language Core (as defined in [Ledgard

81]) has been generated, but the language Modula-2 [Wirth 83] proved too

complicated for one honours student in 1986 [Leung 86]. The specification for

Pascal is some 4000 lines, and a language as simple as Core required about 1200

lines to be specified for PECAN. It can be seen that the specification of a

language for PECAN is a complicated task.

So, although PECAN i s an environment generator, the only practical and useful

environment which has been generated is that for Pascal. Future references to

"PECAN" in this thesis will be references to the environment generated by the

PECAN programming environment generator for the language Pascal.

20

4.1.3. Views

PECAN makes good use of the graphical capacity of the Apollo and Sun

workstations, providing the programmer with many views of the program under

development; multiple views of the shared data structures of PECAN's vanous

component modules. These views can be divided into five categories: 4

Program Views

o Syntax-Directed Editor (SDE module - see §4.1.3.1)

o Nassi-Schneiderrnan View (NASSI module)

o Declaration View (DECL module)

Box Editor

o Rothon Editor

Semantic Views (static semantic meaning)

o Symbol Table View (SYMMOD module)

o Data Type View (TYPE module)

o Expression View (EXPR module)

o Flow View (FLOW module - see §4.1.3.2)

Execution Views (dynamic semantic behaviour)

o Interpreter View (PALM module)

o Stack View (STACK module)

System Views

o Transcript View (CMD module)

Miscellaneous Views

o Draw Window

o Clock Window

o Button Window

o Pics Window

4Roughly corresponding to the division in [Reiss 84b].

21

All v1ews provide up-to-date information on the state of the program or of its

execution. When changes are made i n one v1ew, that change i s reflected

immediately i n all other appropriate views. For example, if a change is made in

the SDE then that change is immediately reflected in the other program views.

The various semantic views will reflect the change if it is relevant (e.g. if a change

is made to a statement, that change is reflected in the flow view; if a change is

made to an expression, that change is reflected in the expression view).

An example PECAN screen is given m Figure 4-1. The screen shows several

views of a program 5 which was in the process of calculating the value of 7!, before

execution was halted. The views shown are (clockwise from the top left) the

syntax-directed editor, the symbol table view, the clock window, the flow v1ew, the

stack view, the expression view, the transcript view, and the interpreter view.

4.1.3.1. The Syntax-Directed Editor

Program views provide the programmer with a visual representation of the

abstract syntax tree (discussed in §4.2.2). The SDE allows both structural and

textual cursor movement. Furthermore, the programmer may move the cursor

directly to any part of the program using the pointing device. The programmer

may use templates to build a program using menus to choose keywords and

constructs. Alternatively, text may be entered and will be parsed (one line at a

time). 6 All errors are flagged when detected.

4.1.3.2. The Flow View

The flow view represents the program in flow chart form. Flow charts are

constructed usmg a differently-shaped box to represent each of the following

structures: the start; a variable declaration: a statement; a condition; an entry or

exit point into a procedure or function; a junction of paths; and the end.

The flow view's cursor responds to changes i n other v1ews, and if a node in the

flow graph i s chosen (i.e. pointed to) then other program views will reflect the

change. This is the extent of interactivity allowed in the flow view.

5The test program test3.p (see §C.3).

6PECAN uses a parser based upon Earley's parsing algorithm. A detailed description of Earley's
algorithm is given in Appendix D.

23

4.2. Internal Structure

4.2.1. Modules

PECAN has a hierarchical module structure. This reflects the fact that PECAN

was developed to work i n an existing environment: the Brown Workstation

Environment [Bazik 85]. The hierarchy of modules is shown in Figure 4-2.

Program Views

SDE NASSI DECL

CMD PARSE

PLUM

Semantic Views Execution Views

SYMMOD TYPE EXPR FLOW STACK

View Support Environment

PALM

Incremental Compiler

SEMCOM

SYMBOLS EXPRS TYPES FLOWS

System Support Environment

ASPEN ACER

Brown Workstation Environment

ASH MAPLE SGP VT WILLOW

UNIX

Figure 4-2: Hierarchy of Modules i n PECAN7

7 Adapted from a figure in [Nearhos 86].

24

Several of the modules provide an abstract data type (with its own data

structure and operations) to the other modules. The module with which this thesis

is primarily concerned is the SEMCOM module. The operation of SEMCOM is

discussed in detail in Chapter 5.

4.2.2. The Abstract Syntax Tree

The main data structure which is used by all modules is the Abstract Syntax

Tree (or AST). The AST is supported by the ASPEN module [Molinari 86]. As

well as maintaining information about the structure of the program, the AST

provides links to data structures used by other modules. Thus, the AST is the

central data structure; access to all other data structures can be gained (perhaps

indirectly) through the AST.

4.2.3. Events

In order for PECAN to present the programmer with an integrated environment,

it is essential that the vanous modules have a means of communicating with each

other. For example, a change made to the program in the SDE may have effects

upon all other views. It is clearly undesirable that any one module should have to

explicitly invoke functions in other modules in order to propagate a change

throughout the system. As well as being cumbersome to code, such an approach

makes future expansion of the system very complicated. PECAN solves the

problem of module communication by use of events.

An event i s effectively an announcement by one module, to any other module

that might be interested, that some specified happening has occurred. Events are

broadcast by the PLUM module [Molinari 85]. 8

The event structure i s set up i n the following manner. When PECAN is first

invoked, the main program calls the initialization functions for each module. Each

module's initialization function registers (with PLUM) the events m which the

module has an interest. This expressiOn of interest i s made usmg the

PLUMaccept_event function. PLUMaccept_event takes two arguments: a function

in the interested module, and the name of the relevant event. Any number of

modules may register an interest in a given event.

8Note that although events are broadcast, execution is sequential; concurrent execution is not supported .

25

The PLUM module maintains a list of functions registered for each event. When

a module wishes to trigger an event, the PLUMevent function is used. PLUM

invokes, in turn, each of the functions linked to that event. Parameters may be

passed to the PLUMevent function. These parameters are passed to the interested

functions when an event is propagated throughout the system.

26

Chapter 5

Incremental Compilation in PECAN

5.1. Semantic Specification Statements

The PECAN approach to incremental compilation i s described (somewhat

inaccurately 1) in [Reiss 84a]. The SEMCOM module handles incremental

compilation m PECAN. To achieve this, SEMCOM maintains its own language-

independent representation of the semantic meaning of the AST - a list of

statements in a simple semantic language. These statements are referred to as

semantic specification statements. A brief description of the meaning of each of

these statements is given in Figure 5-l.

These statements can be divided into two categories: action statements and

control statements. When they are executed, action statements build the

underlying representation of the program. This underlying representation forms the

data structure used by the flow view to display the program in flow graph form.

This flow graph representation is directly interpreted when the program is run.

Control statements specify the order in which the action statements are executed.

The language uses a stack and a small set of variables called current items. The

current items are:

the current scope;

the current referenced object;

the current flow graph node;

the current type;

the current expression;

the current auxiliary scope;

the last type built; and

the current mode.

1See second footnote on page 41.

DO

FOR

START

BEGIN

END

FIND

LOOK

USE

BUILD

DEFINE

SET

GET

VALUE

MODE

PUSH

POP

EXPR

FLOW

TYPE

CLEAR

27

Visit a specified sub-tree.

Visit each of the children of a list-type node.

Create an INITIAL scope (marks the beginning of the tree walk).

Create a new scope.

Close the current scope, and return to the parent scope.

Find the symbol table name associated with the specified string
or token.

Partially resolve a name given specified restrictions.

Resolve a name to a single object.

Create a new object of a given type.

Take a newly created object and associate it with the current
name.

Set the current symbol.

Access the current symbol.

Determine the value of a constant given its textual representation.

Set flags that affect the current symbol's storage class, and the
type of parameter that it may represent (inter alia).

Push current symbol onto the stack.

Pop current symbol off the stack.

Build an expression from the top elements of the stack (using the
current symbol as an operator, with a specified number of
operands.

Attach a new node to the flow graph representation.

Build a data type.

Initialize the current items.

Figure 5-l: Semantic Specification Statements2

2Adapted from [Reiss 84a] and [Molinari 87a].

28

Semantic specification statements make use of the current items in order to reflect

the semantics of each construct in the programming language. Information IS

passed between semantic statements via the current items. The main advantage of

this approach is that it becomes possible to extract dependency information from

the specification of each construct, in order to determine the smallest recompilable

unit.

5.2. Specifying a Construct

The sequence of semantic specification statements associated with each construct

in the programming language forms part of the language specification (discussed in

§4.1.2). The specification of the Pascal WHILE statement is given in Figure 5-2.

This specification can be thought of as a set of instructions to PECAN as to how

to "compile" a WHILE statement.

STATEMENT : := whi le_stotement;

whi le_stotement => IF_EXPRESSION STATEMENT
SOURCE: "WHILE @1 DO@+@R@c@n@2@-"
COMMENT
SYNONYM: "Wh i I e"
SEMANTICS:{ CLEAR;

BEGIN loop;
DEFINE NAME=operotor,EXJT,CLASS=Iobel;
DEFINE NAME=operotor,NEXT,CLASS=Iobel;
USE NAME=operotor,NEXT,CURRENT=ONLY;
FLOW LABEL=1,LABEL=REF;
DO @1;
FLOW NOTTEST,2;
DO @2;
FLOW GOTO=1 ;
USE NAME=operotor,EXIT,CURRENT=ONLY;
FLOW LABEL=2,LABEL=REF;
END;

SEEDY : "WHILE @~ @n X1 @' WBLOCK @~ @n @2@' @n WEND"
ROTHON: LOOP @1 : @2
NS: LOOP @1 @2 NONE;

Figure 5-2: Specification of Pascal WHILE Statement3

The string labelled SOURCE is used by the parser, and by the SDE for

formatting the construct. COMMENT indicates that a comment may be attached

to the WHILE statement. The SYNONYM is the name of the construct for use

by the SDE in creating menus for template selection.

3This specification of the WHILE statement is taken from the specification used to generate a PECAN
environment for Pascal at the Australian National U niversity. It differs slightly from the specification
given in [Reiss 84a].

29

ROTHON and NS define the representation of the WHILE statement for the

Rothon editor and the Nassi-Schneiderman view respectively. SEEDY defines the

representation for an apparently unimplemented view.

The statements between the curly brackets labelled SEMANTICS are the semantic

specification statements for the WHILE statement. The CLEAR statement

initializes the current items. This states that the WHILE statement is completely

independent of preceding Pascal statements. The BEGIN statement starts a scope

of type loop. The two DEFINE statements define an EXIT label and a NEXT

label in the operator auxiliary table. The USE statement extracts the NEXT label

for use in the subsequent FLOW statement . The FLOW statement defines two

labels in the flow graph: NEXT and a temporary label 1. The DO statement

causes the semantic specification statements associated with the IF _EXPRESSION

sub-tree to be processed next. The FLOW statement causes a jump to temporary

label 2, if evaluating the IF _EXPRESSION returns false. The second DO

statement processes the body of the WHILE statement, and the third FLOW

statement causes an unconditional branch back to temporary label 1. The USE

statement and the FLOW statement access, and attach to the flow graph, the

EXIT label and temporary label 2. The END statement ends the loop scope which

was begun with the BEGIN statement.

30

5.3. Data Structure

5.3.1. SEMCOM_STMTs and the Abstract Syntax Tree

SEMCOM stores its semantic specification statements as a doubly-linked list of

record structures called SEMCOM_STMTs. 4 Each of these SEMCOM_STMTs

contains:

pointers forwards and backwards to other SEMCOM_STMTs (used to
maintain the doubly-linked list);

details of the type of semantic specification statement being represented;

a pointer into the AST (for arguments to the semantic specification
statement); and

the values of the current items. 5

The semantics of the entire program can be represented by a list of

SEMCOM_STMTs. Each node of the AST has a pair of pointers which mark the

beginning and the end of the list of SEMCOM_STMTs which give the semantics of

the construct at that particular node. This is illustrated in Figure 5-4.

5.3.2. SEMCOM_STMTs and the Flow Graph Representation

Consider the Pascal program listed in Figure 5-3. Using the specification of the

WHILE statement (given in Figure 5-2), PECAN parses the WHILE statement into

a tree (shown i n Figure 5-5). The SEMCOM module produces a list of

SEMCOM_STMTs which give the semantics of that particular instance of the

WHILE statement. The list of SEMCOM_STMTs produced for this example

appears in Figure 5-6. The beginning and the end of each of the sub-lists of the

list are labelled with the name of the associated node of the tree. 7 When this list

of SEMCOM_STMTs is executed, the flow graph representation of the WHILE

statement is constructed . The flow graph representation for this WHILE statement

appears in Figure 5-7.

4 Not.e that the mapping from semantic specification statements to SEMCOM_STMTs is not quite one-
to-one. Each action statement in the semantic specification is mapped into one or more
SEMCOM_STMTs. Statements like USE and LOOK can imply several act ions, and the interpretation of
statements like SET can depend upon their arguments.

50ne of the current it ems is the current flow node. It is through this pointer that the associated
(interpretable) flow graph representation of the program is accessed.

7Part of this thesis project involved the development of a new PECAN view which displays the
SEMCOM_STMTs associated with the current node (as indicated by the cursor in the SDE or some other
program view). The list in Figure 5-6 was prepared using this semantic actions view. Details of this new
view are given in Appendix A. The form in which SEMCOM_STMTs are displayed is explained in §A. l.

PROGRAM interminable (input,output);

no declarations }

BEGIN { Program interminable
WHILE true DO

WRITELN('Ioop');

END.

31

Figure 5-3: Small Pascal Program with an Example WHILE statement6

5.4. Execution and Unexecution

When a sequence of SEMCOM_STMTs is executed,8 a flow graph representation

is constructed. This flow graph representation is interpreted in order to run the

program. SEMCOM_STMTs can also be unexecuted. Unexecuting a sequence of

SEMCOM_STMTs has the effect of removing, from the flow graph representation,

those constructs which were created when that same sequence of SEMCOM_STMTs

was executed.9

This symmetry of SEMCOM_STMTs - the fact that they can be both executed

and unexecuted - is essential to PECAN's approach to incremental compilation.

Ignoring (for the moment) the problems involved i n finding the smallest

recompilable unit, t he process of incremental compilation can be thought of in the

following manner. When a node is changed in the AST, the SEMCOM_STMTs

associated with the old nod e are unexecuted. This has the effect of removing,

from the flow graph, the code corresponding to the node as it was before

alteration. Next , the SEMCOM_STMTs associated with the new AST node are

executed. This inserts, into the flow graph, the code corresponding to the new

node. The flow graph is now, as before, an interpretable representation of the

program (as amended).

6 Note that this program listing was form atted by PECAN, using the formatting information included in
the specificatiou of Pascal.

8The execution of SEMCOM_STMTs should not be confused with the execution of the program (i .e. the
interpretation of the flow graph representation).

9The fun ct ions that perform execution and unexecut ion consult and update th e values of the current
items, as discussed in §5.5.2.5.

3
2

SEMCOM_STMTs
of

List

Tree

Syntax

Abstract

SEMCOM_STMTs

of

List into

Pointerswith

TreeSyntax

u

Abstract

5-4:

Figure

33

WHILE

BOOLEAN EXPRESSION WRITELN

IDENTIFIER OUT EXPR S

OUTPUT EXPRESSION

STRING

Figure 5-5: Parse Tree for Example WHILE Statement

36

! (true)

set out file () - -

write (' loop ')

writeln

file end

Figure 5-7: Flow Graph Representation of Example WHILE Statement

37

5.5. Incremental Compilation in PECAN

The system as described thus far would be appropriate for an α-type incremental

compiler operating in the following manner. If the recompilable unit was taken to

be a Pascal procedure then every time a node was changed in the AST, the

SEMCOM_STMTs associated with the procedure in which the change was made

could be unexecuted (effectively removing the interpretable code for that procedure)

then the SEMCOM_STMTs representing the modified procedure could be executed

to restore the flow graph.

However, PECAN is a β-type incremental compiler; it determines the smallest

recompilable unit before incrementally compiling. The algorithm used by PECAN

is described in §5 .5.1.

5.5.1. General Algorithm

When a change i s made to the AST, SEMCOM creates a list of

SEMCOM_STMTs (the new list) corresponding to the new node. The list of

SEMCOM_STMTs corresponding to the node as it was before the alteration i s

referred to as the old list . The old list and the new list are compared and the

area of difference is established. The SEMCOM_STMTs preceding and following

the area of difference in both lists are disregarded, in order to avoid unnecessary

recompilation.

It is not sufficient to simply unexecute t h e :resulting old list then execute the

corresponding new list. It may well be that the area of difference represents only

part of a construct. Its semantic validity rriay depend upon SEMCOM_STMTs

representing the rest of the construct. For example, consider the Pascal statement

IF x = y THEN
<statement>

ELSE
<statement>;

If the identifiers x and y are declared as being of the same type then this will be

a valid statement. If the identifier x is replaced by the identifier z then the

validity of the condition depends upon the type of z. Clearly it is not enough to

simply replace the flow graph code that de lermines the value of x with similar

code for z. First, z must be checked for compatibility with y.

SEMCOM extends the new list to include SEMCOM_STMTs until all of the local

effects of the change have been covered. The new list is unexecuted back to the

point where the lists differed. The old list is then unexecuted, before the extended

new list is executed. An update routine propagates changes throughout the rest of

the program.

38

5.5.2. Implementation Details

A detailed description of how SEMCOM implements this algorithm reqmres an

understanding of the workings of some of the lower-level SEMCOM functions.

The operation of the functions head_merge, tail_merge, extend, remove and insert

will be described by reference to the diagrammatic representation of the old and

new lists which appears in Figure 5-8. The old list is that list between the oldp

and oendp pointers. The new list is that list between the newp and nendp

pointers. The SEMCOM_STMTs with shaded bodies are those that form the area

of difference.

5.5.2.1. head_merge

Figure 5-8(a) shows the state of the lists of SEMCOM_STMTs before the

head_merge operation is performed. The old list is part of a longer list that

represen ts the whole program - the main list. The new list exists separately.

The head_merge operation moves the oldp and newp pointers down their respective

lists until the SEMCOM_STMTs that they refer to are different. As the pointers

are moved, the new list i s merged into the old list, and the duplicate

SEMCOM_STMTs are removed from the old list. Figure 5-8(b) shows the state of

the lists after the head_merge. 10

5.5.2.2. tail_merge

The tail_merge function i s complementary to_ head_merge. Figure 5-8(b) shows

the state of the lists before the tail_merge operation and Figure 5-8(c) shows the

state afterwards. The duplicated SEMCOM_STMTs in the new list have been

merged into the old list, and the corresponding old SEMCOM_STMTs have been

discarded.

5.5.2.3. extend

The extend function moves the nendp pointer (effectively extending the new list)

until it includes all of the SEMCOM_STMTs required to ensure that all of the

local effects of th e change are completed. As has been explained, the meaning of

each construct in the language i s given by semantic specification statements i n

terms of the current items. So the local effects of a change to the program will

be reflected in those current items.

10SEMCOM_STMTs removed from the old list. are shown in Figure 5-S(b) with no pointers pointing to
them. In fact they are removed, one at a time, by h ead_merge yet they do not disappear from t h e
diagrammatic representation until Figure 5-S(c). The discarded SEMCOM_STMTs appear in Figure 5-S(b)
in ord er to make th e operation of hea d_merge clear. The sam e is true of tail_merge, wh ere the
SEMCOM_STMTs that are removed do not disappear until Figure 5-S(d).

(a) Before head_merge

old list
(to be

removed
from

main list)

new list
(to be
substituted
for old list)

(b) Before tail_ merge

oldp

old list

oendp

Figure 5-8:

new list

Effect of head_merge, tail_merge and extend
upon the old and new lists

(continued next page)

40

(C) Before extend

oldp

old list new list

oendp

(d) After extend

oldp

old list extended
new list

c
oendp

A

A unexecuted by extend 8 unexecuted by remove C executed by insert

Figure 5-8 continued

41

Some of the semantic specification statements have a corresponding statement

which must appear i n order for the list of statements to provide a valid

specification. For example a BEGIN statement (which marks the beginning of a

new scope) must have an associated END; a PUSH statement must have an

associated POP. These statements, which must follow certain other statements,

will be referred to as end bracket statements. There are four end bracket

statements (END, POP, TYPE and FLOW) which may be required by the

occurrence of various start bracket statements. 11

The extend function proceeds as follows. First the old list is scanned, in order

to count the number of end bracket statements with no matching begin bracket

statements in the old list. The new list is then scanned, and extended (if

necessary) until

it contains an unmatched end bracket statement corresponding to each
such unmatched end bracket statement found in the old list; and

each begin bracket statement in the new list has a matching end
bracket statement.

Figure 5-8(c) shows the state of the lists before the extend operation, and Figure

5-8(d) shows their state afterwards. Because the new list has been merged into

the old list (by head_merge and tail_merge, the only limit on how far extend can

move the nendp pointer is the end of the complete list of SEMCOM_STMTs (i.e.

the end of the program).

The extend function also performs the unexecution of the extended part of the

new list (marked A in Figure 5-8(d)). 12

5.5.2.4. remove and insert

The remove function unexecutes (in reverse order) each of the SEMCOM_STMTs

in the old list (marked B in Figure 5-8(d)). Each SEMCOM_STMT is removed

from the list after unexecution.

The insert function executes (in order) each of the SEMCOM_STMTs m the

extended new list (marked C in Figure 5-8(d)).

11Not all of the start bracket statements for TYPE and FLOW have been identified.

12Inexplicably , Rei ss makes no mention of this step in his description of PECAN's incremental
compilation [Reiss 84a]. If this step is not taken , the extended part. of the new list will soon be executed
(by insert) without first having been unexecuted.

42

5.5.2.5. The Current Items and Execution and Unexecution

The functions _SEMCOM_execute and _SEMCOM_unexecute perform execution

and unexecution respectively. Before a SEMCOM_STMT can be executed or

unexecuted it has to be put into context; the values of the current items must be

established. Before the insert function calls the _SEMCOM_execute function for

the first time, it calls the _SEMCOM_set_current function to set the current items

to the values that they should hold before the first SEMCOM_STMT in the new

list. _SE MCO M_set_current moves backwards through the list of

SEMCOM_STMTs preceding the new list, retrieving the values that were most

recently assigned to each of the current items. Once values for all of the current

items have been retrieved, execution can commence. Each time a

SEMCOM_STMT i s executed, the current items are updated accordingly.

Unexecution is handled slightly differently. Every time the _SEMCOM_unexecute

function i s called (by extend or remove) i n order to unexecute a single

SEMCOM_STMT, the values of the current items are determined. However, the

_SEMCOM_unexecute function only determines the values of those current items

which are relied upon in the unexecution of the SEMCOM_STMT in question.

5.5.2.6. Updating the Semantics

SEMCOM has four semantic support modules: the symbol table support module,

the type support module, the expression support module, and the flow graph

support module. When a SEMCOM_STMT is executed or unexecuted, two stages

of processmg are triggered:

the flow graph representation is modified (as explained in §5.4); and

information is passed to the relevant support module for processing after
the execution and unexecution of all the SEMCOM_STMTs is completed.

In the second case, information is queued to a support module which adds that

information to a list of operations it must perform when the execution and

unexecu tion is finished.

When a definition of a name i s created , modified or removed, all of the references

to that name are queued with the symbol table support module for later checking.

When a type reference cannot be immediately resolved (i.e. it relies upon a name

in the symbol table) then that type is queued with the type support module.

When an expression is modified it is queued with the expressiOn support module

for later resolution. When a flow graph operation is required, but cannot be

performed in the first phase (i.e. it relies upon a name in the symbol table), that

operation is queued with the flow graph support module.

43

When all of the execution and unexecution has been performed, the

SEMCOMupdate function is invoked. That function calls each of the support

modules in turn, requesting that they process the requests stored i n their respective

queues. Each call causes the support module in question to continue resolving

items from its list until the list is empty. The dependencies between the modules

are such that running down the list of one module can result in other requests

being queued in any other support module except the symbol table support module.

For that reason, the symbol table support module is forced to update first, then

the other three support modules are called repeatedly until all of the lists are

empty, at which point all of the effects of the original change have been

propagated throughout the program.

5.5.2. 7. Driving Routines - The Outer Level of SEMCOM

The functions described above (§5.5.2.1 to §5.5.2.4) are invoked by the externally

visible (outer level) SEMCOM routines.

When SEMCOM i s initialized it registers its interest i n an event called

ASPEN_$NODE_CHANGE. This event is triggered by the ASPEN module when a

node in the AST is changed or deleted. The ASPEN_$NODE_CHANGE event

passes, as a parameter, a pointer to the modified node in the AST. The event

causes a call to the sem_event_node function, which determines whether the new

node has been modified or deleted and calls _SEMCOM_replace_list or

_SEMCOM_remove_list accordingly.

_SEMCOM_replace_list uses the ASPENinq_semantics function to find the head

and tail of the list of SEMCOM_STMTs associated with the new node. Although

the node has been changed, its associated SEMCOM_STMTs are still those of the

old node (i.e. the old list).

A new list of SEMCOM_STMTs is generated, representing the semantics of the

new node. The pointers to the head and tail of this list (the new list) are stored

in the AST, overwriting the AST's pointers to the old list. After the head_merge

and tail_merge functions merge the new list into the main list, the main list of

SEMCOM_STMTs accurately reflects the semantics of the program represented by

the AST.

Incremental compilation may now begin. The values of t he oldp, oendp, newp

and nendp pointers are known. These values are used to call head_merge,

tail_merge, extend, remove then insert.

44

_SEMCOM_remove_list performs similar tasks to those performed by

_SEMCOM_replace_list. However, there is no new list, so the five functions are

called with null values for the newp and nendp pointers. Effectively, remove is the

only function of these five which will do anything when called by

_SEMCOM_remove_list.

The SEMCOMupdate function 1s invoked from the mam loop in the outermost

level of PECAN (pascalmain.c), to update the semantics after the execution and

unexecution is completed.

45

Chapter 6

Modifications to PECAN

6.1. Aim of the Modifications

The aim of this thesis project i s to find some way of comparmg the PECAN

approach to incremental compilation (β-type incremental compilation) with an

α-type incremental compilation method. As mentioned in §2.2.2 , balancing the

costs of α-type and β-type incremental compilation 1s the fundamental design

question in the area of incremental compilation.

To this end, the SEMCOM module has been modified so that PECAN can

support three different types of incremental compi lation:

incremental compilation (β-type) as before;

procedure compilation (α-type incremental compilation with the smallest
enclosing Pascal procedure or function 1 or mam program as its
recompilable unit); and

complete compilation (α-type incremental compilation with the entire
program as its recompilable unit).

Further, the programmer 1s g1ven the abili ty to specify that recompilation should

be performed automatically (as before) or manually (i.e. at the programmer 's

request). 2

Procedure compilation will occur automatically (regardless of whether compilation

is automatic or manual) if

the programmer makes an editing change to a node in the AST which
is not enclosed by the same procedure as was the last node to be
changed (i.e the programmer has moved out of a procedure); and

the procedure which encloses the last node which was changed has not
already been recompiled.

1Throughout this chapter the word "'procedure" will be used to refer to a procedure or fun ction (except
where the context indicates otherw ise).

2

F o r a. discussion of the question of when to trigger recompilation , see §2.3.2 .2.

46

The mam interest of this project i s with procedure compilation; complete

compilation was included for curiosity.

Effectively, these modifications enable a companson to be made of the relative

merits of the approach to incremental compilation taken by PECAN and that

taken by the Magpie system (see §3.3 .5). Magpie performs its recompilation on a

procedure basis. When the programmer has finished making editing changes to a

procedure, that procedure is recompiled in the background. It is not practicable to

implement background compilation in PECAN. Nevertheless the two methods can

be compared within the PECAN system. By setting compilation to manual, and

allowing PECAN to recompile each procedure after a number of editing changes

have been carried out within that procedure, PECAN can be made to approximate

the Magpie approach.

6.2. Generality of the Modifications

It will be recalled that, since page 19, PECAN has been considered not as an

environment generator but as a Pascal environment. However, when modifying the

SEMCOM module, thought must be given to that module's generality and whether

any of the modifications are language specific. There is one modification that has

been made to SEMCOM as part of this thesis project which assumes that the

supported language is Pascal. One step i n procedure compilation involves finding a

node's enclosing procedure in the AST. 3 This is performed by moving up through

the tree until a BLOCK node i s found. BLOCK nodes are defined in the

specification for Pascal, but there i s no good reason to suppose that the

specification for any other language will define its recompilable unit as a BLOCK.4

This flouting of generality can be justified for the purposes of this experimental

comparison of compilation methods.)f these modifications to PECAN were to be

implemented in a more concrete fashion, the language specification could be altered

to allow an explicit statement that a given construct is a recompilable unit.

Provision for tagging constructs already exists. 5 Given the fact that the

modifications made as part of this project were intended only to compare two

different approaches to incremental compilation, it was deemed unnecessary to alter

the definition of the specification language.

3 As described in §6.4.3.

4lndeed, another language may specify more than one recompilable unit. In Pascal , BLOCK is
sufficient as it makes up part of all three recompilable units: procedures , functions and the main
program.

5 e.g. the COMMENT label , used to indicate that the construct can be followed by a comment.

47

6.3. Ideal Modifications

When an entire procedure i s recompiled after a number of modifications have

been made, the compiler has to replace the flow graph representation of the old

procedure with a flow graph representation of the new procedure. Parts of a flow

graph representation are removed when SEMCOM_STMTs are unexecuted.

However , in the case of procedure compilation, it would be useful if the flow graph

representation of the procedure could be removed in one step before a new

representation is constructed by executing SEMCOM_STMTs. Unfortunately, the

module which maintains the flow graph representation (the FLOW module) does

not provide a function to remove large sections of the flow graph representation in

one operation. It was decided to limit the modifications made in this thesis

project to one module of the PECAN system (the SEMCOM module).

Accordingly, no change has been made to the FLOW module. Removal of the

flow graph representation of a procedure i s implemented usmg the

_SEMCOM_unexecute function. 6

When companng the results of a number of tests (see §6.6), the cost of

unexecuting SEMCOM_STMTs in order to remove the flow graph representation of

a procedure is ignored on the basis that it would be possible to perform the same

operation in one step.

6The same is true when removing the flow graph representat ion of an entire program during complete
recompilation .

4 8

6.4. Actual Implementation Details

Details of the SEMCOM module code that has been modified or added i n the

course of this thesis project are given in Appendix B.

6.4.1. The Compilation Monitor

The SEMCOM module has been modified so as to provide compilation

information in a window (the compilation monitor). For incremental compilation

(as previousl y implemented) the compilation monitor displays:

the number of SEMCOM_STMTs eliminated by head_merge;

the number of SEMCOM_STMTs eliminated by tail_merge;

the number of SEMCOM_STMTs by which extend extends the new list;

the number of SEMCOM_STMTs unexecuted and removed by remove;
and

the number of SEMCOM_STMTs executed by insert.

This new window allows the programmer to set the type of compilation

(incremental, procedure or complete) and to toggle the automatic/manual switch.

There is also a COMPILE button which forces SEMCOM to compile using

whichever compilation method was last chosen. 7 Using the COMPILE button has

no effect if the compilation is set to incremental for the very good reason that

incremental compilation is meaningless __ unless there is an amended node from which

to construct a new list.

The compilation information, together with information about which compilation

method is current, is displayed in the compilation monitor. When this information

can no longer be displayed on the screen, the screen scrolls to keep up with the

latest information. The rest of the new window's commands concern moving

around within the window.

It should be noted that it is possible to do some fairly horrible things to the

SEMCOM representation of the AST by using the SEMCOM window in a na1ve

way. For example, if the user were to set compilation to incremental and manual

then no change to the AST would result in any compilation being performed.

Even if compilation were then set to automatic, the effect of the changes made

7When first invoked , the modified SEMCOM module is ready to perform automatic incremental
compilation, just as it would have done before it was modified.

49

while compilation was set to manual would not be refl ected in the SEMCOM

representation of the program's semantics. The modifications to SEMCOM have

been made for experimental purposes only. Although they provide a fairly robust

view, that view is not intended to be foolproof.

6.4.2. Incremental Compilation

Incremental compilation is performed i n precisely the same way as before except

that calls to the various lower level functions have been moved into different

functions.

6.4.3. Procedure Compilation

In order to perform incremental compilation on a procedural basis, SEMCOM

makes a copy of the list of SEMCOM_STMTs which are associated with the

procedure that is being edited before changes are made to that procedure. When a

change is made to the AST, a list of SEMCOM_STMTs corresponding to the

changed node is created and merged into the main list at the appropriate place.

When compilation is triggered8 the SEMCOM_STMTs in the list that represents

the old procedure are unexecuted,9 then the corresponding SEMCOM_STMTs in the

main list are executed. 10

The effect of this is much the same as if the entire procedure had been modified

then incrementally compiled in the usual PECAN fashion, except that

there is no attempt to find the area of difference (i.e. no use of
head_merge or tail_merge); and

there is no extension of either list (i.e. no use of extend).

The extend function i s not required because procedural compilation is recompiling a

recompilable unit. A recompilable unit has been defined 11 as a construct of the

language such that no change to that construct can affect the meaning of any part

8Procedure compilation can be triggered in one of three ways: manually (by use of the COMPILE
button), automatically (every time a change is made) , or because the programmer has edited a node of
the AST that i s outside the procedure.

9For a discussion of the reasons why these SEMCOM_STMTs are unexecuted, see §6.3.

10Execution commences after the current items have been restored to their appropriate values in the
manner described in §5.5.2.5.

11See page 4.

50

of the program outside that construct. ln other words, no change within a

procedure can cause any local effects in the semantic specification statements

beyond the end of that procedure; the use of the extend function would not result

in any extension of the new list.

6.4.4. Complete Compilation

The modified SEMCOM module performs complete compilation in the following

manner. When a change is made to the AST, a list of SEMCOM_STMTs

corresponding to the changed node is created and merged into the main list, then

the remove function is applied to the old list in order to remove the corresponding

nodes from the flow graph representation of the program. When compilation i s

triggered 12 the SEMCOM_STMTs in the main list are unexecuted, then executed.

This approach could be (uncharitably) described as being a bit "quick and dirty".

After all, unexecuting the main list involves unexecuting SEMCOM_STMTs which

have not yet been executed (specifically, all of the SEMCOM_STMTs that have

been merged into the mam list after changes to the AST). The

_SEMCOM_unexecute function i s sufficiently robust to handle this without

incident , because it does not attempt to remove any non-existent nodes from the

flow graph representation.

6.5. Drawing Comparisons

6.5.1. Choosing an Appropriate Benchmark

Three possi ble benchmarks were considered for companng the efficiency of the

different methods of incremental compilation implemented by the modified

SEMCOM module: elapsed time , code complexity and counting SEMCOM_STMTs.

6.5.1.1. Elapsed Time

The mam problem with measunng elapsed time Is that it Is affected m

unpredictable ways by such diverse and uncontrollable factors as the number of

users on the machine, the amount of free memory available, etc. There is no way

to predict whether a particular method will be benefited by the idiosyncracies of

the system on which the tests are carried out (or the state of the machine at the

time at which th e tests are carried out). This method is plainly unacceptable.

12 Complete compilation can be triggered in e ith er of two ways: manually (by u se of the COMPILE
button) , or automatically (every time a change is made).

51

6.5.1.2. Code Complexity

Profiling the C code that 1s actually executed by PECAN (i.e . counting C

statements) would provide the most detailed possible comparison of compilation

methods. This approach assumes that all of the functions which are invoked by

the various compilation methods are provided by code which is roughly equivalent

in its efficiency. Otherwise, one compilation method could compare unfavourably

with another for no other reason than that it made frequent use of a function

which was inefficiently written. This approach was deemed too dependent upon

the implementation of PECAN to be a good benchmark.

6 .5. 1.3 . Counting SEMCOM_STMTs

Another approach 1s to count the SEMCOM_STMTs that are processed. Rather

than comparing the PECAN code executed by each method (as done when

comparing code complexity) this approach examines the amount of the program

under development that each method recompiles. No assumptions need be made

about the relative efficiency of PECAN functions.

For each compilation method, the compilation monitor provides information on

the number of SEMCOM_STMTs that have been executed and unexecuted and (in

the case of incremental compilation) the number of SEMCOM_STMTs that have

been eliminated by head_merge and tail_merge, and the extent to which the new

list has been extended. From this information it is possible to derive a single

number of SEMCOM_STMTs for comparison purposes. This number will be

referred to as Δ . For incremental compilation, the number (Δ I) is

the number of SEMCOM_STMTs unexecuted by extend; plus

the number of SEMCOM_STMTs unexecuted by remove; plus

the number of SEMCOM_STMTs executed by insert.

For both procedure and complete compilation, the number (Δ P or ΔC) 1s

the number of SEMCOM_STMTs executed.

Note that, for procedure compilation and complete compilation, the number of

SEMCOM_STMTs unexecuted is ignored (see §6.3). Counting SEMCOM_STMTs 1s

the preferred method of comparison.

52

6.5.2. A Cautionary Note

Before comparing Δ-values for the test cases, it is important to consider some

inadequacies in the chosen approach to companng compilation methods. The

approach is deficient in three ways:

Procedure compilation and complete compilation have been built upon a
system which was designed specifically for incremental compilation.
PECAN's method of incremental compilation is being compared with
that of Magpie (and traditional complete recompilation) within a
framework which was constructed specifically for PECAN's method.
Therefore, it must be expected (in a general sense) that the
implementations of procedure and complete compilation will not be the
most efficient.

Counting SEMCOM_STMTs makes no allowance for the considerable
computation required to perform semantic updating after execution and
unexecution (as described in §5 .5 .2.6) . Comparing Δ-values in the
suggested manner assumes that the amount of computation required by
the updating process is proportional to the number of SEMCOM_STMTs
executed and unexecuted. This assumption would appear to be
reasonable; no one compilation method could be expected to require
more updating per SEMCOM_STMTs than any other. However, this
assumption has not been properly validated.

Counting SEMCOM_STMTs takes no account of the computation
performed by the extend function in determining how far to extend the
new list. This difficulty can be obviated by assuming that the
computational cost of extending the new list by one SEMCOM_STMT is
negligible when compared with the cost of executing or unexecuting one
SEMCOM_STMT. This assumption is not necessarily invalid, but is by
no means safe.

A further extension of this thesis project would have been

o to prove this assumption; or

o to develop a method of incorporating the cost of extending the
new list into the comparison method.

These drawbacks must be considered when evaluating the results of tests described

in §6.6.

6.6. Testing

To compare the different methods of compilation, a suite of Pascal programs was

prepared. These programs were modified in various ways and Δ-values were

calculated for each of the compilation methods.

53

6.6.1. Choosing Test Programs

When preparing the suite of test programs, a maJor factor constraining the choice

of program was PECAN itself. PECAN will only .support the development of

small programs. 13 Given that the test programs were restricted m size it was

decided to use examples which were typical of the programs written by

programmers when learning to code in Pascal. Four programs were used: two

from [Findlay 81], one from [Jensen 78], and one from the author's salad days.

These programs are listed in Appendix C.

6.6.2. Modifications

It is important that the modifications made to the test programs reflect the sorts

of changes that programmers are likely to make to Pascal code during program

development. Unfortunately, literature on this topic proved undiscoverable. 14

Any consideration of the manner in which programmers modify programs is

complicated by the fact that the environment in which the program is being

developed may effect the way in which programs are debugged. For example, if

the environment recompiles small changes immediately and quickly then the

programmer may be encouraged to move freely around the source code when

debugging. However , if the environment pauses to recompile each procedure after

editing changes have been made within that procedure then the programmer may

be tempted to stay within that procedure until all of the intended changes have

been made.

The sorts of editing changes made during program development are strongly

linked to the errors that programmers tend to generate. After all, a major part of

the debugging process is the removal of syntactic and semantic errors from the

source code. The authors of [Garlan 84] claim that four errors account for 90% of

all compiler error messages for Pascal programs developed by novice programmers.

130ne Pascal program of a mere 150 lines proved too la rge.

14Method s of measuring a programmer's aptitude for debugging are discussed in [Weinberg 71] (see
pages 174-175). Unfortunately, no mention is made of the sorts of editing changes that apt, or inapt,
programmers make when debugging.

54

In order of frequency these are:

1. variable not declared;

2. variable declared , but not used;

3. variable declared and used , but not initialized; and

4. type mismatch

(of these four , only the first and the fourth are recognised as errors by PECAN).

Armed with this information (and the author's well-developed intuitions regarding

the sorts of editing changes made during the development of a Pascal program) a

senes of tests were designed. These tests are intended to be indicative of the

kinds of changes which programmers make.

Where a test required an initially incorrect program, the correct program was

modified so that it was incorrect before modifications were performed in order to

return the program to its original state. Eight tests were carried out.

1. test1.p (§C.1)
4 occurrences of the same (undefined) variable were changed to a
defined variable (scalarproduct). All of the occurrences were in the
same procedure (multiplymatrices) .
Δ I = 436 ΔP = 640 Δ C = 2018

2. test1.p (§C.1)
All 10 occurrences of the constant n were replaced with the integer
constant 10. The constant n occurred in all 3 procedures. The changes
were made in the order in which th e instances of n occurred .

Δ I = 1640 Δ P = 281] ΔC = 2128

3. test2.p (§C.2)
A single change was made to the definition of the constant p i .

Δ I = 60 Δ P = 904 ΔC = 925

4. test2.p (§C.2)
4 occurrences of the same (undefined) variable were changed to a
defined variable (degrees). All 4 occurrence were in the main program .

Δ I = 428 Δ P = 904

55

5. test2.p (§C.2)
The invocation of the tan function was replaced by an expression which
produced the same result, 15 then the tan function was removed from the
program .

Δ I = 472

6. test3.p (§C.3)
A single corrective change was made to a misspelt function call m the
mam program.

147 447

7. test3.p (§C.3)
All 3 occurrences of an undefined identifier within the factorial function
were changed to references to that function.

8. test4.p (§C.4)
5 more calls to the try function were added to the mam program .
Δ I = 285 Δ P = 649 Δ C = 670

Full details of all of the compilation information extracted for each of these tests

are g1ven i n Figure 6-1.

headings are

In the case of incremental compilation, the column

H - SEMCOM_STMTs disposed of by head_merge;
T - SEMCOM_STMTs disposed of by tail_merge;
E - SEMCOM_STMTs by which extend extends the new list;
R - SEMCOM_STMTs removed and unexecuted by remove; and
l - SEMCOM_STMTs inserted and executed by insert.

In the case of procedure compilation and complete compilation the column headings

are

UN - SEMCOM_STMTs unexecuted; and
EX - SEMCOM_STMTs executed.

15i. e. tan(degrees*pij18o) was replaced by sin(degrees*pi ji8o)jcos(degrees*pi j18o) .

56

6.6.3. Comparison of Results

In this section, the results are interpreted by simple companson of Δ-values.

The questions raised (in §6.5.2) about the efficacy of comparmg Δ-values are

ignored for the moment.

In 5 out of the 8 tests 16 incremental compilation performed better than procedure

compilation which performed better than complete compilation. 17 In 2 of the

tests18 procedure compilation did not perform as well as complete compilation due

to the large number of procedures which were edited.

Only m test 7 was incremental compilation not the most efficient of the

compilation methods (although it still performed better than complete compilation).

In that test, 3 changes were made within a function. That function is so short

that it can easily be understood how 3 changes required more work to compile

separately than did the whole function.

On the basis of these results, it would seem that unless the changes made within

a recompilable unit affect a substantial amount of that recompilable unit (i.e.

either the unit is very small, or the number of changes i s large) then incremental

compilation is more efficient than procedure compilation.

ln other words (and making no allowance for the computational cost of extending

the new list) β-type incremental compilation i s more efficient than α- type

incremental compilation.

It is also interesting to note that the head_merge and tail_merge functions

discard very few SEMCOM_STMTs. This raises doubts as to the need to reduce

the old list and the new list to the area of difference, when incrementally

compiling Pascal structures.

16Tests 1, 3, 4 , 6 and 8.

17.
z.e. ΔI < Δ P

18Tests 2 and 5.

57

test1. .p 2018 SEMCOM_ STMTS

(1) 4 undefined variables changed

Incremental H T E R
0 1 27 1 28
0 1 88 1 89
0 1 80 1 81
0 1 19 1 20

total 0 4 214 4 218 Δ I 436

Procedure UN EX
640 640 Δ P 640

Complete UN EX
2018 2018 Δ C 2018

F igure 6-1: Results of Modifying Test Programs

(continued next page)

58

test1.p 2018 SEMCOM_STMTS

(2) Change all 10 ns to 10

lncremen tal H T E R I
1 1 29 7 31
0 0 29 2 47
0 0 12 7 14
0 0 12 2 30
0 0 12 7 14
0 0 125 2 143
1 1 29 7 31
0 0 29 2 47
0 0 12 7 14
0 0 12 2 30
0 0 12 7 14
0 0 12 2 30

1 37 7 39
0 0 37 2 55
0 0 12 7 14
0 0 12 2 30
0 0 12 7 14
0 0 12 2 30
0 0 12 7 14
0 0 216 2 234

total 3 3 675 90 875 Δ I 1640

Procedure UN EX
1991 1991
370 370
450 450

total 2811 2811 Δ P 2811

Complete UN EX
2128 2128 Δ C = 2128

Figure 6-1 continued

(continued next page)

59

test2.p 925 SEMCOM_STMTS

(3) Single change to value of constant at outer level

Incremental H T E R I
1 8 21 9 30 Δ I 60

Procedure UN EX
904 904 Δ P 904

Complete UN EX
925 925 Δ C 925

(4) 4 undefined variables changed

Incremental H T E R J
0 38 1 39
0 1 34 1 35
0 1 52 I 53
0 1 86 1 87

total 0 4 210 4 214 Δ I 428

Procedure UN EX
904 904 Δ P 904

Complete UN EX
925 925 Δ C = 925

(5) Replace call to tan(X) with sin(X) / cos(X), then delete tan function

Incremental H T -E R I

1 1 21 82 30
0 0 21 0 30
0 0 5 2 121
0 0 0 159 1

total 1 1 47 243 182 Δ I 472

Procedure UN EX
904 945
945 707

total 1849 1652 Δ P 1652

Complete UN EX
808 808 Δ C 808

Figure 6-1 continued

(continued next page)

60

test3.p 447 SEMCOM_STMTS

(6) Single undefined function call changed

Incremental H T E R I
0 1 49 1 50 ΔII 100

Procedure UN EX
147 147 ΔP 147

Complete UN EX
447 447 ΔC 447

(7) 3 occurrences of undefined function identifier changed

Incremental H T E R I
0 1 99 1 100
0 1 68 1 67
0 1 49 1 50

total 0 3 216 3 217 ΔII 436

Procedure UN EX
147 147 ΔP 147

Complete UN EX
447 447 ΔC 447

test4.p 670 SEMCOM_STMTS

(8) 5 more calls to try added to ma1n body

Incremental H T E R I
0 0 0 1 56
0 0 0 1 56
0 0 0 56
0 0 0 1 56
0 0 0 1 56

total 0 0 0 5 280 ΔI 285

Procedure UN EX
649 649 ΔP 649

Complete UN EX
670 670 ΔC 670

Figure 6-1 continued

61

Chapter 7

Conclusions

As stated i n §6.6.3, the test results suggest that β-type incremental compilation

(where the smallest amount of recompilation is performed after each editing

change) is more efficient than α-type incremental compilation (where a structure of

the programming language is chosen as the recompilable unit). However, there are

a number of deficiencies in the comparison method chosen (as explained in §6.5.2).

O f these deficiencies, the one which favours incremental compilation the most is the

third: the fact that no account was taken of the computation performed by the

extend function in order to determine how far to extend the new list. In the tests

described i n §6.6, some 35% of all of the SEMCOM_STMTs executed and

unexecuted during incremental compilation were unexecuted by the extend function

(i.e. the new list was extended to include those SEMCOM_STMTs). This indicates

that the cost of extending the new list significantly affects the total cost of

incremental compilation in PECAN.

A more comprehensive companson of the compilation methods would have taken

account of the cost of the extend function. Profiling the C code which is actually

executed by PECAN in each case would provide such a comparison. That method

was not adopted for this project because it i s too dependent upon the

implementation of PECAN (see §6.5.1.2). However, profiling the code would be an

appropriate benchmark if the environment in which the comparisons were made was

not biased towards one method of compilation, as PECAN was towards incremental

compilation.

The compansons that have been made between α-type and β-type incremental

compilation do not allow any plenary statements to be made about the relative

efficiency of the two methods. However, the performance of incremental

compilation 1s not spectacularly better than that of procedure compilation,

especially when the bias of the comparison method towards incremental compilation

is taken into account. The results suggest that the gains in efficiency associated

with β-type incremental compilation are so small that they do not justify the large

amount of programming work, and structural overheads, required to implement

such a compilation mechanism. β-type incremental compilation is faster, but not

significantly faster, than α-type incremental compilation.

62

PECAN is a useful tool with which to test and demonstrate vanous aspects of

programmmg environment design. However, it 1s only of limited use for exammmg

general aspects of incremental compiler design. The entire structure of PECAN,

from its language specification to the internal representation of its compilation

module, 1s oriented towards β-type incremental compilation. The experiments

carried out as part of this thesis project demonstrate that PECAN is not the ideal

environment in which to compare various methods of incremental compilation.

The other achievements of this project are the thorough description of PECAN's

compilation mechanism, and the implementation of the semantic actions view (a

robust and useful view into the PECAN system).

63

Appendix A

The Semantic Actions View

A.l. The View and its Frmctions

A new view has been developed for the PECAN system. This view provides a

list of the SEMCOM_STMTs associated with the current node, as highlighted in

the SDE and other program views. Information about the type of the current

node and its position in the tree is also provided. Buttons are provided which

allow the window to be scrolled so that all of the list may be examined. Other

buttons provide tree traversal commands. The view will respond to changes of the

current node in other views, and will cause changes to be reflected in other views

when the tree traversal commands are used.

An example PECAN screen, showing the semantic actions view, i s reproduced in

Figure A-1. The SDE and the flow view are on the left side of the screen, the

semantic actions view is on t he right. The SDE's cursor indicates the factorial

identifier, and the flow view's cursor indicates the statement which assigns a value

to that identifier.

The semantic actions v1ew indicates that. the current AST node 1s an

IDENTIFIER node. It is the first of two children , and has one child of its own.

The list of SEMCOM_STMTs that follow s is that list associated with the parent of

the current node. Those SEMCOM_STMTs associated with the current node are

indicated by arrows ("-> ") and are separated from the surrounding

SEMCOM_STMTs by two horizm tal lines. The SEMCOM_STMTs associated with

the parent of the current node are displayed in order to put the current node's

SEMCOM_ STMTs into context.

SEMCOM_STMTs are displayed m the following form: 1

(location) : name index [value] @ pointer into AST

The index i s displayed as a decimal number. All other numbers are hexadecimal.

1In the same form a s they are displayed by the _SEMCOM_dump fun ction in sem commain. c.

65

The scroll bar on the right side of the v1ew indicates that approximately two

thirds of the whole list 2 is currently displayed. The window onto the list can be

scrolled to a desired point m the list by using the mouse to click on the

corresponding point on the scroll bar, or by usmg the scroll buttons (TOP,

BOTTOM, SCROLL UP, SCROLL DOWN, UP and DOWN).3

The tree traversal buttons move the current node around the AST. 4 IN moves

to the first (left most) child of the current node, and OUT moves to its parent.

NEXT moves to the current node's next sibling, and BACK moves to its prevwus

sibling. The view is updated after each tree traversal command, and an event is

triggered so that other views will also reflect the change.

A.2. Implementation Details

The semantic action v1ew 1s implemented by a new module called SAWDUST.5

The view is designed to be completely compatible with existing views. The event

passmg system (provided by the PLUM module, and described in §4.2.3) i s used to

provide a clean interface between SAWDUST and existing modules. The

format t ing, tracing and function-naming conventions adopted m other PECAN

modules have been followed in SAWDUST.

2i .e. the list of SEM C OM_STMTs associated with th e parent of the current node.

3UP moves the window up by one quarter of a screen ; SCROLL UP moves the window up by a whole
screen.

4More correctly, the tree traversal buttons affect which node of the AST is considered the current node.

5sA WDUST stands for Sem antic A c t i o n Window D isplay U s i n g Several Tiles. This is a somewhat
contrived acronym , but. it pales into insignificance when compared with some of the acronyms which are
used to name PECAN modules.
Examples range from the utilitarian

ASH - A Screen Handler ,
AP IO - A p o l l o !nput Only P a c k a g e (an anagrammatical acronym) ,
MFE - M A P L E F ron t E n d , and
VD! - Virtual Device Interface - -

through the fairly p lausib le
SGP - S imple Graphics P a c k a g e ,

BRIM - Brown Image Format, and
PLUM - P r o g r a m m i n g Language U t i l i t y Module

rising to the giddy heights of
BALSA - B rown University Algorithm S imulator and A n i m a t o r , and
WILLOW - Wonderful !ntegrated Language for Laying-Out Windows.

Regrettably, the meanings of MAPLE and TULIP are unknown.
In this con text , SAWDUST seems almost credible as an ac ronym .

66

The SAWDUST module consists of four files:

sawdust.h (§A.3)
The external header file.
Lists the externally accessible SAWDUST functions and gives
details of the module's trace facilities. 6

sawdust_local.hi (§A.4)
The local header file.
Includes a definition of the SA WDUST_SEMCOM_STMT type,
which is identical in structure to the SEMCOM_STMT type but
is defined in this way because the SEMCOM_STMT type is not
externally accessible.

sawdustmain.c (§A.5)
Defines the SAWDUST window (using the WILLOW module from
the Brown Workstation Environment) and displays
SEMCOM_STMTs (using the VT module which provides a virtual
terminal). Window movement and re-s1zmg 1s handled by
WILLOW.

sawdustbutton.c (§A.6)
Button handling routines.

6 Note that PECAN's main function (contain ed in pas calmain. c) is modified so as to invoke the
SAWDUSTinit function and to allow trace information to be passed to the SAWDUSTtrace function. The
previously unused Z debug switch was utilized. Invoking PECAN with the -DZn option will cause th e
number n to be passed to SAWDUSTtrace .

85

Appendix B

The SEMCOM Module

As explained in Chapter 5, the SEMCOM module handles incremental compilation

in PECAN. This appendix contains a description of, and selected program listings

from, the files that make up that module as modified in the manner described in

Chapter 6.

B.l. The Compilation Monitor

The SEMCOM module has been modified so as to provide a new v1ew; a window

which displays compilation information. Buttons are provided which allow the

window to be scrolled so that all of the information may be examined . Other

buttons allow the programmer to choose the method of compilation to be employed

when a modification is made to the AST.

An example PECAN screen, showing the compilation monitor, i s reproduced in

Figure B-1. The SDE and the flow view are on the left side of the screen, the

compilation monitor is on the right. The scroll buttons are identical to those

provided by the semantic actions v1ew, and explained in §A.l. In addition, the

CLEAR button clears the screen, erasing any information which may have been

displayed on it.

The INCREMENTAL, PROCEDURE and COMPLETE buttons choose the

compilation method that will be next used. Each choice is echoed on the screen

when made. The COMPILE button forces SEMCOM to compile immediately

(unless the compilation method is incremental). The AUTO button toggles

automatic recompilation. When automatic recompilation is set, compilation is

triggered by every change made to the AST. When automatic recompilation is not

set, 1 compilation is not performed unless the COMPILE button is used or (if

procedure compilation i s selected) a change is made to the AST outside the

procedure within which the last change was made .

1The AUTO button becomes the MANUAL button when automatic recompilation is not set in order to
display the state of automatic recompilation.

87

B.2. Implementation Details

The modified SEMCOM module consists of eight files:

semcom.h (§B.3)
The external header file.
Lists the externally accessible SEMCOM functions and gives
details of the module's trace facilities.

semcom_l ocal. hi (§B. 4)
The local header file.
Includes the definition of the SEMCOM_STMT type.

semcommain.c (Not listed - modifications to SEMCOM did not significantly
affect this file.)
Includes the initialization and trace routines, and sem event node
which is invoked by PLUM when an ASPEN_$NODE_CHANGE
event is broadcast.

semcomstmt.c (§B.5)

semcomeval.c

semcornexec.c

Maintains lists of SEMCOM_STMTs. Includes the
_SEMCOM_replace_list and _SEMCOM_remove_list functions
(modified to handle procedure compilation and complete
compilation) and the new functions SEMCOM_force_compilation
(which implements the COMPILE button), copy_list (which makes
a copy of an ex1stmg list of SEMCOM_STMTs), and
enclosing_block and enclosing_program (which find the enclosing
node of the appropriate type in the AST).

(§B.6)
Contains the head_merge, tail_merge, extend and insert func tions .
The remove function is renamed to SEMCOM_remove (because
the modifications required that it be visible to other files in the
SEMCOM module). These low-level functions are called by the
new functions SEMCOM_change_incremental,
SE MCO M_change_procedure and SE MCO M_change_complete
which replace the function _SEMCOM_change.

(Not listed - modifications to SEMCOM did not affect this file.)
Handles the execution and unexecution of SEMCOM_STMTs.
_SEMCOM_execute and _SEMCOM_unexecute both use a large
switch statement with a case for each type of SEMCOM_STMT.
Maintains and modifies the values of the current items (using
_SEMCOM_set_current, _SEMCOM_get_currents, etc.).

semcomwindow.c (§B.7 - New file)
Defines the SEMCOM compilation monitor (using the WILLOW
module) and controls the display of information on that screen.

semcombutton.c (§B.8 - New file)
Button handling routines.

Only those functions that were added or altered when the SEMCOM module was

modified have been included in the program listings that follow.

120

Appendix C

Test Programs

The Pascal programs used for testing i n §6.6 are listed in this appendix (§C.l to

§C.4). The program listings have been formatted by PECAN, using the formatting

information included in the specification of Pascal (see §5.2).

C.l. Program Listing: test1.p

PROGRAM motrixproduct (input,output);

{ token from [Findlay 81), pages 200-201

CONST
n = 10;

TYPE
matrix ARRAY [1 .. n , 1 .. n] OF integer;

VAR
a, b, p mat r i x;

PROCEDURE reodmotrix (VAR m matrix);

VAR
i, 1 .. n;

BEGIN { Procedure reodmatrix
FOR i : = 1 TO n DO

END;

FOR j := 1 TO n DO
READ(m[i ,j))

PROCEDURE writematrix (VAR m matrix);

VAR
i, 1 .. n;

BEGIN { Procedure writematrix
FOR i := 1 TO n DO

END;

BEGIN

END

WRITE('[');
FOR j := 1 TO n DO

WRITE(m[i,j));
WRITELN(') ')

PROCEDURE multiplymatrices (m1, m2

VAR
i , j, k : 1 .. n;
sea l orproduct : integer;

BEGIN { Procedure multiplymatrices
FOR i := 1 TO n DO

FOR j := 1 TO n DO
BEGIN

scalarproduct := 0 ;
FOR k := 1 TO n DO

121

matrix; VAR product matrix);

scalarproduct := scalarproduct+m1[i ,k]*m2[k,j];
product[i ,j] := scalarproduct

END
END;

BEGIN { Program matrixproduct
readmatrix({ m := } a) ;
readmatrix({ m := } b);
multiplymatrices({ m1 := } a,! m2
writematrix(! m:=! p)

END.

C.2. Program Listing: test2.p

PROGRAM tableoftans (output);

} b, { product . - } p);

{ taken from [Findlay 81], pages 167-168 }

CONST

VAR

pi 3 . 1415926536 ;

degrees : 0 . . 360;
l i ne : 0 . . 36;

FUNCTION ton (x : reo l) : reo l ;

no declarations }

BEGIN Function ton }
ton .- sin(x)/cos(x)

END ;

BEGIN { Program tableoftans }

END.

WRITELN(' Angle':5, 'Tongent':15);
WRITELN(**);
FOR l ine := 0 TO 36 DO

BEGIN

END

degrees := 10*l ine ;
WRITE(degrees :5);
IF degrees MOD 180 = 90 THEN

WRITELN('Infinity' :15)
ELSE

WRITELN(tan(l x := } degrees•pi/180) :1 5

122

C.3. Program Listing: test3.p

PROGRAM factorial (input,output);

{ traditional

VAR
x integer;

FUNCTION factorial (n integer) : integer ;

no declarations

BEGIN { Function factorial
IF n = 1 THEN

foetor i o l .-
ELSE

factorial := n*factorial({ n := } n-1)
END ;

BEGIN { Program factorial }
WRITELN(' Enter o number : ') ;
READLN(x) ;
WRITELN(x, '! = ', factorial({ n . - } x))

END .

C.4. Program Listing: test4.p

PROGRAM recursivegcd (output);

{ token from (Jensen 78), page 82 }

VAR
x, y , n i nteger ;

FUNCTION gcd (m, n : integer) : integer ;

no declarations }

BEGIN { Funct i on gcd
IF n = 0 THEN

gcd : = m
ELSE

gcd gcd(j m
END ;

} n , { n . - } m MOD n)

PROCEDURE try (o , b : i nteger) ;

no declarations

BEGIN { Procedure try }
WRITELN(o, b , gcd({ m .- } o , { n } b))

END ;

BEGIN { Program recur s ivegcd }

END .

try({ a . - } 18 , { b := } 27);
try({ a.- } 312, { b := } 2142) ;
try(l a .- } 61 , { b } 53);
try({ a . - } 98, { b := } 868)

D.l. Introduction

123

Appendix D

Earley's Algorithm

Earley's algorithm 1s a general context-free parsmg algorithm. I t handles a larger

class of grammars i n linear time than most restricted algorithms. For

unambiguous grammars it is bounded by n2 (where n is the number of symbols in

the input string). In the worst case its time bound is n 3 .

Earley's algorithm was first described in his Ph. D. Thesis [Earley 68]. It is also

described in [Aho 72] and (with greater pellucidity) in [Earley 70]. This appendix

uses the notation from [Earley 70]. An analysis of the efficiency of the algorithm

can be found in that article.

D.2. The Recognizer

A parser must be able to recogmze whether an input string i s a valid sentence of

a g1ven grammar. Earley's recognizer scans, from left to right, an input string

X1 ... Xn of symbols, and is able to look ahead some fixed number k of symbols.

While scanmng the input string, the recogmzer constructs sets (Si) of states.

Each of these state sets i s initially empty. Each state s i n a state set i s a

quadruple of the form

s (p, j, /, α>.

where p i s an integer which identifies the production from which the recogmzer i s

attempting to derive the curren t section of the input string (the

productions of the grammar are numbered for this purpose),

J is an integer referring to a place within the right hand side of the

production p (this indicates how much of the production has been

scanned),

124

f i s an integer referring to the position in the input string where the

recognizer first began to look for this instance of the production p,

and α is a k-symbol string which is syntactically allowed to follow this instance

of the production p.

It is necessary to ensure that there will always be k symbols for the recogmzer

to see when looking ahead, even when the input string is fully scanned. To

achieve this , a terminating symbol is introduced1 and k+ 1 terminating symbols

are placed at the right end of the input string.

The recogmzer starts by inventing a new production (production 0)

φ -- > R

where φ i s a new non-terminal symbol and R i s the root of the grammar (the non-

terminal which produces a sentence).

A state s is put into the state set S0 so that

where k is a string of k terminating symbols.

For clarity, states will be represented as the pth production with a dot2 marking

the position of the pointer j, together with an integer (the value of f) and a

k-symbol string (α) . So, the state s can be represented as

D.3. The Recognizer's Operations

The recognizer processes the states i n the state set S i in order, usmg only three

operations: predictor, scanner and completer. These operations are applied to a

state s in the following ways:

1 is a metasymbol; it does not occur in the grammar.

2 Another metasymbol.

] 25

Predictor

If there is a non-terminal symbol to the right of the dot in the production, add

a new state to Si for each alternative production of that non-terminal. Each of
i

these new states has

its dot at the beginning of the production (as none of the symbols of
the production has yet been scanned)

its f assigned to i (the current position m the input string)

its α assigned to the k symbols that follow t he non-terminal (these are
determined by reference to the production in s and/or the value of α in
s).

Scanner

If there is a terminal symbol to the right of the dot m the production, compare

that terminal symbol with the symbol Xi+l (the next symbol in the input string).

If they match, add to si+l a copy of s with

its dot moved to the right to indicate that the terminal symbol has
been scanned

its f unchanged

its α unchanged.

Completer

If the dot is at the end of a production, compare α with xi + l ... xi+k (the next

k symbols of the input string). If they match, go back to the state set where the

recognizer first began to look for this instance of the production (ie. Sf) . Take all

of the states which could hav e led to the current production (ie. those states wi t h

the same non-terminal to the right of the dot as is on the left hand side of the

production in s). Copy these states from Sff into Si, modified so that each of the

new states has

its dot moved to the righ t to indicate that the non-terminal symbol has
been scanned

its f unchanged

its α unchanged.

126

Each of these operations i s applied i n turn to the states in Si , then the

recognizer processes the states in S i + 1 . If applying all three operations to si leaves

Si+l empty then the input string is not a valid sentence of the language. This

means that Earley 's algorithm shares the property with some (but not all) other

parsing algorithms that as soon as a point is reached in the input string such that

no possible following symbols could make the input string a valid sentence of the

grammar, the recognizer realizes that the input string is not well-formed.

If the recogmzer ever produces a state set Si+ l consisting only of the state

φ --> R . 0 k

then the input string is a valid sentence of the grammar.

D.4. Application of the Recognizer to an Example Grammar

Consider the grammar G defined i n Figure D-1. 3

E --> T + E

E -- > T

T -- > F *T

T -- > F

F --> (E)

F -- > a

Figure D-1: Definition of the Grammar G

The terminal symbols of the grammar G are {a,+ ,*,(,)}. The non-terminals are

{E, T, F}. Let the input string (X1 ... Xn) be

(a+a)*a

Let k= l, so that the recogmzer will only look one symbol ahead when scanmng the

input string.

As the root of grammar 1s E , the recogmzer puts the following state in t o S0

φ -- > . E 0

before starting the repeated application of the three operations.

3Example grammar G is taken from the d escription of Earley 's algorithm in [A ho 72] .

127

To the right of the dot is a non-terminal symbol, so the predictor is used. The

predictor adds a new state to S0 for each alternative production of E, namely

E -- > .T+ E
E --> .T

0
0

The dots are at the beginning of the productions because none of the symbols has

been scanned yet. Each α = since a is to be found after E m the original

state. The predictor is applied to the two new states. This results in the

following states being added to S0

T -- > .F*T 0 +
T --> .F 0 +
T -- > .F*T 0
T -- > .F 0

The predictor is applied repeatedly to the states m S0 until all of the newly-

created states have been processed , at which stage so wil l contain the following

states

φ -- > . E 0
E --> .T + E 0
E -- > .T 0
T -- > .F*T 0 +
T -- > .F 0 +
T --> .F*T 0
T --> .F 0
F --> .(E) 0 *
F -- > .a 0 *
F -- > .(E) 0 +
F -- > .a 0 +
F --> .(E) 0
F --> .a 0

The scanner i s now applied. As xl = (' the scanner will add to sl those states

in S0 with a (t o the right of the dot , wi t h each dot moved to the right to

indicate that the (has been scanned . S1 now contains these states

F -- > (.E) 0 *
F --> (.E) 0 +
F --> (.E) 0

The predictor is applied to all of the states in 8 1 as they all have a non-terminal

to t he right of the dot. Repeated application of the predictor leaves S1 containing

the following states

128

F -- > (.E) 0 *
F -- > (.E) 0 +
F --> (.E) 0
E --> .T+ E 1)
E --> .T 1)
T -- > .F*T 1 +
T -- > .F 1 +
T -- > .F*T 1)
T -- > .F 1)
F -- > .(E) 1 *
F -- > .a 1 *
F --> .(E) 1 +
F -- > .a 1 +
F -- > .(E) 1)
F -- > .a 1)

The scanner can be applied agam. X2 = a , so the scanner will add to s 2 every

state in 81 with an a to the right of the dot (the dot in the production in each

new state is moved to the right) . 82 now contains the states

F -- > a. *
F --> a . +
F -- > a.)

The completer can now be applied for the first time. Each of the states in 82

has a dot at the end of its production , but only the second state in 8 2 has an α

which matches the lookahead string (as k= l, the lookahead string is "+" (ie. X3)).

The completer goes back to the state set where the recognizer first began to look

for this instance of the production (pointed to by f). As / = 1, the completer goes

back to S1. Now the completer adds to 8 2 all those states in S1 that could have

led to the second production in s2, with the dot moved to the right to indicate

that the non-terminal (F) has been successfully scanned. So, the completer will

add the following states to S2

T -- > F. *T
T -- > F.
T --> F. *T
T -- > F.

1
]

1
1

+
-+
)
)

The completer i s applied agam to the second of these new states as its α matches

the lookahead string. This step adds to S2 the following states from S1

E --> T .+ E 1
E -- > T. 1

The completer cannot be applied agam to S2, so the recogmzer continues with the

application of the scanner to the states in S2.

129

The recogmzer will continue in the manner described above until it produces a

state set4 which contains only the state

φ -- > E-L 0 -j

As E is the root of the grammar G , the recogmzer has reached the stage where

the input string

(a+a)*a

has been recognized as a valid sentence of the grammar. The complete senes of

state sets for this example appears in Figure D-2.

D.5. Constructing a Parser from the Recognizer

To construct a parser, the recogmzer must be modified so that it builds a

derivation tree during the recognition process. This is achieved by building links

between states when the completer operation 1s used. (For the purposes of

building the derivation tree, the values of α can be ignored; lookahead is only

required for the recognizer.)

Whenever the completer adds a state to a state set, the parser builds a pointer

from the non-terminal (before the dot m the new state) to the state which

triggered the completer operation (which has a production for that non-terminal).

If the non-terminal is ambiguous then more than one state will cause the completer

operation to add the same new state. In that. case, there will be a set of pointers

from the non-terminal in the new state (one for each completer operation which

added that new state).

When the whole input string has been scanned, the derivation tree for the

sentence will be attached to the final state

φ -- > R . 0

If the sentence that is scanned 1s ambiguous then all possible derivation trees will

be attached to t he final state.

4The fin a l state set is Sn+ l (in this example S8).

130

Input string = (a+ a)* a

k= 1

s 0 sl s2
Xl=(X2= a X = + 3

φ --> . E 0 F -- > (.E) 0 * F --> a . 1 *
E --> .T +E 0 F -- > (.E) 0 + F -- > a. 1 +
E -- > .T 0 F -- > (.E) 0 F -- > a. 1)
T --> .F*T 0 + E -- > .T + E 1) T -- > F. *T 1 +
T --> .F 0 + E -- > . T) T --> F.. 1 +
T --> .F *T 0 T -- > .F*T 1 + T -- > F .*T 1)
T -- > .F 0 T --> . F + T -- > F . 1)
F -- > .(E) 0 * T -- > .F*T 1 E -- > T.+ E 1)
F --> .a 0 * T -- > . F 1 E -- > T . 1)
F --> .(E) 0 + F -- > .(E) 1 *
F -- > .a 0 + F -- > .a 1 *
F -- > .(E) 0 F --> .(E) 1 +
F --> .a 0 F -- > .a 1 +

F -- > .(E) 1)
F -- > .a 1)

s 3 s4 s5
X = a 4 X -) 5- X = * 6

E -- > T + .E 1 F -- > a. 3 * F -- > (E). 0 *
E --> .T+ E 3 F -- > a. 3 + F -- > (E). 0 +
E --> .T 3 F -- > a. 3) F --> (E). 0
T -- > .F *T 3 + T --> F. *T 3 + T -- > F. *T 0 +
T -- > . F 3 + T -- > F . 3 T -- > F. 0 +
T -- > .F*T 3 T --> F. *T 3) T --> F .*T 0
T -- > . F 3 T -- > F . 3) T -- > F. 0
F -- > .(E) 3 * E --> T. + E 3)
F -- > .a 3 * E -- > T. 3)
F -- > .(E) 3 + E -- > T + E.])
F -- > .a 3 + F -- > (E.) 0 *
F -- > .(E) 3) F -- > (E.) 0 +
F --> .a 3) F -- > (E.) 0

Figure D-2: State Sets for the Example Input String

(continued next page)

131

86 87 88
X7= a X =8

T -- > F*.T 0 + F -- > a. 6 * φ -- > E . 0
T -- > F *.T 0 F -- > a . 6 +
T -- > . F *T 6 + F -- > a. 6
T -- > .F 6 T -- > F. *T 6 +
T -- > .F*T 6 T -- > F. 6
T -- > .F 6 T -- > F. *T 6
F --> .(E) 6 * T -- > F. 6
F -- > .a 6 * T -- > F *T. 0 +
F -- > .(E) 6 + T -- .> F*T. 0
F -- > .a 6 + E -- > T. + E 0
F -- > .(E) 6 E -- > T. 0
F --> .a 6 φ -- > E . 0

Figure D-2 continued

In the example g1ven m §D.4 the completer operation i s first applied to the state

F -- > a . 1

i n S2 , and the following states are added to 8 2

T -- > F.*T 1
T -- > F.

The parser builds two pointers (one from the F m each of the new states) to the

state

F -- > a. 1

A diagram showing the way i n which the parser links the states for the whole

input string appears in Figure D-3. Although there are several states which are

pointed to by more than one other state, there is only one derivation tree attached

to the final state (φ -- > E) . (If the grammar G had been defined ambiguously in

that it provided more than one way to parse the input string then the parser

would have attached to the final state one derivation tree for each alternative

derivation of the input string.) Following the pointers from the final state, the

parse tree for the whole sentence can be constructed.

example input string is shown in Figure D-4.

The parse tree for the

132

Input string = (a+a) * a

so F --> (E) T --> F*T T --> F E->T+E E-> T φ - - > E

t

S1 F --> a T -> F*T T --> F E-> T+E E --> T

F --> a tt

s3 F --> a T-> F*T T --> F E-> T+E E --> T

F --> a tt
s6 F --> a T --> F*T T-> F

tt

Figure D-3: Linked States for the Example Input String

] 1 3 3

Input string = (a+a)*a

φ

E

T

F * T

(E) F

T + E a

F T

a F

a

Figure D-4: Parse Tree for the Example Input String

[Aho 72]

[Aho 73]

[Aho 86]

[Atkinson 78]

] 34

References

Alfred V. Aho and Jeffrey D. Ullman.
The Theory of Parsing, Translation, and Compiling, Volume I:

Parsing.
Prentice-Hall, Englewood Cliffs, New Jersey, 1972.
ISBN 0-13-914556-7.

Alfred V. Aho and Jeffrey D. Ullman.
The Theory of Parsing, Translation, and Compiling , Volume II:

Compiling.
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
ISBN 0-13-914564-8.

Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman.
Compilers - Principles, Techniques, and Tools.
Addison- Wesley , Reading, Massachusetts, 1986.
ISBN 0-201-10088-6.

L.V. Atkinson and J.J. McGregor.
CONA - A Conversational Algol System.
So ftware - Practice and Experience 8(6):699-708, November-

December 1978.
Describes an implementation of conversational Algol. CONA

converts Algol programs into an intermediate form which can
be interpreted efficiently. When a change is made, CONA
recompiles the entire program (the intermediate representation
and the new text) into the intermediate form.

[Atkinson 81a] L.V. Atkinson and S.D. North.
COP AS - A Conversat ional Pascal System.
Software - Practice and Experience 11(8):819-829, August 1981.
Describes an implementation of conversational Pascal , analogous to

CONA [Atkinson 78] .

[Atkinson 8lb] L.V. Atkinson, J.J. McGregor and S.D. North.

[Bahlke 86]

Context sensitive editing as an approach to incremental
compilation.

The Computer Journal 24(3):222-229, August 1981.
Describes the implementation of an incremental system for

developing programs in a subset of Algol-60. A syntax-directed
editor is used, and machine code is produced.

Rolf Bahlke and Gregor Snelting.
The PSG System: From Formal Language Definitions To

Interactive Programming Environments.
AGM TOPLAS 8(4):547-576, October 1986.

[Barlow 86a]

[Barlow 86b]

[Bazik 85]

[Braden 68]

[Brown 79]

135

J. Barlow, S. Leung, M. Nearhos and D. Purdue.
PECAN Programming Environment User Guide.
Paper, Department of Computer Science, Australian National

University, Canberra, 19 November 1986.

John D. Barlow.
Generation of a Programming Environment for Concurrent

Languages using the PEC AN Programming Environment
Generator.

Honours Thesis, Department of Computer Science, Australian
National University, Canberra, November 1986.

John Bazik, .Joseph N. Pat o, Steven P. Reiss and Marc H. Brown.
The Brown Workstation Environment Programmer's Manual,

Version 1 .0 .

Manual, Department of Computer Science, Brown University,
Providence, Rhode Island , January 1985.

Helen V. Braden and William A. Wulf.
The Implementation of a BASIC System i n a Multiprogramming

Environment.
Communications of the ACM l1(10):688-692, October 1968.
Gives details of a simple incremental compiler for BASIC

programs. Most statements are compiled into machine code,
then statement-to-statement execution is handled interpretively.

P.J. Brown.
Writing Interactive Compilers and Interpreters.
John Wiley and Sons, Chichester, 1979.

(Reprinted with corrections 1980.)
ISBN 0-471-27609-X.
A practical guide to implementing interactive languages.

Unfortunately, its discussion of incremental compilation is
limited to languages with few context-dependent features.

[Chandhok 85] Ravinder Chandbok , David Garlan, Dennis Goldenson , Philip Miller
and Mark Tucker.

[Crowe 82]

Programming environments based on structure editing: The
GNOME approach.

in Anthony S. Wojcik (ed.)
1985 National Computer Conference, AFIPS Conference

Proceedings, Volume 54 ·
AFIPS Press, R.eston, Virginia, 1985.
ISBN 0-88283-046-5.

pp . 359-369
See also [Garlan 84].

M .K. Crowe.
An Incremental Compiler.
AGM SIGPLAN Notices 17(10):13-22, October 1982.
Gives details of an experimental incremental system. This paper

would appear to add nothing to previously published work.

[Crowe 85]

[Delisle 84]

[Demers 81]

[Earley 68]

[Earley 70]

[Earley 72]

[Findlay 81]

[Ford 84]

136

Malcolm Crowe, Clark Nicol, Michael Hughes and David Mackay.
On Converting a Compiler into an Incremental Compiler.
AGM SIGPLAN Notices 20(10):14-22, October 1985.
Describes a strategy for incremental parsing based on dynamic

maintainance (sic) of a program's syntax tree. Unfortunately,
the authors give a very simple (and simplistic) description of
their method , which has been used to develop an incremental
parser for Ada.

Norman M. Delisle, David E. Menicosy and Mayer D. Schwartz.
Viewing a Programming Environment as a Single Tool.
Proceedings of the AGM SIGSOFT/ SIGPLAN Software

Engineering Symposium on Practical Software Development
Environments, AGM SIGPLAN Notices 19(5):49-56, May 1984.

Alan Demers, Thomas Reps and Tim Teitelbaum.
Incremental Evaluation for Attribute Grammars with Application

to Syntax-directed Editors.
in Conference Record of the Eighth Annual AGM Symposium on

POPL.
ACM, New York, New York, 1981.
ISBN 0-89791-029-X.

pp. 105-116
Discusses the uses of attribute grammars for specifying syntax-

directed editors. An algorithm is provided for evaluating
attributes incrementally.

Jay Earley.
An Efficient Context-Free Parsing Algorithm.
Ph. D. Thesis, Computer Science Department, Carnegie-Mellon

University, Pittsburgh, Pennsylvania, 1968.

Jay Earley.
An Efficient Context-Free Parsing Algorithm.
Communications of the AGM 13(2):94-102, February 1970.
Based on [Earley 68].

Jay Earley and Paul Caizergues.
A Method for Incrementally Compi ling Languages with Nested

Statement Structure.
Communications of the AGM 15(12):1040-1044, December 1972.

William Findlay and David A. Watt.
Pascal: An lntroduct.ion to Methodical Programming (second

edition).
Pitman, London, 1981.
ISBN 0 273 01714 4.

Ray Ford and Duangkaew Sawamiphakdi.
A Greedy Concurrent Approach to Incremental Code Generation.
in Conference Record of the Twelfth Annual AGM Symposium on

POPL, 1g85.
ACM, New York, New York, 1984.
ISBN 0-89791-147-4.

pp. 165-178
Describes the PSEP system (Parallel Syntax-directed Editing for

Pascal) which uses two processes (one for the editor and one
for the code generator) to create an incremental system.

137

[Fritzson 83a] Peter Fritzson.
Symbolic Debugging Through Incremental Compilation in an

Integrated Environment.
The Journal of Systems and Software 3(4):285-294, December

1983.

[Fritzson 83b] Peter Fritzson.
A Systematic Approach to Advanced Debugging through

Incremental Compilation, Preliminary Draft.
Proceedings of the AGM SIGSOFT/SIGPLAN So ftware

Engineering Symposium on High-Level Debugging, AGM
SIGPLAN Notices 18(8):130-139, August 1983.

[Garlan 84] David B. Garlan and Philip L. Miller.

[Ghezzi 79]

[Ghezzi 80]

GNOME: An Introductory Programming Environment Based on a
Family of Structure Editors.

Proceedings of the AGM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development
Environments , AGM SIGPLAN Notices 19(5):65-72, May 1984.

Describes a suite of programming environments built around
syntax-directed editors. A family tree language, a language for
moving a simulated robot around a grid, Pascal and Fortran
are supported.

Carlo Ghezzi and Dino Mandrioli.
Incremental Parsing.
AGM TOPLAS 1(1):58-70, July 1979.
Gives an algorithm for an incremental LR parser, and a few

general suggestions as to how it could be implemented .
Unfortunately, the language and the notation used in this
article combine to make it virtually incomprehensible.

Carlo Ghezzi and Dino Mandrioli.
Augmenting Parsers to Support Incrementality.
Journal of the ACM 27(3):564-579, July 1980.
Describes a method of inserting incremental parsing into a shift-

reduce parsing algorithm. This paper shares the abstruseness
of [Ghezzi 79].

[Goldberg 83] Adele Goldberg and David Robson.
Smalltalk-80: The Language and its Implementation.
Addison- Wesley, Reading, Massachusetts, 1983.
ISBN 0-201-11371-6.

[Goldberg 84] Adele Goldberg.

[Heyman 85]

Smalltalk-80: The Interactive Programming Environment.
Addison- Wesley, Reading, Massachusetts, 1984.
ISBN 0-201-11372-4 .

Jerrold Heyman and William M. Lively.
Syntax-Directed Editing Revisited.
AGM SIGSOFT So ftware Engineering Notes 10(3):24-27, July

1985.
Gives details of a fairly simple syntax-directed editor. lt is hard

to see exactly what this paper, and the system it describes,
have added to syntax-directed editor technology.

[Jensen 78]

[Johnson 87]

[Kahrs 79]

[Kaiser 85]

138

Kathleen Jensen and Niklaus Wirth.
Pascal User Manual and Report.
Springer-Verlag, New York, 1978.
ISBN 0-387-90144-2.

C.W. Johnson and B.P. Molinari.
Generated Symbol Analysis for Languages with Explicit Scope

Control.
Paper, Department of Computer Science, Australian National

University, Canberra, 23 September 1987.

Mark Kahrs.
Implementation of an Interactive Programming System.
Proceedings of the A CM SIGPLAN Symposium on Compiler

Construction, AGM SIGPLAN Notices 14(8):76-82, August
1979.

Describes a system where those lines of a program which are
altered are simply tagged for recompilation at execution time.

Gail E . Kaiser and Elaine Kant.
Incremental Parsing without a Parser.
The Journal of Systems and Software 5(2):121-144, May 1985.
Describes a system where a syntax-directed editor's representation

of a program can be incrementally modified not by re-parsing,
but by tree transformation.

[Kastens 82] Uwe Kastens, Brigitte Hutt and Erich Zimmermann.
GAG: A Practical Compiler Generator.
G . G oos and J . Hartmanis (eds)
Lecture Notes in Computer Science, Number 141.

Springer-Verlag , Berlin , 1982.
ISBN 3-540-11591-9.

[Katzan 69] Harry Katzan , Jr.
Batch, conversational, and incremental compilers.
in 1969 Spring Joint Computer Conference, AFIPS Conference

Proceedings, Volume 34.
AFIPS Press, Montvale, New Jersey, 1969.

pp. 47-56.

[Kernighan 78] Brian W. Kernighan and Dennis M. Ritchie.
The C Programming Language.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
ISBN 0-13-110163-3.

[Ledgard 81] Henry Ledgard and Micheal Marcotty.
The Programming Language Landscape.
Science Research Associat es, Chicago, 1981.
ISBN 0-574-21340-6.

[Leung 86] Sek Kit Leung.
Generation of Modula-2 Programming Environment Using the

PECAN System.
Honours Thesis, Department of Computer Science, Australian

National University, Canberra, November 1986.

139

[Medina-Mora 81]

[Molinari 85]

Raul Medina-Mora and Peter H. Feiler.
An Incremental Programming Environment.
IEEE Transactions on Software Engineering SE-7(5):472-482,

Septem her 1981.

B.P. Molinari.
PLUM - A Package for ADT lmplementation.
Technical Report TR-CS-85-03, Department of Computer Science,

Australian National University, Canberra, December 1985.

[Molinari 86] B. Molinari.
ASPEN: a module for AST support .
Paper, Department of Computer Science, Australian National

University, Canberra, September 1986.

[Molinari 87a] B.P. Molinari.
Notes on PECAN's specification language.
Notes, Department of Computer Science, Australian National

University, Canberra, 30 January 1987.

[Molinari 87b J Brian P. Molinari and Christopher W. Johnson.

[Morris 81]

[Nearhos 86]

Generation of Symbol Processing Modules.
Technical Report TR-CS-87-02, Department of Computer Science,

Australian National University, Canberra, June 1987.

Joseph M. Morris and Mayer D. Schwartz.
The Design of a Language-Directed Editor for Block-Structured

Languages.
Proceedings of the AGM SIGPLAN/SIGOA Symposium on Text

Manipulation, AGM SIGPLAN Notices 16(6):28-33, June 1981.
A clear discussion of some of the matters to be considered when

designing a syntax-directed editor; how such an editor must
balance the need to maintain the syntactic structure of the text
with the need for editing flexibility. Briefly discusses the
connection between syntax-directed editors and incremental
parsers.

Mandy F. Nearhos.
A Program Profiler in the PECAN Programming Environment.
Gra.d. Dip. Thesis, Department of Computer Science, Australian

National Universi t y, Canberra, November 1986.

[Nordstrom 84] Bengt Nordstrom and Ake Wikstrom.

[Ophel 87]

The Design of an Interactive Program Development System for
Pascal.

Software - Practice and Experience 14(2):177-190, February 1984.

John Ophel.
A Survey of Programming Environments and Some Comments on

Their Design.
Paper , Department of Computer Science, Australian National

University, Canberra, 27 February 1987.

[Parker 85]

[Peccoud 69]

[Pollock 84]

[Purdue 86]

[Reiss 83]

[Reiss 84a]

[Reiss 84b]

[Reps 83]

140

Jeff Parker.
Towards More Intelligent Programming Environments.
AGM SIGSOFT Software Engineering Notes 10(3):28-32, July

1985.
A brief discussion of t he possible future development of

programming environments. The author suggests that
programming environments should not be used only for
developing programs in existing languages, bu t that new
interactive programming languages should be developed to make
full use of these environments.

M. Peccoud, M. Griffiths and M. Peltier.
Incremental Interactive Compilation.
in A.J.H. Morrell (ed .)
Information Processing 68, Proceedings of IFIP Congress 1968,

Volume 1 - Mathematics, Software.
North-Holland , Amsterdam, 1969.

pp. 384-387.

Lori L. Pollock and Mary Lou Soffa.
Incremental Compilation of Locally Optimized Code.
in Conference Record of the Twelfth Annual AGM Symposium on

POPL, 1985.
ACM, New York, New York, 1984.
ISBN 0-89791-147-4.

pp. 152-164.

David A. Purdue.
A Graphical View of Data Structure Values for the PECAN

Program Development System.
Honours Thesis, Department of Computer Science, Australian

National University, Canberra, November 1986.

Steven P. Rei ss.
Generation of Compiler Symbol Processing Mechanisms from

Specifications.
AGM TOPLAS 5(2):127-163, April 1983.

Steven P. Reiss.
An Approach to Incremental Compilation.
Proceedings of the AGM SIGPLAN '84 Symposium on Compiler

Construction , ACM SIGPLAN Notices 19(6):144-156 , June
1984.

Steven P. Rei ss.
Graphical Program Development with PECAN Program

Development Systems.
Proceedings of the AGM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical So ftware Development
Environments , AGM SIGPLAN Notices 19(5):30-41 , May 1984.

Thomas Reps, Tim Teit.elbaum and Alan Demers.
Incremental Context-Dependent Analysis for Language-Based

Editors.
AGM TOPLAS 5(3):449-477, July 1983.
Discusses techniques for updating programs represented as attribute

trees by syntax-directed editors.

[Reps 84]

[Reps 85]

[Rishel 70]

141

Thomas Reps and Tim Teitelbaum.
The Synthesizer Generator.
Proceedings of the AGM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software Development
Environments, AGM SIGPLAN Notices 19(5):42-48, May 1984.

Thomas Reps and Tim Teitelbaum.
The Synthesizer Generator.
Reference Manual, Department of Computer Science, Cornell

University, lthaca, New York, August 1985.

W esley J. Rishel.
Incremental Compilers.
Datamation 16(1):129-136, .January 1970.
Describes incremental compilation techniques which reqmre insertion

of extra instructions between statements.

[Schwartz 84] Mayer D. Schwartz, Norman M. Delisle and Vimal S. Begwani.
Incremental Compilation in Magpie.
Proceedings of the AGM S IGPLAN '84 Symposium on Compiler

Construction, AGM SIGPLAN Notices 19(6):122-131, June
1984.

[Swinehart 86] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach and
Robert B. Hagmann.
A Structural View of the Cedar Programming Environment.
AGM TOPLAS 8(4):419-490, October 1986.

[Teitelbaum 81] Tim Teitelbaum and Thomas Reps.
The Cornell Program Synthesizer: A Syntax-Directed Programming

Environment.
Communications of the AGM 24(9):563-573 , September 1981.

[Teitelman 81] Warren Teitelman and Larry Masinter.
The Interlisp Programming Environment .
Computer 14(4) :25-33, April 1981.

[Teitelman 84] Warren Teitelman.

[Tichy 84]

[Tichy 86]

A Tour Through Cedar.
IEEE Software 1(2):44-73, April 1984.

Walter F. Tichy.
Smart Recompilation.
in Conference Record of the Twelfth Annual AGM Symposium on

POPL, 1985.
ACM, New York , New York, 1984.
IS BN 0-89791-147-4.

pp. 236-244.
An extelJ ded abstract of [Tichy 86].

Walter F. Tichy.
Smart Recompilation.
AGM TOPLAS 8(3):273-291, July 1986.
Examines incremental compilation issues in a modular system.

Describes methods of reducing the set of modules t hat must be
compiled after a change to one module.

[Vegdahl 85]

[Wai te 84]

142

Steven R. Vegdahl.
The Design of an Interactive Compiler for Optimizing

Microprograms.
Proceedings of the Eighteenth Annual Workshop on

Microprogramming, AGM SIGMICRO Newsletter 16(4):129-135,
December 1985.

William M. Waite and Gerhard Goos.
Compiler Construction.
Springer-Verlag, New York, New York, 1984.
ISBN 0-387-90821-8.

[Wasserman 81] Anthony I. Wasserman.
Tutorial: Software Development Environments.
IEEE Computer Society Press, Los Alamitos, 1981.
A collection of papers on programming environments. Includes a

remarkable dedication: To everyone who is still in favor (sic)
of peace, equal justice and opportunity for all, clean air and
water, and the separation of church and state.

[Weinberg 71] Gerald M. Weinberg.
The Psychology of Computer Programming.
Van Nostrand Reinhold Company, New York, New York, 1971.
ISBN 0-442-29264-3.

[Wilander 80] J erker Wilander.

[Wirth 83]

An Interactive Programming System for Pascal.
BIT 20(2):163-174, 1980.
Describes an incremental programming environment for Pascal,

called (unforgivably) Pathcal, in which all of the system
facilities are Pascal procedures or variables, allowing the
programmer to view the entire system as a single paradigm.

Niklaus Wirth.
Programming in Modula-2 (second edition).
Springer-Verlag , Berlin, 1983.
ISBN 3-540-12206-0.

143

Abbreviations used in References

AGM
Association for Computing Machinery

AFIPS
American Federation of Information Processing Societies

BIT
Nordisk Tidskrift for Informations-Behandling

IEEE
Institute for Electrical and Electronic Engineers

IFIP
International Federation for Information Processing

ISBN
International Standard Book Number

POPL
Principles of Programming Languages

SIGMICRO
Special Interest Group on Microprogramming

SIGOA
Special Interest Group on Office Automation

SIG PLAN
Special Interest Group on Programming Languages

SIG SOFT
Special Interest Group on Software Engineering

TOPLAS
Transactions on Programming Languages and Systems

Abstract syntax trees 24
Acronyms footnote 65
α-type incremental compilation 5
Area of difference 37
ASPEN module 24
ASPENinq_semantics function 43
ASPEN_$NODE_CHANGE event

43, 87
AST see abstract syntax trees
Attribute grammars 17

environment specification 16
problems with using 17

Automatic recompilation 45

BASIC, incremental system for 11
Benchmarks 50
β-type incremental compilation 5
Bracket statements 41

Cedar (programming environment)
footnote 6

Code optimization, affect of 4
Compilation monitor 48 , 85
Complete compilation 45
CONA (conversational Algol) 13
Conversational systems 13
COP AS (conversational Pascal) 13
Cornell Program Synthesizer 13
Current items 26

Δ-values 51

Earley's algorithm 123
application of the recognizer to

an example grammar 126
completer operation 125
constructing a parser from the

recogmzer 129
predictor operation 125
recogmzer 123
scanner operation 125

End bracket statements 41
Error messages, most common

(Pascal) 53
Events 24
Execution 31
extend function 38

144

Index

Flow graph representation 21
construction 30
interpretation 26

head_merge function 38

Incremental BASIC 11
insert function 41
Interlisp (programming environment)

footnote 6
IPE (programming environment)

14

Language specification 18
in PECAN 18
in PSG 16
using attribute grammars 17

Magpie (programming environment)
15

Main list 38
Manual recompilation 45

Names, problems caused by 5
nendp pointer 38
Nested statement structure,

incremental compilation of
languages with 12

New list 37
newp pointer 38

oendp pointer 38
Old list 37
oldp pointer 38

PECAN (programming environment
generator) 18

abstract syntax tree 24
current items 26
documentation (or lack thereof)

18
events 24
language specification 18, 28
semantic specification statements

26
syntax-directed editor 21
v i e w s 20

PLUM (event handling module) 24

PLUMaccept_event function 24
PLUMevent function 25
Procedure compilation 45
Programming environments 6
PSG (programming environment

generator) 16

Recompilable unit 3
smallest 5

remove function 41

SAWDUST module 65
sawdustbutton.c file 66, 80
sawdust.h file 66, 67
sawdust_local.hi file 66, 68
sawdustmain.c file 66, 70
SDE see syntax-directed editors
Semantic actions view 63
Semantic specification statements

26
semcombutton.c file 87, 115
semcomeval.c file 87, 103
semcomexec.c file 87
_SEMCOM_execute function 42
semcom.h file 87, 88
semcom_local.hi file 87, 89
semcommain.c file 87
_SEMCOM_remove_list function

44, 87
_SEMCOM_replace_list function

43, 87
_SE MCO M_set_current function

42, 87
semcomstmt.c file 87, 93
SEMCOM_STMTs 30

SEMCOM_unexecute function 42
SEMCOMupdate function 44
semcomwi ndow.c file 87, 108
Smallest recompilable unit 5
Smalltalk-80 (language and

programmmg environment)
14

Start bracket statements 41
Structural cursor movement 7
Syntactic checking 9
Syntax-directed editors 7, 21

advantages 8
cursor movement 7
disadvantages 8, 9
templates 8

tail_merge function 38
Templates 8
test1.p file 120
test2.p file 121
test3.p file 122
test4.p file 122

145

Testing 52
modifications 53
test programs 53, 120

Textual cursor movement 7
Translation 9
Triggering recompilation 9

U nexecu tion 31
Updating the semantics 42

	[Title
page]
	Abstract

	Declaration

	Acknowledgments

	[Dedication]

	Table of
Contents
	List of
Figures
	Figure 4.1:
PECAN Views
	Figure 4-2: Hierarchy of Modules in
PECAN
	Figure 5-1:
Semantic Specification Statements
	Figure 5-2: Specification of Pascal WHILE
Statement
	Figure 5-3: Small Pascal Program with an
Example WHILE statement
	Figure 5-4: Abstract Syntax Tree with Pointers into
List of SEMCOM_STMTs
	Figure 5-5: Parse Tree for Example WHILE Statement
	Figure 5-6: List of SEMCOM_STMTs for Example WHILE
Statement
	Figure 5-7: Flow Graph Representation of Example WHILE Statement
	Figure 5-8: Effect of head_merge, tail_merge and extend upon the old and new
lists
	Figure 6-1: Results of Modifying Test
Programs
	Figure A-1: The Semantic Actions
View
	Figure B-1: The Compilation
Monitor
	Figure D-1: Definition of the Grammar G
	Figure D-2: State Sets for the Example Input String
	Figure D-3: Linked States for the Example Input String
	Figure D-4: Parse Tree for the Example Input String

	Chapter 1: Introduction

	Chapter 2: Incremental Compilation

	2.1. Definition of Incremental Compilation
	2.2. Deciding What to Recompile
	2.2.1. The Recompilable Unit
	2.2.2. Choosing the Smallest Recompilable Unit
	2.2.3. Problems Caused by Names

	2.3. Development of Incremental Systems
	2.3.1. Programming Environments
	2.3.2. Syntax-Directed Editors
	2.3.2.1. Advantages and Disadvantages
	2.3.2.2. Triggering Recompilation

	Chapter 3: Examples of Incremental Systems

	3.1. Early Incremental Systems
	3.1.1. Incremental BASIC - 1968
	3.1.2. Languages with Nested Statements - 1972

	3.2. Conversational Systems
	3.2.1. CONA and COPAS - 1978 and 1981

	3.3. Incremental Systems in Programming Environments
	3.3.1. The Cornell Program Synthesizer - 1978
	3.3.2. Smalltalk-80 - 1980
	3.3.3. IPE - 1981
	3.3.4. PECAN - 1984
	3.3.5. Magpie - 1984
	3.3.6. PSG - 1986

	3.4. Attribute Grammars and Environment Generators

	Chapter 4: The PECAN Programming Environment Generator

	4.1. Introduction
	4.1.1. Documentation
	4.1.2. Language Specification
	4.1.3. Views
	4.1.3.1. The Syntax-Directed Editor
	4.1.3.2. The Flow View

	4.2. Internal Structure
	4.2.1. Modules
	4.2.2. The Abstract Syntax Tree
	4.2.3. Events

	Chapter 5: Incremental Compilation in PECAN

	5.1. Semantic Specification Statements
	5.2. Specifying a Construct
	5.3. Data Structure
	5.3.1. SEMCOM_STMTs and the Abstract Syntax Tree
	5.3.2. SEMCOM_STMTs and the Flow Graph Representation

	5.4. Execution and Unexecution
	5.5. Incremental Compilation in PECAN
	5.5.1. General Algorithm
	5.5.2. Implementation Details
	5.5.2.1. head_merge
	5.5.2.2. tail_merge
	5.5.2.3. extend
	5.5.2.4. remove and insert
	5.5.2.5. The Current Items and Execution and Unexecution
	5.5.2.6. Updating the Semantics
	5.5.2.7. Driving Routines - The Outer Level of SEMCOM

	Chapter 6: Modifications to PECAN

	6.1. Aim of the Modifications
	6.2. Generality of the Modifications
	6.3. Ideal Modifications
	6.4. Actual Implementation Details
	6.4.1. The Compilation Monitor
	6.4.2. Incremental Compilation
	6.4.3. Procedure Compilation
	6.4.4. Complete Compilation

	6.5. Drawing Comparisons
	6.5.1. Choosing an Appropriate Benchmark
	6.5.1.1. Elapsed Time
	6.5.1.2. Code Complexity
	6.5.1.3. Counting SEMCOM_STMTs

	6.5.2. A Cautionary Note

	6.6. Testing
	6.6.1. Choosing Test Programs
	6.6.2. Modifications
	6.6.3. Comparison of Results

	Chapter 7: Conclusions

	Appendix A: The Semantic Actions View

	A.1. The View and its Functions

	A.2. Implementation Details

	A.3. Program Listing: sawdust.h

	A.4. Program Listing: sawdust_local.hi

	A.5. Program Listing: sawdustmain.c

	A.6. Program Listing: sawdustbutton.c

	Appendix B: The SEMCOM Module

	B.1. The
Compilation Monitor
	B.2. Implementation
Details
	B.3. Program Listing:
semcom.h
	B.4. Program Listing:
semcom_local.hi
	B.5. Abridged Program
Listing: semcomstmt.c
	B.6. Abridged Program
Listing: semcomeval.c
	B.7. Program Listing:
semcomwindow.c
	B.8. Program Listing:
semcombutton.c

	Appendix C: Test Programs

	C.1.
Program Listing: test1.p
	C.2. Program Listing: test2.p
	C.3. Program Listing: test3.p
	C.4. Program Listing: test4.p

	Appendix D: Earley's Algorithm

	D.1.�Introduction
	D.2. The Recognizer
	D.3. The Recognizer's Operations
	D.4. Application of the Recognizer to an Example Grammar
	D.5. Constructing a Parser from the Recognizer

	References

	Abbreviations used in References

	Index

