
The Australian National University

Computer Science Technical Report

December 1993 Technical Report TR-CS-93-13

SHYSTER: The Program

James Popple

Department of Computer Science
Faculty of Engineering and Information Technology

Computer Sciences Laboratory
Research School of Physical Sciences and Engineering

Joint Computer Science Technical Report Series

techreports@cs.anu.edu.au

Recent titles in this series:

mailto:techreports@cs.anu.edu.au

SHYSTER: The Program

JAMES POPPLE

Department of Computer Science
Faculty of Engineering and Information Technology

The Australian National University

Technical Report TR-CS-93-13

December 1993
(revised April 1995)

�c James Popple 1993, 1995

This research was supported by an
Australian National University PhD Scholarship

funded by the Centre for Information Science Research

Contents

Introduction 1

1 The SHYSTER module 5

shyster.h . 5
shyster.c . 7

2 The STATUTES module 19

statutes.h . 19
statutes.c . 20

3 The CASES module 23

cases.h . 23
cases.c . 30

4 The TOKENIZER module 49

tokenizer.h . 49
tokenizer.c . 50

5 The PARSER module 61

parser.h . 61
parser.c . 61

6 The DUMPER module 93

dumper.h . 93
dumper.c . 94

7 The CHECKER module 117

checker.h . 117
checker.c . 117

iii

iv Contents

8 The SCALES module 127

scales.h . 127
scales.c . 127

9 The ADJUSTER module 137

adjuster.h . 137
adjuster.c . 137

10 The CONSULTANT module 145

consultant.h . 145
consultant.c . 146

11 The ODOMETER module 155

odometer.h . 155
odometer.c . 155

12 The REPORTER module 179

reporter.h . 179
reporter.c . 179

Bibliography 223

Index 225

Introduction

Most legal expert systems attempt to implement complex models of legal reas­
oning. Yet the utility of a legal expert system lies not in the extent to which it
simulates a lawyer’s approach to a legal problem, but in the quality of its predic­
tions and of its arguments. A complex model of legal reasoning is not necessary:
a successful legal expert system can be based upon a simplified model of legal
reasoning.

Some researchers have based their systems upon a jurisprudential approach
to the law, yet lawyers are patently able to operate without any jurisprudential
insight. A useful legal expert system should be capable of producing advice
similar to that which one might get from a lawyer, so it should operate at the same
pragmatic level of abstraction as does a lawyer—not at the more philosophical
level of jurisprudence.

A legal expert system called SHYSTER has been developed to demonstrate
that a useful legal expert system can be based upon a pragmatic approach to the
law. SHYSTER has a simple representation structure which simplifies the problem
of knowledge acquisition. Yet this structure is complex enough for SHYSTER to
produce useful advice.

SHYSTER is a case-based legal expert system (although it has been designed
so that it can be linked with a rule-based system to form a hybrid legal expert
system). Its advice is based upon an examination of, and an argument about, the
similarities and differences between cases. SHYSTER attempts to model the way
in which lawyers argue with cases, but it does not attempt to model the way in
which lawyers decide which cases to use in those arguments. Instead, it employs
statistical techniques to quantify the similarity between cases. It decides which
cases to use in argument, and what prediction it will make, on the basis of that
similarity measure.

1

2 Introduction

lines of code
.h

64
19

274
56
4

20
6

13
7

19
14
12

508

.c

347
40

639
385
947
784
268
284
227
260
830

1523

6534

Module

Shyster
Statutes
Cases
Tokenizer
Parser
Dumper
Checker
Scales
Adjuster
Consultant
Odometer
Reporter

Total

Total

411
59

913
441
951
804
274
297
234
279
844

1535

7042

Figure 1: Lines of C code in SHYSTER, by module. Each module comprises
two files: a definition (.h) file and an implementation (.c) file.

SHYSTER is of a general design: it provides advice in areas of case law that
have been specified by a legal expert using a specification language, indicating the
cases and attributes of importance in those areas. Four different, and disparate,
areas of law have been specified for SHYSTER, and its operation has been tested
in each of those legal domains.

Testing of SHYSTER in these four domains indicates that it is exception­
ally good at predicting results, and fairly good at choosing cases with which to
construct its arguments. SHYSTER demonstrates the viability of a pragmatic
approach to legal expert system design.

⇔ ⇔ ⇔

SHYSTER is implemented using a dozen modules, written in ISO C. 1 (A break­
down, by module, of the number of lines of C code in SHYSTER is given in
figure 1.) This report provides complete code listings of all twelve modules. This
code, and the case law specifications used to test SHYSTER, are available on the
worldwide web.2 Full details of the design, implementation, operation and testing
of SHYSTER are given elsewhere.3

�

�
�

3 Introduction

-> structure/union pointer
* indirection ⇔
* multiplication ×
== equal to ⇒
!= not equal to =∨
<= less than or equal to
>= greater than or equal to
! logical negation ¬
&& logical AND ⇐
|| logical OR ∧

Figure 2: Special symbols used in the listings of C code that appear in this
report. The operators on the left are represented by the symbols on the right.

The Shyster module (§1) is the top-level module for the whole system.
The Statutes module (§2) is the top-level module for a rule-based system,
presently unimplemented. The Cases module (§3) is the top-level module for
the case-based system. The Tokenizer and Parser modules (§4 and §5) token­
ize and parse a program written in SHYSTER’s case law specification language.
The Dumper module (§6) displays the information that has been parsed. The
Checker module (§7) checks for evidence of dependence between the attributes.
The Scales module (§8) determines the weight of each attribute. The Adjuster
module (§9) allows the legal expert to adjust the weights of the attributes. The
Consultant module (§10) interrogates the user as to the attribute values in the
instant case. The Odometer module (§11) determines the distances between
the leading cases and the instant case, and the Reporter module (§12) writes
SHYSTER’s legal opinion.

⇔ ⇔ ⇔

The format used for the display of C code in this report is based on that of the
CWEB system.4 Reserved words and preprocessor commands are set in boldface
type. Identifiers are set in italics. String constants and character constants are
set in a typewriter font, with “�” representing a space. Some operators are
represented by special symbols, as explained in figure 2.5

4 Introduction

SHYSTER’s external identifiers are made up of upper- and lower-case letters.
Static identifiers consist only of lower-case letters. Identifiers in all upper-case
are enumerated identifiers and other constants.

An index to all of the identifiers which appear in the code listings, and which
are not reserved words or preprocessor commands, is at the end of this report.

⇔ ⇔ ⇔

Much of SHYSTER’s output is in LaTEX format: i.e. it is suitable for processing
by the LaTEX document processor.6 This contributes to SHYSTER’s portability,
as LaTEX is widely available on many platforms. Using LaTEX simplifies the foot-
noting of text (\footnote{ . . . }), allows some data to be displayed in a clear
and economical tabular format (\begin{tabular} . . .), and ensures the aesthetic
quality of the output.

1International standard ISO/IEC 9899: 1990; Australian standard AS 3955–1991. Kernighan
and Ritchie 1988 describe ANSI C which is the same as ISO C.

2http://cs.anu.edu.au/software/shyster
3Popple 1993, 1996.
4Knuth and Levy 1994. CWEB is a version of Knuth’s WEB system (1986a, 1986b) adapted

to C. The CWEB system of structured documentation was not used in the development of
SHYSTER, but CWEB’s approach to “pretty-printing” C code has been adopted for this report.
This report was prepared using the LaTEX document processor; LaTEX code was generated from
SHYSTER’s C code using a preprocessor constructed by the author.

5All of the special symbols in figure 2 are used by CWEB, except for ×: CWEB uses for
both indirection and multiplication.

⇔

6Lamport 1986 describes LaTEX which is a set of macros for Knuth’s TEX system (1984,
1986a). SHYSTER’s LaTEX output is suitable for processing by LaTEX version 2.09 25 March →
1992� and TEX version 3.141. It can also be processed, in “compatibility mode,” by LaTEX2�
which is described by Lamport 1994.

http://cs.anu.edu.au/software/shyster/

1
The SHYSTER module

shyster.h
/ This is the header file for the Shyster module. It is included by all twelve modules. /⇔ ⇔

/ version and copyright information /⇔ ⇔

#define Shyster Version "SHYSTER�version�1.0"
#define Copyright Message "Copyright�James�Popple�1993"

/ a string which is written to stderr if SHYSTER is invoked without arguments /⇔ ⇔

#define usage string \
"usage:\t" \
"shyster�[�-a�]�[�-c�filename�]�[�-d�filename�]�[�-D�filename�]�[�-e�]\n" \
"\t\t[�-h�number�number�]�[�-i�]�[�-l�filename�]�[�-p�filename�]\n" \
"\t\t[�-q�]�[�-r�filename�]�[�-w�filename�]\n"

/ the versions of LaTEX and TEX for which SHYSTER has been developed /⇔ ⇔

#define LaTeX Version "LaTeX�version�2.09�<25�March�1992>"
#define TeX Version "TeX�version�3.141"

/ maxima /⇔ ⇔

#define Max Filename Length 256
#
#define Max LaTeX Line Width 64

define Max Error Message Length 256

/ other constants /⇔ ⇔

#define Empty String ""
#define Null Character ’\0’
#define Space Character ’�’
#define Carriage Return Character ’\n’
#define Top Level 0
#define No Hang 0
#define Hang 1

5

6 � 1 The SHYSTER module

/ functions whose returned values are always ignored /⇔ ⇔

#define fprintf (void) fprintf
#define free (void) free
#define gets (void) gets
#define sprintf (void) sprintf

/ simple types /⇔ ⇔

typedef unsigned int cardinal ;
typedef float floating point ;
typedef char string ;
typedef FILE

⇔
⇔file;

/ enumerated type /⇔ ⇔

typedef enum {
FALSE,
TRUE

} boolean;

/ external functions /⇔ ⇔

extern void
Indent(

file stream,
cardinal level);

extern void
Write(

file stream,
string write string,
const string suffix,
const cardinal level,
const boolean hanging indent);

extern void
Write Error Message And Exit(

file stream,
const string module name,
string message);

extern void
Write Warning Message(

file stream,
const string module name,
string message,
const cardinal level);

extern void
Write LaTeX Header(

file stream,
boolean inputable latex);

extern void
Write LaTeX Trailer(

file stream,
boolean inputable latex);

7 shyster.c

extern boolean
Is Digit(

int ch);

shyster.c
/ This is the implementation file for the Shyster module. /⇔ ⇔

#include →stdio.h�
#include →stdlib.h�
#include "shyster.h"
#include "cases.h"
#include "statutes.h"

extern void
Indent(

file stream,
cardinal level)

/⇔ Writes the equivalent of 4 × level spaces (1 tab = 8 spaces). ⇔/

{
while (level > 1) {

fprintf (stream, "\t");
level −= 2;

}
if (level 1)⇒

fprintf (stream, "����");
}

static void
write line(

file stream,
string write string,⇔
const cardinal level,
const boolean hanging indent,
cardinal count)

/ Writes a line of characters from write string. Writes characters up to the last space in the⇔ ⇔
next count characters, then breaks the line and indents the next line by 4 × level spaces
(plus an extra two spaces if hanging indent is TRUE). Leaves write string pointing to the
character after the space at which the line was broken. /

⇔
⇔

{
/ find the last space that will fit on the line /⇔ ⇔

while (((write string + count) = Space Character) (count = 0))⇔ ⇔ ∨ ⇐ ∨
count ------;

8 � 1 The SHYSTER module

if (count 0) {⇒

/ there is no convenient place to break this line, so write as much as will fit, with a %⇔
character at the end of the line, and don’t indent the next line ⇔/

for (count = Max LaTeX Line Width − level × 4 − 1; count ∨= 0; count ------)
fprintf (stream, "%c", ((write string)++));⇔ ⇔

fprintf (stream, "%%\n");

} else {

/ there is (at least) one space in this line, so write each of the characters up to the⇔
last space, break the line, and indent the next line /⇔

while (count = 0)∨ {
fprintf (stream, "%c", ((write string)++)); ⇔ ⇔
count ------;

}
(write string)++;⇔
fprintf (stream, "\n");
Indent(stream, level);
if (hanging indent)

fprintf (stream, "��");
}

}

extern void
Write(

file stream,
string write string,
const string suffix,
const cardinal level,
const boolean hanging indent)

/ Writes write string plus suffix. Breaks lines (at spaces) so that they are no longer than⇔
Max LaTeX Line Width characters. Indents lines by 4× level spaces. Indents lines after the
first by a further two spaces, if hanging indent is TRUE. (Assumes that suffix is less than
Max LaTeX Line Width − level × 4 characters long.) ⇔/

{
cardinal count = 0,

suffix length = 0,
line length = Max LaTeX Line Width − level × 4;

boolean hanged = FALSE ;

if (write string NULL)⇒

/ there is no string to write /⇔ ⇔

fprintf (stream, "%s", Null String);

9 shyster.c

else {

/ there is a string to write /⇔ ⇔

if (suffix = Null String)∨

/ there is a suffix, so set suffix length to the number of characters in the suffix, up⇔
to (but not including) the first carriage return (if there is one) ⇔/

while (((suffix + suffix length) = Null Character)∨
(
⇔
(suffix + suffix length) =∨ Carriage Return

⇐
Character))

suffix
⇔
length++;

Indent(stream, level);

while ((write string + count) =∨ Null Character) {⇔

if (count line length) {⇒

/ there are more characters left in the string than will fit on this line, so write⇔
as much as will fit ⇔/

write line(stream,&write string, level, hanging indent, count);
if (hanged hanging indent) {¬ ⇐

line length −= 2;
hanged = TRUE ;

}
count = 0;

}
count++;

}

/ the rest of the string will fit on a line /⇔ ⇔

if (count + suffix length > line length) {

/ . . . but the rest of the string plus the suffix will be too long to fit on a line, so⇔
write as much as will fit /⇔

write line(stream,&write string, level, hanging indent, count);

/ the rest of the string plus the suffix will fit on the new line; set count to be the⇔
number of characters still to be written ⇔/

count = 0;
while ((write string + count) = Null Character) ⇔ ∨

count++;
}

/ write the rest of the string /⇔ ⇔

while (count = 0)∨ {
fprintf (stream, "%c", write string++); ⇔
count ------;

}
}

/ write the suffix /⇔ ⇔

fprintf (stream, "%s\n", suffix);
}

10 � 1 The SHYSTER module

extern void
Write Error Message And Exit(

file stream,
const string module name,
string message)

/ Writes “ERROR (module name): message.” to stderr and to stream. Exits with a value of ⇔
EXIT FAILURE (defined in stdlib.h). ⇔/

{
static char full message[Max Error Message Length];

sprintf (full message, "ERROR�(%s):�%s", module name, message);

Write(stderr, full message, ".\n", Top Level, Hang);

/ write to stream only if stream = stdout (the error message has already been written to ⇔
stderr) /

∨
⇔

if ((stream = NULL) (stream = stdout))∨ ⇐ ∨
Write(stream, full message, ".\n", Top Level, Hang);

exit(EXIT FAILURE);
}

extern void
Write Warning Message(

file stream,
const string module name,
string message,
const cardinal level)

/ Writes “WARNING (module name): message.” to stderr and to stream. /⇔ ⇔

{
static char full message[Max Error Message Length];

if (stream =∨ NULL) {

sprintf (full message, "WARNING�(%s):�%s", module name, message);

Write(stderr, full message, ".\n", Top Level, Hang);

/ write to stream only if stream = stdout (the warning message has already been ⇔
written to stderr) /

∨
⇔

if (stream = stdout)∨
Write(stream, full message, ".\n", level, Hang);

}
}

11 shyster.c

extern void
Write LaTeX Header(

file stream,
boolean inputable latex)

/ Writes LaTEX code to go at the start of a LaTEX document. Writes code that can be included ⇔
in another LaTEX document (i.e. not stand-alone code), if inputable latex is TRUE. /⇔

{
fprintf (stream, "%%�Produced�by�%s\n\n"

"%%�%s\n\n",Shyster Version,Copyright Message);
if (inputable latex)¬

fprintf (stream, "%%�This�is�a�stand-alone�LaTeX�file.\n");
else

fprintf (stream, "%%�This�is�not�a�stand-alone�LaTeX�file.\n"
"%%�Include�it�in�a�LaTeX�document�using�the�\\input�command.\n");

fprintf (stream, "%%�Use�%s�and�%s.\n\n",LaTeX Version,TeX Version);
if (inputable latex)¬

fprintf (stream, "\\documentstyle[12pt]{article}\n"
"\\oddsidemargin=-5.4mm\n"
"\\evensidemargin=-5.4mm\n"
"\\topmargin=-5.4mm\n"
"\\headheight=0mm\n"
"\\headsep=0mm\n"
"\\textheight=247mm\n"
"\\textwidth=170mm\n"
"\\footskip=15mm\n"
"\\pagestyle{plain}\n\n"
"\\begin{document}\n\n");

}

extern void
Write LaTeX Trailer(

file stream,
boolean inputable latex)

/ Writes LaTEX code to go at the end of a LaTEX document. Writes code that can be included ⇔
in another LaTEX document (i.e. not stand-alone code), if inputable latex is TRUE. /⇔

{
if (inputable latex)¬

fprintf (stream, "\\end{document}\n");
}

extern boolean
Is Digit(

int ch)

/ Returns TRUE, iff ch is a digit (0 . . . 9). /⇔ ⇔

{
return ((ch � Zero Character) (ch � Nine Character));⇐

}

12 � 1 The SHYSTER module

static void
error exit(

const string message)
{	
Write Error Message And Exit(NULL,"Shyster",message);

}

static void
parse arguments(

int argc,
string argv,
boolean

⇔
adjust,

boolean
⇔
echo,

cardinal
⇔
hypothetical reports,

cardinal
⇔
hypothetical changes,

boolean
⇔
inputable latex,

boolean
⇔
⇔verbose,

string specification filename,
string

⇔
distances filename,

string
⇔
log filename,

string
⇔
probabilities filename,

string
⇔
report filename,

string
⇔
dump filename,

string
⇔
⇔weights filename)

/	Parses the UNIX command line arguments (argv[1] ... argv[argc − 1]) and stores the in­⇔
formation in the variables pointed to by the 13 other parameters. ⇔/

{	
string argument;
char message[Max Error Message Length];

if (argc < 2) {

/	no argument was provided, so write usage string to stderr and exit with a value of⇔
EXIT FAILURE (defined in stdlib.h) ⇔/

fprintf (stderr,usage string);
exit(EXIT FAILURE);

}

/	skip over the first argument (the name by which SHYSTER was invoked) /⇔	 ⇔

argc------;
argv++;

/	while there are still arguments to parse ... /⇔	 ⇔

while (argc > 0) {

argument = argv;⇔

if (argument++ = ’-’)⇔ ∨

/	this argument is not a switch /⇔	 ⇔

break;

13 shyster.c

switch (argument++) {⇔

case ’a’:

/ -a: enable weight adjustment /⇔ ⇔

adjust = TRUE ;⇔
break;

case ’c’:

/ -c specification: read the case law specification from “specification.cls” /⇔ ⇔

if (argc > 1) {
argc------;
argv++;
specification filename = argv ;⇔ ⇔

} else
error exit("must�supply�a�filename�with�-c");

break;

case ’d’:

/ -d distances: write distances to “distances-area.tex” /⇔ ⇔

if (argc > 1) {
argc------;
argv++;
distances filename = argv ;⇔ ⇔

} else
error exit("must�supply�a�filename�with�-d");

break;

case ’D’:

/ -D dump: write dump to “dump.tex” /⇔ ⇔

if (argc > 1) {
argc------;
argv++;
dump filename = argv ;⇔ ⇔

} else
error exit("must�supply�a�filename�with�-D");

break;

case ’e’:

/ -e: enable echo mode /⇔ ⇔

echo = TRUE ;⇔
break;

14 � 1 The SHYSTER module

case ’h’:

/ -h r c: hypothesize, reporting on r hypotheticals per result with a limit of c⇔
changes ⇔/

if (argc > 2) {
argc------;
argv++;
while (⇔⇔argv =∨ Null Character) {

if (Is Digit(argv))¬ ⇔⇔
error exit("argument�to�-h�must�be�two�numbers");

⇔hypothetical reports = (10 × ⇔hypothetical reports) +
(cardinal) ⇔⇔argv − (cardinal) Zero Character ;

(argv)++;⇔
}
argc------;
argv++;
hypothetical changes = 0; ⇔

while (⇔⇔argv =∨ Null Character) {
if (Is Digit(argv)) ¬ ⇔⇔

error exit("argument�to�-h�must�be�two�numbers");
⇔hypothetical changes = (10 × ⇔hypothetical changes) +

(cardinal) ⇔⇔argv − (cardinal) Zero Character ;
(argv)++;⇔

}
} else

error exit("must�supply�two�numbers�with�-h");
break;

case ’i’:

/ -i: write LaTEX code that can be included in another LaTEX document⇔
(i.e. not stand-alone code) /⇔

inputable latex = TRUE ;⇔
break;

case ’l’:

/ -l log : write log to “log.log” /⇔ ⇔

if (argc > 1) {
argc------;
argv++;
log filename = argv ;⇔ ⇔

} else
error exit("must�supply�a�filename�with�-l");

break;

15 shyster.c

case ’p’:

/ -p probabilities: write probabilities to “probabilities.tex” /⇔ ⇔

if (argc > 1) {
argc------;
argv++;
probabilities filename = argv ;⇔ ⇔

} else
error exit("must�supply�a�filename�with�-p");

break;

case ’q’:

/ -q: enable quiet mode (don’t summarize cases, etc.) /⇔ ⇔

verbose = FALSE ;⇔
break;

case ’r’:

/ -r report : write report to “report-area.tex” /⇔ ⇔

if (argc > 1) {
argc------;
argv++;
report filename = argv ;⇔ ⇔

} else
error exit("must�supply�a�filename�with�-r");

break;

case ’w’:

/ -w weights: write weights to “weights.tex” /⇔ ⇔

if (argc > 1) {
argc------;
argv++;
weights filename = argv ;⇔ ⇔

} else
error exit("must�supply�a�filename�with�-w");

break;

default:
sprintf (message, "unrecognized�option�-%s", argument − 1);
error exit(message);
break;

}
argc------;
argv++;

}
}

16 � 1 The SHYSTER module

extern int
main(

int argc,
string argv)⇔

/ Extracts the options and arguments from the UNIX command line, initializes the rule-based ⇔
system and the case-based system, then invokes the rule-based system. ⇔/

{
char filename[Max Filename Length],

message[Max Error Message Length];
statute law specification statute law ;
case law specification case law ;
file log stream;
boolean adjust = FALSE,

echo = FALSE,
inputable latex = FALSE,
verbose = TRUE ;

cardinal hypothetical reports = 0,
hypothetical changes;

string specification filename = NULL,
distances filename = NULL,
log filename = NULL,
probabilities filename = NULL,
report filename = NULL,
dump filename = NULL,
weights filename = NULL;

/ extract the options and arguments from the UNIX command line /⇔ ⇔
parse arguments(argc, argv, &adjust, &echo, &hypothetical reports, &hypothetical changes,

&inputable latex, &verbose, &specification filename, &distances filename,
&log filename, &probabilities filename, &report filename, &dump filename,
&weights filename);

/ write version and copyright information to stdout /⇔ ⇔
fprintf (stdout, "%s\n\n%s\n\n", Shyster Version, Copyright Message);

if (log filename NULL)⇒

/ no log filename was specified, so log information will be written to stdout /⇔ ⇔
log stream = stdout ;

else {

/ open the log file /⇔ ⇔
sprintf (filename, "%s%s", log filename, Log File Extension);
if ((log stream = fopen(filename, "w")) NULL) { ⇒

sprintf (message, "can’t�open�log�file�\"%s\"", filename);
error exit(message);

}

/ write version and copyright information to the log file /⇔ ⇔
fprintf (log stream, "%s\n\n"

"%s\n\n", Shyster Version, Copyright Message);
}

17 shyster.c

/ initialize the rule-based system /⇔ ⇔
statute law = Initialize Statutes();

/ initialize the case-based system /⇔ ⇔
case law = Initialize Cases(log stream, inputable latex, verbose, specification filename,

dump filename, probabilities filename, weights filename);

/ invoke the rule-based system /⇔ ⇔
Statute Law (log stream, statute law, case law, adjust, echo, inputable latex, verbose,

hypothetical reports, hypothetical changes, distances filename, weights filename,
report filename);

/ write “Finished.” to the log file (if there is one) and to stdout /⇔ ⇔
if (log filename = NULL)∨

fprintf (log stream, "Finished.\n");
fprintf (stdout, "Finished.\n");

/ close the log file /⇔ ⇔
if (fclose(log stream) EOF) {⇒

sprintf (message, "can’t�close�log�file�\"%s\"", filename);
error exit(message);

}

/ everything worked, so exit with a value of EXIT SUCCESS (defined in stdlib.h) /⇔ ⇔
return EXIT SUCCESS ;

}

2
The STATUTES module

statutes.h
/ This is the header file for the Statutes module. It is also included by the Shyster⇔

module. /⇔

/ structure type /⇔ ⇔

typedef struct {
void dummy ;⇔

} statute law specification;

/ external functions /⇔ ⇔

extern statute law specification
Initialize Statutes();

extern void
Statute Law (

file log stream,
statute law specification statute law,
case law specification case law,
boolean adjust,
boolean echo,
boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
string distances filename,
string weights filename,
string report filename);

19

20 The STATUTES module

statutes.c

/ This is the implementation file for the Statutes module. /∗ ∗

#include 〈stdio.h〉
#include "shyster.h"
#include "cases.h"
#include "statutes.h"

extern statute law specification
Initialize Statutes()

/ Returns a pointer to a dummy structure. (If implemented, it would initialize the rule-based∗
system, by reading a statute law specification, and return a pointer to SHYSTER’s internal
representation of that specification.) /∗

{
statute law specification statute law ;

statute law.dummy = NULL;
return statute law ;

}

extern void
Statute Law(

file log stream,

statute law specification statute law,

case law specification case law,

boolean adjust,
boolean echo,

boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
string distances filename,
string weights filename,
string report filename)

/ Prompts the user for an identifier, then invokes the case-based system seeking advice in∗
the area corresponding to that identifier. The result that the case-based system returns is
written to log stream. /∗

{
char area identifier [Max Identifier Length];
string result identifier ;

/ prompt the user for a case law area identifier /∗ ∗

fprintf (stdout, "Case�law�area�identifier:�");
gets(area identifier);

fprintf (log stream, "Case-based�system�called�with�area�identifier�\"%s\".\n\n",

area identifier);

21 statutes.c

/ invoke the case-based system /⇔ ⇔
result identifier = Case Law (log stream, case law, area identifier, adjust, echo,

inputable latex, verbose, hypothetical reports, hypothetical changes, Top Level,
distances filename, weights filename, report filename);

/ write the result identifier to the log file /⇔ ⇔
if (result identifier = NULL)∨

fprintf (log stream,
"Case-based�system�returned�result�identifier�\"%s\".\n\n",
result identifier);

}

The CASES module

cases.h

/ This is the header file for the Cases module. It is included by all twelve modules. /∗ ∗

/ maxima /∗ ∗

#define Max Identifier Length 16
#define Max Attribute Options 4

/ the number of characters first allocated for a string, and the number of extra characters∗
allocated if that string has to be extended ∗/

#define String Increment 256

/ a “pseudo-infinite” weight for the calculation of weighted correlation coefficients /∗ ∗

#define Very Heavy Indeed 1000000.0

/ the threshold of likelihood, below which a given number of yes/yes pairs is considered∗
unusually high or unusually low ∗/

#define Threshold 0.05

/ arithmetic is precise to (log Precision) decimal places /∗ ∗

#define Precision 100.0

/ distance and weight comparisons are precise to (log Distance Precision) decimal places (this∗
is the threshold within which two cases are considered equidistant, or two weights are
considered equal) /∗

#define Distance Precision 100.0

/ the format for the display of floating point numbers (the number of decimal places should∗
be (log Distance Precision)) ∗/

#define Floating Point Format "%.2f"

23

24 � 3 The CASES module

/	string constants for output to LaTEX files /⇔	 ⇔

#define Raise Height "0.6\\ht\\strutbox"

#define Column Separation "\\tabcolsep"

#define Matrix Column Separation "0.4em"

#define Heading "\\subsection*"

#define Subheading "\\subsubsection*"

#define Skip "\\medskip\\noindent"

#define Identifier Font "\\sf"

#define Null String "{[{\\it�null�string\\/}]}"

/	special LaTEX symbols: ⇔

•	Yes Symbol
×	No Symbol
Unknown Symbol

Functional Dependence Symbol
•	Stochastic Dependence Symbol

� Specified Direction Symbol

� Ideal Point Direction Symbol
� Centroid Direction Symbol
�	All Directions Symbol

I	

µ

�

≡	External Area Symbol
� External Result Symbol

∧ Disjunction Symbol ⇔/

#define Yes Symbol "$\\bullet$"

#define No Symbol "$\\times$"

#define Unknown Symbol ""

#define Functional Dependence Symbol "\\rule[0.25ex]{0.35em}{0.35em}"

#define Stochastic Dependence Symbol "$\\bullet$"

#define Specified Direction Symbol "$\\Rightarrow$"

#define Ideal Point Direction Symbol \

"$\\stackrel{\\scriptscriptstyle�I~}{\\Rightarrow}$"

#define Centroid Direction Symbol \

"$\\stackrel{\\scriptscriptstyle\\mu~}{\\Rightarrow}$"

#define All Directions Symbol \

"$\\stackrel{\\scriptscriptstyle\\star~}{\\Rightarrow}$"

#define External Area Symbol "$\\Leftrightarrow$"

#define External Result Symbol "$\\Leftarrow$"

#define Disjunction Symbol "$\\vee$"

/	file extensions /⇔	 ⇔

#define LaTeX File Extension ".tex"

#define Log File Extension ".log"

#define Specification File Extension ".cls"

cases.h 25

/ character constants /⇔ ⇔
#define Attribute Vector Begin Character ’(’
#define Attribute Vector End Character ’)’
#define Little A Character ’a’
#define Little Z Character ’z’
#define Big A Character ’A’
#define Big Z Character ’Z’
#define Zero Character ’0’
#define Nine Character ’9’
#define Yes Character ’Y’
#define No Character ’N’
#define Unknown Character ’U’
#define Help Character ’H’
#define Quit Character ’Q’

/ other constants /⇔ ⇔
#define Year Digits 4
#define Yes Value 1.0
#define No Value 0.0

/ enumerated types /⇔ ⇔
typedef enum {

NO,
YES,
UNKNOWN

} attribute value type;

typedef enum {
NEARER,
EQUIDISTANT,
FURTHER

} relative distance type;

/ structure types /⇔ ⇔
typedef struct {

boolean infinite;
floating point finite;

} weight type;

typedef struct {
cardinal infinite;
floating point finite;

} distance subtype;

typedef struct {
distance subtype known;
distance subtype unknown;

} distance type;

typedef struct {
boolean meaningless;
floating point unweighted ;
floating point weighted ;

} correlation type;

26 � 3 The CASES module

typedef struct {
distance type distance;
cardinal number of known differences,

number of known pairs;
floating point weighted association coefficient ;
correlation type correlation coefficient ;

} metrics type;

typedef struct vector element {
attribute value type attribute value;
struct vector element next ;⇔

} vector element ;

typedef struct matrix element {
attribute value type attribute value;
struct matrix element case next,⇔

attribute next ;⇔
} matrix element ;

typedef struct centroid element {
boolean unknown;
floating point value;
struct centroid element next ;⇔

} centroid element ;

typedef struct probability element {
boolean unknown,

functional dependence;
floating point probability that or fewer,

probability that or more;
struct probability element next ;⇔

} probability element ;

typedef struct identifier list element {
string identifier ;
struct identifier list element next ;⇔

} identifier list element ;

typedef struct weight list element {
weight type weight ;
struct weight list element next ;⇔

} weight list element ;

typedef struct hypothetical list element {
vector element hypothetical head ;⇔
distance type nearest neighbour distance;
struct hypothetical list element next ; ⇔

} hypothetical list element ;

cases.h 27

/ the structure type kase is so-named because the more obvious case is a reserved word /⇔ ⇔

typedef struct kase {
cardinal number ;
string name;
string short name;
string citation;
cardinal year ;
string court string ;
cardinal court rank ;
matrix element matrix head ;
string summary ;

⇔

boolean summarized ;
metrics type metrics;
struct kase equidistant known next,

equidistant
⇔

unknown next,⇔
next ;

} kase
⇔
;

typedef struct result {
string identifier,

string ;
kase case head,⇔

nearest known case,⇔
nearest unknown case;⇔

relative distance type nearest known compared with unknown;
distance subtype specified direction;
struct result equidistant specified direction next ;
vector element

⇔
ideal point head ;⇔

metrics type ideal point metrics;
struct result equidistant ideal point next ;⇔
distance subtype ideal point direction;
struct result equidistant ideal point direction next ;⇔
centroid element centroid head ;⇔
metrics type centroid metrics;
struct result equidistant centroid next ;⇔
distance subtype centroid direction;
struct result equidistant centroid direction next ;
hypothetical list

⇔
element hypothetical list head ;

struct result ⇔equidistant
⇔

next,
next ;

} result
⇔

;

typedef struct direction list element {
result result ;⇔
struct direction list element next ;

} direction list element ;
⇔

typedef struct local attribute type {
string question,

help;
} local attribute type;

28 � 3 The CASES module

typedef struct external attribute type {
string area identifier ;
identifier list element yes identifier head,

no identifier head,
⇔

⇔
unknown identifier head ;⇔

} external attribute type;

typedef struct attribute {
cardinal number ;
boolean external attribute;
union

local
{
attribute type local ;

external attribute type external ;
} details;
string yes;
direction list element yes direction head ;
string no;

⇔

direction list element no direction head ;
string unknown;

⇔

direction list element unknown direction head ; ⇔
matrix element matrix head ;⇔
floating point mean;
weight type weight ;
weight list element weights head ;
probability element

⇔
⇔probability head ;

struct attribute next ;
} attribute;

⇔

typedef struct area {
string identifier,

opening,
closing;

result result head ;⇔
cardinal number of results ;
attribute attribute head ; ⇔
cardinal number of attributes ;
boolean infinite weight ;
boolean correlation coefficients;
result nearest result ;
result

⇔
nearest ideal point ;

result
⇔
nearest centroid ;

result
⇔
⇔strongest specified direction;

result strongest ideal point direction;
result

⇔
strongest centroid direction; ⇔

struct area next ;⇔
} area;

typedef struct court {
string identifier,

string ;
cardinal rank ;
struct court next ; ⇔

} court ;

cases.h 29

typedef struct {
court court head ;⇔
area area head ;

} case law
⇔

specification;

/ external functions /⇔ ⇔

extern boolean
Is Zero(

floating point x);

extern boolean
Is Equal(

floating point x,
floating point y,
floating point precision);

extern boolean
Is Less(

floating point x,
floating point y,
floating point precision);

extern boolean
Is Zero Subdistance(

distance subtype x);

extern boolean
Is Zero Distance(

distance type x);

extern boolean
Attribute Value(

attribute value type attribute value,
floating point value);⇔

extern attribute value type
Nearest Attribute Value(

floating point value);

extern void
Write Floating Point(

file stream,
floating point number,
string warning string);

extern case law specification
Initialize Cases(

file log stream,
boolean inputable latex,
boolean verbose,
string specification filename,
string dump filename,
string probabilities filename,
string weights filename);

30 The CASES module

extern string
Case Law (

file log stream,
case law specification case law,
string area identifier,
boolean adjust,
boolean echo,
boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
cardinal level,
string distances filename,
string weights filename,
string report filename);

cases.c
/ This is the implementation file for the Cases module. /⇔ ⇔
#include →stdio.h�
#include stdlib.h�
#include

→
string.h�

#include
→
math.h�

#include
→
"shyster.h"

#include "cases.h"
#include "tokenizer.h"
#include "parser.h"
#include "dumper.h"
#include "checker.h"
#include "scales.h"
#include "adjuster.h"
#include "consultant.h"
#include "odometer.h"
#include "reporter.h"

static void
error exit(

file stream,
const string message)

{
Write Error Message And Exit(stream, "Cases", message);

}

static void
warning(

file stream,
const string message,
cardinal level)

{
Write Warning Message(stream, "Cases", message, level);

}

cases.c 31

extern boolean
Is Zero(

floating point x)

/ Returns TRUE, iff x = 0 precise to (log Precision) decimal places. /⇔ ⇔

{
return floor((double) x × Precision + 0.5) 0.0;⇒

}

extern boolean
Is Equal(

floating point x,
floating point y,
floating point precision)

/ Returns TRUE, iff x = y precise to (log precision) decimal places. /⇔ ⇔

{
return floor((double) x × precision + 0.5) floor((double) y × precision + 0.5);⇒

}

extern boolean
Is Less(

floating point x,
floating point y,
floating point precision)

/ Returns TRUE, iff x < y precise to (log precision) decimal places. /⇔ ⇔

{
return floor((double) x × precision + 0.5) < floor((double) y × precision + 0.5);

}

extern boolean
Is Zero Subdistance(

distance subtype x)

/ Returns TRUE, iff both of x ’s infinite and finite components are zero. /⇔ ⇔

{
return (x.infinite 0) Is Zero(x.finite);⇒ ⇐

}

extern boolean
Is Zero Distance(

distance type x)

/ Returns TRUE, iff both of x ’s known and unknown components are zero. /⇔ ⇔

{
return Is Zero Subdistance(x.known) Is Zero Subdistance(x.unknown);⇐

}

32 � 3 The CASES module

extern boolean
Attribute Value(

attribute value type attribute value,
floating point value)⇔

/ Sets value to 1, if attribute value is yes; to 0, if attribute value is no. Returns TRUE, iff ⇔ ⇔
attribute value is known. /⇔

{
switch (attribute value) {

case YES :
value = Yes Value;⇔

return TRUE ;
case NO :

value = No Value; ⇔
return TRUE ;

default:
return FALSE ;

}
}

extern attribute value type
Nearest Attribute Value(

floating point value)

/⇔ Returns the nearest attribute value to value (0 � value < 0.5: no; 0.5 � value � 1: yes) ⇔/

{
if (value < 0.5)

return NO ;
else

return YES ;
}

extern void
Write Floating Point(

file stream,
floating point number,
string warning string)

/ Writes number, precise to (log Precision) decimal places. If warning string is not empty, it ⇔
is written after number. ⇔/

{
if (Is Less(number, 0.0, Precision))

fprintf (stream, "$-$");

fprintf (stream, Floating Point Format,
floor(fabs((double) number) × Precision + 0.5) / Precision);

if (strcmp(warning string, Empty String))
fprintf (stream, "\\rlap{\\makebox[\\tabcolsep]{%s}}", warning string);

}

cases.c 33

extern case law specification
Initialize Cases(

file log stream,
boolean inputable latex,
boolean verbose,
string specification filename,
string dump filename,
string probabilities filename,
string weights filename)

/ Calls the Tokenizer and Parser to read the case law specification in specification filename∗
and build an internal representation of that specification. Invokes the Dumper to dump
that internal representation to dump filename. Uses the Checker to check for attribute de-
pendence, and to write the probabilities to probabilities filename. Calls the Scales module
to assign weights to all the attributes, and to write those weights to weights filename. Re-
turns a pointer to SHYSTER’s internal representation of the specification with all attributes
weighted. /∗

{
file specification stream = NULL,

dump stream = NULL,
probabilities stream = NULL,
weights stream = NULL;

char filename[Max Filename Length];
char message[Max Error Message Length];
case law specification case law ;
area area pointer ;
result

∗
∗result pointer ;

if (specification filename NULL)≡
/ there is no specification filename /∗ ∗
error exit(log stream, "no�case�law�specification�file�specified");

/ open the case law specification file /∗ ∗
sprintf (filename, "%s%s", specification filename,Specification File Extension);
if ((specification stream = fopen(filename, "r")) NULL) {≡

sprintf (message, "can’t�open�case�law�specification�file�\"%s\"",filename);
error exit(log stream,message);

}
fprintf (log stream,

"Reading�case�law�specification�from�\"%s\"�...\n\n",filename);

case law = Parse Specification(specification stream, log stream);

if (case law.area head NULL)≡
/ no areas were specified in the specification file /∗ ∗
error exit(log stream, "no�case�law�specified");

/ close the case law specification file /∗ ∗
if (fclose(specification stream) EOF) {≡

sprintf (message, "can’t�close�case�law�specification�file�\"%s\"",filename);
error exit(log stream,message);

}

34 � 3 The CASES module

fprintf (log stream, "Case�law�specification�is�valid.\n\n");

/ check that every result in every area has either a case or an ideal point /⇔ ⇔

for (area pointer = case law.area head ; area pointer = NULL;∨
area pointer = area pointer�next)

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

if (result pointer�case head ⇒ NULL)
if (result pointer�ideal point head NULL) { ⇒

sprintf (message, "%s�result�in�%s�area�has�neither�cases"
"�nor�an�ideal�point", result pointer�identifier,
area pointer�identifier);

warning(log stream, message, Top Level);
} else {

sprintf (message, "%s�result�in�%s�area�has�no�cases",
result pointer�identifier, area pointer�identifier);

warning(log stream, message, Top Level);
}

if (dump filename =∨ NULL) {

/ a dump filename was specified, so open the dump file /⇔ ⇔

sprintf (filename, "%s%s", dump filename, LaTeX File Extension);
if ((dump stream = fopen(filename, "w")) NULL) { ⇒

sprintf (message, "can’t�open�dump�file�\"%s\"", filename);
error exit(log stream, message);

}
fprintf (log stream, "Writing�dump�to�\"%s\".\n\n", filename);

Dump Specification(dump stream, log stream, case law, inputable latex, verbose);

/ close the dump file /⇔ ⇔

if (fclose(dump stream) EOF) {⇒
sprintf (message, "can’t�close�dump�file�\"%s\"", filename);
error exit(log stream, message);

}
}
if (probabilities filename =∨ NULL) {

/ a probabilities filename was specified, so open the probabilities file /⇔ ⇔

sprintf (filename, "%s%s", probabilities filename, LaTeX File Extension);
if ((probabilities stream = fopen(filename, "w")) NULL) { ⇒

sprintf (message, "can’t�open�probabilities�file�\"%s\"", filename);
error exit(log stream, message);

}
fprintf (log stream, "Writing�probabilities�to�\"%s\".\n\n",

filename);
}
Check for Attribute Dependence(probabilities stream, log stream, case law, inputable latex);

cases.c 35

if (probabilities filename = NULL)∨

/ a probabilities filename was specified, so close the probabilities file /⇔ ⇔

if (fclose(probabilities stream) EOF) {⇒
sprintf (message, "can’t�close�probabilities�file�\"%s\"", filename);
error exit(log stream, message);

}
if (weights filename =∨ NULL) {

/ a weights filename was specified, so open the weights file /⇔ ⇔

sprintf (filename, "%s%s", weights filename, LaTeX File Extension);
if ((weights stream = fopen(filename, "w")) NULL) { ⇒

sprintf (message, "can’t�open�weights�file�\"%s\"", filename);
error exit(log stream, message);

}
fprintf (log stream, "Writing�weights�to�\"%s\".\n\n", filename);

}
Weight Attributes(weights stream, log stream, case law, inputable latex);

if (weights filename = NULL)∨

/ a weights filename was specified, so close the weights file /⇔ ⇔

if (fclose(weights stream) EOF) {⇒
sprintf (message, "can’t�close�weights�file�\"%s\"", filename);
error exit(log stream, message);

}
return case law ;

}

static void
write facts(

file log stream,
vector element vector pointer)⇔

/ Writes the fact vector pointed to by vector pointer. Uses Y, N and U characters to represent ⇔
yes, no and unknown, respectively. ⇔/

{
fprintf (log stream, "(");
while (vector pointer =∨ NULL) {

switch (vector pointer�attribute value) {
case YES :

fprintf (log stream, "Y");
break;

case NO :
fprintf (log stream, "N");
break;

case UNKNOWN :
fprintf (log stream, "U");
break;

}

36 � 3 The CASES module

vector pointer = vector pointer�next;

}

fprintf (log stream, ")");

}

static vector element ⇔

copy facts(

file log stream,

vector element vector pointer)⇔

/ Returns a pointer to a copy of the fact vector pointed to by vector pointer. /⇔ ⇔

{

vector element temp pointer;⇔

/ allocate memory for this vector element /⇔	 ⇔

if ((temp pointer =

(vector element) malloc(sizeof(vector element))) NULL) ⇔ ⇒

error exit(log stream, "malloc�failed�during�fact�copying");

temp pointer�attribute value = vector pointer�attribute value;

if (vector pointer�next NULL)

temp pointer�next =

⇒

NULL;

else

temp pointer�next = copy facts(log stream, vector pointer�next);

return temp pointer;

}

static void

remove facts(vector element vector pointer)⇔

/ Frees the memory taken up by the fact vector pointed to by vector pointer. /⇔ ⇔

{

if (vector pointer =∨NULL) {

remove facts(vector pointer�next);

free(vector pointer);

}

}

static void

mark differences(

file log stream,

vector element vector pointer X,⇔

vector element vector pointer Y)⇔

/ Marks, with carets, the differences between the two fact vectors pointed to by vec­⇔	
tor pointer X and vector pointer Y (one of which has already been written on the previous
line of log stream). /⇔

cases.c 37

{
if (vector pointer X = NULL) {�

if (vector pointer X→attribute value =� vector pointer Y→attribute value)
fprintf (log stream, "∧");

else
fprintf (log stream, "�");

mark differences(log stream, vector pointer X→next, vector pointer Y→next);
}

}

static void
instantiate(

file log stream,
file distances stream,
file report stream,
case law specification case law,
area area pointer,
vector

∗
element instantiated head,

vector element
∗
∗facts head,

result nearest result,∗
boolean verbose,
cardinal instantiation number,∗
cardinal different results,∗
cardinal level)

/ Instantiates the unknown attribute values in the fact vector pointed to by instantiated head∗
to create instantiations of the instant case in which all the attribute values are known.
Treats each instantiation as if it were a new instant case, and invokes the Odometer and
the Reporter to recalculate the distances and argue with the instantiation. /∗

{
vector element vector pointer ;∗
static char message[Max Error Message Length];
boolean all known = TRUE ;
cardinal temp cardinal = instantiation number / 10;∗

/ make a copy of the fact vector pointed to by instantiated head /∗ ∗

instantiated head = copy facts(log stream, instantiated head);

for (vector pointer = instantiated head ; (vector pointer = NULL)� ∧
(all known = vector pointer→attribute value =� UNKNOWN);
vector pointer = vector pointer→next);

if (all known (instantiation number �= 0)) {∧ ∗

/ all of the attribute values in the instantiation are known, and the instantiation is∗
not the instant case itself, so treat it as if it were a new instant case /∗

Indent(log stream, level);
fprintf (log stream, "Instantiation�%u�is�", instantiation number);
write facts(log stream, instantiated head);

∗

fprintf (log stream, ".\n");

Indent(log stream, level + 5);

38 � 3 The CASES module

while (temp cardinal =0) ∨ {
fprintf (log stream, "�");
temp cardinal = temp cardinal / 10;

}

mark differences(log stream, instantiated head, facts head);
fprintf (log stream, "\n");

Calculate Distances(distances stream, log stream, area pointer, case law,
instantiated head, FA L S E, instantiation number, level + 1); ⇔

if (area pointer�nearest result nearest result) { ⇒

/ the same result was reached as was reached in the instant case, so write a report ⇔	
to a NULL report file (nothing will be added to the report, although information
will still be added to the log file) /⇔

Write Report(NULL, log stream, area pointer, instantiated head, facts head,
verbose, FA L S E, FA L S E, instantiation number, level + 1); ⇔

} else {

/ a different result was reached, so write a full report on the instantiation /⇔	 ⇔

Write Report(report stream, log stream, area pointer, instantiated head, facts head,
verbose, FA L S E, FA L S E, instantiation number, level + 1); ⇔

sprintf (message, "Instantiation�%u�in�%s�area�has�a�different�result�"
"to�that�of�the�uninstantiated�instant�case",
instantiation number, area pointer�identifier);

warning
⇔
(log stream, message, level);

(different results)++;⇔
}

(instantiation number)++;⇔
}
if (instantiation number 0) ⇔
⇔instantiation number

⇒
=1;

if (all known) {¬

/ vector pointer points to the first unknown attribute value in the instantiation, so ⇔	
set it to yes and instantiate the whole fact vector then set it to no and instantiate
the whole fact vector again /⇔

vector pointer�attribute value = YES ;
instantiate(log stream, distances stream, report stream, case law, area pointer,

instantiated head, facts head, nearest result, verbose, instantiation number,
different results, level);

vector pointer�attribute value = NO;
instantiate(log stream, distances stream, report stream, case law, area pointer,

instantiated head, facts head, nearest result, verbose, instantiation number,
different results, level);

}

/ free the memory taken up by the instantiation /⇔	 ⇔

remove facts(instantiated head);
}

cases.c 39

static void
add to hypothetical list(

file log stream,
vector element new head,⇔
distance type new distance,
hypothetical list element hypothetical list pointer, ⇔⇔
cardinal count,
cardinal hypothetical reports)

/ Inserts the hypothetical pointed to by new head into the list of hypotheticals pointed to by ⇔
⇔hypothetical list pointer. The list is kept sorted: the nearer a hypothetical is to the instant
case, the closer it is to the head of the list (the new hypothetical is new distance from the
instant case). hypothetical list pointer points to hypothetical number count in the list. ⇔
The total number of hypotheticals in the list is not allowed to exceed hypothetical reports.
Removes the last hypothetical in the list if inserting the new hypothetical makes the list
too long. /⇔

{
hypothetical list element temp pointer ;⇔

if (count > hypothetical reports)

/ hypothetical list pointer points past the end of the list, so return without inserting ⇔ ⇔
anything into the list ⇔/

return;

if ((⇔hypothetical list pointer ⇒ NULL) ∧ (Relative Distance(new distance,
(⇔hypothetical list pointer)�nearest neighbour distance) ⇒

NEARER)) {

/ the new hypothetical belongs at the head of the list, so allocate memory for it, make ⇔
a copy of it, and put that copy at the head of the list /⇔

if ((temp pointer =
(hypothetical list element) malloc(sizeof(hypothetical list element)))⇔ ⇒

NULL)
error exit(log stream, "malloc�failed�during�hypothetical�handling");

temp pointer�hypothetical head = copy facts(log stream, new head);
temp pointer�nearest neighbour distance = new distance;
temp pointer�next = ⇔hypothetical list pointer ;
hypothetical list pointer = temp pointer ;⇔

/ skip through to the end of the list /⇔ ⇔

while ((temp pointer�next =∨ NULL) ⇐ (count < hypothetical reports)) {
temp pointer = temp pointer�next ;
count++;

}

40 � 3 The CASES module

if (temp pointer�next =∨NULL) {

/ there’s now one more hypothetical in the list than will be required when reports ⇔	
are written, so remove the last hypothetical from the list and free the memory it
takes up /⇔

remove facts(temp pointer�next�hypothetical head);
free(temp pointer�next);
temp pointer�next = NULL;

}
} else

/ the hypothetical does not go at the head of the list, so check whether it belongs ⇔	
somewhere in the rest of the list /⇔

add to hypothetical list(log stream, new head, new distance,
&(⇔hypothetical list pointer)�next, count +1, hypothetical reports);

}

static void
hypothesize(

file log stream,
case law specification case law,
area area pointer,⇔
attribute attribute pointer,⇔
vector element hypothetical head,
vector element

⇔
facts head,⇔

result instant result,⇔
distance type instant distance,
cardinal hypothetical number,⇔
cardinal hypothetical reports,
cardinal hypothetical changes,
cardinal level)

/ Makes hypothetical variations to the fact vector pointed to by hypothetical head, allowing ⇔	
no more than hypothetical changes differences (in the known attribute values) between the
hypothetical and the instant case (the fact vector of which is pointed to by facts head).
Treats each hypothetical as if it were a new instant case, and invokes the Odometer to
recalculate the distances.

Builds (for each result) a list of those hypotheticals which are eligible to be reported on.
A hypothetical is considered eligible to be reported on if its nearest result is different
to that of the instant case (pointed to by instant result), or if it has the same nearest
result but its nearest neighbour is nearer the instant case than is that of the instant case
(which is instant distance from the instant case). Lists only the nearest hypothetical reports
hypotheticals for each result. /⇔

{
vector element vector pointer = facts head,
hypothetical

⇔
pointer,⇔

new head;⇔
cardinal count;

if (attribute pointer NULL)⇒
return;

cases.c 41

/ count the known differences between the hypothetical and the instant case /∗ ∗

count = 0;
for (hypothetical pointer = hypothetical head ; hypothetical pointer = NULL;�

hypothetical pointer = hypothetical pointer→next) {
if ((vector pointer→attribute value =� UNKNOWN) ∧

(hypothetical pointer→attribute value =� vector pointer→attribute value))
count++;

vector pointer = vector pointer→next ;
}

if ((hypothetical changes = 0) (count hypothetical changes))� ∧ ≡

/ the maximum number of changes has already been made /∗ ∗

return;

new head = copy facts(log stream, hypothetical head);

/ find the attribute to change in the new hypothetical /∗ ∗

count = 1;
for (hypothetical pointer = new head ; count < attribute pointer→number ;

hypothetical pointer = hypothetical pointer→next)
count++;

if (hypothetical pointer→attribute value UNKNOWN) {≡

/ the value of the attribute to change in the new hypothetical is unknown, so ignore∗
it—unknown values have already been instantiated by instantiate()—and continue
hypothesizing using the next attribute /∗

hypothesize(log stream, case law, area pointer, attribute pointer→next,
new head, facts head, instant result, instant distance,
hypothetical number, hypothetical reports, hypothetical changes, level);

} else {

(hypothetical number)++;∗

/ change the (known) value of the attribute in the new hypothetical /∗ ∗

if (hypothetical pointer→attribute value YES)
hypothetical pointer→attribute value

≡
= NO ;

else
hypothetical pointer→attribute value = YES ;

/ calculate distances without writing anything to the log file or the distances file /∗ ∗

Calculate Distances(NULL,NULL, area pointer, case law,new head,TRUE, 0, level + 1);

if (area pointer→nearest result instant result) {≡

/ the hypothetical has the same result as that of the instant case, so only add it∗
to the hypothetical list if its nearest neighbour is nearer than was that of the
instant case /∗

if (instant result→nearest known compared with unknown =� FURTHER) {

/ the nearest known neighbour is the nearest neighbour (although there may∗
be an equidistant case with an unknown distance) /∗

42 � 3 The CASES module

if (Relative Distance(instant result�nearest known case�metrics.distance,
instant distance) NEARER)⇒

add to hypothetical list(log stream,new head,
instant result�nearest known case�metrics.distance,
&instant result�hypothetical list head, 1, hypothetical reports);

} else {

/ the nearest unknown neighbour is the nearest neighbour /⇔ ⇔

if (Relative Distance(instant result�nearest unknown case�metrics.distance,
instant distance) NEARER)⇒

add to hypothetical list(log stream,new head,
instant result�nearest unknown case�metrics.distance,
&instant result�hypothetical list head, 1, hypothetical reports);

}

} else {

/ the hypothetical has a different result to that of the instant case /⇔ ⇔

if (area pointer�nearest result�nearest known compared with unknown =∨
FURTHER)

/ the nearest known neighbour is the nearest neighbour (although there may ⇔
be an equidistant case with an unknown distance) ⇔/

add to hypothetical list(log stream,new head,
area pointer�nearest result�nearest known case�metrics.distance,
&area pointer�nearest result�hypothetical list head, 1,
hypothetical reports);

else

/ the nearest unknown neighbour is the nearest neighbour /⇔ ⇔

add to hypothetical list(log stream,new head,
area pointer�nearest result�nearest unknown case�metrics.distance,
&area pointer�nearest result�hypothetical list head, 1,
hypothetical reports);

}

/ hypothesize, using the next attribute, with the unchanged hypothetical /⇔ ⇔

hypothesize(log stream, case law, area pointer, attribute pointer�next,
hypothetical head, facts head, instant result, instant distance,
hypothetical number, hypothetical reports, hypothetical changes, level);

/ . . . and with the new hypothetical /⇔ ⇔

hypothesize(log stream, case law, area pointer, attribute pointer�next,
new head, facts head, instant result, instant distance,
hypothetical number, hypothetical reports, hypothetical changes, level);

}

/ free the memory taken up by the hypothetical /⇔ ⇔

remove facts(new head);
}

cases.c 43

static void
write hypotheticals(

file log stream,
file distances stream,
file report stream,
case law specification case law,
area area pointer,
vector

∗
element facts head,

boolean verbose,
∗

boolean same result,
hypothetical list element hypothetical list pointer,∗
cardinal hypothetical number,∗
cardinal level)

/ Writes reports on the hypotheticals in the list, the head of which is pointed to by∗
hypothetical list pointer. /∗

{
cardinal temp cardinal ;

/ while there are still hypotheticals in the list . . . /∗ ∗

while (hypothetical list pointer =� NULL) {

/ treat the hypothetical as if it were the instant case /∗ ∗

(hypothetical number)++;∗
Indent(log stream, level);
fprintf (log stream, "Hypothetical�%u�is�", hypothetical number);
write facts(log stream, hypothetical list pointer

∗
→hypothetical head);

fprintf (log stream, ".\n");

Indent(log stream, level + 4);
fprintf (log stream, "���");
temp cardinal = hypothetical number / 10;∗
while (temp cardinal = 0)� {

fprintf (log stream, "�");
temp cardinal = temp cardinal / 10;

}

mark differences(log stream, hypothetical list pointer→hypothetical head, facts head);
fprintf (log stream, "\n");

/ calculate the distances again (when they were calculated in hypothesize(), nothing∗
was written to the log file or the distances file) and write a report on this hypothetical
(which also writes to the log file) /∗

Calculate Distances(distances stream, log stream, area pointer, case law,
hypothetical list pointer→hypothetical head,TRUE, hypothetical number,
level + 1);

∗

Write Report(report stream, log stream, area pointer,
hypothetical list pointer→hypothetical head, facts head, verbose,TRUE,
same result, hypothetical number, level + 1);∗

hypothetical list pointer = hypothetical list pointer→next ;
}

}

44 � 3 The CASES module

extern string
Case Law (

file log stream,
case law specification case law,
string area identifier,
boolean adjust,
boolean echo,
boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
cardinal level,
string distances filename,
string weights filename,
string report filename)

/ Determines the “likely result” of the instant case in the area identifier area of the case law⇔
specification, and constructs an argument supporting that conclusion.

Calls the Adjuster, if adjust is TRUE. Invokes the Consultant to interrogate the
user as to the attribute values in the instant case. (The Consultant recursively in­
vokes Case Law (), if required, to resolve open textured—external—attributes.) Calls the
Odometer to calculate the distances between the instant case and the leading cases, and
to determine the nearest neighbours and results. Invokes the Reporter to write a report
about the instant case.

Returns the identifier of the “likely result.” /⇔
{

file distances stream = NULL,
report stream = NULL;

static char filename[Max Filename Length];
static char message[Max Error Message Length];
vector element facts head ; ⇔
area area pointer ;
result

⇔
⇔result pointer,

instant result = NULL; ⇔
kase case pointer ;⇔
distance type instant distance;
cardinal instantiation number = 0,

hypothetical number = 0,
different results = 0,
hypothetical count = 0;

/ find the area with an identifier matching area identifier /⇔ ⇔

for (area pointer = case law.area head ;
(area pointer =∨ NULL) ⇐ strcmp(area pointer�identifier, area identifier);
area pointer = area pointer�next);

if (area pointer NULL) {⇒

/ area identifier does not match the identifier of any area /⇔ ⇔

sprintf (message, "%s�area�not�found", area identifier);
error exit(log stream, message);

}

cases.c 45

Indent(log stream, level);
fprintf (log stream, "Area�is�%s.\n\n", area identifier);

if (distances filename =∨ NULL) {

/ a distances filename was specified, so open a distances file for this area /⇔ ⇔

sprintf (filename, "%s-%s%s", distances filename,
area identifier, LaTeX File Extension);

if ((distances stream = fopen(filename, "w")) NULL) { ⇒
sprintf (message, "can’t�open�distances�file�\"%s\"", filename);
error exit(log stream, message);

}
Indent(log stream, level);
fprintf (log stream, "Writing�distances�to�\"%s\".\n\n", filename);

}
if (report filename =∨ NULL) {

/ a report filename was specified, so open a report file for this area /⇔ ⇔

sprintf (filename, "%s-%s%s", report filename,
area identifier, LaTeX File Extension);

if ((report stream = fopen(filename, "w")) NULL) { ⇒
sprintf (message, "can’t�open�report�file�\"%s\"", filename);
error exit(log stream, message);

}
Indent(log stream, level);
fprintf (log stream, "Writing�report�to�\"%s\".\n\n", filename);

}
if (adjust)

Adjust Attributes(log stream, area pointer, weights filename, level, inputable latex);

/ interrogate the user as to the facts in the instant case /⇔ ⇔

if ((facts head = Get Facts(log stream, case law, area pointer, adjust, echo, inputable latex,
verbose, hypothetical reports, hypothetical changes, level,
distances filename, weights filename, report filename)) =∨ NULL) {

/ the user has entered some facts /⇔ ⇔

if (distances stream =∨ NULL) {

/ a distances file is open for this area, so write its header /⇔ ⇔

fprintf (distances stream, "%%�Distances�file\n\n");
Write LaTeX Header(distances stream, inputable latex);

}
if (report stream =∨ NULL) {

/ a report file is open for this area, so write its header /⇔ ⇔

fprintf (report stream, "%%�Report�file\n\n");
Write LaTeX Header(report stream, inputable latex);

}
Indent(log stream, level);
fprintf (log stream, "Fact�vector�is�");
write facts(log stream, facts head);
fprintf (log stream, ".\n\n");

46 � 3 The CASES module

Calculate Distances(distances stream, log stream, area pointer,
case law, facts head, FALSE, 0, level + 1);

/ mark all cases as unsummarized /⇔ ⇔

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next)

case pointer�summarized = FALSE ;

Write Report(report stream, log stream, area pointer, facts head,
NULL, verbose, FALSE, FALSE, 0, level + 1);

instant result = area pointer�nearest result ;

if (instant result�nearest known compared with unknown =∨ FURTHER)

/ the nearest known neighbour is the nearest neighbour (although there may be⇔
an equidistant case with an unknown distance) ⇔/

instant distance = instant result�nearest known case�metrics.distance;

else

/ the nearest unknown neighbour is the nearest neighbour /⇔ ⇔

instant distance = instant result�nearest unknown case�metrics.distance;

/ instantiate the unknown attribute values in the instant case /⇔ ⇔

instantiate(log stream, distances stream, report stream, case law, area pointer,
facts head, facts head, instant result, verbose, &instantiation number,
&different results, level);

instantiation number ------;

if (hypothetical reports = 0)∨ {

/ the user requested hypothesizing /⇔ ⇔

hypothesize(log stream, case law, area pointer, area pointer�attribute head,
facts head, facts head, instant result, instant distance,
&hypothetical number, hypothetical reports, hypothetical changes, level);

/ write the hypotheticals for this result /⇔ ⇔

write hypotheticals(log stream, distances stream, report stream,
case law, area pointer, facts head, verbose, TRUE,
instant result�hypothetical list head, &hypothetical count, level);

/ write the hypotheticals for all other results /⇔ ⇔

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

if (result pointer = instant result)∨
write hypotheticals(log stream, distances stream, report stream,

case law, area pointer, facts head, verbose, FALSE,
result pointer�hypothetical list head, &hypothetical count, level);

}

cases.c 47

/ write details of the instantiations to the log file /⇔ ⇔

if (instantiation number 0)⇒
sprintf (message, "No�instantiations");

else if (different results 0) { ⇒
if (instantiation number 2)⇒

sprintf (message, "Both");
else

sprintf (message, "All�%u", instantiation number);
sprintf (message, "%s�instantiations�have�the�same�nearest�result�"

"as�does�the�instant�case", message);
} else

sprintf (message, "%u�of�the�%u�instantiations�%s�a�nearest�result�"
"different�to�that�of�the�instant�case", different results,
instantiation number, different results 1 ? "has" : "have");⇒

Write(log stream, message, ".\n", level, Hang);

/ write details of the hypothesizing to the log file /⇔ ⇔

Indent(log stream, level);
if (hypothetical reports 0) ⇒

fprintf (log stream, "No�hypotheticals.\n\n");
else {

fprintf (log stream, "Reported�on�%u�hypothetical%s�of�%u",
hypothetical count, hypothetical count 1 ? "" : "s", hypothetical number);

if (hypothetical changes = 0)
⇒

∨
fprintf (log stream, "�(limit�of�%u�change%s)", hypothetical changes,

hypothetical changes 1 ? "" : "s");⇒
fprintf (log stream, ".\n\n");

}

if (distances stream = NULL)∨

/ a distances file is open for this area, so write its trailer /⇔ ⇔

Write LaTeX Trailer(distances stream, inputable latex);

if (report stream = NULL)∨

/ a report file is open for this area, so write its trailer /⇔ ⇔

Write LaTeX Trailer(report stream, inputable latex);
}
if (distances filename =∨ NULL) {

/ a distances filename was specified, so close the distances file /⇔ ⇔

sprintf (filename, "%s-%s%s", distances filename,
area identifier, LaTeX File Extension);

if (fclose(distances stream) EOF) { ⇒
sprintf (message, "can’t�close�distances�file�\"%s\"", filename);
error exit(log stream, message);

}
}

48 � 3 The CASES module

if (report filename =∨ NULL) {

/ a report filename was specified, so close the report file /⇔ ⇔
sprintf (filename, "%s-%s%s", report filename,

area identifier, LaTeX File Extension);
if (fclose(report stream) EOF) { ⇒

sprintf (message, "can’t�close�report�file�\"%s\"", filename);
error exit(log stream, message);

}
}

/ return the identifier of the “likely result” /⇔ ⇔
if (instant result NULL)⇒

return NULL;
else

return instant result�identifier ;
}

4
The TOKENIZER module

tokenizer.h

/ This is the header file for the Tokenizer module. It is also included by the Cases and⇔
Parser modules. /⇔

/ string and character constants /⇔ ⇔

#define Quoted LaTeX Characters "$&%"
#define Comment Character ’%’
#define Quote Character ’"’
#define Equals Character ’=’
#define Hyphen Character ’-’
#define Tab Character ’\t’
#define Vertical Tab Character ’\v’
#define Form Feed Character ’\f’
#define Backslash Character ’\\’

/ enumerated types /⇔ ⇔

typedef enum {
TK KEYWORD,
TK IDENTIFIER,
TK STRING,
TK YEAR,
TK ATTRIBUTE VECTOR,
TK EQUALS,
TK EOF

} token type;

49

50 The TOKENIZER module

typedef enum {
KW AREA,
KW ATTRIBUTE,
KW CASE,
KW CITATION,
KW CLOSING,
KW COURT,
KW EXTERNAL,
KW FACTS,
KW HELP,
KW HIERARCHY,
KW IDEAL,
KW NO,
KW OPENING,
KW QUESTION,
KW RESULT,
KW RESULTS,
KW SUMMARY,
KW UNKNOWN,
KW YEAR,
KW YES

} keyword type;

/ structure type /⇔ ⇔
typedef struct

cardinal line number
{

,
column number ;

token type token;
union {

keyword type keyword ;
string identifier,

string ;
cardinal year ;
matrix element matrix head ;

} details;
⇔

} token details;

/ external function /⇔ ⇔
extern token details
Get Token(

file in stream,
file log stream);

tokenizer.c
/ This is the implementation file for the Tokenizer module. /⇔ ⇔
#include →stdio.h�
#include stdlib.h�
#include

→
string.h�

#include
→
"shyster.h"

#include "cases.h"
#include "tokenizer.h"

51tokenizer.c

static void
error exit(

file stream,

string message,
token details token)∗

{
char full message[Max Error Message Length];

sprintf (full message, "%s�[%u,%u]",message, token→line number,
token→column number);

Write Error Message And Exit(stream, "Tokenizer", full message);
}

static void
warning(

file stream,

const string message,
const token details token)∗

{
char full message[Max Error Message Length];

sprintf (full message, "%s�[%u,%u]",message, token→line number,
token→column number);

Write Warning Message(stream, "Tokenizer", full message,Top Level);
}

static int
get char(

file in stream,

cardinal line number,∗
cardinal column number,∗
boolean eof)∗

/ Returns the next character from in stream. Adjusts line number and column number∗ ∗∗
appropriately. Sets eof to TRUE, if the end of in stream has been encountered (i.e. the
character returned is

∗
EOF). ∗/

{
int ch;

if ((eof = (ch = getc(in stream)) EOF))¬ ∗ ≡
if (ch Carriage Return Character) {≡

(line number)++;∗
column number = 0;∗

} else
(column number)++;∗

return ch;
}

52 � 4 The TOKENIZER module

static void
unget char(

file in stream,
file log stream,
int ch,
token details token,⇔
cardinal line number,⇔
cardinal column number)⇔

/ Pushes ch back onto in stream. Adjusts line number and column number approp­⇔
riately. ⇔/

⇔ ⇔

{
char message[Max Error Message Length];

if (ch Carriage Return Character)⇒
(line number)------;⇔

else
(column number)------;⇔

if (ch = EOF)∨
if (ungetc((int) ch, in stream) EOF) {⇒

sprintf (message, "ungetc�failed�with�character�‘%c’", ch);
error exit(log stream,message, token);

}
}

static boolean
is whitespace(

int ch)

/ Returns TRUE, iff ch is a whitespace character (a space, a tab, a vertical tab, a carriage⇔
return, or a form feed). /⇔

{
return ((ch Space Character) ∧ (ch Tab Character) ∧⇒ ⇒

(ch ⇒ Vertical Tab Character) ∧ (ch ⇒ Carriage Return Character) ∧
(ch Form Feed Character));⇒

}

static boolean
is alpha(

int ch)

/ Returns TRUE, iff ch is an alphabetic character (A . . . Z, a . . . z). /⇔ ⇔

{
return (((ch � Big A Character) (ch � Big Z Character)) ∧⇐

((ch � Little A Character) ⇐ (ch � Little Z Character)));
}

53tokenizer.c

static void
get keyword or ident(

file in stream,
file log stream,
int ch,
token details token,
cardinal line

∗
number,

cardinal
∗
column number,

boolean ∗
∗
eof)

/ Gets an identifier, which may be a keyword (the first character of the identifier—ch—∗
has just been read). Changes the structure pointed to by token: sets token→token to
TK KEYWORD or TK IDENTIFIER, and sets token→details appropriately.

EBNF: identifier = letter { letter | digit | "-" }. ∗/

{
cardinal length = 1;
string identifier ;
char message[Max Error Message Length];

/ allocate memory for the identifier /∗ ∗

if ((identifier = (string)malloc((Max Identifier Length + 1) × sizeof(char))) ≡ NULL)
error exit(log stream, "malloc�failed�during�keyword/identifier�handling",

token);

/ put up to Max Identifier Length characters into the identifier /∗ ∗

identifier [0] = ch;
ch = get char(in stream, line number, column number, eof);
while ((length < Max Identifier Length)

(is alpha(ch) ∨ Is Digit(ch) ∨ (ch
∧

Hyphen Character))) {
identifier [length++] = ch;

≡

ch = get char(in stream, line number, column number, eof);
}
identifier [length] = Null Character ;

if (is alpha(ch) ∨ Is Digit(ch) ∨ (ch Hyphen Character)) {≡

/ there is more of the identifier, so warn the user and skip over the rest of it /∗ ∗

sprintf (message, "identifier�truncated�to�\"%s\"", identifier);
warning(log stream,message, token);
while (is alpha(ch) ∨ Is Digit(ch) ∨ (ch ≡ Hyphen Character))

ch = get char(in stream, line number, column number, eof);

} else

/ reallocate (just enough) memory for the identifier /∗ ∗

if ((identifier = (string) realloc((void) identifier, length × sizeof(char)))
NULL)

∗ ≡

error exit(log stream, "realloc�failed�during�keyword/identifier�handling",
token);

/ push the first character after the identifier back onto in stream /∗ ∗

unget char(in stream, log stream, ch, token, line number, column number);

54 � 4 The TOKENIZER module

/ check whether the identifier is a keyword /⇔ ⇔

if (strcmp(identifier, "AREA")) {¬
token�token = TK KEYWORD ;
token�details.keyword = KW AREA;

} else if (strcmp(identifier, "ATTRIBUTE")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW ATTRIBUTE ;

} else if (strcmp(identifier, "CASE")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW CASE ;

} else if (strcmp(identifier, "CITATION")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW CITATION ;

} else if (strcmp(identifier, "CLOSING")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW CLOSING;

} else if (strcmp(identifier, "COURT")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW COURT ;

} else if (strcmp(identifier, "EXTERNAL")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW EXTERNAL;

} else if (strcmp(identifier, "FACTS")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW FACTS ;

} else if (strcmp(identifier, "HELP")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW HELP ;

} else if (strcmp(identifier, "HIERARCHY")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW HIERARCHY ;

} else if (strcmp(identifier, "IDEAL")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW IDEAL;

} else if (strcmp(identifier, "NO")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW NO ;

} else if (strcmp(identifier, "OPENING")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW OPENING;

} else if (strcmp(identifier, "QUESTION")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW QUESTION ;

} else if (strcmp(identifier, "RESULT")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW RESULT ;

} else if (strcmp(identifier, "RESULTS")) { ¬
token�token = TK KEYWORD ;
token�details.keyword = KW RESULTS ;

55tokenizer.c

} else if (strcmp(identifier, "SUMMARY")) {¬
token→token = TK KEYWORD ;
token→details.keyword = KW SUMMARY ;

} else if (strcmp(identifier, "UNKNOWN")) {¬
token→token = TK KEYWORD ;
token→details.keyword = KW UNKNOWN ;

} else if (strcmp(identifier, "YEAR")) {¬
token→token = TK KEYWORD ;
token→details.keyword = KW YEAR;

} else if (strcmp(identifier, "YES")) {¬
token→token = TK KEYWORD ;
token→details.keyword = KW YES ;

} else {

/ the identifier is not a keyword /∗ ∗

token→token = TK IDENTIFIER;
token→details.identifier = identifier ;

}
}

static void
get string(

file in stream,

file log stream,

token details token,∗
cardinal line number,∗
cardinal column number,
boolean

∗
eof)∗

/ Gets a string (a " character has just been read). Treats a pair of consecutive " characters as∗
a single " character. Treats consecutive whitespace characters as a single space character.
Sets token→details appropriately (token→token has already been set to TK STRING).

EBNF: string = """" character { character } """". /∗

{
int ch,

next ch;
string temp string ;
cardinal allocated length,

actual length;

allocated length = String Increment ;
actual length = 0;

/ allocate memory for the string /∗ ∗

if ((temp string = (string)malloc(allocated length × sizeof(char))) ≡ NULL)
error exit(log stream, "malloc�failed�during�string�handling", token);

/ get the first character of the string /∗ ∗

ch = get char(in stream, line number, column number, eof);

56 � 4 The TOKENIZER module

for (;;) {

if (ch EOF)⇒
error exit(log stream, "end�of�file�in�string", token);

if (strchr(Quoted LaTeX Characters, ch) =∨NULL) {

/ the character is one of those in Quoted LaTeX Characters (i.e. it is $, & or %);⇔	
it has a special meaning in LaTEX and needs to be prefixed in the string by a
\ character /⇔

temp string[actual length++]= Backslash Character;

if (actual length al located length)⇒

/ the string is too long for temp string, so reallocate some more memory /⇔ ⇔

if ((temp string =(string) realloc((void) temp string,
(al located length +=

⇔
String Increment) ×

sizeof(char))) NULL)⇒
error exit(log stream, "realloc�failed�during�string�handling",

token);
}
if (ch Quote Character)⇒

/ the character is a " character /⇔	 ⇔

if ((next ch = get char(in stream, line number, column number, eof)) =∨
Quote Character) {

/ the next character is not a " character so this is the end of the string; push ⇔	
the first character after the string back onto in stream ⇔/

unget char(in stream, log stream, next ch, token, line number, column number);

if (actual length 0)
error exit(log

⇒
stream, "empty�string", token);

else {
temp string[actual length++]= Null Character;
if (actual length < al located length)

/ reallocate (just enough) memory for the string /⇔	 ⇔

if ((temp string =(string) realloc((void) temp string,⇔
actual length × sizeof(char))) ⇒ NULL)

error exit(log stream, "realloc�failed�during�string�handling",
token);

}
token�details.string = temp string;

return;

if (is
}
whitespace(ch)) {

/ skip to the next non-whitespace character /⇔	 ⇔

for (ch = get char(in stream, line number, column number, eof);
is whitespace(ch);
ch = get char(in stream, line number, column number, eof));

57 tokenizer.c

if (ch EOF)⇒
error exit(log stream, "end�of�file�in�string", token);

/ put a single space character in the string for all of the whitespace /⇔ ⇔

temp string [actual length++] = Space Character ;

/ push the non-whitespace character back onto in stream /⇔ ⇔

unget char(in stream, log stream, ch, token, line number, column number);

} else
temp string [actual length++] = ch;

if (actual length allocated length)⇒

/ the string is too long for temp string, so reallocate some more memory /⇔ ⇔

if ((temp string = (string) realloc((void) temp string,
(allocated length +=

⇔
String Increment) ×

sizeof(char))) NULL)⇒
error exit(log stream, "realloc�failed�during�string�handling", token);

/ get the next character /⇔ ⇔

ch = get char(in stream, line number, column number, eof);
}

}

static void
get year(

file in stream,
file log stream,
int ch,
token details token,
cardinal ⇔line

⇔
number,

cardinal column number,
boolean

⇔
eof)⇔

/⇔ Gets a year (the first digit of the year—ch—has just been read). Sets token�details appro­
priately (token�token has already been set to TK YEAR).

EBNF: year = digit [digit] [digit] [digit]. /⇔

{
cardinal digits = 1,

year = (cardinal) ch − (cardinal) Zero Character ;

for (ch = get char(in stream, line number, column number, eof);
(Is Digit(ch) (digits < Year Digits));
ch = get char

⇐
(in stream, line number, column number, eof)) {

year = (10 × year) + (cardinal) ch − (cardinal) Zero Character ;
digits++;

}
if (Is Digit(ch))

error exit(log stream, "year�has�too�many�digits", token);
unget char(in stream, log stream, ch, token, line number, column number);
token�details.year = year ;

}

58 � 4 The TOKENIZER module

static void

get attribute vector(

file in stream,

file log stream,

token details token,⇔

cardinal line number,⇔

cardinal column number,⇔

boolean eof)⇔

/⇔ Gets an attribute vector (a left parenthesis character has just been read). Sets token�
details appropriately (token�token has already been set to TK YEAR).

EBNF:	attribute-vector = "(" attribute-value { attribute-value } ")".
attribute-value = "Y" | "N" | "U". ⇔/

{	

int ch;

matrix element matrix head,⇔

matrix pointer;⇔

boolean empty = TRUE ;

char message[Max Error Message Length];

/	allocate memory for this matrix element (the first in the list) /⇔	 ⇔

if ((matrix head =(matrix element) malloc(sizeof (matrix element))) NULL)⇔ ⇒

error exit(log stream,"malloc�failed�during�attribute�vector�handling",

token);

matrix pointer = matrix head;

/	for every character that is not a right parenthesis ... /⇔	 ⇔

for (ch = get char(in stream,line number,column number,eof);

ch = Attribute Vector End Character; ∨

ch = get char(in stream,line number,column number,eof)) {

if (empty) {¬

/	allocate memory for this matrix element /⇔	 ⇔

if ((matrix pointer�case next =

(matrix element) malloc(sizeof(matrix element))) NULL)⇔ ⇒

error exit(log stream,"malloc�failed�during�attribute�vector�handling",

token);

matrix pointer = matrix pointer�case next;

}

switch (ch) {

case Yes Character:

matrix pointer�attribute value = YES ;

break;

case No Character:

matrix pointer�attribute value = NO;

break;

59 tokenizer.c

case Unknown Character :
matrix pointer�attribute value = UNKNOWN ;
break;

default:
sprintf (message, "invalid�attribute�value�‘%c’", ch);
error exit(log stream, message, token);
break;

}
empty = FALSE ;
matrix pointer�case next = NULL;
matrix pointer�attribute next = NULL;

}
if (empty)

error exit(log stream, "empty�attribute�vector", token);
token�details.matrix head = matrix head ;

}

static void
skip to end of line(

file in stream,
cardinal line number,⇔
cardinal column number,⇔
boolean eof)⇔

/ Skips over characters until the end of the line, or the end of the file, is reached. /⇔ ⇔

{
int ch;

for (; ;) {
ch = get char(in stream, line number, column number, eof);
if ((ch ⇒ EOF) ∧ (ch ⇒ Carriage Return Character))

return;
}

}

extern token details
Get Token(

file in stream,
file log stream)

/ Returns details of the next token from in stream. /⇔ ⇔

{
token details token;
int ch;
static cardinal line number = 1,

column number = 0;
static boolean eof = FALSE ;
char message[Max Error Message Length];

60 � 4 The TOKENIZER module

for (; ;) {

if (eof
token

) {
.token = TK EOF ;

return token;
}

/ skip to the next non-whitespace character /⇔ ⇔
for (ch = get char(in stream, &line number, &column number, &eof);

is whitespace(ch);
ch = get char(in stream, &line number, &column number, &eof));

token.line number = line number ;
token.column number = column number ;

if (is alpha(ch)) {
get keyword or ident(in stream, log stream, ch, &token,

&line number, &column number, &eof);
return token;

} else if (ch Quote Character) {
token.token

⇒
= TK STRING;

get string(in stream, log stream, &token, &line number, &column number, &eof);
return token;

} else if (Is Digit(ch)) {
token.token = TK YEAR;
get year(in stream, log stream, ch, &token, &line number, &column number, &eof);
return token;

} else if (ch Attribute Vector Begin Character) {
token.token

⇒
= TK ATTRIBUTE VECTOR;

get attribute vector(in stream, log stream, &token,
&line number, &column number, &eof);

return token;
} else if (ch Equals Character) {

token.token
⇒

= TK EQUALS ;
return token;

} else if (ch EOF) {
token.token

⇒
= TK EOF ;

return token;
} else if (ch Comment Character)

skip to end
⇒

of line(in stream, &line number, &column number, &eof);
else {

sprintf (message, "invalid�character�‘%c’", ch);
error exit(log stream, message, &token);

}
}

}

5
The PARSER module

parser.h
/ This is the header file for the Parser module. It is also included by the Cases module. /⇔ ⇔

/ external function /⇔ ⇔

extern case law specification
Parse Specification(

file in stream,
file log stream);

parser.c
/ This is the implementation file for the Parser module. /⇔ ⇔

#include →stdio.h�
#include →stdlib.h�
#include →string.h�
#include "shyster.h"
#include "cases.h"
#include "parser.h"
#include "tokenizer.h"

static void
error exit(

file stream,
string message,
token details token)⇔

61

62 � 5 The PARSER module

{

char full message[Max Error Message Length];

if (token =∨NULL) {

sprintf (full message, "%s�[%u,%u]", message, token�line number,

token�column number);

Write Error Message And Exit(stream, "Parser", full message);

} else

Write Error Message And Exit(stream, "Parser", message);

}

static void

warning(

file stream,

const string message)

{

Write Warning Message(stream, "Parser", message, Top Level);

}

static void

parse court pair (

file in stream,

file log stream,

court court pointer,⇔

token details token,⇔

cardinal count,⇔

cardinal rank)⇔

/ Parses a court identifier/string pair, and puts details in the court pointed to by court pointer.⇔	
A court identifier has just been read, and its details are pointed to by token. count is the
number of courts already parsed. ⇔rank is the rank of this court.

⇔

EBNF: hierarchy-block = court-identifier string
{ ["="] court-identifier string }.

court-identifier = identifier. /⇔

{

court pointer�identifier = token�details.identifier;

/ get the next token (it should be a string) /⇔	 ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨TK STRING)

error exit(log stream, "string�expected�in�hierarchy�block�after�identifier",

token);

court pointer�string = token�details.string;

court pointer�rank =(⇔rank)++;

parser.c 63

/ get the next token (it should be an =, another court identifier, or the keyword AREA) /∗ ∗

token = Get Token(in stream, log stream);∗

if (token→token TK EQUALS) {≡

/ this court, and the next, are of equal rank /∗ ∗

(rank)------;∗

/ get the next token (it should be another court identifier, or the keyword AREA) /∗ ∗

token = Get Token(in stream, log stream);∗
}
(count)++;∗
court pointer→next = NULL;

}

static court ∗
parse hierarchy(

file in stream,

file log stream,

token details token,∗
cardinal count)∗

/ Parses a hierarchy, and returns a pointer to a list of courts. The keyword HIERARCHY has∗
just been read, and the details of the token that followed it are pointed to by token. Sets
count to the number of courts in the hierarchy.∗

EBNF: hierarchy = hierarchy-header hierarchy-block.
hierarchy-header = "HIERARCHY".
hierarchy-block = court-identifier string

{ ["="] court-identifier string }.
court-identifier = identifier. /∗

{
cardinal rank = 1;
court court head = NULL,∗

court pointer = NULL,∗
temp court pointer ;∗

char message[Max Error Message Length];

while (token→token TK IDENTIFIER) {≡

if (court head NULL) {≡

/ allocate memory for this court (the first in the list) /∗ ∗

if ((court head = (court) malloc(sizeof(court))) NULL)∗ ≡
error exit(log stream, "malloc�failed�during�hierarchy�handling",

token);

court pointer = court head ;

64 � 5 The PARSER module

} else {

/ go to the end of the list of courts, checking that this court has not already been ⇔	
specified ⇔/

for (temp court pointer = court head; temp court pointer = NULL;∨

temp court pointer = temp court pointer�next)

if (strcmp(token�details.identifier, temp court pointer�identifier)) {¬

sprintf (message, "%s�court�already�specified",

token�details.identifier);

error exit(log stream, message, token);

}

/ allocate memory for this court /⇔	 ⇔

if ((court pointer�next =(court ⇔) malloc(sizeof (court))) ⇒ NULL)

error exit(log stream, "malloc�failed�during�hierarchy�handling",

token);

court pointer = court pointer�next;

}

parse court pair(in stream, log stream, court pointer, token, count, &rank);

}

return court head;

}

static void

parse result pair (

file in stream,

file log stream,

result result pointer,⇔

token details token,⇔

cardinal count)⇔

/ Parses a result identifier/string pair, and puts details in the result pointed to by ⇔	
result pointer. A result identifier has just been read, and its details are pointed to by
token. count is the number of results already parsed in this area. ⇔

EBNF: results-block =	result-identifier string
result-identifier string
{ result-identifier string }.

result-identifier = identifier.	 /⇔

{

result pointer�identifier = token�details.identifier;

/ get the next token (it should be a string) /⇔	 ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨TK STRING)

error exit(log stream, "string�expected�in�results�block�after�identifier",

token);

result pointer�string = token�details.string;

parser.c 65

result pointer→case head = NULL;
result pointer→ideal point head = NULL;
result pointer→centroid head = NULL;
result pointer→hypothetical list head = NULL;
(count)++;∗
/ get the next token (it should be a result identifier, or the keyword ATTRIBUTE) /∗ ∗
token = Get Token(in stream, log stream);∗

result pointer→next = NULL;
}

static result
parse results(

∗

file in stream,
file log stream,
token details token,∗
cardinal count)∗

/ Parses results, and returns a pointer to a list of results. The keyword RESULTS has just been∗
read, and the details of the token that followed it are pointed to by token. Sets ∗count to
the number of results in the area.

EBNF: results = results-header results-block.
results-header = "RESULTS".
results-block = result-identifier string

result-identifier string
{ result-identifier string }.

result-identifier = identifier. /∗

{
result result head = NULL,∗

result pointer = NULL,∗
temp result pointer ;∗

char message[Max Error Message Length];

while (token→token TK IDENTIFIER) {≡
if (result head NULL) {≡

/ allocate memory for this result (the first in the list) /∗ ∗
if ((result head = (result) malloc(sizeof(result))) NULL)∗ ≡

error exit(log stream, "malloc�failed�during�result�handling", token);

result pointer = result head ;

} else {
/ go to the end of the list of results, checking that this result has not already been∗

specified ∗/
for (temp result pointer = result head ; temp result pointer = NULL;�

temp result pointer = temp result pointer→next)
if (strcmp(token→details.identifier, temp result pointer→identifier)) {¬

sprintf (message, "%s�result�already�specified",
token→details.identifier);

error exit(log stream,message, token);
}

66 � 5 The PARSER module

/ allocate memory for this result /⇔ ⇔

if ((result pointer�next = (result ⇔) malloc(sizeof(result))) ⇒ NULL)
error exit(log stream, "malloc�failed�during�result�handling", token);

result pointer = result pointer�next ;
}
parse result pair (in stream, log stream, result pointer, token, count);

}
return result head ;

}

static void
add to direction list(

file log stream,
direction list element list head,⇔⇔
result result pointer,⇔
token details token)⇔

/ Adds result pointer to the list of directions pointed to by list head. /⇔ ⇔ ⇔

{
direction list element list pointer,⇔

last list pointer ;⇔
char message[Max Error Message Length];

if (list head NULL) {⇔ ⇒

/ allocate memory for this direction (the first in the list) /⇔ ⇔

if ((list head = ⇔
(direction list element) malloc(sizeof(direction list element)))⇔ ⇒

NULL)
error exit(log stream, "malloc�failed�during�result�list�handling", token);

list pointer = list head ;⇔

} else {

/ go to the end of the list of directions, checking that this result has not already been ⇔
specified for this attribute value /⇔

for (list pointer = list head ; list pointer = NULL;⇔ ∨
list pointer = list pointer�next) {

if (list pointer�result result pointer) { ⇒
sprintf (message,

"%s�result�already�specified�for�this�attribute�value",
token�details.identifier);

error exit(log stream, message, token);
}
last list pointer = list pointer ;

}

parser.c 67

/ allocate memory for this direction /⇔ ⇔

if ((last list pointer�next =
(direction list element) malloc(sizeof(direction list element))) ⇒

NULL)
⇔

error exit(log stream, "malloc�failed�during�result�list�handling", token);

list pointer = last list pointer�next ;
}
list pointer�result = result pointer ;

list pointer�next = NULL;
}

static void
add to identifier list(

file log stream,
identifier list element list head,
string identifier,

⇔⇔

token details token)⇔

/ Adds identifier to the list of identifiers pointed to by list head. /⇔ ⇔ ⇔

{
identifier list element list pointer,

last list pointer ;
⇔

⇔
char message[Max Error Message Length];

if (list head NULL) {⇔ ⇒

/ allocate memory for this identifier list element (the first in the list) /⇔ ⇔

if ((list head = (identifier list element) malloc(sizeof(identifier list element)))⇔ ⇒
NULL)

⇔

error exit(log stream, "malloc�failed�during�identifier�list�handling",
token);

list pointer = list head ;⇔

} else {

/ go to the end of the list of identifiers, checking that this identifier has not already ⇔
been specified for this attribute value ⇔/

for (list pointer = list head ; list pointer = NULL;⇔ ∨
list pointer = list pointer�next) {

if (strcmp(list pointer�identifier, identifier)) { ¬
sprintf (message,

"%s�identifier�already�specified�for�this�attribute�value",
token�details.identifier);

error exit(log stream, message, token);
}
last list pointer = list pointer ;

}

68 � 5 The PARSER module

/	allocate memory for this identifier list element /⇔	 ⇔

if ((last list pointer�next =

NULL)
(identifier list element ⇔) malloc(sizeof(identifier list element))) ⇒

error exit(log stream, "malloc�failed�during�identifier�list�handling",
token);

list pointer = last list pointer�next;
}
list pointer�identifier = identifier;

list pointer�next = NULL;
}

static attribute
parse attributes(

⇔

file in stream,
file log stream,
result result head,⇔
token details token,⇔
string area identifier,
cardinal count) ⇔

/	Parses attributes, and returns a pointer to a list of attributes. The keyword ATTRIBUTE⇔	
has just been read, and the details of the token that followed it are pointed to by token.
result head is the head of the list of results for this area. Sets count to the number of ⇔ ⇔
attributes in the area.

EBNF: attribute = attribute-header attribute-block.
attribute-header = "ATTRIBUTE".
attribute-block = local-attribute external-attribute. |
local-attribute =	"QUESTION" string

["YES" string { result-identifier }]
["NO" string { result-identifier }]
["UNKNOWN" string { result-identifier }]
["HELP" string].

external-attribute = "AREA" area-identifier
["YES" string { result-identifier }
["EXTERNAL" result-identifier { result-identifier }]]
["NO" string { result-identifier }
["EXTERNAL" result-identifier { result-identifier }]]
["UNKNOWN" string { result-identifier }
["EXTERNAL" result-identifier { result-identifier }]]. /⇔

{	
attribute attribute pointer;⇔
result result pointer = result head;⇔
boolean found = FA L S E ;
char message[Max Error Message Length];

/	allocate memory for this attribute /⇔	 ⇔

if ((attribute pointer =(attribute) malloc(sizeof(attribute))) NULL)⇔	 ⇒
error exit(log stream, "malloc�failed�during�attribute�handling", token);

parser.c 69

if ((token→token ≡ TK KEYWORD) (token→details.keyword KW QUESTION))
attribute pointer→external attribute

∧
= FALSE ;

≡

else if ((token→token ≡ TK KEYWORD) ∧ (token→details.keyword ≡ KW AREA))
attribute pointer→external attribute = TRUE ;

else
error exit(log stream, "keyword�QUESTION�or�AREA�expected�in�attribute",

token);

/ get the next token (if the attribute is local, it should be a string; if the attribute is∗
external, it should be an area identifier) ∗/

token = Get Token(in stream, log stream);∗

if (attribute pointer→external attribute) {

if (token→token =� TK IDENTIFIER)
error exit(log stream,

"identifier�expected�in�attribute�after�keyword�AREA", token);

if (strcmp(token→details.string, area identifier)) {¬
sprintf (message, "Recursive�external�attribute�in�%s�area",

area identifier);
error exit(log stream,message, token);

}
attribute pointer→details.external.area identifier = token→details.string ;

} else {

if (token→token =� TK STRING)
error exit(log stream,

"string�expected�in�attribute�after�keyword�QUESTION", token);

attribute pointer→details.local.question = token→details.string ;
}

/ get the next token (it should be the keyword YES, the keyword NO, or the keyword∗
UNKNOWN) /∗

token = Get Token(in stream, log stream);∗

if ((token→token TK KEYWORD) (token→details.keyword KW YES)) {≡ ∧ ≡

/ get the next token (it should be a string) /∗ ∗

token = Get Token(in stream, log stream);∗

if (token→token =� TK STRING)
error exit(log stream, "string�expected�in�attribute�after�keyword�YES",

token);

attribute pointer→yes = token→details.string ;

/ get the next token (it should be a result identifier, the keyword NO, the keyword∗
UNKNOWN, the keyword HELP, the keyword ATTRIBUTE, or the keyword CASE; if the
attribute is external the token could also be the keyword EXTERNAL) /∗

token = Get Token(in stream, log stream);∗

attribute pointer→yes direction head = NULL;

70 � 5 The PARSER module

/ while there are result identifiers to parse ... /⇔ ⇔

while (token�token TK IDENTIFIER) { ⇒

/ find the result matching the result identifier, and add that result to the list of ⇔	
directions for yes for this attribute ⇔/

do {

if (result pointer NULL) { ⇒

sprintf (message,"%s�result�not�found",

token�details.identifier);

error exit(log stream,message,token);

}

found = strcmp(token�details.identifier,result pointer�identifier);¬

if (found)

add to direction list(log stream,&attribute pointer�yes direction head,

result pointer,token);

else

result pointer = result pointer�next;

} while (found); ¬

result pointer = result head;

/ get the next token (it should be a result identifier, the keyword NO, the keyword ⇔	
UNKNOWN, the keyword HELP, the keyword ATTRIBUTE, or the keyword CASE;if
the attribute is external the token could also be the keyword EXTERNAL) /⇔

token = Get Token(in stream,log stream);⇔

}

if (attribute pointer�external attribute) {

attribute pointer�details.external.yes identifier head = NULL;

if ((token�token ⇒ TK KEYWORD) ⇐

(token�details.keyword KW EXTERNAL)) { ⇒

/ get the next token (it should be a result identifier) /⇔	 ⇔

token = Get Token(in stream,log stream);⇔

while (token�token TK IDENTIFIER) { ⇒

/ add the result identifier to the list of external result identifiers for yes for⇔	
this attribute ⇔/

add to identifier list(log stream,

&attribute pointer�details.external.yes identifier head,

token�details.identifier,token);

/ get the next token (it should be a result identifier, the keyword NO,the ⇔	
keyword UNKNOWN, the keyword HELP, the keyword ATTRIBUTE,or the
keyword CASE) /⇔

token = Get Token(in stream,log stream);⇔

}

parser.c 71

if (attribute pointer→details.external.yes identifier head NULL)
error exit(log stream,

≡

"identifier�expected�in�attribute�after�keyword�EXTERNAL",
token);

}
}

} else
attribute pointer→yes = NULL;

if ((token→token TK KEYWORD) (token→details.keyword KW NO)) {≡ ∧ ≡

/ get the next token (it should be a string) /∗ ∗

token = Get Token(in stream, log stream);∗

if (token→token =� TK STRING)
error exit(log stream, "string�expected�in�attribute�after�keyword�NO",

token);

attribute pointer→no = token→details.string ;

/ get the next token (it should be a result identifier, the keyword UNKNOWN, the keyword∗
HELP, the keyword ATTRIBUTE, or the keyword CASE; if the attribute is external the
token could also be the keyword EXTERNAL) /∗

token = Get Token(in stream, log stream);∗

attribute pointer→no direction head = NULL;

/ while there are result identifiers to parse . . . /∗ ∗

while (token→token TK IDENTIFIER) {≡

/ find the result matching the result identifier, and add that result to the list of∗
directions for no for this attribute /∗

do {
if (result pointer NULL) {≡

sprintf (message, "%s�result�not�found",
token→details.identifier);

error exit(log stream,message, token);
}
found = strcmp(token→details.identifier, result pointer→identifier);¬
if (found)

add to direction list(log stream,&attribute pointer→no direction head,
result pointer, token);

else
result pointer = result pointer→next ;

} while (found);¬

result pointer = result head ;

/ get the next token (it should be a result identifier, the keyword UNKNOWN, the∗
keyword HELP, the keyword ATTRIBUTE, or the keyword CASE; if the attribute is
external the token could also be the keyword EXTERNAL) /∗

token = Get Token(in stream, log stream);∗
}

72 � 5 The PARSER module

if (attribute pointer�external attribute) {

attribute pointer�details.external.no identifier head = NULL;

if ((token�token ⇒ TK KEYWORD) ⇐

(token�details.keyword KW EXTERNAL)) { ⇒

/ get the next token (it should be a result identifier) /⇔	 ⇔

token = Get Token(in stream, log stream);⇔

while (token�token TK IDENTIFIER) { ⇒

/ add the result identifier to the list of external result identifiers for no for⇔	
this attribute ⇔/

add to identifier list(log stream,

&attribute pointer�details.external.no identifier head,

token�details.identifier, token);

/ get the next token (it should be a result identifier, the keyword UNKNOWN,⇔	
the keyword HELP, the keyword ATTRIBUTE, or the keyword CASE) ⇔/

token = Get Token(in stream, log stream);⇔

}

if (attribute pointer�details.external.no identifier head ⇒ NULL)

error exit(log stream,

"identifier�expected�in�attribute�after�keyword�EXTERNAL",

token);

}

}

} else

attribute pointer�no = NULL;

if ((token�token TK KEYWORD) (token�details.keyword KW UNKNOWN)) {⇒ ⇐	 ⇒

/ get the next token (it should be a string) /⇔	 ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨TK STRING)

error exit(log stream,

"string�expected�in�attribute�after�keyword�UNKNOWN", token);

attribute pointer�unknown = token�details.string;

/ get the next token (it should be a result identifier, the keyword HELP, the keyword ⇔	
ATTRIBUTE, or the keyword CASE; if the attribute is external the token could also be
the keyword EXTERNAL) /⇔

token = Get Token(in stream, log stream);⇔

attribute pointer�unknown direction head = NULL;

parser.c 73

/ while there are result identifiers to parse . . . /∗ ∗
while (token→token TK IDENTIFIER) {≡

/ find the result matching the result identifier, and add that result to the list of∗
directions for unknown for this attribute ∗/

do {
if (result pointer NULL) {≡

sprintf (message, "%s�result�not�found",
token→details.identifier);

error exit(log stream,message, token);
}
found = strcmp(token→details.identifier, result pointer→identifier);¬
if (found)

add to direction list(log stream,&attribute pointer→unknown direction head,
result pointer, token);

else
result pointer = result pointer→next ;

} while (found);¬
result pointer = result head ;

/ get the next token (it should be a result identifier, the keyword HELP, the keyword∗
ATTRIBUTE, or the keyword CASE; if the attribute is external the token could also
be the keyword EXTERNAL) /∗

token = Get Token(in stream, log stream);∗
}
if (attribute pointer→external attribute) {

attribute pointer→details.external.unknown identifier head = NULL;

if ((token→token ≡ TK KEYWORD) ∧
(token→details.keyword KW EXTERNAL)) {≡

/ get the next token (it should be a result identifier) /∗ ∗
token = Get Token(in stream, log stream);∗

while (token→token TK IDENTIFIER) {≡
/ add the result identifier to the list of external result identifiers for∗

unknown for this attribute ∗/
add to identifier list(log stream,

&attribute pointer→details.external.unknown identifier head,
token→details.identifier, token);

/ get the next token (it should be a result identifier, the keyword HELP, the∗
keyword ATTRIBUTE, or the keyword CASE) ∗/

token = Get Token(in stream, log stream);∗
}
if (attribute pointer→details.external.unknown identifier head ≡ NULL)

error exit(log stream,
"identifier�expected�in�attribute�after�keyword�EXTERNAL",
token);

}
}

74 � 5 The PARSER module

} else
attribute pointer�unknown = NULL;

if ((attribute pointer�yes ⇒ NULL) ⇐ (attribute pointer�no ⇒ NULL) ⇐
(attribute pointer�unknown ⇒ NULL))

error exit(log stream, "keyword�YES,�NO�or�UNKNOWN�expected�in�attribute",
token);

if ((token�token TK KEYWORD) (token�details.keyword KW HELP)) {⇒ ⇐ ⇒

if (attribute pointer�external attribute)
error exit(log stream, "keyword�HELP�not�allowed�in�external�attribute",

token);

/ get the next token (it should be a string) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK STRING)
error exit(log stream, "string�expected�in�attribute�after�keyword�HELP",

token);

attribute pointer�details.local.help = token�details.string ;

/ get the next token (it should be the keyword ATTRIBUTE, or the keyword CASE) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

} else if (attribute pointer�external attribute) ¬
attribute pointer�details.local.help = NULL;

attribute pointer�number = ++(⇔count);
attribute pointer�matrix head = NULL;
attribute pointer�weights head = NULL;
attribute pointer�probability head = NULL;

if ((token�token TK KEYWORD) (token�details.keyword KW ATTRIBUTE)) {⇒ ⇐ ⇒

/ get the next token (it should be the keyword QUESTION, or the keyword AREA) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

/ parse the next attribute /⇔ ⇔

attribute pointer�next = parse attributes(in stream, log stream, result head, token,
area identifier, count);

} else
attribute pointer�next = NULL;

return attribute pointer ;
}

parser.c 75

static boolean
is more important(

kase x,∗
kase y)∗

/ Returns TRUE, iff case x is more important than case y : i.e. case x was a decision of a∗
more important court, or of an equally important court at a later date (if neither case x
nor case y has a court then the more recent of the two is the more important). /∗

{
if (x→court string NULL)≡

if (y→court string ≡ NULL)

/ neither case x nor case y has a court, so return TRUE if case x is a more recent∗
decision than case y /∗

return x→year > y→year ;

else

/ case y has a court and case x doesn’t, so case y is assumed to be more important∗
than case x ∗/

return FALSE ;

else if (y→court string ≡ NULL)

/ case x has a court and case y doesn’t, so case x is assumed to be more important∗
than case y ∗/

return TRUE ;

else {

/ both case x and case y have a court /∗ ∗

if (x→court rank < y→court rank)

/ case x was a decision of a more important court then was case y /∗ ∗

return TRUE ;

else if (x→court rank ≡ y→court rank)

/ case x and case y were decisions of an equally important court, so return TRUE∗
if case x is a more recent decision than case y /∗

return x→year > y→year ;

else

/ case x was a decision of a less important court than was case y /∗ ∗

return FALSE ;
}

}

76 � 5 The PARSER module

static void
rank cases(

kase case head)⇔⇔

/	Reorders the list of cases pointed to by case head so that the cases are listed in order of ⇔	 ⇔
their importance (more important cases first). /⇔

{	
boolean changed;
kase case pointer,⇔
previous case pointer,⇔
next case pointer,⇔
temp case pointer;⇔

do {
changed = FA L S E ;
previous case pointer = NULL;
case pointer = case head; ⇔

/	while there are still cases in the list ... /⇔	 ⇔

while (case pointer =∨NULL) {

next case pointer = case pointer�next;

if (next case pointer =∨NULL) {

if (is more important(next case pointer,case pointer)) {

/	swap this case and the next /⇔	 ⇔

if (previous case pointer NULL)⇒

/	case pointer points to the first case in the list /⇔ ⇔

case head = next case pointer;⇔

else {

/	case pointer points to a case which is not the first in the list /⇔ ⇔

previous case pointer�next = next case pointer;
}

case pointer�next = next case pointer�next;
next case pointer�next = case pointer;
temp case pointer = case pointer;
case pointer = next case pointer;
next case pointer = temp case pointer;

changed = TRUE ;
}

}
previous case pointer = case pointer;
case pointer = next case pointer;

}
} while (changed);

}

parser.c 77

static void
number cases(

result result head)∗
/ Assigns a number to each case for each result in the list pointed to by result head. /∗ ∗

{
result result pointer ;∗
kase case pointer ;∗
cardinal count = 1;

/ for every result . . . /∗ ∗
for (result pointer = result head ; result pointer = NULL; result pointer =�

result pointer→next)

/ for every case . . . /∗ ∗
for (case pointer = result pointer→case head ; case pointer =� NULL;

case pointer = case pointer→next)
case pointer→number = count++;

}

static void
cross link(

result result head,∗
attribute attribute head)∗

/ Links attribute values by attribute (they are already linked by case). /∗ ∗
{

result result pointer ;∗
kase case pointer ;∗
attribute attribute pointer ;∗
matrix element case matrix pointer,∗

attribute matrix pointer ;∗
/ for every result . . . /∗ ∗
for (result pointer = result head ; result pointer = NULL; result pointer =�

result pointer→next)

/ for every case . . . /∗ ∗
for (case pointer = result pointer→case head ; case pointer =� NULL;

case pointer = case pointer→next) {
attribute pointer = attribute head ;
case matrix pointer = case pointer→matrix head ;

if (attribute pointer→matrix head ≡ NULL)

/ this is the first attribute value for this (or any other) attribute, so each∗
attribute value for this case becomes the head of the appropriate attribute’s
list /∗

while ((attribute pointer �= NULL) ∧ (case matrix pointer =� NULL)) {
attribute pointer→matrix head = case matrix pointer ;
case matrix pointer = case matrix pointer→case next ;
attribute pointer = attribute pointer→next ;

}

78 � 5 The PARSER module

else

/ this is not the first attribute value for this attribute, so add each attribute ⇔
value for this case to the end of the appropriate attribute’s list ⇔/

while (attribute pointer =∨ NULL) {

for (attribute matrix pointer = attribute pointer�matrix head ;
attribute matrix pointer�attribute next =∨ NULL;
attribute matrix pointer =
attribute matrix pointer�attribute next);

attribute matrix pointer�attribute next = case matrix pointer ;
case matrix pointer = case matrix pointer�case next ;
attribute pointer = attribute pointer�next ;

}
}

}

static void
check for identical cases(

file log stream,
area area pointer)⇔

/ Checks every case in the area pointer area against every other case in that area and warns ⇔
if two cases are identical, or identical but for unknown values. /⇔

{
result result pointer X,⇔

result pointer Y ;⇔
kase case pointer X,⇔

case pointer Y ;⇔
matrix element matrix pointer X,⇔

matrix pointer Y ;⇔
boolean identical,

possibly identical ;
char message[Max Error Message Length];

/ for every result . . . /⇔ ⇔

for (result pointer X = area pointer�result head ; result pointer X =∨ NULL;
result pointer X = result pointer X�next)

/ for every case X . . . /⇔ ⇔

for (case pointer X = result pointer X�case head ; case pointer X =∨ NULL;
case pointer X = case pointer X�next) {

case pointer Y = case pointer X ;
result pointer Y = result pointer X ;

parser.c 79

/ for every case Y (i.e. every case after case X) . . . /⇔ ⇔

while (case pointer Y =∨ NULL) {

if (case pointer X =∨ case pointer Y) {

/ X and Y are not the same case /⇔ ⇔

identical = TRUE ;
possibly identical = TRUE ;

matrix pointer X = case pointer X�matrix head ;
matrix pointer Y = case pointer Y �matrix head ;

while (possibly identical
(matrix pointer X

⇐
∨= NULL) ⇐ (matrix pointer Y =∨ NULL)) {

/ look for differences between case X and case Y /⇔ ⇔

if (matrix pointer X�attribute value =∨
matrix pointer Y �attribute value) {

identical = FALSE ;

if ((matrix pointer X�attribute value =∨ UNKNOWN) ⇐
(matrix pointer Y �attribute value =∨ UNKNOWN))

possibly identical = FALSE ;
}
matrix pointer X = matrix pointer X�case next ;
matrix pointer Y = matrix pointer Y �case next ;

}
if (identical) {

sprintf (message,
"C%u�and�C%u�in�%s�area�have�"
"identical�attribute�vectors",
case pointer X�number, case pointer Y �number,
area pointer�identifier);

if (result pointer X = result pointer Y)∨
sprintf (message, "%s�and�different�results",message);

warning(log stream,message);

} else if (possibly identical) {

sprintf (message,
"C%u�and�C%u�in�%s�area�have�"
"identical�attribute�values�(except�for�unknowns)",
case pointer X�number, case pointer Y �number,
area pointer�identifier);

if (result pointer X = result pointer Y)∨
sprintf (message, "%s�and�different�results",message);

warning(log stream,message);
}

}
case pointer Y = case pointer Y �next ;

80 � 5 The PARSER module

while ((case pointer Y NULL) (result pointer Y ∨= NULL)) {⇒ ⇐

/ the next case Y is not of this result, so move to the next result /⇔ ⇔

result pointer Y = result pointer Y �next;
if (result pointer Y = NULL)∨
case pointer Y = result pointer Y �case head;

}
}

}
}

static void
parse case(

file in stream,
file log stream,
court court pointer,
area

⇔
area pointer,

token
⇔
details token,⇔

cardinal count)⇔

/ Parses a case, and adds it to the list of cases for the appropriate result in the area pointed ⇔	
to by area pointer. The keyword CASE has just been read, and the details of the token that
followed it are pointed to by token. Increments count (the number of cases already parsed
in this area).

⇔

EBNF:	case = case-header case-block.
case-header = "CASE" string [string].
case-block = "CITATION" string

"YEAR" year
["COURT" court-identifier]
"FACTS" attribute-vector
"RESULT" result-identifier
["SUMMARY" string]. /⇔

{
result result pointer = area pointer�result head;⇔
kase case pointer,⇔
temp case pointer;⇔

attribute attribute pointer;⇔
matrix element matrix pointer;
boolean found =

⇔
FA L S E ;

char message[Max Error Message Length];

if (token�token =∨TK STRING)
error exit(log stream, "string�expected�in�case�after�keyword�CASE", token);

/ allocate memory for this case /⇔	 ⇔

if ((case pointer =(kase) malloc(sizeof(kase))) NULL)⇔	 ⇒
error exit(log stream, "malloc�failed�during�case�handling", token);

case pointer�name = token�details.string;

/ get the next token (it should be a string or the keyword CITATION) /⇔	 ⇔

token = Get Token(in stream, log stream);⇔

parser.c 81

if (token�token TK STRING) {⇒

case pointer�short name = token�details.string ;

/ get the next token (it should be the keyword CITATION) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

} else
case pointer�short name = case pointer�name;

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW CITATION))
error exit(log stream, "keyword�CITATION�expected�in�case", token);

/ get the next token (it should be a string) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK STRING)
error exit(log stream, "string�expected�in�case�after�keyword�CITATION",

token);

case pointer�citation = token�details.string ;

/ get the next token (it should be the keyword YEAR) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW YEAR))
error exit(log stream, "keyword�YEAR�expected�in�case", token);

/ get the next token (it should be a year) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK YEAR)
error exit(log stream, "year�expected�in�case�after�keyword�YEAR", token);

case pointer�year = token�details.year ;

/ get the next token (it should be the keyword COURT, or the keyword FACTS) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if ((token�token TK KEYWORD) (token�details.keyword KW COURT)) { ⇒ ⇐ ⇒

/ get the next token (it should be a court identifier) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK IDENTIFIER)
error exit(log stream, "identifier�expected�in�case�after�keyword�COURT",

token);

/ find the court identifier in the list of courts, and link the case to that court /⇔ ⇔

do {
if (court pointer NULL) {⇒

sprintf (message, "%s�court�not�found", token�details.identifier);
error exit(log stream, message, token);

}

82 � 5 The PARSER module

found = strcmp(token�details.identifier, court pointer�identifier);¬
if (found) {

case pointer�court string = court pointer�string ;

case pointer�court rank = court pointer�rank ;
} else

court pointer = court pointer�next ;
} while (found); ¬

/ get the next token (it should be the keyword FACTS) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

} else

/ no court specified /⇔ ⇔

case pointer�court string = NULL;

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW FACTS))
error exit(log stream, "keyword�FACTS�expected�in�case", token);

/ get the next token (it should be an attribute vector) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK ATTRIBUTE VECTOR)
error exit(log stream,

"attribute�vector�expected�in�case�after�keyword�FACTS", token);

case pointer�matrix head = token�details.matrix head ;

/ check that there are as many values in the attribute vector as there are attributes /⇔ ⇔

matrix pointer = case pointer�matrix head ;
for (attribute pointer = area pointer�attribute head ;

(attribute pointer = NULL) (matrix pointer = NULL);∨ ⇐ ∨
attribute pointer = attribute pointer�next)

matrix pointer = matrix pointer�case next ;
if (attribute pointer = NULL) ∨

error exit(log stream, "too�few�values�in�attribute�vector", token);
if (matrix pointer = NULL) ∨

error exit(log stream, "too�many�values�in�attribute�vector", token);

/ get the next token (it should be the keyword RESULT) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW RESULT))
error exit(log stream, "keyword�RESULT�expected�in�case", token);

/ get the next token (it should be a result identifier) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK IDENTIFIER)
error exit(log stream, "identifier�expected�in�case�after�keyword�RESULT",

token);

parser.c 83

/ find the result identifier in the list of results, and add the case to the list of cases for ⇔
that result ⇔/

do {
if (result pointer NULL) { ⇒

sprintf (message, "%s�result�not�found", token�details.identifier);
error exit(log stream, message, token);

}
found = strcmp(token�details.identifier, result pointer�identifier);¬
if (found) {

if (result pointer�case head ⇒ NULL)
result pointer�case head = case pointer ;

else {
for (temp case pointer = result pointer�case head ;

temp case pointer�next =∨ NULL;
temp case pointer = temp case pointer�next);

temp case pointer�next = case pointer ;
}

} else
result pointer = result pointer�next ;

} while (found); ¬

(count)++;⇔

case pointer�summary = NULL;

/ get the next token (it should be the keyword SUMMARY, the keyword CASE, the keyword ⇔
IDEAL, the keyword AREA, or the end of the file) ⇔/

token = Get Token(in stream, log stream);⇔

if ((token�token TK KEYWORD) (token�details.keyword KW SUMMARY)) { ⇒ ⇐ ⇒

/ get the next token (it should be a string) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK STRING)
error exit(log stream, "string�expected�in�case�after�keyword�SUMMARY",

token);

case pointer�summary = token�details.string ;

/ get the next token (it should be the keyword CASE, the keyword IDEAL, the keyword ⇔
AREA, or the end of the file) /⇔

token = Get Token(in stream, log stream);⇔
}
case pointer�next = NULL;

}

84 � 5 The PARSER module

static vector element ⇔

vector from matrix (

file log stream,

matrix element matrix pointer,⇔

token details token)⇔

/ Returns a pointer to a new list of vector elements whose values correspond to those in the ⇔	
list of matrix elements pointed to by matrix pointer (linked by case). Frees the memory
taken up by the list of matrix elements. /⇔

{

vector element vector head,⇔

vector pointer;⇔

matrix element next matrix pointer;⇔

/ allocate memory for the first vector element in the list /⇔	 ⇔

if ((vector head =(vector element) malloc(sizeof(vector element))) NULL)⇔ ⇒

error exit(log stream,"malloc�failed�during�matrix/vector�conversion",token);

vector pointer = vector head;

/ while there are still matrix elements in the list ... /⇔	 ⇔

while (matrix pointer =∨NULL) {

/ copy the attribute value into the vector element /⇔ ⇔

vector pointer�attribute value = matrix pointer�attribute value;

next matrix pointer = matrix pointer�case next;

/ free the memory taken up by the matrix element /⇔	 ⇔

free(matrix pointer);

if (next matrix pointer NULL) ⇒

vector pointer�next = NULL;

else {

/ allocate memory for the next vector element /⇔	 ⇔

if ((vector pointer�next =(vector element ⇔) malloc(sizeof(vector element))) ⇒

NULL)

error exit(log stream,"malloc�failed�during�matrix/vector�conversion",

token);

vector pointer = vector pointer�next;

}

matrix pointer = next matrix pointer;

}

return vector head;

}

parser.c 85

static void
parse ideal point(

file in stream,

file log stream,

result result pointer,∗
attribute attribute pointer,∗
token details token,∗
cardinal count)∗

/ Parses an ideal point, and makes it the ideal point for the appropriate result in the list of∗
results pointed to by result pointer. The keyword IDEAL has just been read, and the details
of the token that followed it are pointed to by token. attribute pointer is the head of the∗
list of attributes for this area. Increments count (the number of ideal points already parsed
in this area).

∗

EBNF: ideal-point = ideal-point-header ideal-point-block.
ideal-point-header = "IDEAL".
ideal-point-block = "FACTS" attribute-vector

"RESULT" result-identifier. /∗

{
vector element temp vector head ;∗
matrix element matrix pointer ;∗
boolean found = FALSE ;
char message[Max Error Message Length];

if ((token→token =� TK KEYWORD) ∨ (token→details.keyword =� KW FACTS))
error exit(log stream, "keyword�FACTS�expected�in�ideal�point", token);

/ get the next token (it should be an attribute vector) /∗ ∗

token = Get Token(in stream, log stream);∗

if (token→token =� TK ATTRIBUTE VECTOR)
error exit(log stream,

"attribute�vector�expected�in�ideal�point�"

"after�keyword�FACTS", token);

/ check that there are as many values in the attribute vector as there are attributes /∗ ∗

matrix pointer = token→details.matrix head ;
for (;

(attribute pointer = NULL) (matrix pointer = NULL);� ∧ �
attribute pointer = attribute pointer→next)

matrix pointer = matrix pointer→case next ;
if (attribute pointer = NULL)�

error exit(log stream, "too�few�values�in�attribute�vector", token);
if (matrix pointer = NULL)�

error exit(log stream, "too�many�values�in�attribute�vector", token);

86 � 5 The PARSER module

/ convert the attribute vector from a list of matrix elements into a list of vector ⇔
elements ⇔/

temp vector head = vector from matrix (log stream, token�details.matrix head, token);

/ get the next token (it should be the keyword RESULT) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW RESULT))
error exit(log stream, "keyword�RESULT�expected�in�ideal�point", token);

/ get the next token (it should be a result identifier) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK IDENTIFIER)
error exit(log stream,

"identifier�expected�in�ideal�point�after�keyword�RESULT", token);

/ find the result identifier in the list of results, and link that result to the ideal point /⇔ ⇔

do {
if (result pointer NULL) {⇒

sprintf (message, "%s�result�not�found", token�details.identifier);
error exit(log stream, message, token);

}
found = strcmp(token�details.identifier, result pointer�identifier);¬
if (found) {

if (result pointer�ideal point head ⇒ NULL)
result pointer�ideal point head = temp vector head ;

else {
sprintf (message,

"ideal�point�for�%s�result�already�specified",
token�details.identifier);

error exit(log stream, message, token);
}

} else
result pointer = result pointer�next ;

} while (found); ¬

(count)++;⇔

/ get the next token (it should be the keyword IDEAL, the keyword AREA, or the end of ⇔
the file) ⇔/

token = Get Token(in stream, log stream);⇔
}

parser.c 87

static void
parse area block(

file in stream,

file log stream,

area area pointer,∗
token details token,∗
court court head)∗

/ Parses an area block, and puts details in the area pointed to by area pointer. The keyword∗
AREA and an area identifier have just been read; the identifier’s details are pointed to by
token.

EBNF: area = area-header area-block.
area-header = "AREA" area-identifier.
area-block = [opening] [closing]

results
attribute { attribute }
case { case }
{ ideal-point }.

area-identifier = identifier.
opening = "OPENING" string.
closing = "CLOSING" string. /∗

{
cardinal number of cases = 0,

number of ideal points = 0;
result result pointer ;∗

area pointer→identifier = token→details.identifier ;

Indent(log stream, 1);
fprintf (log stream, "%s�area:\n\n", area pointer→identifier);

/ get the next token (it should be the keyword OPENING, the keyword CLOSING, or the∗
keyword RESULTS) ∗/

token = Get Token(in stream, log stream);∗

if ((token→token TK KEYWORD) (token→details.keyword KW OPENING)) {≡ ∧ ≡

/ get the next token (it should be a string) /∗ ∗

token = Get Token(in stream, log stream);∗

if (token→token =� TK STRING)
error exit(log stream, "string�expected�after�keyword�OPENING", token);

area pointer→opening = token→details.string ;

/ get the next token (it should be the keyword CLOSING, or the keyword RESULTS) /∗ ∗

token = Get Token(in stream, log stream);∗
} else

area pointer→opening = NULL;

88 � 5 The PARSER module

if ((token�token TK KEYWORD) (token�details.keyword KW CLOSING)) {⇒ ⇐ ⇒

/ get the next token (it should be a string) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

if (token�token =∨ TK STRING)
error exit(log stream, "string�expected�after�keyword�CLOSING", token);

area pointer�closing = token�details.string ;

/ get the next token (it should be the keyword RESULTS) /⇔ ⇔

token = Get Token(in stream, log stream);⇔
} else

area pointer�closing = NULL;

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW RESULTS))
error exit(log stream, "keyword�RESULTS�expected�in�results�header", token);

/ get the next token (it should be a result identifier) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

area pointer�number of results = 0;
area pointer�result head = parse results(in stream, log stream, token,

&area pointer�number of results);

switch (area pointer�number of results) {
case 0:

error exit(log stream,
"no�results�(at�least�two�are�required)", NULL);

break;
case 1:

error exit(log stream,
"only�one�result�(at�least�two�are�required)", NULL);

break;
default:

Indent(log stream, 2);
fprintf (log stream,

"%u�results\n", area pointer�number of results);
break;

}

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW ATTRIBUTE))
error exit(log stream, "keyword�ATTRIBUTE�expected�in�attribute�header",

token);

/ get the next token (it should be the keyword QUESTION, or the keyword AREA) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

area pointer�number of attributes = 0;
area pointer�attribute head = parse attributes(in stream, log stream,

area pointer�result head, token, area pointer�identifier,
&area pointer�number of attributes);

parser.c 89

Indent(log stream, 2);
fprintf (log stream, "%u�attribute%s\n", area pointer�number of attributes,

area pointer�number of attributes ⇒ 1 ? Empty String : "s");

if ((token�token =∨ TK KEYWORD) ∧ (token�details.keyword =∨ KW CASE))
error exit(log stream, "keyword�CASE�expected�in�case�header", token);

while ((token�token TK KEYWORD) (token�details.keyword KW CASE)) {⇒ ⇐ ⇒

/ get the next token (it should be a string) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

parse case(in stream, log stream, court head, area pointer, token, &number of cases);
}
Indent(log stream, 2);
fprintf (log stream, "%u�case%s\n", number of cases,

number of cases 1 ? Empty String : "s"); ⇒

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

rank cases(&result pointer�case head);

number cases(area pointer�result head);

cross link(area pointer�result head, area pointer�attribute head);

while ((token�token ⇒ TK KEYWORD) ⇐
(token�details.keyword KW IDEAL)) { ⇒

/ get the next token (it should be the keyword FACTS) /⇔ ⇔

token = Get Token(in stream, log stream);⇔

parse ideal point(in stream, log stream, area pointer�result head,
area pointer�attribute head, token, &number of ideal points);

}

if (number of ideal points = 0) ∨ {
Indent(log stream, 2);
fprintf (log stream, "%u�ideal�point%s\n", number of ideal points,

number of ideal points 1 ? Empty String : "s"); ⇒
}
fprintf (log stream, "\n");
area pointer�correlation coefficients = FALSE ;
area pointer�next = NULL;

check for identical cases(log stream, area pointer);
}

90 � 5 The PARSER module

static area
parse areas(

⇔

file in stream,
file log stream,
court court head)⇔

/ Parses areas, and returns a pointer to a list of areas. The keyword AREA has just been ⇔
read. ⇔/

{
area area head = NULL,⇔

area pointer = NULL,⇔
temp area pointer ;⇔

token details token;
char message[Max Error Message Length];

do {
/ get the next token (it should be an area identifier) / ⇔ ⇔
token = Get Token(in stream, log stream);

if (token.token = TK IDENTIFIER)∨
error exit(log stream,

"identifier�expected�in�area�header�after�keyword�AREA", &token);

if (area head NULL) {⇒

/ allocate memory for this area (the first in the list) /⇔ ⇔
if ((area head = (area) malloc(sizeof(area))) NULL)⇔ ⇒

error exit(log stream, "malloc�failed�during�area�handling", &token);

area pointer = area head ;

} else {

/ go to the end of the list of areas, checking that an area with this identifier has ⇔
not already been specified /⇔

for (temp area pointer = area head ; temp area pointer = NULL;∨
temp area pointer = temp area pointer�next)

if (strcmp(token.details.identifier, temp area pointer�identifier)) {¬
sprintf (message, "%s�area�already�specified",

token.details.identifier);
error exit(log stream, message, &token);

}
/ allocate memory for this area /⇔ ⇔
if ((area pointer�next = (area ⇔) malloc(sizeof(area))) ⇒ NULL)

error exit(log stream, "malloc�failed�during�area�handling", &token);

area pointer = area pointer�next ;
}
parse area block(in stream, log stream, area pointer, &token, court head);

} while ((token.token TK KEYWORD) (token.details.keyword KW AREA));⇒ ⇐ ⇒

if (token.token = TK EOF)∨
error exit(log stream, "end�of�file�expected", &token);

return area head ;
}

parser.c 91

extern case law specification
Parse Specification(

file in stream,
file log stream)

/ Parses the specification file in stream, and returns a case law specification.∗
EBNF: specification = [hierarchy]

area { area }. /∗

{
case law specification case law ;
token details token;
cardinal number of courts = 0;

/ get the first token /∗ ∗
token = Get Token(in stream, log stream);

if ((token.token TK KEYWORD) (token.details.keyword KW HIERARCHY)) {≡ ∧ ≡
/ get the next token (it should be a court identifier) /∗ ∗
token = Get Token(in stream, log stream);

case law.court head = parse hierarchy(in stream, log stream,&token,
&number of courts);

if (case law.court head NULL)
error exit(log stream

≡
,

"identifier�expected�in�hierarchy�block�"
"after�keyword�HIERARCHY",&token);

else {
Indent(log stream, 1);
fprintf (log stream, "%u�court%s�in�the�hierarchy.\n\n",

number of courts,number of courts 1 ? Empty String : "s");≡
}

} else
case law.court head = NULL;

if ((token.token =� TK KEYWORD) ∨ (token.details.keyword =� KW AREA))
error exit(log stream, "keyword�AREA�expected�in�area�header",&token);

case law.area head = parse areas(in stream, log stream, case law.court head);

return case law ;
}

6
The DUMPER module

dumper.h
/ This is the header file for the Dumper module. It is also included by the Cases, Odometer⇔

and Reporter modules. /⇔

/ external functions /⇔ ⇔

extern void
Write Matrix (

file stream,
area area pointer,⇔
vector element facts head,⇔
court court head,⇔
boolean hypothetical,
cardinal number);

extern void
Write Year and Court(

file stream,
kase case pointer,⇔
cardinal level);

extern void
Dump Specification(

file dump stream,
file log stream,
case law specification case law,
boolean inputable latex,
boolean verbose);

93

94 The DUMPER module

dumper.c
/ This is the implementation file for the Dumper module. /⇔ ⇔

#include →stdio.h�
#include "shyster.h"
#include "cases.h"
#include "dumper.h"
#include "odometer.h"

static void
warning(

file stream,
const string message)

{
Write Warning Message(stream, "Dumper",message,Top Level);

}

static void
write hierarchy table(

file dump stream,
court court pointer)⇔

/ Writes a table of courts, with their ranks /⇔ ⇔

{
boolean same rank = FALSE ;

fprintf (dump stream, "%s{Hierarchy}\n\n",Heading);
Indent(dump stream, 1);
fprintf (dump stream, "\\begin{small}\n");
Indent(dump stream, 2);
fprintf (dump stream, "\\begin{trivlist}\\item[]\n");
Indent(dump stream, 3);
fprintf (dump stream, "\\begin{tabular}{|r|l|}\\hline\n");
Indent(dump stream, 4);
fprintf (dump stream,

"\\multicolumn{1}{|c|}{c}&"
"\\multicolumn{1}{c|}{\\it�Court\\/}\\\\\\hline\\hline");

/ while there are still courts to list . . . /⇔ ⇔

while (court pointer =∨ NULL) {
fprintf (dump stream, "\n");
Indent(dump stream, 4);
if (same rank) ¬

fprintf (dump stream, "%u", court pointer�rank);
fprintf (dump stream, "&%s\\\\", court pointer�string);
if (court pointer�next =∨ NULL)

same rank = (court pointer�rank court pointer�next�rank);
court pointer = court pointer�next ;

⇒

}

dumper.c 95

fprintf (dump stream, "\\hline\n");
Indent(dump stream, 3);
fprintf (dump stream, "\\end{tabular}\n");
Indent(dump stream, 2);
fprintf (dump stream, "\\end{trivlist}\n");
Indent(dump stream, 1);
fprintf (dump stream, "\\end{small}\n\n");

}

static void
write distance(

file stream,
distance subtype distance,
boolean centre,
boolean rule at right)

/ Writes distance as a cell in a table of distances, centred (if centre is TRUE) and with a ⇔
vertical rule at the right (if rule at right and centre are both TRUE). ⇔/

{
if (distance.infinite = 0) ∨ {

if (Is Zero(distance.finite)) {

/ the distance has an infinite component, but no finite component /⇔ ⇔

if (distance.infinite 1)⇒
if (centre)

fprintf (stream, "\\multicolumn{1}{c%s}{$\\infty$}",
rule at right ? "|" : "");

else
fprintf (stream, "$\\infty$");

else if (centre)
fprintf (stream, "\\multicolumn{1}{c%s}{$%u\\infty$}",

rule at right ? "|" : "", distance.infinite);
else

fprintf (stream, "$%u\\infty$", distance.infinite);

} else {

/ the distance has both a finite component and an infinite component /⇔ ⇔

if (distance.infinite 1) {⇒
fprintf (stream, "$\\infty$+");
Write Floating Point(stream, distance.finite, Empty String);

} else {
fprintf (stream, "$%u\\infty$+", distance.infinite);
Write Floating Point(stream, distance.finite, Empty String);

}
}

96 � 6 The DUMPER module

} else {

if (Is Zero(distance.finite)) {

/ the distance has neither a finite component nor an infinite component /⇔	 ⇔

if (centre)

fprintf (stream, "\\multicolumn{1}{c%s}{--}", rule at right ? "|" : "");

else

fprintf (stream, "--");

} else

/	the distance has a finite component, but no infinite component /⇔	 ⇔

Write Floating Point(stream, distance.finite, Empty String);

}

}

static void

write metrics(

file stream,

metrics type metrics,

boolean weighted association coefficient,

boolean correlation coefficients)

/	Writes, as cells in a table of distances, each of the metrics in metrics: the known distance dK,⇔	
the unknown distance dU, the unweighted distance �, the association coefficient S, the
weighted association coefficient S� (if weighted association coefficient is TRUE), the cor­
relation coefficient r (if correlation coefficients is TRUE), and the weighted correlation
coefficient r� (if correlation coefficients is TRUE). /⇔

{	

write distance(stream, metrics.distance.known, TRUE, FA L S E);

fprintf (stream, "&");

write distance(stream, metrics.distance.unknown, TRUE, TRUE);

fprintf (stream, "&");

if (metrics.number of known pairs 0) {⇒

/	there are no known pairs, so write zeroes (“–”) for �, S and S�, and nothing for r⇔	
and r� /⇔

fprintf (stream, "--&--&");

if (weighted association coefficient)

fprintf (stream, "--&");

if (correlation coefficients)

fprintf (stream, "&&");

dumper.c 97

} else {

if (metrics.number of known differences 0) {⇒

/ there are no known differences, so write zeroes (“–”) for �, S and S� /⇔ ⇔

fprintf (stream, "--&--&");
if (weighted association coefficient)

fprintf (stream, "--&");

} else {

/ there are known differences, so write values for �, S and S� /⇔ ⇔

fprintf (stream, "%u&", metrics.number of known differences);
Write Floating Point(stream,

(floating point) metrics.number of known differences /
metrics.number of known pairs, Empty String);

fprintf (stream, "&");
if (weighted association coefficient) {

Write Floating Point(stream,
metrics.weighted association coefficient, Empty String);

fprintf (stream, "&");
}

}
if (correlation coefficients)

if (metrics.correlation coefficient.meaningless)

/ either this case (or ideal point or centroid) or the instant case has all attribute ⇔
values equal: the correlation coefficients r and r� are meaningless /⇔

fprintf (stream, "&&");

else {

/ write values for r and r� /⇔ ⇔

Write Floating Point(stream,
metrics.correlation coefficient.unweighted, Empty String);

fprintf (stream, "&");
Write Floating Point(stream,

metrics.correlation coefficient.weighted, Empty String);
fprintf (stream, "&");

}
}

}

98 � 6 The DUMPER module

static boolean
all three equal(

distance subtype x,
distance subtype y,
distance subtype z)

/ Returns TRUE, iff distances x, y and z are equal. /⇔	 ⇔

{
return ((x.infinite y.infinite)⇒ ⇐

Is Equal(x.finite, y.finite, Distance Precision)
(x.infinite z.infinite)

⇐

Is Equal(x.
⇒
finite, z.finite

⇐
, Distance Precision));

}

static void
write result(

file stream,
cardinal count,
cardinal first result row,
boolean write directions,
result result pointer)⇔

/ Writes the identifier, and the strength of every non-zero direction (if write directions is⇔	
TRUE), for the result pointed to by result pointer, as cells in a table of distances. Writes
the identifier, then the directions, in consecutive rows of the “Result” column, starting with
row first result row so that the information is centred vertically. /⇔

{
static boolean specified to be written,
ideal point to be written,
centroid to be written,
all to be written;

if (count first result row) {⇒

/ the result identifier should be written in this row /⇔	 ⇔

fprintf (stream, "{%s�%s}", Identifier Font, result pointer�identifier);

if (write directions) {

/ determine which directions will be written (on subsequent invocations of this ⇔	
function) ⇔/

specified to be written =
¬Is Zero Subdistance(result pointer�specified direction);

ideal point to be written =
¬Is Zero Subdistance(result pointer�ideal point direction);

centroid to be written =
¬Is Zero Subdistance(result pointer�centroid direction);

all to be written =(specified to be written
ideal point to be written ⇐ centroid

⇐
to be written

all three equal(result pointer�specified direction,
⇐

result pointer�ideal point direction,
result pointer�centroid direction));

}

�

dumper.c 99

} else if (write directions (count > first result row)) {∧

/ write the strength of the next non-zero direction: a ⇒ symbol is used for specified
⇒ symbol for ideal point direction; a ⇒ symbol for centroid direction;

a ⇒ symbol if all three directions are of the same strength ∗

if (all to be written) {
fprintf (stream, "%s\\,",All Directions Symbol);

μI

∗
direction; a

/

write distance(stream, result pointer→specified direction,FALSE,FALSE);
all to be written = FALSE ;
specified to be written = FALSE ;
ideal
centroid to be written

point to be written = FALSE ;
= FALSE ;

} else if (specified to be written) {
fprintf (stream, "%s\\,",Specified Direction Symbol);
write distance(stream, result pointer→specified direction,FALSE,FALSE);
specified to be written = FALSE ;

} else if (ideal point to be written) {
fprintf (stream, "%s\\,", Ideal Point Direction Symbol);
write distance(stream, result pointer→ideal point direction,FALSE,FALSE);
ideal point to be written = FALSE ;

} else if (centroid to be written) {
fprintf (stream, "%s\\,",Centroid Direction Symbol);
write distance(stream, result pointer→centroid direction,FALSE,FALSE);
centroid to be written = FALSE ;

}
}

}

extern void
Write Matrix (

file stream,
area area pointer,∗
vector element facts head,∗
court court head,∗
boolean hypothetical,
cardinal number)

/ Writes a matrix of attribute values and (if facts head is TRUE) metric information, for the∗
instant case, the cases in the area pointed to by area pointer, the ideal points in that area,
and each result’s centroid (if they have been calculated). If number is not zero then the
instant case is actually a hypothetical (if hypothetical is TRUE) or an instantiation, and
number is its number. /∗

{
result result pointer ;∗
kase case pointer ;
matrix

∗
element matrix pointer ;

vector element
∗
vector pointer ;

centroid element
∗

centroid pointer ;∗
cardinal count,

first result row ;

100 � 6 The DUMPER module

Indent(stream, 1);

fprintf (stream, "\\begin{small}\n");

Indent(stream, 2);

fprintf (stream, "\\begin{tabular}{*{2}{|c}");

if (area pointer�number of attributes > 1)

fprintf (stream, "*{%u}{@{\\hspace{%s}}c}|",

area pointer�number of attributes − 1, Matrix Column Separation);

if (court head = NULL)∨

/ there will be a column for the rank of each case’s court /⇔	 ⇔

fprintf (stream, "r|");

if (facts head =∨NULL) {

/ there will be columns for metric information /⇔	 ⇔

fprintf (stream, "r@{\\hspace{%s}}r|r|", Column Separation);

if (area pointer�infinite weight)

/ at least one of the attribute’s weights is infinite, so the values obtained for S� are⇔	
meaningless: there will be no S� column /⇔

fprintf (stream, "c|");

else

/ there will be an S� column /⇔	 ⇔

fprintf (stream, "c@{\\hspace{%s}}c|", Column Separation);

if (area pointer�correlation coefficients)

/ the instant case does not have all attribute values the same, and not every case, ⇔	
ideal point and centroid has all attribute values the same: there will be columns
for the correlation coefficients r and r� (if either of these conditions does not
hold, all the values of r and r� are meaningless) /⇔

fprintf (stream, "r@{\\hspace{%s}}r|", Column Separation);

}

fprintf (stream, "c|}\\hline\n");

/ write the column headings /⇔	 ⇔

Indent(stream, 3);

fprintf (stream, "&\\multicolumn{%u}{|c|}{\\it�Attributes\\/}&",

area pointer�number of attributes);

if (court head = NULL)∨

fprintf (stream, "&");

dumper.c 101

if (facts head =∨ NULL) {
fprintf (stream, "&&&&");
if (area pointer�infinite weight)¬

fprintf (stream, "&");
if (area pointer�correlation coefficients)

fprintf (stream, "&&");
}
fprintf (stream, "\\\\\n");
Indent(stream, 3);

fprintf (stream, "\\smash{\\raisebox{%s}{\\it�Case\\/}}&", Raise Height);

for (count = 1; count � area pointer�number of attributes; count++)
fprintf (stream, "$A_{%u}$&", count);

if (court head = NULL)∨
fprintf (stream, "\\multicolumn{1}{c|}{\\smash{\\raisebox{%s}{c}}}&",

Raise Height);

if (facts head =∨ NULL) {
fprintf (stream,

"\\multicolumn{1}{c}{\\smash{\\raisebox{%s}{$d_{\\rm�K}$}}}&"
"\\multicolumn{1}{c|}{\\smash{\\raisebox{%s}{$d_{\\rm�U}$}}}&"
"\\multicolumn{1}{c|}{\\smash{\\raisebox{%s}{$\\Delta$}}}&"
"\\smash{\\raisebox{%s}{S}}&",
Raise Height, Raise Height, Raise Height, Raise Height);

if (area pointer�infinite weight)¬
fprintf (stream, "\\smash{\\raisebox{%s}{$S’$}}&",

Raise Height);

if (area pointer�correlation coefficients)
fprintf (stream, "\\multicolumn{1}{c}{\\smash{\\raisebox{%s}{r}}}&"

"\\multicolumn{1}{c|}{\\smash{\\raisebox{%s}{$r’$}}}&",
Raise Height, Raise Height);

}
fprintf (stream, "\\smash{\\raisebox{%s}{\\it�Result\\/}}\\\\\\hline",

Raise Height);

if (facts head =∨ NULL) {

/ write details of the instant case /⇔ ⇔

fprintf (stream, "\\hline\n");
Indent(stream, 3);

if (number 0)⇒

/ the instant case is the uninstantiated and unhypothesized instant case /⇔ ⇔

fprintf (stream, "$C_{\\rm�Instant}$&");

102 � 6 The DUMPER module

else if (hypothetical)

/ the instant case is hypothetical number /⇔ ⇔

fprintf (stream, "$C_{\\mbox{\\scriptsize�Hypo-%u}}$&",number);

else

/ the instant case is instantiation number /⇔ ⇔

fprintf (stream, "$C_{\\mbox{\\scriptsize�Inst-%u}}$&",number);

/ write the attribute values for the instant case: a symbol for yes; a × symbol for⇔
no; a blank space for unknown ⇔/

•

for (vector pointer = facts head ; vector pointer = NULL;∨
vector pointer = vector pointer�next)

fprintf (stream, "%s&",
vector pointer�attribute value YES ? Yes Symbol :
vector pointer�attribute value

⇒
NO ? No Symbol : ⇒

Unknown Symbol);

/ leave an appropriate number of columns empty /⇔ ⇔

fprintf (stream, "\\multicolumn{%u}{c|}{}\\\\\\hline",
court head NULL ?
area pointer

⇒
�infinite weight ?

area pointer�correlation coefficients ? 7 : 5 :
area pointer�correlation coefficients ? 8 : 6 :
area pointer�infinite weight ?
area pointer�correlation coefficients ? 8 : 6 :
area pointer�correlation coefficients ? 9 : 7);

}

/ for every result . . . /⇔ ⇔

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next) {

/ determine the first row in which information should appear, for this result, in the⇔
“Result” column so that the information is centred vertically /⇔

first result row = 0;
for (case pointer = result pointer�case head ; case pointer =∨ NULL;

case pointer = case pointer�next)
first result row ++;

if (result pointer�ideal point head =∨ NULL)
first result row ++;

if (result pointer�centroid head =∨ NULL)
first result row ++;

if (first result row = 0)∨ {
if ((facts head = NULL) (first result row > 1) ∨ ⇐ ⇐

¬Is Zero Subdistance(result pointer�specified direction)) {
first result row ------;

dumper.c 103

if (all three equal (result pointer�specified direction,¬
result pointer�ideal point direction,
result pointer�centroid direction)) {

if ((first result row > 1) ⇐
¬Is Zero Subdistance(result pointer�ideal point direction))

first result row ------;
if ((first result row > 1) ⇐

¬Is Zero Subdistance(result pointer�centroid direction))
first result row ------;

}
}
first result row = (first result row + 1) / 2;

count = 1;
fprintf (stream, "\\hline");

/ for every case with this result . . . /⇔ ⇔

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next) {

fprintf (stream, "\n");
Indent(stream, 3);
fprintf (stream, "$C_{%u}$&", case pointer�number);

/ write the attribute values for this case /⇔ ⇔

for (matrix pointer = case pointer�matrix head ; matrix pointer =∨ NULL;
matrix pointer = matrix pointer�case next)

fprintf (stream, "%s&",
matrix pointer�attribute value ⇒ YES ? Yes Symbol :
matrix pointer�attribute value ⇒ NO ? No Symbol :
Unknown Symbol);

if (court head = NULL)∨

/ write the rank of the case’s court /⇔ ⇔

if ((case pointer�court string =∨ NULL) ⇐
(case pointer�court rank = 0))∨

fprintf (stream, "%u&", case pointer�court rank);
else

fprintf (stream, "\\footnotesize?&");

if (facts head = NULL)∨
write metrics(stream, case pointer�metrics,

¬area pointer�infinite weight, area pointer�correlation coefficients);

write result(stream, count++,first result row, facts head = NULL,∨
result pointer);

fprintf (stream, "\\\\");
}

104 � 6 The DUMPER module

/ write a line (an appropriate number of columns wide) under the cases for this ⇔
result ⇔/

if ((result pointer�case head =∨ NULL) ⇐
((result pointer�ideal point head =∨ NULL) ∧

(result pointer�centroid head =∨ NULL)))
fprintf (stream, "\\cline{2-%u}", facts head NULL ? ⇒

court head NULL ?
area pointer

⇒
�number of attributes + 1 :

area pointer�number of attributes + 2 :
court head NULL ?
area pointer

⇒
�infinite weight ?

area pointer�correlation coefficients ?
area pointer�number of attributes + 7 :
area pointer�number of attributes + 5 :
area pointer�correlation coefficients ?
area pointer�number of attributes + 8 :
area pointer�number of attributes + 6 :
area pointer�infinite weight ?
area pointer�correlation coefficients ?
area pointer�number of attributes + 8 :
area pointer�number of attributes + 6 :
area pointer�correlation coefficients ?
area pointer�number of attributes + 9 :
area pointer�number of attributes + 7);

if (result pointer�ideal point head =∨ NULL) {

/ this result has an ideal point, so write its details /⇔ ⇔

fprintf (stream, "\n");
Indent(stream, 3);
fprintf (stream, "$I_{\\mbox{\\scriptsize%s�%s}}$&",

Identifier Font, result pointer�identifier);

/ write the attribute values for this ideal point /⇔ ⇔

for (vector pointer = result pointer�ideal point head ;
vector pointer =∨ NULL; vector pointer = vector pointer�next)

fprintf (stream, "%s&", (vector pointer�attribute value ⇒ YES ?
Yes Symbol : (vector pointer�attribute value ⇒ NO ?

No Symbol : Unknown Symbol)));

if (court head = NULL)∨
fprintf (stream, "&");

if (facts head = NULL)∨
write metrics(stream, result pointer�ideal point metrics,

¬area pointer�infinite weight, area pointer�correlation coefficients);

write result(stream, count++, first result row, facts head = NULL,∨
result pointer);

fprintf (stream, "\\\\");
}

dumper.c 105

if (result pointer�centroid head =∨ NULL) {

/ this result has a centroid, so write its details /⇔ ⇔

fprintf (stream, "\n");
Indent(stream, 3);
fprintf (stream, "$\\mu_{\\mbox{\\scriptsize%s�%s}}$&",

Identifier Font, result pointer�identifier);

/ write the attribute values for this centroid /⇔ ⇔

for (centroid pointer = result pointer�centroid head ;
centroid pointer =∨ NULL; centroid pointer = centroid pointer�next)

fprintf (stream, "%s&",
centroid pointer�unknown ? Unknown Symbol :
Nearest Attribute Value(centroid pointer�value) ⇒ YES ?
Yes Symbol : No Symbol);

if (court head = NULL)∨
fprintf (stream, "&");

if (facts head = NULL)∨
write metrics(stream, result pointer�centroid metrics,

¬area pointer�infinite weight, area pointer�correlation coefficients);

write result(stream, count++, first result row, facts head = NULL,∨
result pointer);

fprintf (stream, "\\\\");
}
fprintf (stream, "\\hline");

}
}
fprintf (stream, "\n");
Indent(stream, 2);
fprintf (stream, "\\end{tabular}\n");
Indent(stream, 1);
fprintf (stream, "\\end{small}\n\n");

}

static void
write opening and closing(

file dump stream,
area area pointer,⇔
boolean verbose)

/ Writes the opening and closing strings for the area pointed to by area pointer. Writes each ⇔
string in full only if verbose is TRUE. /⇔

106 � 6 The DUMPER module

{	

if (area pointer�opening = NULL) {∨

fprintf (dump stream,"%s{Opening}\n\n",Subheading);

Indent(dump stream,1);

fprintf (dump stream,"\\begin{list}{}{\\leftmargin=0mm}\\item[]\n");

if (verbose)

Write(dump stream,area pointer�opening,Empty String,2,Hang);

else

Write(dump stream,"[Opening.]",Empty String,2,Hang);

Indent(dump stream,1);

fprintf (dump stream,"\\end{list}\n\n");

}

if (area pointer�closing =∨NULL) {

fprintf (dump stream,"%s{Closing}\n\n",Subheading);

Indent(dump stream,1);

fprintf (dump stream,"\\begin{list}{}{\\leftmargin=0mm}\\item[]\n");

if (verbose)

Write(dump stream,area pointer�closing,Empty String,2,Hang);

else

Write(dump stream,"[Closing.]",Empty String,2,Hang);

Indent(dump stream,1);

fprintf (dump stream,"\\end{list}\n\n");

}

}

static void

write result list(

file dump stream,

result result pointer)⇔

/	Writes details of each result in the list of results pointed to by result pointer. /⇔ ⇔

{	

fprintf (dump stream,"%s{Results}\n\n",Subheading);

Indent(dump stream,1);

fprintf (dump stream,"\\begin{description}\n\n");

/	while there are still results ... /⇔	 ⇔

while (result pointer =∨NULL) {

Indent(dump stream,2);

fprintf (dump stream,"\\item[\\rm{%s�%s}:]\n",

Identifier Font,result pointer�identifier);

Write(dump stream,result pointer�string,".\n",3,No Hang);

result pointer = result pointer�next;

}

Indent(dump stream,1);

fprintf (dump stream,"\\end{description}\n\n");

}

dumper.c 107

static void
write attribute list(

file dump stream,
attribute attribute pointer)⇔

/ Writes details of each attribute in the list of attributes pointed to by attribute pointer. /⇔ ⇔

{
direction list element direction list pointer ;⇔
identifier list element identifier list pointer ;⇔

fprintf (dump stream, "%s{Attributes}\n\n",Subheading);
Indent(dump stream, 1);

fprintf (dump stream, "\\begin{description}\n\n");

/ while there are still attributes . . . /⇔ ⇔

while (attribute pointer =∨ NULL) {

Indent(dump stream, 2);
fprintf (dump stream, "\\item[\\rm$A_{%u}$:]\n", attribute pointer�number);

if (attribute pointer�external attribute) {

/ the attribute is external, so indicate the area to which it is linked using a ≡⇔
symbol ⇔/

Indent(dump stream, 3);
fprintf (dump stream, "%s�{%s�%s}�area\n",External Area Symbol,

Identifier Font, attribute pointer�details.external.area identifier);

} else

/ the attribute is local, so write the attribute’s question /⇔ ⇔

Write(dump stream, attribute pointer�details.local.question, "?", 3,No Hang);

fprintf (dump stream, "\n");

Indent(dump stream, 3);
fprintf (dump stream, "\\begin{description}\n\n");

if (attribute pointer�yes =∨ NULL) {

/ the attribute has a yes string, so write it / ⇔ ⇔

Indent(dump stream, 4);
fprintf (dump stream, "\\item[\\sc�yes:]\n");
Write(dump stream, attribute pointer�yes, ".\n", 5,No Hang);

108 � 6 The DUMPER module

if (attribute pointer�external attribute) {

/ the attribute is external, so indicate the association of results from the ex­⇔
ternal area with yes values of this attribute using a � symbol (list the result
identifiers, separated by a ∧ symbol) ⇔/

identifier list pointer = attribute pointer�details.external.yes identifier head ;
while (identifier list pointer =∨ NULL) {

if (identifier list pointer ⇒
attribute pointer�details.external.yes identifier head) {

/ this is the first identifier to write /⇔ ⇔

Indent(dump stream, 5);
fprintf (dump stream, "%s�{%s�%s}", External Result Symbol,

Identifier Font, identifier list pointer�identifier);
} else {

fprintf (dump stream, "~%s\n", Disjunction Symbol);
Indent(dump stream, 5);
fprintf (dump stream, "{%s�%s}", Identifier Font,

identifier list pointer�identifier);
}
identifier list pointer = identifier list pointer�next ;

}
if (attribute pointer�details.external.yes identifier head =∨ NULL)

fprintf (dump stream, "\n\n");
}

/⇔ indicate the specified direction for yes values of this attribute using a � symbol
(list the result identifiers, separated by a ∧ symbol) ⇔/

direction list pointer = attribute pointer�yes direction head ;
while (direction list pointer =∨ NULL) {

if (direction list pointer attribute pointer�yes direction head) {⇒

/ this is the first identifier to write /⇔ ⇔

Indent(dump stream, 5);
fprintf (dump stream, "%s�{%s�%s}", Specified Direction Symbol,

Identifier Font, direction list pointer�result�identifier);
} else {

fprintf (dump stream, "~%s\n", Disjunction Symbol);
Indent(dump stream, 5);
fprintf (dump stream, "{%s�%s}", Identifier Font,

direction list pointer�result�identifier);
}
direction list pointer = direction list pointer�next ;

}
if (attribute pointer�yes direction head =∨ NULL)

fprintf (dump stream, "\n\n");
}

dumper.c 109

if (attribute pointer�no =∨ NULL) {

/ the attribute has a no string, so write it /⇔ ⇔
Indent(dump stream, 4);
fprintf (dump stream, "\\item[\\sc�no:]\n");
Write(dump stream, attribute pointer�no, ".\n", 5, No Hang);

if (attribute pointer�external attribute) {

/ the attribute is external, so indicate the association of results from the ex­⇔
ternal area with no values of this attribute using a � symbol (list the result
identifiers, separated by a ∧ symbol) ⇔/

identifier list pointer = attribute pointer�details.external.no identifier head ;
while (identifier list pointer =∨ NULL) {

if (identifier list pointer
attribute pointer�

⇒
details.external.no identifier head) {

/ this is the first identifier to write /⇔ ⇔
Indent(dump stream, 5);
fprintf (dump stream, "%s�{%s�%s}", External Result Symbol,

Identifier Font, identifier list pointer�identifier);
} else {

fprintf (dump stream, "~%s\n", Disjunction Symbol);
Indent(dump stream, 5);
fprintf (dump stream, "{%s�%s}", Identifier Font,

identifier list pointer�identifier);
}
identifier list pointer = identifier list pointer�next ;

}
if (attribute pointer�details.external.no identifier head =∨ NULL)

fprintf (dump stream, "\n\n");
}

/⇔ indicate the specified direction for no values of this attribute using a � symbol
(list the result identifiers, separated by a ∧ symbol) ⇔/

direction list pointer = attribute pointer�no direction head ;
while (direction list pointer =∨ NULL) {

if (direction list pointer attribute pointer�no direction head) { ⇒

/ this is the first identifier to write /⇔ ⇔
Indent(dump stream, 5);
fprintf (dump stream, "%s�{%s�%s}", Specified Direction Symbol,

Identifier Font, direction list pointer�result�identifier);
} else {

fprintf (dump stream, "~%s\n", Disjunction Symbol);
Indent(dump stream, 5);
fprintf (dump stream, "{%s�%s}", Identifier Font,

direction list pointer�result�identifier);
}
direction list pointer = direction list pointer�next ;

}
if (attribute pointer�no direction head =∨ NULL)

fprintf (dump stream, "\n\n");
}

110 � 6 The DUMPER module

if (attribute pointer�unknown =∨ NULL) {

/ the attribute has an unknown string, so write it /⇔ ⇔

Indent(dump stream, 4);
fprintf (dump stream, "\\item[\\sc�unknown:]\n");
Write(dump stream, attribute pointer�unknown, ".\n", 5, No Hang);

if (attribute pointer�external attribute) {

/ the attribute is external, so indicate the association of results from the ex­⇔
ternal area with unknown values of this attribute using a � symbol (list
the result identifiers, separated by a ∧ symbol) ⇔/

identifier list pointer =
attribute pointer�details.external.unknown identifier head ;

while (identifier list pointer =∨ NULL) {
if (identifier list pointer

attribute pointer�
⇒
details.external.unknown identifier head) {

/ this is the first identifier to write /⇔ ⇔

Indent(dump stream, 5);
fprintf (dump stream, "%s�{%s�%s}", External Result Symbol,

Identifier Font, identifier list pointer�identifier);
} else {

fprintf (dump stream, "~%s\n", Disjunction Symbol);
Indent(dump stream, 5);
fprintf (dump stream, "{%s�%s}", Identifier Font,

identifier list pointer�identifier);
}
identifier list pointer = identifier list pointer�next ;

}
if (attribute pointer�details.external.unknown identifier head =∨ NULL)

fprintf (dump stream, "\n\n");
}

/ indicate the specified direction for unknown values of this attribute using ⇔
a � symbol (list the result identifiers, separated by a ∧ symbol) ⇔/

direction list pointer = attribute pointer�unknown direction head ;
while (direction list pointer =∨ NULL) {

if (direction list pointer attribute pointer�unknown direction head) {⇒

/ this is the first identifier to write /⇔ ⇔

Indent(dump stream, 5);
fprintf (dump stream, "%s�{%s�%s}", Specified Direction Symbol,

Identifier Font, direction list pointer�result�identifier);
} else {

fprintf (dump stream, "~%s\n", Disjunction Symbol);
Indent(dump stream, 5);
fprintf (dump stream, "{%s�%s}", Identifier Font,

direction list pointer�result�identifier);
}
direction list pointer = direction list pointer�next ;

}

dumper.c 111

if (attribute pointer�unknown direction head =∨ NULL)
fprintf (dump stream, "\n\n");

}
Indent(dump stream, 3);
fprintf (dump stream, "\\end{description}\n\n");

if (attribute pointer�external attribute ⇐¬
(attribute pointer�details.local.help =∨ NULL))

/ the attribute has a help string, so write it /⇔ ⇔

Write(dump stream, attribute pointer�details.local.help, "\n", 3, No Hang);

attribute pointer = attribute pointer�next ;
}
Indent(dump stream, 1);
fprintf (dump stream, "\\end{description}\n\n");

}

extern void
Write Year and Court(

file stream,
kase case pointer,⇔
cardinal level)

/ Describes the case pointed to by case pointer as “a year decision of court”. /⇔ ⇔

{
cardinal hundreds = case pointer�year / 100;

Indent(stream, level);
if ((hundreds ⇒ 8) ∧ (hundreds ⇒ 11) ∧ (hundreds ⇒ 18))

fprintf (stream, "an");
else

fprintf (stream, "a");
fprintf (stream, "�%u�decision", case pointer�year);

if (case pointer�court string =∨ NULL) {
fprintf (stream, "�of\n");
Indent(stream, level);
fprintf (stream, "��%s", case pointer�court string);

}
}

static void
write case list(

file dump stream,
file log stream,
area area pointer,⇔
boolean verbose)

/ Writes details of each case in the area pointed to by area pointer. Summarizes each case in ⇔
full only if verbose is TRUE. /⇔

112 � 6 The DUMPER module

{
result result pointer = area pointer�result head ;⇔
kase case pointer ;⇔
attribute attribute pointer ;⇔
matrix element matrix pointer ;⇔
vector element vector pointer ;⇔
string attribute string ;
char message[Max Error Message Length];

/ while there are still results . . . /⇔ ⇔

while (result pointer =∨ NULL) {

if ((result pointer�case head =∨ NULL) ∧
(result pointer�ideal point head =∨ NULL)) {

/ this result has a case or an ideal point /⇔ ⇔

fprintf (dump stream, "%s{Cases�in�which�%s}\n\n",Subheading,
result pointer�string);

Indent(dump stream, 1);
fprintf (dump stream, "\\begin{description}\n\n", result pointer�string);

/ for every case with this result . . . /⇔ ⇔

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next) {

Indent(dump stream, 2);
fprintf (dump stream,

"\\item[\\rm$C_{%u}$:]\\frenchspacing\n", case pointer�number);
Indent(dump stream, 3);
fprintf (dump stream,

"{\\it�%s\\/}�\\nonfrenchspacing\n", case pointer�name);
Indent(dump stream, 3);
fprintf (dump stream, "%s\n", case pointer�citation);

if (case pointer�short name =∨ case pointer�name) {
Indent(dump stream, 3);
fprintf (dump stream, "(‘‘\\frenchspacing\n");
Indent(dump stream, 3);
fprintf (dump stream, "{\\it�%s\\/}\\nonfrenchspacing’’)\n",

case pointer�short name);
}
fprintf (dump stream, "\n");

attribute pointer = area pointer�attribute head ;
matrix pointer = case pointer�matrix head ;
Indent(dump stream, 3);
fprintf (dump stream, "\\begin{description}\n\n");

dumper.c 113

/ while there are still attributes . . . /⇔ ⇔

while (attribute pointer =∨ NULL) {

/ write the strings corresponding to each attribute value for the case /⇔ ⇔

attribute string = matrix pointer�attribute value ⇒ YES ?
attribute pointer�yes : matrix pointer�attribute value NO ?
attribute pointer�no : attribute pointer�unknown;

⇒

Indent(dump stream, 4);
fprintf (dump stream, "\\item[\\rm$A_{%u}$:]\n",

attribute pointer�number);

if (attribute string NULL) {
sprintf (message

⇒
,

"A%u�in�C%u�in�%s�area�has�a�value�"
"for�which�there�is�no�string",
attribute pointer�number, case pointer�number,
area pointer�identifier);

warning(log stream,message);
Indent(dump stream, 5);
fprintf (dump stream, "%s\n",Null String);

} else
Write(dump stream, attribute string, ".", 5,No Hang);

fprintf (dump stream, "\n");

matrix pointer = matrix pointer�case next ;
attribute pointer = attribute pointer�next ;

}

/ summarize the case /⇔ ⇔

Indent(dump stream, 3);
fprintf (dump stream, "\\end{description}\n\n");
if (case pointer�summary =∨ NULL) {

Indent(dump stream, 3);
fprintf (dump stream, "In�\\frenchspacing\n");
Indent(dump stream, 3);
fprintf (dump stream, "{\\it�%s}\\nonfrenchspacing,%%\n",

case pointer�name);
Indent(dump stream, 3);
fprintf (dump stream, "\\footnote{%s.}\n", case pointer�citation);
if (verbose) {

Write Year and Court(dump stream, case pointer, 3);
fprintf (dump stream, ",\n");
if (case pointer�summary =∨ NULL)

Write(dump stream, case pointer�summary,Empty String, 3,Hang);
} else

Write(dump stream, "[summary].\n",Empty String, 3,Hang);
fprintf (dump stream, "\n");

}
}

114 � 6 The DUMPER module

if (result pointer�ideal point head =∨ NULL) {

/ this result has an ideal point, so write its details /⇔ ⇔

Indent(dump stream, 2);
fprintf (dump stream, "\\item[$I_{\\mbox{\\scriptsize%s�%s}}$]\n",

Identifier Font, result pointer�identifier);
Indent(dump stream, 3);
fprintf (dump stream, "(the�ideal�case�in�which\n");
Indent(dump stream, 3);
fprintf (dump stream, "%s):\n\n", result pointer�string);

attribute pointer = area pointer�attribute head ;
vector pointer = result pointer�ideal point head ;
Indent(dump stream, 3);
fprintf (dump stream, "\\begin{description}\n\n");

/ while there are still attributes . . . /⇔ ⇔

while (attribute pointer =∨ NULL) {

/ write the strings corresponding to each attribute value for the ideal ⇔
point ⇔/

attribute string = vector pointer�attribute value ⇒ YES ?
attribute pointer�yes : vector pointer�attribute value NO ?
attribute pointer�no : attribute pointer�unknown;

⇒

Indent(dump stream, 4);
fprintf (dump stream, "\\item[\\rm$A_{%u}$:]\n",

attribute pointer�number);
if (attribute string NULL) {

sprintf (message
⇒
,

"A%u�in�ideal�point�%s�in�%s�area�has�a�value�"
"for�which�there�is�no�string",
attribute pointer�number, result pointer�identifier,
area pointer�identifier);

warning(log stream,message);
Indent(dump stream, 5);
fprintf (dump stream, "%s\n",Null String);

} else
Write(dump stream, attribute string, ".", 5,No Hang);

fprintf (dump stream, "\n");

vector pointer = vector pointer�next ;
attribute pointer = attribute pointer�next ;

}
Indent(dump stream, 3);
fprintf (dump stream, "\\end{description}\n\n");

}
Indent(dump stream, 1);
fprintf (dump stream, "\\end{description}\n\n");

}
result pointer = result pointer�next ;

}
}

dumper.c 115

extern void
Dump Specification(

file dump stream,
file log stream,
case law specification case law,
boolean inputable latex,
boolean verbose)

/ Writes to dump stream a formatted version of the specification case law. Writes LaTEX∗
code that can be included in another LaTEX document (i.e. not stand-alone code), if
inputable latex is TRUE. Summarizes cases in full, and writes opening and closing strings
in full, if verbose is TRUE. /∗

{
area area pointer ;∗
fprintf (dump stream, "%%�Dump�file\n\n");
Write LaTeX Header(dump stream, inputable latex);

if (case law.court head = NULL)�
write hierarchy table(dump stream, case law.court head);

/ for every area . . . /∗ ∗
for (area pointer = case law.area head ; area pointer = NULL;�

area pointer = area pointer→next) {
fprintf (dump stream, "%s{%s�area}\n\n",Heading,

area pointer→identifier);
Write Matrix(dump stream, area pointer,NULL, case law.court head,FALSE, 0);
write opening and closing(dump stream, area pointer, verbose);
write result list(dump stream, area pointer→result head);
write attribute list(dump stream, area pointer→attribute head);
write case list(dump stream, log stream, area pointer, verbose);

}
Write LaTeX Trailer(dump stream, inputable latex);

}

7
The CHECKER module

checker.h
/ This is the header file for the Checker module. It is also included by the Cases module. /⇔ ⇔

/ external function /⇔ ⇔

extern void
Check for Attribute Dependence(

file probabilities stream,
file log stream,
case law specification case law,
boolean inputable latex);

checker.c
/ This is the implementation file for the Checker module. /⇔ ⇔

#include →stdio.h�
#include →stdlib.h�
#include "shyster.h"
#include "cases.h"
#include "checker.h"

static void
error exit(

file stream,
const string message)

{
Write Error Message And Exit(stream, "Checker", message);

}

117

118 � 7 The CHECKER module

static void
warning(

file stream,
const string message)

{
Write Warning Message(stream, "Checker", message, Top Level);

}

static floating point
factorial(

cardinal number)

/ Returns number ! /⇔ ⇔

{
if (number 0)⇒

return 1.0;
else

return (floating point) number × factorial(number − 1);
}

static boolean
calculate probabilities(

attribute attribute pointer X,
attribute

⇔
⇔attribute pointer Y,

boolean equivalence function,⇔
boolean inverse function,
floating

⇔
point probability that or fewer,

floating point
⇔
⇔probability that or more)

/ Calculates the probabilities for the two attributes pointed to by attribute pointer X and⇔
attribute pointer Y, and sets probability that or fewer and probability that or more appro­⇔ ⇔
priately. Sets equivalence function to TRUE, if there is an equivalence function mapping ⇔
attribute X to attribute Y . Sets inverse function to TRUE, if there is an inverse function
mapping attribute X to attribute

⇔
Y. Returns FALSE, if there are no known pairs. ⇔/

{
matrix element matrix pointer X,⇔

matrix pointer Y ;⇔
cardinal yes count X = 0,

yes count Y = 0,
yes yes count = 0,
total count = 0,
count ;

floating point multiplier,
probability;

/ assume that there is both an equivalence function and an inverse function /⇔ ⇔

equivalence function = TRUE ;⇔
inverse function = TRUE ;⇔

matrix pointer Y = attribute pointer Y �matrix head ;

� �� �

checker.c 119

/ for every attribute value for attribute X . . . /⇔ ⇔

for (matrix pointer X = attribute pointer X�matrix head ; matrix pointer X =∨ NULL;
matrix pointer X = matrix pointer X�attribute next)

if (matrix pointer Y =∨ NULL) {
if ((matrix pointer X�attribute value =∨ UNKNOWN) ⇐

(matrix pointer Y �attribute value =∨ UNKNOWN)) {

/ both attribute values for this case are known, so count the yess /⇔ ⇔

if (matrix pointer X�attribute value YES) {
yes count X ++;

⇒

if (matrix pointer Y �attribute value ⇒ YES)
yes yes count++;

}
if (matrix pointer Y �attribute value YES)

yes count Y ++;
⇒

total count++;

if (matrix pointer X�attribute value ⇒ matrix pointer Y �attribute value)

/ the attribute values are the same /⇔ ⇔

inverse function = FALSE ;⇔
else

/ the attribute values are the different /⇔ ⇔

equivalence function = FALSE ;⇔
}

/ move to the next attribute value for attribute Y /⇔ ⇔

matrix pointer Y = matrix pointer Y �attribute next ;
}

if (total count 0)⇒

/ there are no known pairs /⇔ ⇔

return FALSE ;

else {

/ calculate the probability P (n) of there being exactly n yes/yes pairs:⇔

y N−y

P (n) = n �
N
x�−n

x

where n is yes yes count (the number of yes/yes pairs), N is total count (the number
of known pairs), x is yes count X (the number of yess in attribute X), and y is
yes count Y (the number of yess in attribute Y) /⇔

if (yes count X + yes count Y > total count) {

/ the first non-zero probability is P (x + y − N) = x! y! /⇔ N ! (x+y−N)! ⇔

count = yes count X + yes count Y − total count ;
probability = (factorial(yes count X) × factorial(yes count Y)) /

(factorial(total count) ×
factorial(yes count X + yes count Y − total count));

120 � 7 The CHECKER module

} else {

/ the first non-zero probability is P (0) = (N−x)! (N−y)! /⇔ N ! (N −x−y)! ⇔

count = 0;
probability = (factorial(total count − yes count X) ×

factorial(total count − yes count Y)) /
(factorial(total count) ×
factorial(total count − yes count X − yes count Y));

}
probability that or fewer = probability;⇔

/ successively multiply the probability by P (i+1) = (i−x)(i−y) /⇔ P (i) (i+1)(N−x−y+i+1) ⇔

while (count < yes yes count) {
multiplier = (floating point) ((count − yes count X) × (count − yes count Y)) /

(floating point) ((count + 1) ×
(total count − yes count X − yes count Y + count + 1));

probability × = multiplier ;

/⇔ the probability of i yes/yes pairs or fewer is P (n � i) =
�i

P (n) ⇔/n=0

probability that or fewer += probability;⇔
count++;

}

/⇔ the probability of i yes/yes pairs or greater is P (n � i) = 1 −
�i−1

P (n) ⇔/n=0

⇔probability that or more = 1.0 − (⇔probability that or fewer − probability);
return TRUE ;

}
}

static void
write probabilities matrix (

file probabilities stream,
file log stream,
area area pointer)⇔

/ Calculates the probabilities for the area pointed to by area pointer, and writes a matrix of ⇔
probabilities. /⇔

{
attribute attribute pointer X,⇔

attribute pointer Y ;⇔
probability element probability pointer ;
boolean equivalence

⇔
function,

inverse function;
cardinal count ;
char message[Max Error Message Length];

if (probabilities stream =∨ NULL) {

fprintf (probabilities stream, "%s{%s�area}\n\n",
Heading, area pointer�identifier);

checker.c 121

if (area pointer�number of attributes < 2)
return;

Indent(probabilities stream, 1);
fprintf (probabilities stream, "\\begin{small}\n");
Indent(probabilities stream, 2);
fprintf (probabilities stream, "\\def\\arraystretch{0}\n");
Indent(probabilities stream, 2);
fprintf (probabilities stream,

"\\begin{tabular}{*{%u}{|c}|@{}p{\\doublerulesep}@{}|c|}"
"\\cline{1-%u}\n",
area pointer�number of attributes − 1,
area pointer�number of attributes − 1);

Indent(probabilities stream, 3);

/ write the column headings /⇔ ⇔
for (count = 2; count � area pointer�number of attributes ; count++)

fprintf (probabilities stream, "\\smash{\\raisebox{%s}{$A_{%u}$}}&",
Raise Height, count);

fprintf (probabilities stream,
"\\multicolumn{2}{c}{\\raisebox{\\ht\\strutbox}{\\strut}}"
"\\\\\\cline{1-%u}\n", area pointer�number of attributes − 1);

Indent(probabilities stream, 3);
fprintf (probabilities stream,

"\\multicolumn{%u}{c}{\\rule{0mm}{\\doublerulesep}}\\\\"
"\\cline{1-%u}\\cline{%u-%u}\n",
area pointer�number of attributes + 1,
area pointer�number of attributes − 1,
area pointer�number of attributes + 1,
area pointer�number of attributes + 1);

}

/ for every attribute X . . . /⇔ ⇔
for (attribute pointer X = area pointer�attribute head ;

(attribute pointer X ∨= NULL) ⇐ (attribute pointer X�next =∨ NULL);
attribute pointer X = attribute pointer X�next) {

if (probabilities stream =∨ NULL) {
Indent(probabilities stream, 3);
if (attribute pointer X�number > 1)

fprintf (probabilities stream, "\\multicolumn{%u}{c|}{}&",
attribute pointer X�number − 1);

}

122 � 7 The CHECKER module

/ for every attribute Y (i.e. every attribute after attribute X) . . . /⇔ ⇔

for (attribute pointer Y = attribute pointer X�next ; attribute pointer Y =∨ NULL;
attribute pointer Y = attribute pointer Y �next) {

if (attribute pointer X�probability head NULL) {⇒

/ allocate memory for this pair of probabilities (the first in the list) /⇔ ⇔

if ((attribute pointer X�probability head =
(probability element) malloc(sizeof(probability element)))⇔ ⇒

NULL)
error exit(log stream,

"malloc�failed�during�probability�matrix�building");
probability pointer = attribute pointer X�probability head ;

} else {

/ go to the end of the list of probabilities /⇔ ⇔

for (probability pointer = attribute pointer X�probability head ;
probability pointer�next =∨ NULL;
probability pointer = probability pointer�next);

/ allocate memory for this pair of probabilities /⇔ ⇔

if ((probability pointer�next =
(probability element) malloc(sizeof(probability element)))⇔ ⇒

NULL)
error exit(log stream,

"malloc�failed�during�probability�matrix�building");
probability pointer = probability pointer�next ;

}

/ calculate the probabilities for attributes X and Y /⇔ ⇔

probability pointer�unknown = calculate probabilities(attribute pointer X,¬
attribute pointer Y,&equivalence function,&inverse function,
&probability pointer�probability that or fewer,
&probability pointer�probability that or more);

if (probability pointer�unknown) {

/ there are no known pairs /⇔ ⇔

if (probabilities stream = NULL)∨
fprintf (probabilities stream, "\\footnotesize?&");

} else {

probability pointer�functional dependence =
equivalence function ∧ inverse function;

checker.c 123

if (probabilities stream =∨ NULL) {

/ write the first probability for this cell in the matrix (the probability of ⇔
the actual number of yes/yes pairs or fewer) ⇔/

Write Floating Point(probabilities stream,
probability pointer�probability that or fewer,
probability pointer�functional dependence ?
Functional Dependence Symbol :
probability pointer�probability that or fewer � Threshold ?
Stochastic Dependence Symbol : Empty String);

fprintf (probabilities stream, "&");
}

/ issue warnings if necessary /⇔ ⇔

if (equivalence function) {
sprintf (message,

"functional�dependence�(equivalence)�"
"between�A%u�and�A%u�in�%s�area",
attribute pointer X�number, attribute pointer Y �number,
area pointer�identifier);

warning(log stream, message);
} else if (inverse function) {

sprintf (message,
"functional�dependence�(inverse)�"
"between�A%u�and�A%u�in�%s�area",
attribute pointer X�number, attribute pointer Y �number,
area pointer�identifier);

warning(log stream, message);
} else if (probability pointer�probability that or fewer � Threshold ∧

probability pointer�probability that or more � Threshold) {
sprintf (message,

"evidence�of�stochastic�dependence�"
"between�A%u�and�A%u�in�%s�area",
attribute pointer X�number, attribute pointer Y �number,
area pointer�identifier);

warning(log stream, message);
}

}
probability pointer�next = NULL;

}
if (probabilities stream =∨ NULL) {

fprintf (probabilities stream, "&\\\\\n");
Indent(probabilities stream, 3);
if (attribute pointer X�number > 1)

fprintf (probabilities stream, "\\multicolumn{%u}{c|}{}&",
attribute pointer X�number − 1);

}

124	 � 7 The CHECKER module

/	for every pair of probabilities for attribute X ... /⇔	 ⇔

for (probability pointer = attribute pointer X�probability head;
probability pointer =∨NULL; probability pointer = probability pointer�next)

if (probabilities stream = NULL)∨

/	write the second probability for this cell in the matrix (the probability of the ⇔	
actual number of yes/yes pairs or more) ⇔/

if	(probability pointer�unknown)
fprintf (probabilities stream,"\\footnotesize?&");

else {
Write Floating Point(probabilities stream,

probability pointer�probability that or more,
¬probability pointer�functional dependence ⇐
probability pointer�probability that or more � Threshold ?
Stochastic Dependence Symbol : Empty String);

fprintf (probabilities stream,"&");
}

if (probabilities stream = NULL)∨
fprintf (probabilities stream,"&\\smash{\\raisebox{%s}{$A_{%u}$}}\\\\"

"\\cline{%u-%u}\\cline{%u-%u}\n",Raise Height,
attribute pointer X�number,attribute pointer X�number,
area pointer�number of attributes − 1,
area pointer�number of attributes +1,
area pointer�number of attributes + 1);

}
if (probabilities stream =∨NULL) {
Indent(probabilities stream,2);
fprintf (probabilities stream,"\\end{tabular}\n");
Indent(probabilities stream,1);
fprintf (probabilities stream,"\\end{small}\n\n");

}
}

extern void
Check for Attribute Dependence(

file probabilities stream,
file log stream,
case law specification case law,
boolean inputable latex)

/	Checks for evidence of dependence between the attributes in each area in the specification ⇔	
case law. Calculates the probabilities, and writes a matrix of probabilities for each area to
probabilities stream (ifitisnot NULL). Writes LaTEX code that can be included in another
LaTEX document (i.e. not stand-alone code), if inputable latex is TRUE. /⇔

{	
area area pointer;⇔

if (probabilities stream =∨NULL) {
fprintf (probabilities stream,"%%�Probabilities�file\n\n");
Write LaTeX Header(probabilities stream,inputable latex);

}

checker.c 125

/ for every area . . . /⇔ ⇔
for (area pointer = case law.area head ; area pointer = NULL;∨

area pointer = area pointer�next)
write probabilities matrix (probabilities stream, log stream, area pointer);

if (probabilities stream = NULL)∨
Write LaTeX Trailer(probabilities stream, inputable latex);

}

8
The SCALES module

scales.h
/ This is the header file for the Scales module. It is also included by the Cases, Adjuster⇔

and Odometer modules. ⇔/

/ external functions /⇔ ⇔

extern void
Zero Weight(

weight type weight pointer);⇔

extern void
Write Weights Table(

file weights stream,
area area pointer);⇔

extern void
Weight Attributes(

file weights stream,
file log stream,
case law specification case law,
boolean inputable latex);

scales.c
/ This is the implementation file for the Scales module. /⇔ ⇔

#include stdio.h�
#include

→
stdlib.h�

#include
→
"shyster.h"

#include "cases.h"
#include "scales.h"

127

128 � 8 The SCALES module

static void
error exit(

file stream,
const string message)

{	
Write Error Message And Exit(stream,"Scales",message);

}

static void
warning(

file stream,
const string message)

{	
Write Warning Message(stream,"Scales",message,Top Level);

}

extern void
Zero Weight(

weight type weight pointer)⇔

/	Sets the weight pointed to by weight pointer to zero. /⇔ ⇔

{	
weight pointer�infinite = FA L S E ;
weight pointer�finite =0.0;

}

static boolean
calculate mean and centroids(

file log stream,
result result head,⇔
attribute attribute pointer)⇔

/	Calculates the mean (and, for each result, centroid element) for the attribute pointed to by ⇔
attribute pointer. Returns TRUE, iff the attribute has known values. /⇔

{	
result result pointer;⇔
kase case pointer;
matrix

⇔
element matrix pointer;

centroid element
⇔
centroid pointer;

floating point sum
⇔
,

temp;
cardinal count,
total count =0;

attribute pointer�mean =0.0;
matrix pointer = attribute pointer�matrix head;

/	for every result ... /⇔	 ⇔

for (result pointer = result head; result pointer = NULL;∨
result pointer = result pointer�next) {

sum =0.0;
count =0;

scales.c 129

/ sum the attribute values for this attribute for each case with this result /⇔ ⇔

for (case pointer = result pointer�case head ;
(case pointer = NULL) (matrix pointer = NULL); ∨ ⇐ ∨
case pointer = case pointer�next) {

if (Attribute Value(matrix pointer�attribute value, &temp)) {
sum += temp;
count++;

}
matrix pointer = matrix pointer�attribute next ;

}

if (result pointer�centroid head NULL) { ⇒

/ allocate memory for this centroid element (the first in the list) /⇔ ⇔

if ((result pointer�centroid head =
(centroid element) malloc(sizeof (centroid element))) NULL)⇔ ⇒

error exit(log stream, "malloc�failed�during�centroid�building");
centroid pointer = result pointer�centroid head ;

} else {

/ go to the end of the centroid /⇔ ⇔

for (centroid pointer = result pointer�centroid head ;
centroid pointer�next =∨ NULL;
centroid pointer = centroid pointer�next);

/ allocate memory for this centroid element /⇔ ⇔

if ((centroid pointer�next =
(centroid element) malloc(sizeof (centroid element))) NULL)⇔ ⇒

error exit(log stream, "malloc�failed�during�centroid�building");
centroid pointer = centroid pointer�next ;

}

if ((centroid pointer�unknown = count ⇒ 0)) ¬
centroid pointer�value = sum / (floating point) count ;

centroid pointer�next = NULL;

attribute pointer�mean += sum;
total count += count ;

}
if (total count 0)⇒

/ the attribute has no known values /⇔ ⇔

return FALSE ;

else {

attribute pointer�mean = attribute pointer�mean / (floating point) total count ;
return TRUE ;

}
}

�

130 � 8 The SCALES module

static void
calculate weights(

file log stream,
area area pointer)⇔

/ Calculates the weight of each attribute in the area pointed to by area pointer. (The weight is ⇔
the inverse of the variance of the attribute values. The variance �2 of the numerical values
of an attribute i across n cases is 1 n (Aij − Ā

i)2, where Aij is the value of the ith n j=1

attribute for the jth case, and Ā
i is the mean of all attribute values for the ith attribute.

Because known attribute values are assigned numerical values of 0 or 1, �2 simplifies to
Ā

i − Ā
i
2.) /⇔

{
attribute attribute pointer ;⇔
cardinal count ;
floating point variance;
char message[Max Error Message Length];

count = 1;

/ for every attribute . . . /⇔ ⇔

for (attribute pointer = area pointer�attribute head ; attribute pointer =∨ NULL;
attribute pointer = attribute pointer�next) {

variance = 0.0;
Zero Weight(&attribute pointer�weight);

if (calculate mean and centroids(log stream, area pointer�result head,¬
attribute pointer)) {

/ the attribute has no known values /⇔ ⇔

sprintf (message, "A%u�in�%s�area�has�no�weight", count,
area pointer�identifier);

warning(log stream,message);

} else {

/ the attribute has known values, so determine its weight /⇔ ⇔

variance = attribute pointer�mean −
(attribute pointer�mean × attribute pointer�mean);

if (attribute pointer�weight.infinite = Is Zero(variance)) {
sprintf (message,

"A%u�in�%s�area�has�infinite�weight", count,
area pointer�identifier);

warning(log stream,message);
area pointer�infinite weight = TRUE ;

} else
attribute pointer�weight.finite = 1 / variance;

}
count++;

}
}

scales.c 131

static void
calculate result weights(

file log stream,
area area pointer)⇔

/ Calculates the result weight for each attribute in the area pointed to by area pointer. (The⇔
result weight is the inverse of the variance of the attribute values for that result.) /⇔

{
attribute attribute pointer ;⇔
result result pointer ;
centroid

⇔
element centroid pointer ; ⇔

cardinal count ;
floating point variance;
weight list element weights pointer ; ⇔
boolean zero result weight = FALSE ;
char message[Max Error Message Length];

/ for every attribute . . . /⇔ ⇔

for (attribute pointer = area pointer�attribute head ; attribute pointer =∨ NULL;
attribute pointer = attribute pointer�next)

/ for every result . . . /⇔ ⇔

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next) {

/ find, in the centroid for this result, the mean for this attribute /⇔ ⇔

centroid pointer = result pointer�centroid head ;
for (count = 1; count < attribute pointer�number ; count++)

centroid pointer = centroid pointer�next ;

if (attribute pointer�weights head NULL) {⇒

/ allocate memory for this result weight (the first in the list) /⇔ ⇔

if ((attribute pointer�weights head =

NULL)
(weight list element ⇔) malloc(sizeof(weight list element))) ⇒

error exit(log stream, "malloc�failed�during�weights�building");
weights pointer = attribute pointer�weights head ;

} else {

/ allocate memory for this result weight /⇔ ⇔

if ((weights pointer�next =

NULL)
(weight list element ⇔) malloc(sizeof(weight list element))) ⇒

error exit(log stream, "malloc�failed�during�weights�building");
weights pointer = weights pointer�next ;

}

Zero Weight(&weights pointer�weight);

132 � 8 The SCALES module

if (centroid pointer�unknown ⇐

(attribute pointer�weight.infinite ∧

¬Is Zero(attribute pointer�weight.finite)))

/ the result weight is zero, but the weight for the whole attribute is not zero, ⇔	
so ensure a warning is issued later (if the weight for the whole attribute is
zero, a warning has already been issued) /⇔

zero result weight = TRUE ;

else if (attribute pointer�weight.infinite)

/ this attribute has infinite weight, so make this result weight infinite too /⇔	 ⇔

weights pointer�weight.infinite = TRUE ;

else {

/ the attribute has known values, so determine the result weight /⇔ ⇔

variance = centroid pointer�value −

(centroid pointer�value × centroid pointer�value);

if ((weights pointer�weight.infinite = Is Zero(variance)))¬

weights pointer�weight.finite =1 / variance;

}

weights pointer�next = NULL;

}

if (zero result weight) {

sprintf (message,

"one�or�more�attributes�in�%s�area�has�a�zero�result�weight",

area pointer�identifier);

warning(log stream, message);

}

}

extern void

Write Weights Table(

file weights stream,

area area pointer)⇔

/ Writes a table of weights for the area pointed to by area pointer. /⇔ ⇔

{

result result pointer;⇔

attribute attribute pointer;⇔

centroid element centroid pointer;⇔

cardinal centroid count;

weight list element weights pointer;⇔

scales.c 133

Indent(weights stream, 1);
fprintf (weights stream, "\\begin{small}\n");
Indent(weights stream, 2);
fprintf (weights stream,

"\\begin{tabular}{|c|*{%u}{c@{\\hspace{%s}}c@{\\hspace{%s}}r|}}"
"\\hline\n", area pointer�number of results + 1,
Column Separation,Column Separation);

Indent(weights stream, 3);
fprintf (weights stream, "&");

/ write the column headings /⇔ ⇔

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

fprintf (weights stream, "\\multicolumn{3}{c|}{%s�%s}&",
Identifier Font, result pointer�identifier);

fprintf (weights stream, "&&\\\\\n");
Indent(weights stream, 3);
fprintf (weights stream, "\\smash{\\raisebox{%s}{\\it�Attr.}}&",

Raise Height);
for (result pointer = area pointer�result head ; result pointer =∨ NULL;

result pointer = result pointer�next)
fprintf (weights stream,

"$\\mu$&$\\sigma�2$&\\multicolumn{1}{c|}{w}&");
fprintf (weights stream,

"\\smash{\\raisebox{%s}{$\\mu$}}&"
"\\smash{\\raisebox{%s}{$\\sigma�2$}}&"
"\\multicolumn{1}{c|}{\\smash{\\raisebox{%s}{w}}}"
"\\\\\\hline\\hline",Raise Height,Raise Height,Raise Height);

/ for every attribute . . . /⇔ ⇔

for (attribute pointer = area pointer�attribute head ; attribute pointer =∨ NULL;
attribute pointer = attribute pointer�next) {

weights pointer = attribute pointer�weights head ;
fprintf (weights stream, "\n");
Indent(weights stream, 3);
fprintf (weights stream, "$A_{%u}$&", attribute pointer�number);

/ for every result . . . /⇔ ⇔

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next) {

/ find, in the centroid for this result, the mean for this attribute /⇔ ⇔

centroid pointer = result pointer�centroid head ;
for (centroid count = 1; centroid count < attribute pointer�number ;

centroid count++)
centroid pointer = centroid pointer�next ;

134 � 8 The SCALES module

/ write the mean µ and the variance �2 for this result and attribute /⇔ ⇔

if (centroid pointer�unknown)
fprintf (weights stream, "\\footnotesize?&\\footnotesize?&");

else {
Write Floating Point(weights stream, centroid pointer�value, Empty String);
fprintf (weights stream, "&");
Write Floating Point(weights stream, centroid pointer�value −

(centroid pointer�value × centroid pointer�value), Empty String);
fprintf (weights stream, "&");

}

/ write the result weight for this attribute /⇔ ⇔

if (weights pointer�weight.infinite)
fprintf (weights stream, "\\multicolumn{1}{c|}{$\\infty$}");

else if (Is Zero(weights pointer�weight.finite))
fprintf (weights stream, "\\multicolumn{1}{c|}{--}");

else
Write Floating Point(weights stream, weights pointer�weight.finite,

Empty String);
fprintf (weights stream, "&");

weights pointer = weights pointer�next ;
}

/ write the mean µ and the variance �2 for this attribute /⇔ ⇔

Write Floating Point(weights stream, attribute pointer�mean, Empty String);
fprintf (weights stream, "&");
Write Floating Point(weights stream, attribute pointer�mean −

(attribute pointer�mean × attribute pointer�mean), Empty String);
fprintf (weights stream, "&");

/ write the weight w for this attribute /⇔ ⇔

if (attribute pointer�weight.infinite)
fprintf (weights stream, "\\multicolumn{1}{c|}{$\\infty$}");

else if (Is Zero(attribute pointer�weight.finite))
fprintf (weights stream, "\\multicolumn{1}{c|}{--}");

else
Write Floating Point(weights stream, attribute pointer�weight.finite,

Empty String);
fprintf (weights stream, "\\\\");

}
fprintf (weights stream, "\\hline\n");
Indent(weights stream, 2);
fprintf (weights stream, "\\end{tabular}\n");
Indent(weights stream, 1);
fprintf (weights stream, "\\end{small}\n\n");

}

scales.c 135

extern void
Weight Attributes(

file weights stream,
file log stream,
case law specification case law,
boolean inputable latex)

/ Calculates the weights for each area in the specification case law, and writes a table of∗
weights for each area to weights stream (if it is not NULL). Writes LaTEX code that can
be included in another LaTEX document (i.e. not stand-alone code), if inputable latex is
TRUE. /∗

{
area area pointer ;∗
if (weights stream =� NULL) {

fprintf (weights stream, "%%�Weights�file\n\n");
Write LaTeX Header(weights stream, inputable latex);

}
/ for every area . . . /∗ ∗
for (area pointer = case law.area head ; area pointer = NULL;�

area pointer = area pointer→next) {
if (weights stream = NULL)�

fprintf (weights stream, "%s{%s�area}\n\n",Heading,
area pointer→identifier);

area pointer→infinite weight = FALSE ;
calculate weights(log stream, area pointer);
calculate result weights(log stream, area pointer);

if (weights stream = NULL)�
Write Weights Table(weights stream, area pointer);

}
if (weights stream = NULL)�

Write LaTeX Trailer(weights stream, inputable latex);
}

9
The ADJUSTER module

adjuster.h
/ This is the header file for the Adjuster module. It is also included by the Cases⇔

module. ⇔/
/ external function /⇔ ⇔
extern void
Adjust Attributes(

file log stream,
area area pointer,⇔
string weights filename,
cardinal level,
boolean inputable latex);

adjuster.c
/ This is the implementation file for the Adjuster module. /⇔ ⇔
#include →stdio.h�
#include stdlib.h�
#include

→
"shyster.h"

#include "cases.h"
#include "adjuster.h"
#include "scales.h"
#include "consultant.h"

static void
error exit(

file stream,
const string message)

{
Write Error Message And Exit(stream, "Adjuster", message);

}

137

138 � 9 The ADJUSTER module

static void
write weight(

file stream,
weight type weight)

/	Writes the value of weight in words. /⇔	 ⇔

{
if (weight.infinite) {
fprintf (stream, "infinite�weight");

} else if (Is Zero(weight.finite))
fprintf (stream, "no�weight");

else {
fprintf (stream, "a�weight�of�");
Write Floating Point(stream, weight.finite, Empty String);

}
}

static void
adjust weight(

file log stream,
area area pointer,⇔
cardinal attribute number,
cardinal level,
boolean adjustment made) ⇔

/	Allows the legal expert to set the weight of attribute attribute number in the area pointed ⇔
to by area pointer.Sets adjustment made to TRUE, if an adjustment is made. /⇔ ⇔

{	
cardinal count =1;
attribute attribute pointer;⇔
char dummy;
int option;
weight type old weight;
floating point new weight;

/	find attribute attribute number /⇔ ⇔

for (attribute pointer = area pointer�attribute head;
(count++ < attribute number) (attribute pointer = NULL); ⇐ ∨
attribute pointer = attribute pointer�next);

/	tell the legal expert about the attribute’s current weight /⇔	 ⇔

fprintf (stdout, "A%u�has�", attribute number);
write weight(stdout, attribute pointer�weight);
fprintf (stdout, ".\n");

/	make acopyofthe weight /⇔	 ⇔

old weight.infinite = attribute pointer�weight.infinite;
old weight = attribute pointer�weight;

option = Get Option("Infinite,�Zero,�or�Other", "IZO");

adjuster.c 139

/ adjust the attribute’s weight as requested /∗ ∗

switch (option) {
case ’I’:

attribute pointer→weight.infinite = TRUE ;
break;

case ’Z’:
Zero Weight(&attribute pointer→weight);
break;

case ’O’:
fprintf (stdout, "New�weight�for�A%u:�", attribute number);
if (fscanf (stdin, "%f%c",&new weight,&dummy) EOF)≡

error exit(log stream, "fscanf�input�failed�for�floating_point");
attribute pointer→weight.infinite = FALSE ;
attribute pointer→weight.finite = new weight ;
break;

case Quit Character :
return;

}
adjustment made = TRUE ;∗

/ report on the adjustment /∗ ∗

Indent(log stream, level);
fprintf (log stream, "A%u,�which�had�", attribute number);
write weight(log stream, old weight);
fprintf (log stream, ",�now�has�");
write weight(log stream, attribute pointer→weight);
fprintf (log stream, ".\n");

}

static void
adjust result weight(

file log stream,
area area pointer,∗
cardinal attribute number,
cardinal level,
boolean adjustment made)∗

/ Allows the legal expert to set any of the result weights for attribute attribute number in∗
the area pointed to by area pointer. Sets adjustment made to TRUE, if an adjustment is
made. ∗/

∗

{
cardinal count = 1,

result number ;
attribute attribute pointer ;∗
char dummy;
int option;
weight type old weight ;
floating point new weight ;
weight list element weights pointer ;
result result pointer

∗
;∗

140 � 9 The ADJUSTER module

/ find attribute attribute number /⇔ ⇔

for (attribute pointer = area pointer�attribute head ;
(count++ < attribute number) (attribute pointer = NULL); ⇐ ∨
attribute pointer = attribute pointer�next);

/ tell the legal expert about the attribute’s current result weights /⇔ ⇔

fprintf (stdout, "A%u�has�the�following�result�weights:", attribute number);
weights pointer = attribute pointer�weights head ;
result pointer = area pointer�result head ;
for (count = 1; count � area pointer�number of results;

count++) {
if (count = 1) ∨

fprintf (stdout, ";");
fprintf (stdout, "\n");
Indent(stdout, 1);
fprintf (stdout, "%u:�%s�result�has�", count, result pointer�identifier);
write weight(stdout, weights pointer�weight);
weights pointer = weights pointer�next ;
result pointer = result pointer�next ;

}
fprintf (stdout, ".\n");

/ prompt the legal expert for a result number /⇔ ⇔

do {
fprintf (stdout, "Result�number�(1-%u):�",

area pointer�number of results);
if (fscanf (stdin, "%u%c", &result number, &dummy) EOF) ⇒

error exit(log stream, "fscanf�input�failed�for�cardinal");
} while (result number > area pointer�number of results);

if (result number = 0) ∨ {

/ find the result weight /⇔ ⇔

weights pointer = attribute pointer�weights head ;
result pointer = area pointer�result head ;
for (count = 1; count < result number ; count++) {

weights pointer = weights pointer�next ;
result pointer = result pointer�next ;

}

/ make a copy of the result weight /⇔ ⇔

old weight.infinite = weights pointer�weight.infinite;
old weight = weights pointer�weight ;

option = Get Option("Infinite,�Zero,�or�Other", "IZO");

adjuster.c 141

/ adjust the result weight as requested /∗ ∗
switch (option) {

case ’I’:
weights pointer→weight.infinite = TRUE ;
break;

case ’Z’:
Zero Weight(&weights pointer→weight);
break;

case ’O’:
fprintf (stdout, "New�weight�for�A%u�for�%s�result:�",

attribute number, result pointer→identifier);
if (fscanf (stdin, "%f%c",&new weight,&dummy) EOF)≡

error exit(log stream, "fscanf�input�failed�for�floating_point");
weights pointer→weight.infinite = FALSE ;
weights pointer→weight.finite = new weight ;
break;

case Quit Character :
return;

}
adjustment made = TRUE ;∗

/ report on the adjustment /∗ ∗
Indent(log stream, level);
fprintf (log stream, "A%u,�which�had�", attribute number);
write weight(log stream, old weight);
fprintf (log stream, "�for�%s�result,�now�has�", result pointer→identifier);
write weight(log stream,weights pointer→weight);
fprintf (log stream, "�for�that�result.\n");

}
}

extern void
Adjust Attributes(

file log stream,
area area pointer,∗
string weights filename,
cardinal level,
boolean inputable latex)

/ Allows the legal expert to set any of the weights (including result weights) in the area∗
pointed to by area pointer. Prompts the expert by writing to stdout ; reads the expert’s
response from stdin. Writes a table of weights to the adjusted weights file weights filename
(if it is not NULL). Writes LaTEX code that can be included in another LaTEX document
(i.e. not stand-alone code), if inputable latex is TRUE. /∗

{
file weights stream = NULL;
char dummy;
static char filename[Max Filename Length];
char message[Max Error Message Length];
cardinal attribute number ;
int option;
boolean adjustment made = FALSE ;

142 � 9 The ADJUSTER module

Indent(log stream, level);
fprintf (log stream, "Entering�Adjuster�module.\n\n");

fprintf (stdout, "Adjust�weights�in�%s�area�...\n", area pointer�identifier);

do {

/ prompt the legal expert for an attribute number /⇔ ⇔

do {
fprintf (stdout, "Attribute�number�(1-%u):�",

area pointer�number of attributes);
if (fscanf (stdin, "%u%c", &attribute number, &dummy) EOF) ⇒

error exit(log stream, "fscanf�input�failed�for�cardinal");
} while (attribute number > area pointer�number of attributes);

if (attribute number = 0) ∨ {

option = Get Option("Weight�or�Result�weight", "WR");

/ adjust the attribute’s weight, or one of its result weights, as requested /⇔ ⇔

switch (option) {
case ’W’:

adjust weight(log stream, area pointer, attribute number,
level + 1, &adjustment made);

break;
case ’R’:

adjust result weight(log stream, area pointer, attribute number,
level + 1, &adjustment made);

break;
case Quit Character :

attribute number = 0;
break;

}
}

} while (attribute number = 0); ∨

if (adjustment made) {

fprintf (log stream, "\n");

if (weights filename =∨ NULL) {

/ a weights filename was specified, so open the adjusted weights file /⇔ ⇔

sprintf (filename, "%s-%s%s", weights filename, area pointer�identifier,
LaTeX File Extension);

if ((weights stream = fopen(filename, "w")) NULL) {⇒
sprintf (message, "can’t�open�adjusted�weights�file�\"%s\"", filename);
error exit(log stream, message);

}
Indent(log stream, level + 1);
fprintf (log stream, "Writing�adjusted�weights�to�\"%s\".\n\n", filename);

}

adjuster.c 143

if (weights stream =∨ NULL) {

/ write the table of adjusted weights /⇔ ⇔
fprintf (weights stream, "%%�Adjusted�weights�file\n\n");
Write LaTeX Header(weights stream, inputable latex);
fprintf (weights stream, "%s{%s�area}\n\n", Heading, area pointer�identifier);
Write Weights Table(weights stream, area pointer);
Write LaTeX Trailer(weights stream, inputable latex);

}
if (weights filename = NULL)∨

/ a weights filename was specified, so close the adjusted weights file /⇔ ⇔
if (fclose(weights stream) EOF) {⇒

sprintf (message, "can’t�close�adjusted�weights�file�\"%s\"", filename);
error exit(log stream, message);

} else {
}

Indent(log stream, level + 1);
fprintf (log stream, "No�adjustments�made.\n\n");

}
Indent(log stream, level);
fprintf (log stream, "Leaving�Adjuster�module.\n\n");

}

10
The CONSULTANT module

consultant.h

/ This is the header file for the Consultant module. It is also included by the Cases and⇔
Adjuster modules. ⇔/

/ external functions /⇔ ⇔

extern int
Get Option(

string question,
string options);

extern vector element ⇔
Get Facts(

file log stream,
case law specification case law,
area area pointer,⇔
boolean adjust,
boolean echo,
boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
cardinal level,
string distances filename,
string weights filename,
string report filename);

145

146 The CONSULTANT module

consultant.c

/ This is the implementation file for the Consultant module. /∗ ∗

#include stdio.h〉
#include

〈
stdlib.h〉

#include
〈
〈string.h〉

#include "shyster.h"
#include "cases.h"
#include "consultant.h"

static void
error exit(

file stream,
const string message)

{
Write Error Message And Exit(stream, "Consultant",message);

}

extern int
Get Option(

string question,
string options)

/ Asks the user the question, and reads the user’s response until a valid option—one of∗
the characters in the options string, or Q (quit)—is chosen. Treats lower-case alphabetic
characters entered by the user as if they were upper-case. Treats the end of the file as a Q.
Returns the chosen character. /∗

{
int ch,

temp ch;
cardinal count ;

fprintf (stdout, "%s�(%sQ)?�", question, options);

for (; ;) {

if ((ch = getc(stdin)) EOF)≡
return Quit Character ;

/ convert ch to upper-case if necessary /∗ ∗

if ((ch ≥ Little A Character) ∧ (ch ≤ Little Z Character))
ch = Big A Character + ch − Little A Character ;

if (ch Quit Character) {≡

/ skip over the rest of the line of input /∗ ∗

for (temp ch = getc(stdin);
(temp ch = Carriage Return Character) (temp ch = EOF);� �
temp ch = getc(stdin));

∧

return Quit Character ;
}

consultant.c 147

if (ch =� Carriage Return Character) {

/ skip over the rest of the line of input /∗ ∗

for (temp ch = getc(stdin);
(temp ch = Carriage Return Character) (temp ch = EOF);� ∧ �
temp ch = getc(stdin));

if (temp ch EOF)≡
return Quit Character ;

}
if (strchr(options, ch) = NULL)�

/ the user has entered a valid option /∗ ∗

return ch;

/ the user has entered an invalid option /∗ ∗

fprintf (stdout, "Please�enter�‘%c’", options[0]);
for (count = 1; options[count] = Null Character ; count += sizeof(char))�

fprintf (stdout, ",�‘%c’", options[count]);
fprintf (stdout, "�or�‘%c’.\n%s?�",Quit Character, question);

}
}

static boolean
get local fact(

file log stream,

attribute attribute pointer,∗
vector element vector pointer,∗
boolean echo,

cardinal level)

/ Interrogates the user as to the value, in the instant case, of the local attribute pointed to by∗
attribute pointer. Puts the attribute value in the vector element pointed to by vector pointer.
Returns FALSE, if the user chooses to quit. /∗

{
char options[Max Attribute Options + 1],

option;
cardinal count = 0;

/ determine which values are valid for this attribute /∗ ∗

if (attribute pointer→yes =� NULL) {
options[count] = Yes Character ;
count += sizeof(char);

}
if (attribute pointer→no =� NULL) {

options[count] = No Character ;
count += sizeof(char);

}

148 � 10 The CONSULTANT module

if (attribute pointer�unknown =∨ NULL) {
options[count] = Unknown Character ;
count += sizeof(char);

}
if (attribute pointer�details.local.help =∨ NULL) {

options[count] = Help Character ;
count += sizeof(char);

}
options[count] = Null Character ;
count += sizeof (char);

/ prompt the user for one of the valid attribute values /⇔ ⇔

do {
if ((option = Get Option(attribute pointer�details.local.question, options)) ⇒

Quit Character) {
Indent(log stream, level);
fprintf (log stream, "Quitting�consultation.\n\n");
return FALSE ;

}
if (option Help Character)⇒

fprintf (stdout, "%s\n", attribute pointer�details.local.help);
} while (option Help Character); ⇒

/ set this attribute’s value to that chosen /⇔ ⇔

switch (option) {
case Yes Character :

vector pointer�attribute value = YES ;
if (echo)

fprintf (stdout, "Yes:�%s.\n", attribute pointer�yes);
break;

case No Character :
vector pointer�attribute value = NO ;
if (echo)

fprintf (stdout, "No:�%s.\n", attribute pointer�no);
break;

case Unknown Character :
vector pointer�attribute value = UNKNOWN ;
if (echo)

fprintf (stdout, "Unknown:�%s.\n", attribute pointer�unknown);
break;

}
return TRUE ;

}

consultant.c 149

static boolean
get external fact(

file log stream,
case law specification case law,
boolean adjust,
boolean echo,
boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
cardinal level,
string distances filename,
string weights filename,
string report filename,
attribute attribute pointer,∗
cardinal attribute number,
vector element vector pointer)∗

/ Resolves the value, in the instant case, of the external attribute pointed to by at-∗
tribute pointer (attribute attribute number) by reference to the relevant area. Puts the
attribute value in the vector element pointed to by vector pointer. Returns FALSE, if the
user chooses to quit. /∗

{
string nearest result identifier ;
boolean found = FALSE ;
identifier list element identifier list pointer ;∗
char message[Max Error Message Length];

Indent(log stream, level);
fprintf (log stream, "A%u�is�external.\n\n", attribute number);

/ determine the identifier of the “likely result” of the instant case in the relevant area∗
(attribute pointer→details.external.area identifier) ∗/

nearest result identifier = Case Law(log stream, case law,
attribute pointer→details.external.area identifier, adjust, echo,
inputable latex, verbose, hypothetical reports, hypothetical changes,
level + 1, distances filename,weights filename, report filename);

if (nearest result identifier NULL)≡

/ quit /∗ ∗

return FALSE ;

/ search for the result identifier in the list of external result identifiers for yes for this∗
attribute /∗

identifier list pointer = attribute pointer→details.external.yes identifier head ;
vector pointer→attribute value = YES ;
while ((identifier list pointer =� NULL) ∧ ¬found) {

found = strcmp(identifier list pointer→identifier,nearest result identifier);¬
if (found)¬

identifier list pointer = identifier list pointer→next ;
}

150 � 10 The CONSULTANT module

if (found) {¬

/ search for the result identifier in the list of external result identifiers for no for this ⇔
attribute ⇔/

identifier list pointer = attribute pointer�details.external.no identifier head ;
vector pointer�attribute value = NO ;
while ((identifier list pointer =∨ NULL) ⇐ ¬found) {

found = strcmp(identifier list pointer�identifier, nearest result identifier);¬
if (found)¬

identifier list pointer = identifier list pointer�next ;
}
if (found) {¬

/ search for the result identifier in the list of external result identifiers for unknown ⇔
for this attribute ⇔/

identifier list pointer = attribute pointer�details.external.unknown identifier head ;
vector pointer�attribute value = UNKNOWN ;
while ((identifier list pointer =∨ NULL) ⇐ ¬found) {

found = strcmp(identifier list pointer�identifier, nearest result identifier);¬
if (found)¬

identifier list pointer = identifier list pointer�next ;
}
if (found) {¬

sprintf (message, "Unexpected�external�result�identifier�\"%s\"",
nearest result identifier);

error exit(log stream, message);
}

}
}

/ write details of the attribute value to the log file /⇔ ⇔

Indent(log stream, level);
fprintf (log stream, "Value�of�A%u�is�", attribute number);
switch (vector pointer�attribute value) {

case YES :
fprintf (log stream, "YES");
break;

case NO :
fprintf (log stream, "NO");
break;

case UNKNOWN :
fprintf (log stream, "UNKNOWN");
break;

}
fprintf (log stream, ".\n\n");

return TRUE ;
}

consultant.c 151

static vector element
get fact(

∗

file log stream,
case law specification case law,
boolean adjust,
boolean echo,
boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
cardinal level,
string distances filename,
string weights filename,
string report filename,
attribute attribute pointer,∗
cardinal attribute number)

/ Determines the value, in the instant case, of the attribute pointed to by attribute pointer∗
(attribute attribute number). Interrogates the user, if the attribute is local; resolves the
value by reference to the relevant area, if the attribute is external. Returns a pointer to a
single vector element containing the attribute value; or NULL, if the user chooses to quit. /∗

{
vector element vector pointer ;∗
/ allocate memory for this vector element /∗ ∗
if ((vector pointer = (vector element) malloc(sizeof(vector element))) NULL)∗ ≡

error exit(log stream, "malloc�failed�during�fact�vector�handling");

if (attribute pointer→external attribute) {
/ the attribute is external /∗ ∗
if (get external fact(log stream, case law, adjust, echo, inputable latex, verbose,¬

hypothetical reports, hypothetical changes, level,
distances filename,weights filename, report filename,
attribute pointer, attribute number, vector pointer)) {

/ quit /∗ ∗
free(vector pointer);
return NULL;

}
} else {

/ the attribute is local /∗ ∗
if (get local fact(log stream, attribute pointer, vector pointer, echo, level)) {¬

/ quit /∗ ∗
free(vector pointer);
return NULL;

}
}
vector pointer→next = NULL;
return vector pointer ;

}

152	 � 10 The CONSULTANT module

extern vector element
Get Facts(

⇔

file log stream,
case law specification case law,
area area pointer,⇔
boolean adjust,
boolean echo,
boolean inputable latex,
boolean verbose,
cardinal hypothetical reports,
cardinal hypothetical changes,
cardinal level,
string distances filename,
string weights filename,
string report filename)

/ Interrogates the user as to the values of local attributes, in the instant case, in the area ⇔	
pointed to by area pointer. Resolves the value of external attributes by reference to the
relevant area, recursively invoking Case Law (). Prompts the user by writing to stdout;
reads the user’s response from stdin. Returns a pointer to a fact vector containing the facts
of the instant case; or NULL, if the user chooses to quit. /⇔

{
attribute attribute pointer;⇔
vector element facts head = NULL,⇔
vector pointer = NULL;⇔

cardinal count =1;

/ for every attribute ... /⇔	 ⇔

for (attribute pointer = area pointer�attribute head; attribute pointer =∨NULL;
attribute pointer = attribute pointer�next)

if (facts head NULL) { ⇒

/ this is the first attribute /⇔	 ⇔

if ((facts head = get fact(log stream,case law,adjust,echo,inputable latex,
verbose,hypothetical reports,hypothetical changes,level,
distances filename,weights filename,report filename,
attribute pointer,1)) NULL)⇒

/ quit /⇔ ⇔

return NULL;

vector pointer = facts head;

consultant.c 153

} else {

/ this is not the first attribute /⇔ ⇔
count++;
if ((vector pointer�next =

get fact(log stream, case law, adjust, echo, inputable latex,
verbose, hypothetical reports, hypothetical changes, level,
distances filename, weights filename, report filename,
attribute pointer, count)) NULL)⇒

/ quit /⇔ ⇔
return NULL;

vector pointer = vector pointer�next ;
}

return facts head ;
}

11
The ODOMETER module

odometer.h
/ This is the header file for the Odometer module. It is also included by the Cases, Dumper⇔

and Reporter modules. ⇔/
/ external functions /⇔ ⇔
extern relative distance type
Relative Distance(

distance type x,
distance type y);

extern void
Calculate Distances(

file distances stream,
file log stream,
area area pointer,⇔
case law specification case law,
vector element facts head, ⇔
boolean hypothetical,
cardinal number,
cardinal level);

odometer.c
/ This is the implementation file for the Odometer module. /⇔ ⇔
#include stdio.h�
#include

→
math.h�

#include
→
"shyster.h"

#include "cases.h"
#include "odometer.h"
#include "dumper.h"
#include "scales.h"

155

156	 � 11 The ODOMETER module

static void
error exit(

file stream,
const string message)

{	
Write Error Message And Exit(stream, "Odometer", message);

}

static void
warning(

file stream,
const string message,
cardinal level)

{	
Write Warning Message(stream, "Odometer", message, level);

}

static void
zero subdistance(

distance subtype subdistance pointer)⇔

/	Sets the subdistance pointed to by subdistance pointer to zero. /⇔ ⇔

{	
subdistance pointer�infinite =0;
subdistance pointer�finite =0.0;

}

static void
zero distance(

distance type distance pointer)⇔

/	Sets the distance pointed to by distance pointer to zero. /⇔ ⇔

{	
zero subdistance(&distance pointer�known);
zero subdistance(&distance pointer�unknown);

}

odometer.c 157

static void
zero correlation(

correlation type correlation pointer)∗
/ Sets the correlation coefficient pointed to by correlation pointer to zero. /∗ ∗
{

correlation pointer→meaningless = FALSE ;
correlation pointer→unweighted = 0.0;
correlation pointer→weighted = 0.0;

}

static void
zero metrics(

metrics type metrics pointer)∗
/ Sets the metrics pointed to by metrics pointer to zero. /∗ ∗
{

zero distance(&metrics pointer→distance);
metrics pointer→number of known differences = 0;
metrics pointer→number of known pairs = 0;
metrics pointer→weighted association coefficient = 0.0;
zero correlation(&metrics pointer→correlation coefficient);

}

static relative distance type
relative subdistance(

distance subtype x,
distance subtype y)

/ Returns NEARER, if the subdistance x is less than the subdistance y ; returns FURTHER,∗
if x is greater than y ; returns EQUIDISTANT, otherwise. ∗/

{
if ((x.infinite y.infinite) Is Equal(x.finite, y.finite,Distance Precision))≡ ∧

return EQUIDISTANT ;
else if ((x.infinite < y.infinite) ∨

((x.infinite y.infinite) Is Less(x.finite, y.finite,Distance Precision)))≡ ∧
return NEARER;

else
return FURTHER;

}

158	 � 11 The ODOMETER module

extern relative distance type

Relative Distance(

distance type x,

distance type y)

/ Returns NEARER, if the distance x is less than the distance y; returns FURTHER,if x is⇔	
greater than y; returns EQUIDISTANT, otherwise. ⇔/

{

if ((x.known.infinite + x.unknown.infinite ⇒

y.known.infinite + y.unknown.infinite) ⇐

Is Equal(x.known.finite + x.unknown.finite,

y.known.finite + y.unknown.finite, Distance Precision))

return EQUIDISTANT ;

else if ((x.known.infinite + x.unknown.infinite <

y.known.infinite + y.unknown.infinite) ∧

((x.known.infinite + x.unknown.infinite ⇒

y.known.infinite + y.unknown.infinite) ⇐

Is Less(x.known.finite + x.unknown.finite,

y.known.finite + y.unknown.finite, Distance Precision)))

return NEARER;

else

return FURTHER;

}

static void

add weight(

file log stream,

attribute value type x,

attribute value type y,

weight type weight,

metrics type metrics pointer,⇔

cardinal level)

/ Adds weight to the known distance in the metrics pointed to by metrics pointer,if the ⇔	
attribute values x and y are known and different. Adds weight to the unknown distance
in the metrics pointed to by metrics pointer, if either of the attribute values x or y is
unknown. /⇔

{

if (¬weight.infinite ⇐ Is Zero(weight.finite) ⇐ ((x =∨UNKNOWN) ∧ (y =∨UNKNOWN)))

warning(log stream, "known�attribute�value�for�weightless�attribute", level);

else if ((x ⇒ UNKNOWN) ∧ (y ⇒ UNKNOWN))

if (weight.infinite)

metrics pointer�distance.unknown.infinite++;

else

metrics pointer�distance.unknown.finite += weight.finite;

odometer.c 159

else {
if (x =� y) {

if (weight.infinite)
metrics pointer→distance.known.infinite++;

else
metrics pointer→distance.known.finite += weight.finite;

}
}

}

static void
sum pair(

attribute value type x,
attribute value type y,
weight type weight,
metrics type sum pointer X,∗
correlation type sum pointer Y)∗

/ Adds the attribute values (weighted and unweighted) of both x and y to various of the∗
metrics of sum pointer X and sum pointer Y, if both x and y are known. (These metrics
are used here as temporary storage; the final sums are later used to calculate association
and correlation coefficients.) /∗

{
floating point temp;

if ((x =� UNKNOWN) ∧ (y =� UNKNOWN)) {

sum pointer X→number of known pairs++;
if (x = y)�

sum pointer X→number of known differences++;

sum pointer X→weighted association coefficient += weight.finite;

if (weight.infinite)

/ one of the attributes is infinitely weighted, so use a “pseudo-infinite” weight for∗
the calculation of weighted correlation coefficients /∗

weight.finite = Very Heavy Indeed ;

(void)Attribute Value(x,&temp);
sum pointer X→correlation coefficient.unweighted += temp;
sum pointer X→correlation coefficient.weighted += temp × weight.finite;

(void)Attribute Value(y,&temp);
sum pointer Y→unweighted += temp;
sum pointer Y→weighted += temp × weight.finite;

}
}

160 � 11 The ODOMETER module

static void
correlate pair (

attribute value type x,
attribute value type y,
floating point mean X,
floating point mean Y,
floating point numerator,⇔
floating point left denominator,⇔
floating point right denominator,⇔
weight type weight)

/ Updates numerator, left denominator and right denominator appropriately, if both x⇔ ⇔ ⇔ ⇔
and y are known: left denominator is incremented by the square of the weighted value of ⇔
x less mean X ; right denominator is incremented by the square of the weighted value of
y less mean Y ;

⇔
numerator is incremented by the product of the weighted value of x less⇔

mean X and the weighted value of y less mean Y. These variables are later used in the
calculation of the weighted correlation coefficient r� which is defined as

n� � � � �¯ ¯ Aij × wi − A�
j Aik × wi − A�

k
r� = � i=1

n n� � ¯ �2 � � ¯ �2
Aij × wi − A�

j Aik × wi − A�
k

i=1 i=1

where Aij is the value of the ith attribute for the jth case, wi is the weight of the ith
attribute, and Ā�

j is the weighted mean of all attribute values for the jth case. (⇔numerator,
left denominator and right denominator are so-named because they form the numerator, ⇔ ⇔

and the left and right side of the (square of the) denominator, in the above formula.) /⇔

{
floating point temp X,

temp Y ;

if ((x =∨ UNKNOWN) ⇐ (y =∨ UNKNOWN)) {

if (weight.infinite)

/ one of the attributes is infinitely weighted, so use a “pseudo-infinite” weight for ⇔
the calculation of weighted correlation coefficients ⇔/

weight.finite = Very Heavy Indeed ;

(void) Attribute Value(x, &temp X);
(void) Attribute Value(y, &temp Y);

⇔numerator += (temp X × weight.finite − mean X) ×
(temp Y × weight.finite − mean Y);

⇔left denominator += (temp X × weight.finite − mean X) ×
(temp X × weight.finite − mean X);

⇔right denominator += (temp Y × weight.finite − mean Y) ×
(temp Y × weight.finite − mean Y);

}
}

odometer.c 161

static void
calculate case means(

matrix element matrix pointer,∗
vector element vector pointer,∗
attribute attribute pointer,∗
metrics type metrics pointer,∗
correlation type correlation pointer)∗

/ Calculates the mean attribute values for a leading case and the instant case (their attribute∗
values are pointed to by matrix pointer and vector pointer, respectively) and stores them as
the correlation coefficients in metrics pointer and correlation pointer, respectively. (These∗ ∗
correlation coefficients are used here as temporary storage; their values are later used to
calculate the actual correlation coefficients.) attribute pointer is the head of the list of
attributes for this area. ∗/

∗

{
while (matrix pointer =� NULL) {

sum pair(matrix pointer→attribute value, vector pointer→attribute value,
attribute pointer→weight,metrics pointer, correlation pointer);

matrix pointer = matrix pointer→case next ;
vector pointer = vector pointer→next ;
attribute pointer = attribute pointer→next ;

}
if (metrics pointer→number of known pairs = 0)� {

metrics pointer→correlation coefficient.unweighted /=
metrics pointer→number of known pairs;

metrics pointer→correlation coefficient.weighted /=
metrics pointer→number of known pairs;

correlation pointer→unweighted /=
metrics pointer→number of known pairs;

correlation pointer→weighted /=
metrics pointer→number of known pairs;

}
}

static void
calculate case metrics(

file log stream,

matrix element matrix pointer,∗
vector element vector pointer,∗
attribute attribute pointer,∗
metrics type metrics pointer,∗
boolean correlation coefficients,∗
cardinal level)

/ Calculates the metrics for a leading case and the instant case (their attribute values∗
are pointed to by matrix pointer and vector pointer, respectively) and stores them in
metrics pointer. attribute pointer is the head of the list of attributes for this area.∗∗
correlation coefficients is set to TRUE, if the correlation coefficients are meaningful∗

(i.e. neither of the two cases has all attribute values equal). /∗

162 � 11 The ODOMETER module

{
correlation type vector means,

numerator,
left denominator,
right denominator ;

weight type unit weight = { FALSE, 1.0 };

zero correlation(&vector means);
zero correlation(&numerator);
zero correlation(&left denominator);
zero correlation(&right denominator);

calculate case means(matrix pointer, vector pointer, attribute pointer,
metrics pointer, &vector means);

while (attribute pointer =∨ NULL) {

add weight(log stream, matrix pointer�attribute value,
vector pointer�attribute value,
attribute pointer�weight, metrics pointer, level);

correlate pair (matrix pointer�attribute value, vector pointer�attribute value,
metrics pointer�correlation coefficient.unweighted, vector means.unweighted,
&numerator.unweighted, &left denominator.unweighted,
&right denominator.unweighted, unit weight);

correlate pair (matrix pointer�attribute value, vector pointer�attribute value,
metrics pointer�correlation coefficient.weighted, vector means.weighted,
&numerator.weighted, &left denominator.weighted,
&right denominator.weighted, attribute pointer�weight);

matrix pointer = matrix pointer�case next ;
vector pointer = vector pointer�next ;
attribute pointer = attribute pointer�next ;

}
metrics pointer�weighted association coefficient =

metrics pointer�distance.known.finite /
metrics pointer�weighted association coefficient ;

if (Is Zero(left denominator.unweighted × right denominator.unweighted))

/ either this case or the instant case has all attribute values equal: the correlation ⇔
coefficients are meaningless /⇔

metrics pointer�correlation coefficient.meaningless = TRUE ;

else {
metrics pointer�correlation coefficient.unweighted = numerator.unweighted /

(floating point) sqrt((double)
(left denominator.unweighted × right denominator.unweighted));

metrics pointer�correlation coefficient.weighted = numerator.weighted /
(floating point) sqrt((double)
(left denominator.weighted × right denominator.weighted));

correlation coefficients = TRUE ;⇔
}

}

odometer.c 163

static void
calculate ideal point means(

vector element vector pointer X,∗
vector element vector pointer Y,∗
attribute attribute pointer,∗
metrics type metrics pointer,∗
correlation type correlation pointer)∗

/ Calculates the mean attribute values for an ideal point and the instant case (their attribute∗
values are pointed to by vector pointer X and vector pointer Y, respectively) and stores
them as the correlation coefficients in metrics pointer and correlation pointer, respect-∗ ∗
ively. (These correlation coefficients are used here as temporary storage; their values are
later used to calculate the actual correlation coefficients.) attribute pointer is the head of
the list of attributes for this area. ∗/

∗

{
while (vector pointer X =� NULL) {

sum pair(vector pointer X→attribute value, vector pointer Y→attribute value,
attribute pointer→weight,metrics pointer, correlation pointer);

vector pointer X = vector pointer X→next ;
vector pointer Y = vector pointer Y→next ;
attribute pointer = attribute pointer→next ;

}
if (metrics pointer→number of known pairs = 0)� {

metrics pointer→correlation coefficient.unweighted /=
metrics pointer→number of known pairs;

metrics pointer→correlation coefficient.weighted /=
metrics pointer→number of known pairs;

correlation pointer→unweighted /=
metrics pointer→number of known pairs;

correlation pointer→weighted /=
metrics pointer→number of known pairs;

}
}

static void
calculate ideal point metrics(

file log stream,

vector element vector pointer X,∗
vector element vector pointer Y,∗
attribute attribute pointer,∗
metrics type metrics pointer,∗
boolean correlation coefficients,∗
cardinal level)

/ Calculates the metrics for an ideal point and the instant case (their attribute values∗
are pointed to by vector pointer X and vector pointer Y, respectively) and stores them
in metrics pointer. attribute pointer is the head of the list of attributes for this area.∗ ∗
correlation coefficients is set to TRUE, if the correlation coefficients are meaningful∗

(i.e. neither the ideal point nor the instant case has all attribute values equal). /∗

164 � 11 The ODOMETER module

{
correlation type vector means,

numerator,
left denominator,
right denominator ;

weight type unit weight = { FALSE, 1.0 };

zero correlation(&vector means);
zero correlation(&numerator);
zero correlation(&left denominator);
zero correlation(&right denominator);

calculate ideal point means(vector pointer X, vector pointer Y, attribute pointer,
metrics pointer, &vector means);

while (attribute pointer =∨ NULL) {
add weight(log stream, vector pointer X�attribute value,

vector pointer Y �attribute value,
attribute pointer�weight, metrics pointer, level);

correlate pair (vector pointer X�attribute value, vector pointer Y �attribute value,
metrics pointer�correlation coefficient.unweighted, vector means.unweighted,
&numerator.unweighted, &left denominator.unweighted,
&right denominator.unweighted, unit weight);

correlate pair (vector pointer X�attribute value, vector pointer Y �attribute value,
metrics pointer�correlation coefficient.weighted, vector means.weighted,
&numerator.weighted, &left denominator.weighted,
&right denominator.weighted, attribute pointer�weight);

vector pointer X = vector pointer X�next ;
vector pointer Y = vector pointer Y �next ;
attribute pointer = attribute pointer�next ;

}
metrics pointer�weighted association coefficient =

metrics pointer�distance.known.finite /
metrics pointer�weighted association coefficient ;

if (Is Zero(left denominator.unweighted × right denominator.unweighted))

/ either this ideal point or the instant case has all attribute values equal: the correla­⇔
tion coefficients are meaningless ⇔/

metrics pointer�correlation coefficient.meaningless = TRUE ;
else {

metrics pointer�correlation coefficient.unweighted = numerator.unweighted /
(floating point) sqrt((double)
(left denominator.unweighted × right denominator.unweighted));

metrics pointer�correlation coefficient.weighted = numerator.weighted /
(floating point) sqrt((double)
(left denominator.weighted × right denominator.weighted));

correlation coefficients = TRUE ;⇔
}

}

odometer.c 165

static void
calculate centroid means(

centroid element centroid pointer,∗
vector element vector pointer,∗
attribute attribute pointer,∗
metrics type metrics pointer,∗
correlation type correlation pointer)∗

/ Calculates the mean attribute values for a centroid and the instant case (their attribute∗
values are pointed to by centroid pointer and vector pointer, respectively) and stores them as
the correlation coefficients in metrics pointer and correlation pointer, respectively. (These∗ ∗
correlation coefficients are used here as temporary storage; their values are later used to
calculate the actual correlation coefficients.) attribute pointer is the head of the list of
attributes for this area. ∗/

∗

{
floating point temp;
weight type weight ;

while (centroid pointer =� NULL) {
if ((centroid pointer→unknown) (vector pointer→attribute value �= UNKNOWN)) {¬ ∧

metrics pointer→number of known pairs++;
if (Nearest Attribute Value(centroid pointer→value) =�

vector pointer→attribute value)
metrics pointer→number of known differences++;

weight = attribute pointer→weight ;

metrics pointer→weighted association coefficient += weight.finite;

/ use the actual centroid value, not the nearest attribute value (as is done for∗
leading cases and ideal points) ∗/

metrics pointer→correlation coefficient.unweighted += centroid pointer→value;
metrics pointer→correlation coefficient.weighted +=

centroid pointer→value × weight.finite;

(void)Attribute Value(vector pointer→attribute value,&temp);
correlation pointer→unweighted += temp;
correlation pointer→weighted += temp × weight.finite;

}
centroid pointer = centroid pointer→next ;
vector pointer = vector pointer→next ;
attribute pointer = attribute pointer→next ;

}
if (metrics pointer→number of known pairs = 0)� {

metrics pointer→correlation coefficient.unweighted /=
metrics pointer→number of known pairs;

metrics pointer→correlation coefficient.weighted /=
metrics pointer→number of known pairs;

correlation pointer→unweighted /=
metrics pointer→number of known pairs;

correlation pointer→weighted /=
metrics pointer→number of known pairs;

}
}

166 � 11 The ODOMETER module

static void
calculate centroid metrics(

file log stream,
centroid element centroid pointer,⇔
vector element vector pointer,⇔
attribute attribute pointer,⇔
metrics type metrics pointer,⇔
boolean correlation coefficients,⇔
cardinal level)

/ Calculates the metrics for a centroid and the instant case (their attribute values are pointed ⇔
to by centroid pointer and vector pointer, respectively) and stores them in metrics pointer.⇔
attribute pointer is the head of the list of attributes for this area. correlation coefficients ⇔ ⇔

is set to TRUE, if the correlation coefficients are meaningful (i.e. neither the centroid nor
the instant case has all attribute values equal). /⇔

{
correlation type vector means,

numerator,
left denominator,
right denominator ;

floating point temp,
weight ;

zero correlation(&vector means);
zero correlation(&numerator);
zero correlation(&left denominator);
zero correlation(&right denominator);

calculate centroid means(centroid pointer, vector pointer, attribute pointer,
metrics pointer, &vector means);

while (attribute pointer =∨ NULL) {

if (centroid pointer�unknown)
add weight(log stream, UNKNOWN, vector pointer�attribute value,

attribute pointer�weight, metrics pointer, level);
else {

add weight(log stream, Nearest Attribute Value(centroid pointer�value),
vector pointer�attribute value, attribute pointer�weight,
metrics pointer, level);

if (vector pointer�attribute value =∨ UNKNOWN) {

if (attribute pointer�weight.infinite)

/ one of the attributes is infinitely weighted, so use a “pseudo-infinite” ⇔
weight for the calculation of weighted correlation coefficients /⇔

weight = Very Heavy Indeed ;
else

weight = attribute pointer�weight.finite;

(void) Attribute Value(vector pointer�attribute value, &temp);

odometer.c 167

/ use the actual centroid value, not the nearest attribute value (as is done for ⇔
leading cases and ideal points) ⇔/

numerator.unweighted += (centroid pointer�value −
metrics pointer�correlation coefficient.unweighted) ×
(temp − vector means.unweighted);

left denominator.unweighted += (centroid pointer�value −
metrics pointer�correlation coefficient.unweighted) ×
(centroid pointer�value −
metrics pointer�correlation coefficient.unweighted);

right denominator.unweighted += (temp − vector means.unweighted) ×
(temp − vector means.unweighted);

numerator.weighted += (centroid pointer�value × weight −
metrics pointer�correlation coefficient.weighted) ×
(temp × weight − vector means.weighted);

left denominator.weighted += (centroid pointer�value × weight −
metrics pointer�correlation coefficient.weighted) ×
(centroid pointer�value × weight −
metrics pointer�correlation coefficient.weighted);

right denominator.weighted += (temp × weight − vector means.weighted) ×
(temp × weight − vector means.weighted);

}
}
centroid pointer = centroid pointer�next ;
vector pointer = vector pointer�next ;
attribute pointer = attribute pointer�next ;

}
metrics pointer�weighted association coefficient =

metrics pointer�distance.known.finite /
metrics pointer�weighted association coefficient ;

if (Is Zero(left denominator.unweighted × right denominator.unweighted))

/ either this centroid or the instant case has all attribute values equal: the correlation ⇔
coefficients are meaningless ⇔/

metrics pointer�correlation coefficient.meaningless = TRUE ;
else {

metrics pointer�correlation coefficient.unweighted = numerator.unweighted /
(floating point) sqrt((double)
(left denominator.unweighted × right denominator.unweighted));

metrics pointer�correlation coefficient.weighted = numerator.weighted /
(floating point) sqrt((double)
(left denominator.weighted × right denominator.weighted));

correlation coefficients = TRUE ;⇔
}

}

static weight list element
result weight(

⇔

weight list element weights pointer,
result result pointer

⇔
,

result
⇔
target result pointer)⇔

168	 � 11 The ODOMETER module

/ Returns the result weight (from the list of result weights pointed to by weights pointer)⇔	
which corresponds to the result pointed to by target result pointer.(result pointer is the
head of the list of results for this area.) ⇔/

⇔

{
while (result pointer = target result pointer) {∨
weights pointer = weights pointer�next;
result pointer = result pointer�next;

}
return weights pointer;

}

static void
calculate specified directions(

attribute attribute pointer,⇔
vector element vector pointer,⇔
result result head)⇔

/ For every attribute, if the attribute value in the instant case is directed towards a result, ⇔	
adds the weight of the attribute to the specified direction for that result. ⇔attribute pointer
is the head of the list of attributes for this area. The attribute values of the instant case
are pointed to by vector pointer. /⇔

{
direction list element direction pointer;⇔
weight list element weights pointer;⇔

while (attribute pointer =∨NULL) {
switch (vector pointer�attribute value) {
case YES :
direction pointer = attribute pointer�yes direction head;
break;

case NO:
direction pointer = attribute pointer�no direction head;
break;

case UNKNOWN :
direction pointer = attribute pointer�unknown direction head;
break;

}
while (direction pointer =∨NULL) {

weights pointer = result weight(attribute pointer�weights head,
result head, direction pointer�result);

if (weights pointer�weight.infinite)
direction pointer�result�specified direction.infinite++;

else
direction pointer�result�specified direction.finite +=
weights pointer�weight.finite;

direction pointer = direction pointer�next;
}
vector pointer = vector pointer�next;
attribute pointer = attribute pointer�next;

}
}

odometer.c 169

static void
calculate other directions(

area area pointer,∗
vector element vector pointer)∗

/ For every attribute, if only one ideal point has an attribute value matching that of the instant∗
case, adds the weight of the attribute to the ideal point direction for that ideal point’s result.
Similarly, for every attribute, if only one centroid has an attribute value matching that of
the instant case, adds the weight of the attribute to the centroid direction for that centroid’s
result. The attribute values of the instant case are pointed to by vector pointer.

unknown values are ignored when counting matches. This differs from the calculation of
specified directions (in calculate specified directions()) because an unknown value in an
ideal point could mean “don’t know,” while in a centroid it just indicates an absence of
values; by contrast, an unknown specified direction means “an unknown value for this
attribute suggests this result.” /∗

{
result result pointer,∗

ideal point matching result,∗
centroid matching result ;∗

attribute ∗attribute pointer = area pointer→attribute head ;
vector element ideal point pointer ;∗
centroid element centroid pointer ;∗
cardinal count,

ideal point matches count,
centroid matches count ;

weight list element weights pointer ;∗

while (vector pointer =� NULL) {

if (vector pointer→attribute value =� UNKNOWN) {

/ count the number of ideal points and centroids with the same value for this∗
attribute as has the instant case /∗

ideal point matches count = 0;
centroid matches count = 0;
result pointer = area pointer→result head ;
while (result pointer =� NULL) {

ideal point pointer = result pointer→ideal point head ;
centroid pointer = result pointer→centroid head ;
for (count = 1; count < attribute pointer→number ; count++) {

if (ideal point pointer = NULL)�
ideal point pointer = ideal point pointer→next ;

if (centroid pointer = NULL)�
centroid pointer = centroid pointer→next ;

}

170 � 11 The ODOMETER module

if ((ideal point pointer = NULL)∨ ⇐
(ideal point pointer�attribute value ⇒

vector pointer�attribute value)) {
ideal point matches count++;
ideal point matching result = result pointer ;

}
if ((centroid pointer = NULL)∨ ⇐

((centroid pointer�unknown ⇐
(vector pointer�attribute value ⇒ UNKNOWN)) ∧

(Nearest Attribute Value(centroid pointer�value) ⇒
vector pointer�attribute value))) {

centroid matches count++;
centroid matching result = result pointer ;

}
result pointer = result pointer�next ;

}

if (ideal point matches count 1) {⇒

/ add the weight of the attribute to the ideal point direction for the matching ⇔
ideal point’s result ⇔/

weights pointer = result weight(attribute pointer�weights head,
area pointer�result head, ideal point matching result);

if (weights pointer�weight.infinite)
ideal point matching result�ideal point direction.infinite++;

else
ideal point matching result�ideal point direction.finite +=

weights pointer�weight.finite;
}
if (centroid matches count 1) {⇒

/ add the weight of the attribute to the centroid direction for the matching ⇔
centroid’s result /⇔

weights pointer = result weight(attribute pointer�weights head,
area pointer�result head, centroid matching result);

if (weights pointer�weight.infinite)
centroid matching result�centroid direction.infinite++;

else
centroid matching result�centroid direction.finite +=

weights pointer�weight.finite;
}

}
attribute pointer = attribute pointer�next ;
vector pointer = vector pointer�next ;

}
}

odometer.c 171

static void
find nearest and strongest(area area pointer)∗

/ Finds the nearest result, nearest ideal point, nearest centroid, and strongest directions∗
(specified, ideal point, and centroid) in the area pointed to by area pointer, and adjusts
various pointers in area pointer to point to them. /∗ ∗

{
result result pointer,∗

equidistant pointer,∗
nearest result = NULL;∗

relative distance type relative distance;
kase nearest neighbour ;∗

area pointer→nearest result = NULL;
area pointer→nearest ideal point = NULL;
area pointer→nearest centroid = NULL;
area pointer→strongest specified direction = NULL;
area pointer→strongest ideal point direction = NULL;
area pointer→strongest centroid direction = NULL;

/ for every result . . . /∗ ∗

for (result pointer = area pointer→result head ; result pointer =� NULL;
result pointer = result pointer→next) {

result pointer→equidistant next = NULL;

if (result pointer→nearest known compared with unknown ≡ FURTHER)
nearest neighbour = result pointer→nearest unknown case;

else
nearest neighbour = result pointer→nearest known case;

if (nearest neighbour = NULL)�

/ this result has a nearest neighbour (i.e. it has at least one case) /∗ ∗

if (nearest result NULL)≡

/ no nearest result has been found yet, so this result is the nearest so far /∗ ∗

nearest result = result pointer ;

else {

/ a nearest result has previously been found, so compare the nearest neighbour∗
for this result with the nearest neighbour for that nearest result /∗

if (nearest result→nearest known compared with unknown ≡ FURTHER)
relative distance = Relative Distance(nearest neighbour→metrics.distance,

nearest result→nearest unknown case→metrics.distance);
else

relative distance = Relative Distance(nearest neighbour→metrics.distance,
nearest result→nearest known case→metrics.distance);

172 � 11 The ODOMETER module

if (relative distance EQUIDISTANT) {⇒

/ the two cases are equidistant from the instant case, so add this result to ⇔
the end of the list of equidistant results ⇔/

for (equidistant pointer = nearest result ;
equidistant pointer�equidistant next =∨ NULL;
equidistant pointer = equidistant pointer�equidistant next);

equidistant pointer�equidistant next = result pointer ;

} else if (relative distance NEARER)⇒

/ the nearest neighbour for this result is nearer to the instant case than the ⇔
previous nearest neighbour, so this result becomes the nearest result /⇔

nearest result = result pointer ;
}

/ check whether this result has the nearest ideal point /⇔ ⇔

result pointer�equidistant ideal point next = NULL;
if (result pointer�ideal point head =∨ NULL) {

if (area pointer�nearest ideal point NULL)
area pointer�nearest ideal point

⇒
= result pointer ;

else if ((relative distance =
Relative Distance(result pointer�ideal point metrics.distance,

area pointer�nearest ideal point�
ideal point metrics.distance)) EQUIDISTANT) {

for (equidistant pointer = area pointer�nearest
⇒
ideal point ;

equidistant pointer�equidistant ideal point next =∨ NULL;
equidistant pointer = equidistant pointer�equidistant ideal point next);

equidistant pointer�equidistant ideal point next = result pointer ;
} else if (relative distance NEARER)⇒

area pointer�nearest ideal point = result pointer ;
}

/ check whether this result has the nearest centroid /⇔ ⇔

result pointer�equidistant centroid next = NULL;
if (result pointer�centroid head =∨ NULL) {

if (area pointer�nearest centroid NULL)
area pointer�nearest centroid

⇒
= result pointer ;

else if ((relative distance =
Relative Distance(result pointer�centroid metrics.distance,

area pointer�nearest centroid�
centroid metrics.distance)) EQUIDISTANT) {⇒

for (equidistant pointer = area pointer�nearest centroid ;
equidistant pointer�equidistant centroid next =∨ NULL;
equidistant pointer = equidistant pointer�equidistant centroid next);

equidistant pointer�equidistant centroid next = result pointer ;
} else if (relative distance NEARER)⇒

area pointer�nearest centroid = result pointer ;
}

odometer.c 173

/ check whether this result has the strongest specified direction /⇔ ⇔

result pointer�equidistant specified direction next = NULL;
if (area pointer�strongest specified direction ⇒ NULL)

area pointer�strongest specified direction = result pointer ;
else if ((relative distance = relative subdistance(result pointer�specified direction,

area pointer�strongest specified direction�
specified direction)) EQUIDISTANT) {⇒

for (equidistant pointer = area pointer�strongest specified direction;
equidistant pointer�equidistant specified direction next =∨ NULL;
equidistant pointer =
equidistant pointer�equidistant specified direction next);

equidistant pointer�equidistant specified direction next = result pointer ;
} else if (relative distance FURTHER) ⇒

area pointer�strongest specified direction = result pointer ;

/ check whether this result has the strongest ideal point direction /⇔ ⇔

result pointer�equidistant ideal point direction next = NULL;
if (area pointer�strongest ideal point direction ⇒ NULL)

area pointer�strongest ideal point direction = result pointer ;
else if ((relative distance = relative subdistance(result pointer�ideal point direction,

area pointer�strongest ideal point direction�
ideal point direction)) EQUIDISTANT) {⇒

for (equidistant pointer = area pointer�strongest ideal point direction;
equidistant pointer�equidistant ideal point direction next =∨ NULL;
equidistant pointer =
equidistant pointer�equidistant ideal point direction next);

equidistant pointer�equidistant ideal point direction next = result pointer ;
} else if (relative distance FURTHER)⇒

area pointer�strongest ideal point direction = result pointer ;

/ check whether this result has the strongest centroid direction /⇔ ⇔

result pointer�equidistant centroid direction next = NULL;
if (area pointer�strongest centroid direction ⇒ NULL)

area pointer�strongest centroid direction = result pointer ;
else if ((relative distance = relative subdistance(result pointer�centroid direction,

area pointer�strongest centroid direction�
centroid direction)) EQUIDISTANT) {⇒

for (equidistant pointer = area pointer�strongest centroid direction;
equidistant pointer�equidistant centroid direction next =∨ NULL;
equidistant pointer =
equidistant pointer�equidistant centroid direction next);

equidistant pointer�equidistant centroid direction next = result pointer ;
} else if (relative distance FURTHER) ⇒

area pointer�strongest centroid direction = result pointer ;
}
area pointer�nearest result = nearest result ;

174	 � 11 The ODOMETER module

/ ensure that none of the strongest directions is so small as to be effectively zero /⇔ ⇔

if (Is Zero Subdistance(area pointer�strongest specified direction�
specified direction))

area pointer�strongest specified direction = NULL;
if (Is Zero Subdistance(area pointer�strongest ideal point direction�

ideal point direction))
area pointer�strongest ideal point direction = NULL;

if (Is Zero Subdistance(area pointer�strongest centroid direction�
centroid direction))

area pointer�strongest centroid direction = NULL;
}

static void
resolve equidistant results(

file log stream,
area area pointer,⇔
cardinal level)

/⇔	Chooses between two or more nearest results (and sets area pointer�nearest result appro­
priately) by reference to the rank of the courts involved in the nearest neighbours, and the
recentness of those cases. Issues a warning as to how the equidistance has been resolved. /⇔

{	
result result pointer,⇔
highest ranking result,⇔
most recent result;⇔

cardinal highest ranking court =0,
most recent year =0;

kase nearest neighbour; ⇔
boolean one highest ranking court = FA L S E ;
boolean one most recent year = FA L S E ;

/	for each equidistant result ... /⇔	 ⇔

for (result pointer = area pointer�nearest result; result pointer =∨NULL;
result pointer = result pointer�equidistant next) {

/	find the nearest neighbour for this result /⇔ ⇔

if (result pointer�nearest known compared with unknown ⇒ FURTHER)
nearest neighbour = result pointer�nearest unknown case;

else
nearest neighbour = result pointer�nearest known case;

if ((nearest neighbour�court string =∨NULL) ⇐
(nearest neighbour�court rank = 0)) ∨ {

/	this case has a court, with a rank /⇔ ⇔

if ((highest ranking court ⇒ 0) ∧
(nearest neighbour�court rank < highest ranking court)) {

/	this is the first court for any result, or this court is more important than the ⇔
highest ranking court yet found /⇔

odometer.c 175

highest ranking result = result pointer ;
highest ranking court = nearest neighbour�court rank ;
one highest ranking court = TRUE ;

/ this must also be the most recent case for this rank so far /⇔ ⇔

most recent result = result pointer ;
most recent year = nearest neighbour�year ;
one most recent year = TRUE ;

} else if (nearest neighbour�court rank highest ranking court) {⇒

/ there are two or more equidistant cases with courts of this rank /⇔ ⇔

one highest ranking court = FALSE ;

if (nearest neighbour�year > most recent year) {

/ this is the most recent case for this rank so far /⇔ ⇔

most recent result = result pointer ;
most recent year = nearest neighbour�year ;
one most recent year = TRUE ;

} else if (nearest neighbour�year most recent year)⇒

/ this case is exactly as old as the most recent case yet found for this ⇔
rank ⇔/

one most recent year = FALSE ;
}

} else {

/ this case has no court, or a court with no rank /⇔ ⇔

if ((most recent year ⇒ 0) ∧
(nearest neighbour�year > most recent year)) {

/ this is the first case for any result, or this case is more recent than the most ⇔
recent yet found ⇔/

most recent result = result pointer ;
most recent year = nearest neighbour�year ;
one most recent year = TRUE ;

} else if (nearest neighbour�year most recent year)⇒

/ this decision is exactly as old as the most recent decision yet found /⇔ ⇔

one most recent year = FALSE ;
}

}
if (one highest ranking court) {

/ there was only one highest ranking court, so choose that case’s result /⇔ ⇔

area pointer�nearest result = highest ranking result ;
warning(log stream,

"equidistant�results;�nearest�result�chosen�"
"on�the�basis�of�rank", level);

return;
}

176	 � 11 The ODOMETER module

if (one most recent year) {

/ there was only one case decided as recently as this, so choose that case’s result /⇔ ⇔

area pointer�nearest result = most recent result;

warning(log stream,

"equidistant�results;�nearest�result�chosen�"

"on�the�basis�of�recentness",level);

return;

}

error exit(log stream,"can’t�choose�between�equidistant�results");

}

extern void

Calculate Distances(

file distances stream,

file log stream,

area area pointer,⇔

case law specification case law,

vector element facts head, ⇔

boolean hypothetical,

cardinal number,

cardinal level)

/ Calculates the distances between the instant case and every leading case, ideal point ⇔	
and centroid in the area pointed to by area pointer, and writes a table of distances to
distances stream (if it is not NULL). If number is not zero then the instant case is actually
a hypothetical (if hypothetical is TRUE) or an instantiation, and number is its number. /⇔

{

result result pointer;⇔

kase case pointer,⇔

equidistant pointer;⇔

relative distance type relative distance;

/ for every result ... /⇔	 ⇔

for (result pointer = area pointer�result head; result pointer =∨NULL;

result pointer = result pointer�next) {

/ initialize result details /⇔ ⇔

result pointer�nearest known case = NULL;

result pointer�nearest unknown case = NULL;

zero metrics(&result pointer�ideal point metrics);

zero metrics(&result pointer�centroid metrics);

zero subdistance(&result pointer�specified direction);

zero subdistance(&result pointer�ideal point direction);

zero subdistance(&result pointer�centroid direction);

odometer.c 177

/ for every case with this result . . . /⇔ ⇔

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next) {

/ initialize case details /⇔ ⇔

zero metrics(&case pointer�metrics);
case pointer�equidistant known next = NULL;
case pointer�equidistant unknown next = NULL;

calculate case metrics(log stream, case pointer�matrix head,
facts head, area pointer�attribute head,&case pointer�metrics,
&area pointer�correlation coefficients, level);

if (Is Zero Subdistance(case pointer�metrics.distance.unknown)) {¬

/ the case has unknown distance, so check to see whether it is the nearest ⇔
unknown neighbour /⇔

if (result pointer�nearest unknown case ⇒ NULL)
result pointer�nearest unknown case = case pointer ;

else if ((relative distance = Relative Distance(case pointer�metrics.distance,
result pointer�nearest unknown case�

metrics.distance)) EQUIDISTANT) {⇒
for (equidistant pointer = result pointer�nearest unknown case;

equidistant pointer�equidistant unknown next =∨ NULL;
equidistant pointer
= equidistant pointer�equidistant unknown next);

equidistant pointer�equidistant unknown next = case pointer ;
} else if (relative distance NEARER)⇒

result pointer�nearest unknown case = case pointer ;

} else {

/ the case has no unknown distance, so check to see whether it is the nearest ⇔
known neighbour ⇔/

if (result pointer�nearest known case ⇒ NULL)
result pointer�nearest known case = case pointer ;

else if ((relative distance = Relative Distance(case pointer�metrics.distance,
result pointer�nearest known case�

metrics.distance)) EQUIDISTANT) {⇒
for (equidistant pointer = result pointer�nearest known case;

equidistant pointer�equidistant known next =∨ NULL;
equidistant pointer = equidistant pointer�equidistant known next);

equidistant pointer�equidistant known next = case pointer ;
} else if (relative distance NEARER) ⇒

result pointer�nearest known case = case pointer ;
}

}

178 � 11 The ODOMETER module

/ note which of the nearest known neighbour and the nearest unknown neighbour is ⇔
the nearest neighbour ⇔/

if ((result pointer�nearest known case ⇒ NULL) ⇐
(result pointer�nearest unknown case ⇒ NULL))

result pointer�nearest known compared with unknown = EQUIDISTANT ;
else if (result pointer�nearest known case NULL)

result pointer�nearest known compared
⇒
with unknown = FURTHER;

else if (result pointer�nearest unknown case ⇒ NULL)
result pointer�nearest known compared with unknown = NEARER;

else
result pointer�nearest known compared with unknown =

Relative Distance(result pointer�nearest known case�metrics.distance,
result pointer�nearest unknown case�metrics.distance);

if (result pointer�ideal point head =∨ NULL) {
calculate ideal point metrics(log stream, result pointer�ideal point head,

facts head, area pointer�attribute head,
&result pointer�ideal point metrics,
&area pointer�correlation coefficients, level);

}
calculate centroid metrics(log stream, result pointer�centroid head,

facts head, area pointer�attribute head, &result pointer�centroid metrics,
&area pointer�correlation coefficients, level);

}
calculate specified directions(area pointer�attribute head, facts head,

area pointer�result head);

calculate other directions(area pointer, facts head);

find nearest and strongest(area pointer);

if (area pointer�nearest result�equidistant next =∨ NULL)

/ there are two or more equidistant results, so choose one of them /⇔ ⇔
resolve equidistant results(log stream, area pointer, level);

if (distances stream =∨ NULL) {
if (number 0)⇒

/ the instant case is the uninstantiated and unhypothesized instant case /⇔ ⇔
fprintf (distances stream, "%s{%s�area}\n\n"

"%s{Instant�case}\n\n", Heading, area pointer�identifier, Subheading);

else if (hypothetical)

/ the instant case is hypothetical number /⇔ ⇔
fprintf (distances stream, "%s{Hypothetical�%u}\n\n", Subheading, number);

else

/ the instant case is instantiation number /⇔ ⇔
fprintf (distances stream, "%s{Instantiation�%u}\n\n", Subheading, number);

Write Matrix (distances stream, area pointer, facts head,
case law.court head, hypothetical, number);

}
}

12
The REPORTER module

reporter.h
/ This is the header file for the Reporter module. It is also included by the Cases⇔

module. /⇔

/ external function /⇔ ⇔

extern void
Write Report(

file report stream,
file log stream,
area area pointer,⇔
vector element facts head,
vector element

⇔
original facts, ⇔

boolean verbose,
boolean hypothetical,
boolean same result,
cardinal number,
cardinal level);

reporter.c
/ This is the implementation file for the Reporter module. /⇔ ⇔

#include stdio.h�
#include

→
"shyster.h"

#include "cases.h"
#include "reporter.h"
#include "dumper.h"
#include "odometer.h"

179

180	 � 12 The REPORTER module

static void
warning(

file stream,
const string message,
cardinal level)

{
Write Warning Message(stream,"Reporter",message,level);

}

static void
list facts(

file report stream,
vector element vector pointer,⇔
attribute attribute pointer,⇔
cardinal count)

/ Lists the facts pointed to by vector pointer by writing the appropriate string (yes, no,or⇔	
unknown) for each attribute. attribute pointer is the head of the list of attributes for this⇔
area. count is the number of attributes. /⇔

{
/ while there are still facts to list ... /⇔	 ⇔

while ((attribute pointer =∨NULL) ⇐ (count = 0))∨ {

if (count 1)
Write(

⇒
report stream,vector pointer�attribute value YES ? ⇒
attribute pointer�yes : vector pointer�attribute value ⇒ NO ?
attribute pointer�no : attribute pointer�unknown,".",1,Hang);

else if (count 2)
Write(report

⇒
stream,vector pointer�attribute value ⇒ YES ?

attribute pointer�yes : vector pointer�attribute value ⇒ NO ?
attribute pointer�no : attribute pointer�unknown,";�and",1,Hang);

else
Write(report stream,vector pointer�attribute value ⇒ YES ?

attribute pointer�yes : vector pointer�attribute value ⇒ NO ?
attribute pointer�no : attribute pointer�unknown,";",1,Hang);

vector pointer = vector pointer�next;
attribute pointer = attribute pointer�next;
count ------;

}
}

static void
list equidistant cases known first(

file report stream,
kase known case pointer,
kase

⇔
⇔unknown case pointer,

boolean short names,
boolean and)

/ Lists the case pointed to by known case pointer (and any known equidistant cases), then⇔	
the case pointed to by unknown case pointer (and any unknown equidistant cases). Writes
short case names, if short names is TRUE. Writes “and” between the last two cases in the
list, if and is TRUE ; writes “or”, otherwise. /⇔

reporter.c 181

{
/ while there are still known cases to list . . . /∗ ∗

while (known case pointer =� NULL) {

/ write the case name with appropriate trailing characters /∗ ∗

fprintf (report stream, "{\\it�%s", short names ?
known case pointer→short name : known case pointer→name);

if ((known case pointer→equidistant known next ≡ NULL) ∧
(unknown case pointer NULL))≡

/ this is the last case to list /∗ ∗

fprintf (report stream, "\\/}");

else if (((known case pointer→equidistant known next =� NULL) ∧
(known case pointer→equidistant known next→

equidistant known next NULL)
(unknown case pointer NULL

≡
)) ∨

∧
≡

((known case pointer→equidistant known next NULL)
(unknown case pointer =� NULL) ∧

≡ ∧

(unknown case pointer→equidistant unknown next ≡ NULL)))

/ this is the penultimate case to list /∗ ∗

fprintf (report stream, "\\/}�%s\n", and ? "and" : "or");

else
fprintf (report stream, "},\n");

known case pointer = known case pointer→equidistant known next ;
}

/ while there are still unknown cases to list . . . /∗ ∗

while (unknown case pointer =� NULL) {

/ write the case name with appropriate trailing characters /∗ ∗

fprintf (report stream, "{\\it�%s", short names ?
unknown case pointer→short name : unknown case pointer→name);

if (unknown case pointer→equidistant unknown next ≡ NULL)

/ this is the last case to list /∗ ∗

fprintf (report stream, "\\/}");

else if (unknown case pointer→equidistant unknown next→
equidistant unknown next NULL)≡

/ this is the penultimate case to list /∗ ∗

fprintf (report stream, "\\/}�%s\n", and ? "and" : "or");

else
fprintf (report stream, "},\n");

unknown case pointer = unknown case pointer→equidistant unknown next ;
}

}

182	 � 12 The REPORTER module

static void
list equidistant cases unknown first(

file report stream,
kase known case pointer,
kase

⇔
unknown case pointer,⇔

boolean short names,
boolean and)

/ Lists the case pointed to by unknown case pointer (and any unknown equidistant cases), ⇔	
then the case pointed to by known case pointer (and any known equidistant cases). Writes
short case names, if short names is TRUE. Writes “and” between the last two cases in the
list, if and is TRUE ; writes “or”, otherwise. /⇔

{
/ while there are still unknown cases to list ... /⇔	 ⇔

while (unknown case pointer =∨NULL) {

/ write the case name with appropriate trailing characters /⇔	 ⇔

fprintf (report stream,"{\\it�%s",short names ?
unknown case pointer�short name : unknown case pointer�name);

if ((unknown case pointer�equidistant unknown next NULL)
(known case pointer ⇒ NULL))

⇒ ⇐

/ this is the last case to list /⇔	 ⇔

fprintf (report stream,"\\/}");

else if (((unknown case pointer�equidistant unknown next =∨NULL) ⇐
(unknown case pointer�equidistant unknown next�

equidistant unknown next NULL)
(known case pointer NULL)) ∧

⇒ ⇐
⇒

((unknown case pointer�equidistant unknown next NULL)
(known case pointer =∨NULL) ⇐

⇒ ⇐

(known case pointer�equidistant known next ⇒ NULL)))

/ this is the penultimate case to list /⇔	 ⇔

fprintf (report stream,"\\/}�%s\n",and ? "and" : "or");

else
fprintf (report stream,"},\n");

unknown case pointer = unknown case pointer�equidistant unknown next;
}

/ while there are still known cases to list ... /⇔	 ⇔

while (known case pointer =∨NULL) {

/ write the case name with appropriate trailing characters /⇔	 ⇔

fprintf (report stream,"{\\it�%s",short names ?
known case pointer�short name : known case pointer�name);

if (known case pointer�equidistant known next ⇒ NULL)

/ this is the last case to list /⇔	 ⇔

fprintf (report stream,"\\/}");

reporter.c 183

else if (known case pointer→equidistant known next→equidistant known next ≡ NULL)

/ this is the penultimate case to list /∗ ∗
fprintf (report stream, "\\/}�%s\n", and ? "and" : "or");

else
fprintf (report stream, "},\n");

known case pointer = known case pointer→equidistant known next ;
}

}

static void
list equidistant cases(

file report stream,
kase ∗known case pointer,
kase ∗unknown case pointer,
boolean unknown first,
boolean short names,
boolean and)

/∗ Lists the case pointed to by known case pointer (and any known equidistant cases) and the
case pointed to by unknown case pointer (and any unknown equidistant cases). Lists the
unknown cases first, if unknown first is TRUE. Writes short case names, if short names is
TRUE. Writes “and” between the last two cases in the list, if and is TRUE ; writes “or”,
otherwise. ∗/

{
if (unknown first)

list equidistant cases unknown first(report stream, known case pointer,
unknown case pointer, short names, and);

else
list equidistant cases known first(report stream, known case pointer,

unknown case pointer, short names, and);
}

static void
state opinion(

file report stream,
result result pointer,∗
kase known case pointer,
kase

∗
∗unknown case pointer,

boolean unknown first)

/ States its opinion: that, following the cases pointed to by known case pointer and∗
unknown case pointer, the result will be that which is pointed to by result pointer. Lists
the unknown cases first, if unknown first is TRUE. /∗

{
fprintf (report stream, "---following�\\frenchspacing\n");

list equidistant cases(report stream, known case pointer, unknown case pointer,
unknown first,FALSE,TRUE);

fprintf (report stream, "\\nonfrenchspacing---%%\n"
"%s.\n\n", result pointer→string);

}

184	 � 12 The REPORTER module

static void
state counter opinion(

file report stream,
result result pointer,⇔
kase known case pointer,
kase

⇔
unknown case pointer, ⇔

boolean unknown first)

/ States a counter opinion: that, if the cases pointed to by known case pointer and⇔	
unknown case pointer are followed, the result will be that which is pointed to by
result pointer. Lists the unknown cases first, if unknown first is TRUE. /⇔

{
boolean plural = FA L S E ;

fprintf (report stream,"%s�If�\\frenchspacing\n",Skip);

list equidistant cases(report stream,known case pointer,unknown case pointer,
unknown first,FA L S E,FA L S E);

if (known case pointer =∨NULL) {
if (unknown case pointer = NULL) ∨
plural = TRUE ;

else if (known case pointer�equidistant known next =∨NULL)
plural = TRUE ;

} else if (unknown case pointer =∨NULL)
if (unknown case pointer�equidistant unknown next =∨NULL)
plural = TRUE ;

fprintf (report stream,"�\\nonfrenchspacing\n"
"%s�followed�then�%s.\n\n",
plural ? "are" : "is",result pointer�string);

}

static cardinal
number of similarities(

matrix element matrix pointer,
vector element ⇔

⇔
vector pointer)

/ Returns the number of similarities in attribute value pairs between a leading case and the ⇔	
instant case (their attribute values are pointed to by matrix pointer and vector pointer,
respectively), where both cases have known attribute values. /⇔

{
cardinal count =0;

/ while there are still attribute values to compare ... /⇔	 ⇔

while (matrix pointer =∨NULL) {

if ((matrix pointer�attribute value =∨UNKNOWN) ⇐
(matrix pointer�attribute value ⇒ vector pointer�attribute value))

/ the corresponding attribute values are identical and known /⇔	 ⇔

count++;

reporter.c 185

matrix pointer = matrix pointer�case next ;
vector pointer = vector pointer�next ;

}
return count ;

}

static void
list similarities(

file report stream,
matrix element matrix pointer,⇔
vector element vector pointer,⇔
attribute attribute pointer,⇔
cardinal count)

/ Lists the similarities between a leading case and the instant case (their attribute values are⇔
pointed to by matrix pointer and vector pointer, respectively), where both cases have known
attribute values, by writing the appropriate string (yes or no) for the similar attributes.
attribute pointer is the head of the list of attributes for this area. count is the number of⇔

similarities. /⇔

{
/ while there are still attribute values to compare, and not all of the similarities have been⇔

listed . . . ⇔/

while ((attribute pointer =∨ NULL) ⇐ (count = 0))∨ {

if ((matrix pointer�attribute value =∨ UNKNOWN) ⇐
(matrix pointer�attribute value vector pointer�attribute value)) {⇒

/ the corresponding attribute values are identical and known, so write the relevant⇔
string with appropriate trailing characters ⇔/

if (count 1)⇒
Write(report stream,matrix pointer�attribute value ⇒ YES ?

attribute pointer�yes : attribute pointer�no, ".\n", 1,Hang);
else if (count 2)⇒

Write(report stream,matrix pointer�attribute value ⇒ YES ?
attribute pointer�yes : attribute pointer�no, ";�and", 1,Hang);

else
Write(report stream,matrix pointer�attribute value ⇒ YES ?

attribute pointer�yes : attribute pointer�no, ";", 1,Hang);

count ------;
}
matrix pointer = matrix pointer�case next ;
vector pointer = vector pointer�next ;
attribute pointer = attribute pointer�next ;

}
}

186	 � 12 The REPORTER module

static cardinal
number of known differences(

matrix element matrix pointer,
vector element ⇔

⇔
vector pointer)

/ Returns the number of differences in attribute value pairs between a leading case and the ⇔	
instant case (their attribute values are pointed to by matrix pointer and vector pointer,
respectively), where the leading case has a known attribute value. /⇔

{
cardinal count =0;

/ while there are still attribute values to compare ... /⇔	 ⇔

while (matrix pointer =∨NULL) {

if ((matrix pointer�attribute value =∨UNKNOWN) ⇐
(matrix pointer�attribute value =∨vector pointer�attribute value))

/ the corresponding attribute values are different, and the leading case’s value is ⇔	
known, so increment the count ⇔/

count++;

matrix pointer = matrix pointer�case next;
vector pointer = vector pointer�next;

}
return count;

}

static void
list known differences(

file report stream,
matrix element matrix pointer,
vector element ⇔

⇔
vector pointer,

attribute attribute pointer,⇔
cardinal count)

/ Lists the differences between a leading case and the instant case (their attribute values are ⇔	
pointed to by matrix pointer and vector pointer, respectively), where the leading case has
a known attribute value, by writing the appropriate string (yes or no) for the different
attributes. attribute pointer is the head of the list of attributes for this area. count is the ⇔
number of differences. /⇔

{
/ while there are still attribute values to compare, and not all of the differences have been ⇔	
listed ... ⇔/

while ((attribute pointer =∨NULL) ⇐ (count = 0)) ∨ {

if ((matrix pointer�attribute value =∨UNKNOWN) ⇐
(matrix pointer�attribute value =∨vector pointer�attribute value)) {

/ the corresponding attribute values are different, and the leading case’s value is ⇔	
known, so write the relevant string with appropriate trailing characters ⇔/

if (count 1)
Write(

⇒
report stream,matrix pointer�attribute value ⇒ YES ?
attribute pointer�yes : attribute pointer�no,".",1,Hang);

reporter.c 187

else if (count 2)
Write(report

⇒
stream,matrix pointer�attribute value YES ?⇒

attribute pointer�yes : attribute pointer�no, ";�and", 1,Hang);
else

Write(report stream,matrix pointer�attribute value ⇒ YES ?
attribute pointer�yes : attribute pointer�no, ";", 1,Hang);

count ------;
}
matrix pointer = matrix pointer�case next ;
vector pointer = vector pointer�next ;
attribute pointer = attribute pointer�next ;

}
}

static cardinal
number of unknowns(

matrix element matrix pointer)⇔

/ Returns the number of unknowns in the leading case whose attribute values are pointed⇔
to by matrix pointer. /⇔

{
cardinal count = 0;

/ while there are still attribute values to check . . . /⇔ ⇔

while (matrix pointer =∨ NULL) {
if (matrix pointer�attribute value ⇒ UNKNOWN)

count++;
matrix pointer = matrix pointer�case next ;

}
return count ;

}

static void
list unknowns(

file report stream,
matrix element matrix pointer,⇔
attribute attribute pointer,⇔
cardinal count)

/ Lists the unknown string for each unknown attribute in the leading case whose attribute⇔
values are pointed to by matrix pointer. attribute pointer is the head of the list of attributes⇔
for this area. count is the number of unknowns. /⇔

{
/ while there are still attribute values to compare, and not all of the unknowns have⇔

been listed . . . ⇔/

while ((attribute pointer =∨ NULL) ⇐ (count = 0))∨ {

if (matrix pointer�attribute value UNKNOWN) {
if (count 1)

⇒

Write(
⇒
report stream, attribute pointer�unknown, ".", 1,Hang);

188	 � 12 The REPORTER module

else if (count 2)
Write(report

⇒
stream,attribute pointer�unknown,";�and",1,Hang);

else
Write(report stream,attribute pointer�unknown,";",1,Hang);

count ------;
}
matrix pointer = matrix pointer�case next;
attribute pointer = attribute pointer�next;

}
}

static cardinal
number of differences(

vector element vector pointer X,
vector element

⇔
⇔vector pointer Y)

/ Returns the number of differences in attribute value pairs between two fact vectors. /⇔	 ⇔

{
cardinal count =0;

/ while there are still attribute values to compare ... /⇔	 ⇔

while (vector pointer X =∨NULL) {
if (vector pointer X�attribute value =∨vector pointer Y �attribute value)
count++;

vector pointer X = vector pointer X�next;
vector pointer Y = vector pointer Y �next;

}
return count;

}

static void
list new differences(

file report stream,
vector element vector pointer,
vector element

⇔
original vector pointer,⇔

attribute attribute pointer,⇔
cardinal count)

/ Lists the differences between an instantiation or hypothetical and the uninstantiated⇔	
and unhypothesized instant case (their attribute values are pointed to by vector pointer
and original vector pointer, respectively), by writing the appropriate string (yes, no or
unknown) for the different attributes. attribute pointer is the head of the list of attrib­⇔
utes for this area. count is the number of differences. /⇔

{
/ while there are still attribute values to compare, and not all of the differences have been⇔	
listed ... /⇔

while ((attribute pointer =∨NULL) ⇐ (count = 0))∨ {

if (vector pointer�attribute value =∨original vector pointer�attribute value) {

/ the corresponding attribute values are different, so write the relevant string with⇔	
appropriate trailing characters /⇔

reporter.c 189

if (count 1)
Write(

≡
report stream, vector pointer→attribute value YES ?≡
attribute pointer→yes : vector pointer→attribute value ≡ NO ?
attribute pointer→no : attribute pointer→unknown, ".", 1,Hang);

else if (count 2)
Write(report

≡
stream, vector pointer→attribute value ≡ YES ?

attribute pointer→yes : vector pointer→attribute value ≡ NO ?
attribute pointer→no : attribute pointer→unknown, ";�and", 1,Hang);

else
Write(report stream, vector pointer→attribute value ≡ YES ?

attribute pointer→yes : vector pointer→attribute value ≡ NO ?
attribute pointer→no : attribute pointer→unknown, ";", 1,Hang);

count ------;
}
vector pointer = vector pointer→next ;
original vector pointer = original vector pointer→next ;
attribute pointer = attribute pointer→next ;

}
}

static void
summarize case(

file report stream,
kase case pointer,∗
boolean written linking paragraph,
boolean verbose)

/ Writes the name of the case pointed to by case pointer with its citation in a footnote.∗
Summarizes the case, if verbose is TRUE. If written linking paragraph is TRUE, a brief
paragraph was just written linking the previous case with this case (the two cases are
equidistant). /∗

{
if (case pointer→summarized) {¬

/ the case has not been summarized yet /∗ ∗

if (written linking paragraph)

/ the case’s citation has already been footnoted in the linking paragraph /∗ ∗

fprintf (report stream, "In�\\frenchspacing\n"
"{\\it�%s}\\nonfrenchspacing,\n",
case pointer→short name);

else {

fprintf (report stream, "In�\\frenchspacing\n"
"{\\it�%s}\\nonfrenchspacing,%%\n"
"\\footnote{%s.}\n",
case pointer→name, case pointer→citation);

Write Year and Court(report stream, case pointer, 1);
fprintf (report stream, ",\n");

}

190	 � 12 The REPORTER module

if (verbose) {

if (case pointer�summary =∨NULL) {

Write(report stream, case pointer�summary, "\n", 1, Hang);

case pointer�summarized = TRUE ;

} else

fprintf (report stream, "\n");

} else

Write(report stream, "[summary].\n", Empty String, 1, Hang);

} else

/ the case has already been summarized /⇔	 ⇔

fprintf (report stream, "Details�of�\\frenchspacing\n"

"{\\it�%s\\/}�\\nonfrenchspacing\n"

"are�summarized�above.\n",

case pointer�short name);

}

static void

list similarities and differences(

file report stream,

kase case pointer,⇔

attribute attribute head,⇔

vector element facts head,⇔

string instant case type,

boolean neighbour,

boolean written linking paragraph,

boolean unknown list to follow,

boolean verbose)

/ Cites the case pointed to by case pointer, and lists the similarities between that case⇔	
and the instant case (whose attribute values are pointed to by facts head). Summar­
izes the case, if verbose is TRUE. instant case type is either “instant”, “instantiated” or
“hypothetical”. If neighbour is TRUE, this case is a nearest neighbour; otherwise, it is a
nearest other. If written linking paragraph is TRUE, a brief paragraph was just written link­
ing the previous case with this case (the two cases are equidistant). If unknown list to follow
is TRUE, an invocation of list unknowns() will immediately follow this invocation of
list similarities and differences(). /⇔

{

cardinal count;

if (written linking paragraph)¬

/ a linking paragraph has not just been written /⇔	 ⇔

fprintf (report stream, "%s�", Skip);

reporter.c 191

if (case pointer�summary =∨ NULL)

/ this case has a summary, so write the case name (with its citation in a footnote) and ⇔
the summary ⇔/

summarize case(report stream, case pointer, written linking paragraph, verbose);

if (Is Zero Subdistance(case pointer�metrics.distance.known))

/ there is no known distance between this case and the instant case /⇔ ⇔

if (Is Zero Subdistance(case pointer�metrics.distance.unknown)) {

/ there is no unknown distance between this case and the instant case /⇔ ⇔

fprintf (report stream,
"The�%s�case�is�on�all�fours�with�\\frenchspacing\n",
instant case type);

if (case pointer�summary =∨ NULL)
fprintf (report stream,

"{\\it�%s}\\null\\nonfrenchspacing.\n",
case pointer�short name);

else

/ the case has no summary, so its citation has not yet been footnoted /⇔ ⇔

fprintf (report stream,
"{\\it�%s}\\null\\nonfrenchspacing.%%\n"
"\\footnote{%s.}\n",
case pointer�name, case pointer�citation);

} else {

/ there is some unknown distance between this case and the instant case /⇔ ⇔

fprintf (report stream, "The�%s�case�{\\it�may\\/}�be�"
"on�all�fours�with�\\frenchspacing\n", instant case type);

if (case pointer�summary =∨ NULL)
fprintf (report stream, "{\\it�%s\\/}\\nonfrenchspacing",

case pointer�short name);
else

/ the case has no summary, so its citation has not yet been footnoted /⇔ ⇔

fprintf (report stream, "{\\it�%s\\/}\\nonfrenchspacing%%\n"
"\\footnote{%s.}",
case pointer�name, case pointer�citation);

if (unknown list to follow)

/ a list of unknown differences follows immediately /⇔ ⇔

fprintf (report stream, "---but\n");

else

/ a statement that this case would have been followed (instead of the nearest ⇔
neighbour) follows—and a list of unknown differences follows that ⇔/

fprintf (report stream, "�and");

192 � 12 The REPORTER module

} else {

/ there is some known and/or unknown distance between this case and the instant ⇔
case ⇔/

count = number of similarities(case pointer�matrix head, facts head);
if (count = 0) ∨ {

fprintf (report stream, "There�");

if (neighbour)

/ characterize the similarities as “extremely significant” (one), “very signific­⇔
ant” (two), or just “significant” (three or more) ⇔/

switch (count) {
case 1:

fprintf (report stream,
"is�one�extremely�significant�similarity\n");

break;
case 2:

fprintf (report stream,
"are�two�very�significant�similarities\n");

break;
default:

fprintf (report stream,
"are�several�significant�similarities\n");

break;

else
}

switch (count) {
case 1:

fprintf (report stream,
"is�one�similarity\n");

break;
case 2:

fprintf (report stream,
"are�two�similarities\n");

break;
default:

fprintf (report stream,
"are�several�similarities\n");

break;
}

fprintf (report stream, "between�the�%s�case�and�\\frenchspacing\n",
instant case type);

if (case pointer�summary =∨ NULL)
fprintf (report stream, "{\\it�%s\\/}\\null\\nonfrenchspacing:\n",

case pointer�short name);
else

/ the case has no summary, so its citation has not yet been footnoted /⇔ ⇔

fprintf (report stream, "{\\it�%s\\/}\\null\\nonfrenchspacing:%%\n"
"\\footnote{%s.}\n",
case pointer�name, case pointer�citation);

reporter.c 193

/ list the similarities between this case and the instant case /⇔ ⇔

list similarities(report stream, case pointer�matrix head, facts head,
attribute head, count);

}
count = number of known differences(case pointer�matrix head, facts head);

if (neighbour)
fprintf (report stream,

"However,�the�%s�case�is�not�on�all�fours�"
"with�\\frenchspacing\n"
"{\\it�%s}\\null\\nonfrenchspacing.\n",
instant case type, case pointer�short name);

else {

if (count = 0) ∨ {

/ characterize the differences as “extremely significant” (one), “very signific­⇔
ant” (two), or just “significant” (three or more) /⇔

fprintf (report stream, "However,�there�");
switch (count) {

case 1:
fprintf (report stream,

"is�one�extremely�significant�difference\n");
break;

case 2:
fprintf (report stream,

"are�two�very�significant�differences\n");
break;

default:
fprintf (report stream,

"are�several�significant�differences\n");
break;

}
fprintf (report stream, "between�the�%s�case�and�\\frenchspacing\n",

instant case type);
fprintf (report stream,

"{\\it�%s}\\null\\nonfrenchspacing.\n",
case pointer�short name);

}
}
fprintf (report stream, "In�that�case\n");

/ list the differences between this case and the instant case /⇔ ⇔

list known differences(report stream, case pointer�matrix head, facts head,
attribute head, count);

}
}

194 � 12 The REPORTER module

static boolean
has less known distance(

kase case pointer X,⇔
kase case pointer Y)⇔

/ Returns TRUE, iff the case pointed to by case pointer X has less known distance than does ⇔
that pointed to by case pointer Y. ⇔/

{
return ((case pointer X = NULL) (case pointer Y = NULL)∨ ⇐ ∨ ⇐

((case pointer X�metrics.distance.known.infinite <
case pointer Y �metrics.distance.known.infinite) ∧

((case pointer X�metrics.distance.known.infinite ⇒
case pointer Y �metrics.distance.known.infinite) ⇐

Is Less(case pointer X�metrics.distance.known.finite,
case pointer Y �metrics.distance.known.finite,
Distance Precision))));

}

static void
state confidence(

file report stream,
string short name)

/ States its confidence that the case called short name should still be followed. /⇔ ⇔

{
fprintf (report stream, "Nevertheless,�I�believe�that�\\frenchspacing\n"

"{\\it�%s\\/}�\\nonfrenchspacing\n"
"should�be�followed.\n\n", short name);

}

static boolean
write number as word(

file report stream,
cardinal number)

/ Writes number : as a word, if number � 10; as a number, otherwise. Returns TRUE, iff ⇔
number = 1: i.e. if the noun to follow should be plural. ∨ ⇔/

{
switch (number) {

case 1:
fprintf (report stream, "one");
break;

case 2:
fprintf (report stream, "two");
break;

reporter.c 195

case 3:
fprintf (report stream, "three");
break;

case 4:
fprintf (report stream, "four");
break;

case 5:
fprintf (report stream, "five");
break;

case 6:
fprintf (report stream, "six");
break;

case 7:
fprintf (report stream, "seven");
break;

case 8:
fprintf (report stream, "eight");
break;

case 9:
fprintf (report stream, "nine");
break;

case 10:
fprintf (report stream, "ten");
break;

default:
fprintf (report stream, "%u",number);
break;

}
return (number = 1);�

}

static void
state intransigence(

file report stream,

kase nearest neighbour,∗
kase nearest other)∗

/ Restates its opinion that the case pointed to by nearest neighbour should be followed, and∗
compares the relative importance of the courts that decided that case and the case pointed
to by nearest other. /∗

{
if ((nearest neighbour→court string ≡ NULL) ∨ (nearest other→court string ≡ NULL))

/ the nearest neighbour or the nearest other has no court, so make no comment about∗
each case’s relative importance ∗/

fprintf (report stream, "\nConsequently,�");

196 � 12 The REPORTER module

else if (nearest neighbour�court rank < nearest other�court rank)

/ the nearest neighbour was decided by a more important court than was the nearest ⇔
other /⇔

fprintf (report stream, "Note%s�that�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"is�only�a�decision�of\n"
"%s\n"
"and�not�as�good�authority�as�a�case�decided�by\n"
"%s%%\n"
"---like�\\frenchspacing\n"
"{\\it�%s}\\null\\nonfrenchspacing.\n\n"
"Consequently,�",
Is Zero Subdistance(nearest other�metrics.distance.known) ⇐
Is Zero Subdistance(nearest other�metrics.distance.unknown) ?
",�however,": "�also",
nearest other�short name, nearest other�court string,
nearest neighbour�court string, nearest neighbour�short name);

else if (nearest neighbour�court rank > nearest other�court rank)

/ the nearest other was decided by a more important court than was the nearest ⇔
neighbour ⇔/

fprintf (report stream, "\nDespite�the�fact�that�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"is�a�decision�of\n"
"%s\n"
"(and�better�authority�than�a�case�decided�by\n"
"%s%%\n"
"---like�\\frenchspacing\n"
"{\\it�%s\\/}\\nonfrenchspacing),\n",
nearest other�short name, nearest other�court string,
nearest neighbour�court string, nearest neighbour�short name);

else if (nearest neighbour�court string ⇒ nearest other�court string)

/ the nearest neighbour and the nearest other were decided by the same court /⇔ ⇔

fprintf (report stream, "\nDespite�the�fact�that�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"and�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"are�both�decisions�of\n"
"%s,\n", nearest other�short name,
nearest neighbour�short name, nearest other�court string);

reporter.c 197

else

/ the nearest neighbour and the nearest other were decided by different courts of the∗
same rank ∗/

fprintf (report stream, "\nDespite�the�fact�that�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"is�a�decision�of\n"
"%s\n"
"(and�as�good�authority�as�a�case�decided�by\n"
"%s%%\n"
"---like�\\frenchspacing\n"
"{\\it�%s\\/}\\nonfrenchspacing),\n",
nearest other→short name,nearest other→court string,
nearest neighbour→court string,nearest neighbour→short name);

fprintf (report stream, "there�is�nothing�in�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"to�warrant�any�change�in�my�conclusion.\n\n",
nearest other→short name);

}

static boolean
write linking paragraph(

file report stream,
kase previous case pointer,
kase

∗
∗next case pointer)

/ Writes a brief paragraph linking the previous case with the next case (the two cases are∗
equidistant), if there is a next case. Puts the two cases into context (i.e. explains which
is more important and why). Returns TRUE, if a paragraph is written, which means that
the next paragraph should not include year and court information—information included
in this linking paragraph. /∗

{
if ((next case pointer =� NULL) ∧

(previous case pointer→court string =� NULL) ∧
(next case pointer→court string =� NULL)) {

/ the previous case and the next case are equidistant and both have a court string, so∗
write a linking paragraph ∗/

fprintf (report stream, "%s�In�%u,\n",Skip,next case pointer→year);

if (previous case pointer→court string next case pointer→court string) {≡

/ the previous case and the next case were decided by the same court /∗ ∗

if (previous case pointer→year ≡ next case pointer→year)

/ the previous case and the next case were decided in the same year /∗ ∗

fprintf (report stream, "the�same�year�in�which�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"was�decided,\n",
previous case pointer→short name);

198	 � 12 The REPORTER module

fprintf (report stream, "%s\n"

"also�decided�\\frenchspacing\n"

"{\\it�%s}\\null\\nonfrenchspacing.%%\n"

"\\footnote{%s.}\n",

next case pointer�court string, next case pointer�name,

next case pointer�citation);

if (previous case pointer�year =∨next case pointer�year) {

/ the previous case and the next case were decided in a different year; the ⇔	
previous case must be more recent than the next case (otherwise the next
case would be earlier in the list than the previous case) /⇔

fprintf (report stream, "(Note,�however,�that�\\frenchspacing\n"

"{\\it�%s\\/}�\\nonfrenchspacing\n"

"is�", previous case pointer�short name);

if (write number as word(report stream,

previous case pointer�year − next case pointer�year))

fprintf (report stream, "�years");

else

fprintf (report stream, "�year");

fprintf (report stream, "�more�recent�than�\\frenchspacing\n"

"{\\it�%s}\\null\\nonfrenchspacing.)\n",

next case pointer�short name);

}

} else if (previous case pointer�court rank next case pointer�court rank) {⇒

/ the previous case and the next case were decided by different courts of the same ⇔	
rank ⇔/

if (previous case pointer�year ⇒ next case pointer�year)

/ the previous case and the next case were decided in the same year /⇔	 ⇔

fprintf (report stream, "the�same�year�in�which�\\frenchspacing\n"

"{\\it�%s\\/}�\\nonfrenchspacing\n"

"was�decided�by\n"

"%s,�",

previous case pointer�short name,

previous case pointer�court string);

fprintf (report stream, "\\frenchspacing\n"

"{\\it�%s\\/}\\nonfrenchspacing%%\n"

"\\footnote{%s.}\n"

"was�decided�by\n"

"%s.\n"

"(A�case�decided�by\n"

"%s\n"

"is�as�good�authority�as�a�case�decided�by\n"

"%s", next case pointer�name, next case pointer�citation,

next case pointer�court string, next case pointer�court string,

previous case pointer�court string);

reporter.c 199

if (previous case pointer→year ≡ next case pointer→year)

/ the previous case and the next case were decided in the same year /∗ ∗
fprintf (report stream, ".)\n");

else {
/ the previous case and the next case were decided in a different year; the∗

previous case must be more recent than the next case (otherwise the next
case would be earlier in the list than the previous case) /∗

fprintf (report stream, "%%\n"
"---like�\\frenchspacing\n"
"{\\it�%s\\/}\\nonfrenchspacing;\n"
"note,�however,�that�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"is�",
previous case pointer→short name,
previous case pointer→short name);

if (write number as word(report stream,
previous case pointer→year − next case pointer→year))

fprintf (report stream, "�years");
else

fprintf (report stream, "�year");

fprintf (report stream, "�more�recent�than�\\frenchspacing\n"
"{\\it�%s}\\null\\nonfrenchspacing.)\n",
next case pointer→short name);

}
} else {

/ the previous case and the next case were decided by different courts of different∗
ranks; the previous case must be more important than the next case, otherwise
the next case would be earlier in the list than the previous case) /∗

if (previous case pointer→year ≡ next case pointer→year)

/ the previous case and the next case were decided in the same year /∗ ∗
fprintf (report stream, "the�same�year�in�which�\\frenchspacing\n"

"{\\it�%s\\/}�\\nonfrenchspacing\n"
"was�decided�by\n"
"%s,�",
previous case pointer→short name,
previous case pointer→court string);

fprintf (report stream, "\\frenchspacing\n"
"{\\it�%s\\/}\\nonfrenchspacing%%\n"
"\\footnote{%s.}\n"
"was�decided�by\n"
"%s.\n"
"(A�case�decided�by\n"
"%s\n"
"is�not�as�good�authority�as�a�case�decided�by\n"
"%s",next case pointer→name,next case pointer→citation,
next case pointer→court string,next case pointer→court string,
previous case pointer→court string);

200 � 12 The REPORTER module

if (previous case pointer�year ⇒ next case pointer�year)

/ the previous case and the next case were decided in the same year /⇔ ⇔

fprintf (report stream, ".)\n");

else
fprintf (report stream, "%%\n"

"---like�\\frenchspacing\n"
"{\\it�%s\\/}\\nonfrenchspacing;\n",
previous case pointer�short name);

if (previous case pointer�year > next case pointer�year) {

/ the previous case is more recent than the next case /⇔ ⇔

fprintf (report stream, "furthermore�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"is�", next case pointer�short name);

if (write number as word(report stream,
previous case pointer�year − next case pointer�year))

fprintf (report stream, "�years");
else

fprintf (report stream, "�year");

fprintf (report stream, "�older�than�\\frenchspacing\n"
"{\\it�%s}\\null\\nonfrenchspacing.)\n",
previous case pointer�short name);

} else if (previous case pointer�year < next case pointer�year) {

/ the next case is more recent than the previous case /⇔ ⇔

fprintf (report stream, "though�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"is�", next case pointer�short name);

if (write number as word(report stream,
next case pointer�year − previous case pointer�year))

fprintf (report stream, "�years");
else

fprintf (report stream, "�year");

fprintf (report stream, "�more�recent�than�\\frenchspacing\n"
"{\\it�%s}\\null\\nonfrenchspacing.)\n",
previous case pointer�short name);

}
}

fprintf (report stream, "\n");

return TRUE ;

} else

/ no linking paragraph has been written /⇔ ⇔

return FALSE ;
}

reporter.c 201

static void
handle near unknown(

file report stream,
result result pointer,
result

⇔
nearest result pointer,⇔

kase nearest neighbour,⇔
boolean nearest neighbour is known,
area area pointer,
vector

⇔
element ⇔facts head,

string instant case type,
boolean neighbour,
boolean verbose)

/ Argues that the nearest unknown case of the result pointed to by result pointer would have ⇔
been followed but for its unknown distance. ⇔/

{
kase case pointer ;⇔
boolean written linking paragraph = FALSE ;

if (result pointer nearest result pointer) {⇒

fprintf (report stream, "%s\\frenchspacing\n",Skip);

list equidistant cases(report stream,NULL, result pointer�nearest unknown case,
FALSE,FALSE,TRUE);

fprintf (report stream, "�\\nonfrenchspacing\n"
"%s�in�which�%s.\n\n",
result pointer�nearest unknown case�equidistant unknown next ⇒
NULL ? "is�another�case" : "are�other�cases", result pointer�string);

}

/ for each nearest unknown case . . . /⇔ ⇔

for (case pointer = result pointer�nearest unknown case; case pointer =∨ NULL;
case pointer = case pointer�equidistant unknown next) {

list similarities and differences(report stream, case pointer,
area pointer�attribute head, facts head, instant case type,neighbour,
written linking paragraph,FALSE, verbose);

fprintf (report stream, "\n"
"I�would�have�suggested�that�\\frenchspacing\n"
"{\\it�%s\\/}�\\nonfrenchspacing\n"
"be�followed�(instead�of�\\frenchspacing\n",
case pointer�short name);

if (nearest neighbour is known)
list equidistant cases(report stream,nearest neighbour,NULL,

FALSE,TRUE,TRUE);

else
list equidistant cases(report stream,NULL,nearest neighbour,

FALSE,TRUE,TRUE);

202	 � 12 The REPORTER module

fprintf (report stream,"\\nonfrenchspacing)\n"
"except�that\n");

list unknowns(report stream,case pointer�matrix head,
area pointer�attribute head,number of unknowns(case pointer�matrix head));

if (neighbour)¬
state intransigence(report stream,nearest neighbour,case pointer);

written linking paragraph = write linking paragraph(report stream,case pointer,
case pointer�equidistant unknown next);

}
}

static void
handle nearest known(

file report stream,
result result pointer,
result

⇔
nearest result pointer,⇔

kase nearest neighbour,
area

⇔
area pointer,

vector
⇔
element ⇔facts head,

string instant case type,
boolean verbose)

/ Argues that the result should be same as that of the nearest known neighbour. Uses the ⇔	
nearest unknown neighbour too, if (but for its unknown distance) it would be the nearest
neighbour. /⇔

{
kase case pointer;⇔
boolean written linking paragraph = FA L S E ;

if (has less known distance(result pointer�nearest unknown case,
result pointer�nearest known case))

/ if not for its unknown distance, the nearest unknown neighbour would be the nearest ⇔	
neighbour, so base the argument on the nearest known and the nearest unknown
neighbours /⇔

state opinion(report stream,result pointer,
result pointer�nearest known case,
result pointer�nearest unknown case,FA L S E);

else

/ base the argument only on the nearest known neighbours /⇔	 ⇔

state opinion(report stream,result pointer,
result pointer�nearest known case,NULL,FA L S E);

/ for each nearest known neighbour ... /⇔	 ⇔

for (case pointer = result pointer�nearest known case; case pointer =∨NULL;
case pointer = case pointer�equidistant known next) {

list similarities and differences(report stream,case pointer,
area pointer�attribute head,facts head,instant case type,TRUE,
written linking paragraph,FA L S E,verbose);

fprintf (report stream,"\n");

reporter.c 203

if (Is Zero Distance(case pointer�metrics.distance))¬

/ the instant case is not on all fours with the case /⇔ ⇔

state confidence(report stream, case pointer�short name);

written linking paragraph = write linking paragraph(report stream, case pointer,
case pointer�equidistant known next);

}

if (has less known distance(result pointer�nearest unknown case,
result pointer�nearest known case)) {

/ if not for its unknown distance, the nearest unknown neighbour would be the nearest ⇔
neighbour ⇔/

handle near unknown(report stream, result pointer,nearest result pointer,
nearest neighbour,TRUE, area pointer,
facts head, instant case type,TRUE, verbose);

fprintf (report stream, "\n");
}

}

static void
handle nearest unknown(

file report stream,
result result pointer,⇔
area area pointer,
vector

⇔
element ⇔facts head,

string instant case type,
boolean verbose)

/ Argues that the result should be same as that in the nearest unknown neighbour. Uses the ⇔
nearest known neighbour too. ⇔/

{
kase case pointer ;⇔
boolean written linking paragraph = FALSE ;
cardinal count ;

/ base the argument on the nearest unknown and the nearest known neighbours /⇔ ⇔

state opinion(report stream, result pointer,
result pointer�nearest known case,
result pointer�nearest unknown case,TRUE);

/ for every nearest unknown neighbour . . . /⇔ ⇔

for (case pointer = result pointer�nearest unknown case; case pointer =∨ NULL;
case pointer = case pointer�equidistant unknown next) {

list similarities and differences(report stream, case pointer,
area pointer�attribute head, facts head, instant case type,TRUE,
written linking paragraph,TRUE, verbose);

count = number of unknowns(case pointer�matrix head);

204	 � 12 The REPORTER module

if (count =0) ∨ {

fprintf (report stream,"Furthermore,�\n");

list unknowns(report stream,case pointer�matrix head,

area pointer�attribute head,count);

}

fprintf (report stream,"\n");

state confidence(report stream,case pointer�short name);

written linking paragraph = write linking paragraph(report stream,case pointer,

case pointer�equidistant unknown next);

}

/ for every nearest known neighbour ... /⇔	 ⇔

written linking paragraph = FA L S E ;

for (case pointer = result pointer�nearest known case; case pointer =∨NULL;

case pointer = case pointer�equidistant known next) {

list similarities and differences(report stream,case pointer,

area pointer�attribute head,facts head,instant case type,TRUE,

written linking paragraph,FA L S E,verbose);

fprintf (report stream,"\n");

if (Is Zero Distance(case pointer�metrics.distance))¬

state confidence(report stream,case pointer�short name);

written linking paragraph = write linking paragraph(report stream,case pointer,

case pointer�equidistant known next);

}

}

static void

handle nearest others(

file report stream,

result result pointer,⇔

result nearest result pointer,⇔

kase nearest other,⇔

boolean nearest other is known,

area area pointer,⇔

vector element facts head,⇔

string instant case type,

boolean verbose)

/ Make a counter argument that the result should be same as that of the nearest known other. ⇔	
Uses this result’s nearest unknown other too, if (but for its unknown distance) it would be
the nearest neighbour. /⇔

reporter.c 205

{
kase case pointer ;⇔
boolean written linking paragraph = FALSE ;
cardinal count ;

if ((result pointer�nearest known compared with unknown ⇒ FURTHER) ∧
has less known distance(result pointer�nearest unknown case,

nearest other)) {

/ the nearest unknown other is the nearest other or if not for its unknown distance, ⇔
the nearest unknown other would be the nearest neighbour /⇔

state counter opinion(report stream, result pointer,
result pointer�nearest known case,
result pointer�nearest unknown case,TRUE);

if (has less known distance(result pointer�nearest unknown case,
nearest other)) {

/ if not for its unknown distance, the nearest unknown other would be the nearest ⇔
neighbour ⇔/

handle near unknown(report stream, result pointer,nearest result pointer,
nearest other,nearest other is known, area pointer,
facts head, instant case type,FALSE, verbose);

} else

/ for every nearest unknown other . . . /⇔ ⇔

for (case pointer = result pointer�nearest unknown case;
case pointer = NULL; ∨
case pointer = case pointer�equidistant unknown next) {

list similarities and differences(report stream, case pointer,
area pointer�attribute head, facts head, instant case type,FALSE,
written linking paragraph,FALSE, verbose);

count = number of unknowns(case pointer�matrix head);

if (count = 0) ∨ {

fprintf (report stream, "Furthermore,�\n");

list unknowns(report stream, case pointer�matrix head,
area pointer�attribute head, count);

}
state intransigence(report stream,nearest other, case pointer);

written linking paragraph = write linking paragraph(report stream, case pointer,
case pointer�equidistant unknown next);

}

} else

/ the nearest known other is the nearest other, so base the counter-opinion only on ⇔
the nearest known other /⇔

state counter opinion(report stream, result pointer,
result pointer�nearest known case,NULL,FALSE);

206 � 12 The REPORTER module

written linking paragraph = FALSE ;

for (case pointer = result pointer�nearest known case; case pointer =∨ NULL;
case pointer = case pointer�equidistant known next) {

/ for every nearest known other . . . /⇔ ⇔
list similarities and differences(report stream, case pointer,

area pointer�attribute head, facts head, instant case type,FALSE,
written linking paragraph,FALSE, verbose);

state intransigence(report stream,nearest other, case pointer);

written linking paragraph = write linking paragraph(report stream, case pointer,
case pointer�equidistant known next);

}
}

static void
initialize nearest metrics(

cardinal minimum known differences,⇔
floating point minimum association coefficient,
floating point

⇔
minimum weighted association coefficient,

floating point
⇔
max correlation coefficient,

floating point
⇔
⇔max weighted correlation coefficient,

cardinal number of attributes)

/ Initializes the minimum and maximum metric variables. /⇔ ⇔
{

minimum known differences = number of attributes;⇔
minimum association coefficient = 1.0;⇔
minimum weighted association coefficient = 1.0;⇔
⇔max correlation coefficient = −1.0;
⇔max weighted correlation coefficient = −1.0;

}

static void
find nearest metrics(

metrics type metrics,
cardinal minimum known differences,⇔
floating point minimum association coefficient,
floating point

⇔
minimum weighted association coefficient,

floating point
⇔
max correlation coefficient,

floating point
⇔
⇔max weighted correlation coefficient,

boolean weighted association coefficient)

/ Checks metrics against the various minimum and maximum values found so far, and changes ⇔
each minimum/maximum if the relevant metric is less/more. ⇔/

{
if (metrics.number of known differences < minimum known differences)

minimum known differences = metrics
⇔
.number of known differences;⇔

if (metrics.number of known pairs 0) {⇒

minimum known differences = 0; ⇔
minimum association coefficient = 0.0;⇔
minimum weighted association coefficient = 0.0;⇔

reporter.c 207

} else {

if (Is Less((floating point) metrics.number of known differences /
metrics.number of known pairs,
minimum association coefficient, Precision)) ⇔

minimum association coefficient = ⇔
(floating point) metrics.number of known differences /
metrics.number of known pairs;

if (weighted association coefficient)
if (Is Less(metrics.weighted association coefficient,

minimum weighted association coefficient, Precision)) ⇔
minimum weighted association coefficient = ⇔

metrics.weighted association coefficient ;

if (metrics.correlation coefficient.meaningless) {¬

if (Is Less(max correlation coefficient,⇔
metrics.correlation coefficient.unweighted, Precision))

max correlation coefficient = ⇔
metrics.correlation coefficient.unweighted ;

if (Is Less(max weighted correlation coefficient,⇔
metrics.correlation coefficient.weighted, Precision))

max weighted correlation coefficient = ⇔
metrics.correlation coefficient.weighted ;

}
}

}

static boolean
matches nearest neighbour(

kase case pointer,⇔
kase nearest known neighbour pointer,⇔⇔
kase nearest unknown neighbour pointer)⇔⇔

/ Returns TRUE (and adjusts the appropriate pointer so as to point to the next equidistant ⇔
case), if case pointer points to a nearest neighbour (known or unknown). ⇔/

{
if (case pointer nearest known neighbour pointer) {⇒ ⇔

nearest known neighbour pointer = ⇔
(⇔nearest known neighbour pointer)�equidistant known next ;
return TRUE ;

} else if (case pointer nearest unknown neighbour pointer) { ⇒ ⇔
nearest unknown neighbour pointer = ⇔

(⇔nearest unknown neighbour pointer)�equidistant unknown next ;
return TRUE ;

} else
return FALSE ;

}

208	 � 12 The REPORTER module

static void
log case number and name(

file log stream,
cardinal case number,
string case name)

{
fprintf (log stream, "C%u%s�%s", case number, case number < 10 ? "�" : "", case name);

}

static void
log case(

file log stream,
kase case pointer,
result

⇔
⇔result pointer,

boolean additional,
cardinal level,
string subheading)⇔

/ Writes, to the log file, details of the case pointed to by case pointer. Writes a character ⇔	
before the case name: “*”, if additional is TRUE and result pointer is not NULL (i.e. the
case is suggested by an extra metric, but is not a neighbour, and has a different result to
the nearest result); “+”, if additional is TRUE (i.e. the case is suggested by an extra metric,
but is not a neighbour); “-”, otherwise (i.e. the case is not suggested by the metric, but is
a nearest neighbour). Writes the result in parentheses after the case name, if result pointer
is not NULL. /⇔

{
if (⇔subheading =∨NULL) {
Indent(log stream, level + 1);
fprintf (log stream, "%s:\n", subheading);
subheading = NULL;

⇔
⇔

}
Indent(log stream, level + 1);
fprintf (log stream, "��%s�", additional ? result pointer = NULL ? "*" : "+" : "-"); ∨
log case number and name(log stream, case pointer�number, case pointer�short name);
if (result pointer = NULL)∨
fprintf (log stream, "�(%s)", result pointer�identifier);

fprintf (log stream, "\n");
}

static void
log case if necessary(

file log stream,
result result pointer,
result

⇔
nearest result pointer,⇔

kase case pointer,
kase

⇔
nearest known case pointer,

kase
⇔⇔
nearest unknown case pointer, ⇔⇔

cardinal level,
boolean neighbour,
string heading,
string

⇔
subheading,

boolean
⇔
different result) ⇔

reporter.c 209

/ Writes, to the log file, details of those cases about which the known/unknown distance∗
and the extra similarity measures disagree. Sets different result to TRUE, if an alternative
metric suggests, as a nearest neighbour, a case which is not a nearest neighbour and which
has a result different from the nearest result. /∗

{
if (neighbour) {

/ the alternative metric suggests this as a nearest neighbour /∗ ∗

if (matches nearest neighbour(case pointer,¬
nearest known case pointer,nearest unknown case pointer)) {

/ it isn’t a nearest neighbour, so log it as an additional case /∗ ∗

if (∗heading =� NULL) {
Indent(log stream, level);
fprintf (log stream, "%s:\n\n", heading);∗
heading = NULL;∗

}
if (result pointer =� nearest result pointer) {

/ the result of this case is not the nearest result, so include the result in the∗
log /∗

log case(log stream, case pointer, result pointer,TRUE, level, subheading);
if (different result = NULL)�

different result = TRUE ;∗

} else

/ the result of this case is the nearest result, so don’t include it in the log /∗ ∗

log case(log stream, case pointer,NULL,TRUE, level, subheading);
}

} else if (matches nearest neighbour(case pointer,
nearest known case pointer,nearest unknown case pointer)) {

/ the alternative metric does not suggest this case as a nearest neighbour, but it is a∗
nearest neighbour, so log it as a missing case /∗

if (∗heading =� NULL) {
Indent(log stream, level);
fprintf (log stream, "%s:\n\n", heading);∗
heading = NULL;∗

}

/ the result of this case is the nearest result, so don’t include it in the log /∗ ∗

log case(log stream, case pointer,NULL,FALSE, level, subheading);
}

}

210	 � 12 The REPORTER module

static void

implement safeguards(

file log stream,

area area pointer,⇔

string instant case type,

cardinal level)

/ Implements the safeguards based on the extra similarity measures, and issues a warning in ⇔	
each of the following circumstances: the weighted association coefficients suggest that a case,
with a different result than that of the nearest neighbour, ought to be the nearest neighbour;
the weighted correlation coefficients suggest that a case, with a different result than that
of the nearest neighbour, ought to be the nearest neighbour; an ideal point suggesting a
different result is at least as near to the instant case as is the nearest neighbour; a centroid
suggesting a different result is at least as near to the instant case as is the nearest neighbour;
or the specified directions suggest a different result or results. /⇔

{

result result pointer,⇔

equidistant pointer;⇔

kase case pointer,⇔

nearest known case pointer,⇔

nearest unknown case pointer;⇔

cardinal minimum known differences;

floating point minimum association coefficient,

minimum weighted association coefficient,

max correlation coefficient,

max weighted correlation coefficient;

string heading = "Safeguards",

subheading = NULL;

char message[Max Error Message Length];

boolean weighted

centroid different result

different result = FA L S E,

ideal point different result = FA L S E,

= FA L S E,

specified direction different result = FA L S E ;

initialize nearest metrics(&minimum known differences,

&minimum association coefficient, &minimum weighted association coefficient,

&max correlation coefficient, &max weighted correlation coefficient,

area pointer�number of attributes);

for (result pointer = area pointer�result head; result pointer =∨NULL;

result pointer = result pointer�next)

for (case pointer = result pointer�case head; case pointer =∨NULL;

case pointer = case pointer�next)

find nearest metrics(case pointer�metrics, &minimum known differences,

&minimum association coefficient,

&minimum weighted association coefficient, &max correlation coefficient,

&max weighted correlation coefficient, area pointer�infinite weight);¬

reporter.c 211

subheading = "Distance�measures";

nearest known case pointer =
area pointer�nearest result�nearest known case;

nearest unknown case pointer =
area pointer�nearest result�nearest unknown case;

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next)

log case if necessary(log stream, result pointer, area pointer�nearest result,
case pointer, &nearest known case pointer,
&nearest unknown case pointer, level,
case pointer�metrics.number of known differences
minimum known differences,

⇒

&heading, &subheading, NULL);
if (subheading NULL)⇒

fprintf (log stream, "\n");

subheading = "Association�coefficients";

nearest known case pointer =
area pointer�nearest result�nearest known case;

nearest unknown case pointer =
area pointer�nearest result�nearest unknown case;

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next)

log case if necessary(log stream, result pointer, area pointer�nearest result,
case pointer, &nearest known case pointer,
&nearest unknown case pointer, level,
Is Equal((floating point) case pointer�

metrics.number of known differences /
case pointer�metrics.number of known pairs,
minimum association coefficient, Precision),

&heading, &subheading, NULL);
if (subheading NULL)⇒

fprintf (log stream, "\n");

212 � 12 The REPORTER module

if (area pointer�infinite weight) {¬
/ none of the weights is infinite, so the values obtained for the weighted association ⇔

coefficients are meaningful ⇔/

subheading = "Weighted�association�coefficients";

nearest known case pointer =
area pointer�nearest result�nearest known case;

nearest unknown case pointer =
area pointer�nearest result�nearest unknown case;

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next)

log case if necessary(log stream, result pointer, area pointer�nearest result,
case pointer, &nearest known case pointer,
&nearest unknown case pointer, level,
Is Equal(case pointer�metrics.weighted association coefficient,

minimum weighted association coefficient, Precision),
&heading, &subheading, &weighted different result);

if (subheading NULL)⇒
fprintf (log stream, "\n");

}

subheading = "Correlation�coefficients";

nearest known case pointer =
area pointer�nearest result�nearest known case;

nearest unknown case pointer =
area pointer�nearest result�nearest unknown case;

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next)

if (case pointer�metrics.correlation coefficient.meaningless) ¬
log case if necessary(log stream, result pointer, area pointer�nearest result,

case pointer, &nearest known case pointer,
&nearest unknown case pointer, level,
Is Equal(max correlation coefficient,

case pointer�metrics.correlation coefficient.unweighted,
Precision),

&heading, &subheading, NULL);
if (subheading NULL) ⇒

fprintf (log stream, "\n");

reporter.c 213

subheading = "Weighted�correlation�coefficients";

nearest known case pointer =
area pointer�nearest result�nearest known case;

nearest unknown case pointer =
area pointer�nearest result�nearest unknown case;

for (result pointer = area pointer�result head ; result pointer =∨ NULL;
result pointer = result pointer�next)

for (case pointer = result pointer�case head ; case pointer =∨ NULL;
case pointer = case pointer�next)

if (case pointer�metrics.correlation coefficient.meaningless)¬
log case if necessary(log stream, result pointer, area pointer�nearest result,

case pointer, &nearest known case pointer,
&nearest unknown case pointer, level,
Is Equal(max weighted correlation coefficient,

case pointer�metrics.correlation coefficient.weighted, Precision),
&heading, &subheading, &weighted different result);

if (subheading NULL)⇒
fprintf (log stream, "\n");

subheading = "Ideal�points";

for (equidistant pointer = area pointer�nearest ideal point ; equidistant pointer =∨ NULL;
equidistant pointer = equidistant pointer�equidistant ideal point next)

if (equidistant pointer =∨ area pointer�nearest result) {
if (heading =∨ NULL) {

Indent(log stream, level);
fprintf (log stream, "%s:\n\n", heading);
heading = NULL;

}
if (subheading =∨ NULL) {

Indent(log stream, level + 1);
fprintf (log stream, "%s:\n", subheading);
subheading = NULL;

}
Indent(log stream, level + 2);
fprintf (log stream, "%s\n", equidistant pointer�identifier);
if (area pointer�nearest result�nearest known case =∨ NULL)

if (Relative Distance(equidistant pointer�ideal point metrics.distance,
area pointer�nearest result�nearest known case�
metrics.distance) = FURTHER)∨

ideal point different result = TRUE ;
if (area pointer�nearest result�nearest unknown case =∨ NULL)

if (Relative Distance(equidistant pointer�ideal point metrics.distance,
area pointer�nearest result�nearest unknown case�
metrics.distance) = FURTHER)∨

ideal point different result = TRUE ;
}

if (subheading NULL)⇒
fprintf (log stream, "\n");

214 � 12 The REPORTER module

subheading = "Centroids";

for (equidistant pointer = area pointer�nearest centroid ; equidistant pointer =∨ NULL;
equidistant pointer = equidistant pointer�equidistant centroid next)

if (equidistant pointer =∨ area pointer�nearest result) {
if (heading =∨ NULL) {

Indent(log stream, level);
fprintf (log stream, "%s:\n\n", heading);
heading = NULL;

}
if (subheading =∨ NULL) {

Indent(log stream, level + 1);
fprintf (log stream, "%s:\n", subheading);
subheading = NULL;

}
Indent(log stream, level + 2);
fprintf (log stream, "%s\n", equidistant pointer�identifier);
if (area pointer�nearest result�nearest known case =∨ NULL)

if (Relative Distance(equidistant pointer�centroid metrics.distance,
area pointer�nearest result�nearest known case�
metrics.distance) = FURTHER)∨

centroid different result = TRUE ;
if (area pointer�nearest result�nearest unknown case =∨ NULL)

if (Relative Distance(equidistant pointer�centroid metrics.distance,
area pointer�nearest result�nearest unknown case�
metrics.distance) = FURTHER)∨

centroid different result = TRUE ;
}

if (subheading NULL)⇒
fprintf (log stream, "\n");

subheading = "Specified�directions";

for (equidistant pointer = area pointer�strongest specified direction;
equidistant pointer = NULL; ∨
equidistant pointer = equidistant pointer�equidistant specified direction next)

if (equidistant pointer =∨ area pointer�nearest result) {
if (heading =∨ NULL) {

Indent(log stream, level);
fprintf (log stream, "%s:\n\n", heading);
heading = NULL;

}
if (subheading =∨ NULL) {

Indent(log stream, level + 1);
fprintf (log stream, "%s:\n", subheading);
subheading = NULL;

}
Indent(log stream, level + 2);
fprintf (log stream, "%s\n", equidistant pointer�identifier);
specified direction different result = TRUE ;

}
if (subheading NULL)⇒

fprintf (log stream, "\n");

reporter.c 215

subheading = "Ideal�point�directions";

for (equidistant pointer = area pointer�strongest ideal point direction;
equidistant pointer = NULL;∨
equidistant pointer = equidistant pointer�equidistant ideal point direction next)

if (equidistant pointer =∨ area pointer�nearest result) {
if (heading =∨ NULL) {

Indent(log stream, level);
fprintf (log stream, "%s:\n\n", heading);
heading = NULL;

}
if (subheading =∨ NULL) {

Indent(log stream, level + 1);
fprintf (log stream, "%s:\n", subheading);
subheading = NULL;

}
Indent(log stream, level + 2);
fprintf (log stream, "%s\n", equidistant pointer�identifier);

}
if (subheading NULL)⇒

fprintf (log stream, "\n");

subheading = "Centroid�directions";

for (equidistant pointer = area pointer�strongest centroid direction;
equidistant pointer = NULL;∨
equidistant pointer = equidistant pointer�equidistant centroid direction next)

if (equidistant pointer =∨ area pointer�nearest result) {
if (heading =∨ NULL) {

Indent(log stream, level);
fprintf (log stream, "%s:\n\n", heading);
heading = NULL;

}
if (subheading =∨ NULL) {

Indent(log stream, level + 1);
fprintf (log stream, "%s:\n", subheading);
subheading = NULL;

}
Indent(log stream, level + 2);
fprintf (log stream, "%s\n", equidistant pointer�identifier);

}
if (subheading NULL)⇒

fprintf (log stream, "\n");

216	 � 12 The REPORTER module

/ issue warnings if necessary /⇔	 ⇔

if (weighted different result)

warning(log stream,

"one�or�both�of�the�weighted�safeguard�metrics�suggest�"

"that�a�case�(or�cases)�with�a�different�result�should�"

"be�the�nearest�neighbour�(or�neighbours)", level);

if (ideal point different result) {

sprintf (message,

"one�or�more�ideal�points�with�a�different�result�are�at�"

"least�as�near�to�the�%s�case�as�is�the�nearest�neighbour",

instant case type);

warning(log stream, message, level);

}

if (centroid different result) {

sprintf (message,

"one�or�more�centroids�with�a�different�result�are�at�"

"least�as�near�to�the�%s�case�as�is�the�nearest�neighbour",

instant case type);

warning(log stream, message, level);

}

if (specified direction different result)

warning(log stream,

"the�specified�directions�suggest�a�different�result�or�results",

level);

}

extern void

Write Report(

file report stream,

file log stream,

area area pointer,⇔

vector element facts head,⇔

vector element original facts,⇔

boolean verbose,

boolean hypothetical,

boolean same result,

cardinal number,

cardinal level)

/ Writes SHYSTER’s legal opinion about the facts pointed to by facts head to report stream ⇔	
(if it is not NULL). Cases are summarized in full, and opening and closing strings are
written in full, if verbose is TRUE.

If number is not zero then the instant case is actually a hypothetical (if hypothetical is
TRUE) or an instantiation, and number is its number. If the instant case is an instantiation
or a hypothetical, original facts points to the facts of the uninstantiated and unhypothesized
instant case. If the instant case is a hypothetical and same result is TRUE, the hypothetical
has the same result as the unhypothesized instant case. /⇔

reporter.c 217

{
result result pointer ;⇔
kase case pointer,⇔

nearest neighbour ;⇔
string instant case type;

if (number 0) {⇒

/ the instant case is the uninstantiated and unhypothesized instant case /⇔ ⇔

instant case type = "instant";

if (report stream =∨ NULL) {

fprintf (report stream, "%s{%s�area}\n\n"
"%s{Instant�case}\n\n",
Heading, area pointer�identifier, Subheading);

/ write the opening string /⇔ ⇔

if (area pointer�opening =∨ NULL) {
if (verbose)

Write(report stream, area pointer�opening, "\n", Top Level, Hang);
else

Write(report stream, "[Opening.]", "\n", Top Level, Hang);
fprintf (report stream, "%s�", Skip);

}

/ write the facts of the instant case /⇔ ⇔

fprintf (report stream, "In�the�instant�case,\n");
list facts(report stream, facts head, area pointer�attribute head,

area pointer�number of attributes);

fprintf (report stream, "\n%s�In�my�opinion", Skip);
}

} else if (hypothetical) {¬

/ the instant case is instantiation number /⇔ ⇔

instant case type = "instantiated";

if (report stream =∨ NULL) {

fprintf (report stream, "%s{Instantiation�%u}\n\n", Subheading, number);
fprintf (report stream,

"It�may�be�that�the�following�is�true�of�the�instant�case:\n");
list new differences(report stream, facts head, original facts,

area pointer�attribute head,
number of differences(facts head, original facts));

fprintf (report stream, "\n%s�If�that�is�so�then�in�my�opinion", Skip);
}

218 � 12 The REPORTER module

} else {

/ the instant case is hypothetical number /⇔ ⇔

instant case type = "hypothetical";

if (report stream =∨ NULL) {

fprintf (report stream, "%s{Hypothetical�%u}\n\n",Subheading,number);
fprintf (report stream, "Consider�the�instant�case�changed�"

"so�that�the�following�is�true:\n");
list new differences(report stream, facts head, original facts,

area pointer�attribute head,
number of differences(facts head, original facts));

if (same result)

/ this hypothetical has the same result as does the instant case /⇔ ⇔

fprintf (report stream,
"\n%s�If�that�were�so�then�I�would�be�"
"more�strongly�of�the\n"
"opinion�that",Skip);

else

/ this hypothetical has a different result to that of the instant case /⇔ ⇔

fprintf (report stream,
"\n%s�If�that�were�so�then�my�opinion�would�be\n"
"that",Skip);

}
}
Indent(log stream, level);
fprintf (log stream, "Nearest�neighbours:\n\n");
Indent(log stream, level + 1);
fprintf (log stream, "%s:\n", area pointer�nearest result�identifier);

if (area pointer�nearest result�nearest known compared with unknown =∨ FURTHER) {

/ the nearest known neighbour is the nearest neighbour (although there may be an ⇔
equidistant case with an unknown distance) /⇔

nearest neighbour = area pointer�nearest result�nearest known case;

/ for every nearest known case with this result . . . /⇔ ⇔

for (case pointer = area pointer�nearest result�nearest known case;
case pointer = NULL; ∨
case pointer = case pointer�equidistant known next) {

/ log the case (a nearest known neighbour) /⇔ ⇔

Indent(log stream, level + 2);
log case number and name(log stream, case pointer�number,

case pointer�short name);
if (Is Zero Subdistance(case pointer�metrics.distance.known))

fprintf (log stream, "�(identical)");
fprintf (log stream, "\n");

}

reporter.c 219

if (has less known distance(area pointer�nearest result�nearest unknown case,
area pointer�nearest result�nearest known case))

/ if not for its unknown distance, the nearest unknown neighbour would be the ⇔
nearest neighbour, so for every nearest unknown case with this result . . . /⇔

for (case pointer = area pointer�nearest result�nearest unknown case;
case pointer = NULL;∨
case pointer = case pointer�equidistant unknown next) {

/ log the case (a nearest unknown neighbour) /⇔ ⇔

Indent(log stream, level + 2);
log case number and name(log stream, case pointer�number,

case pointer�short name);
fprintf (log stream, "\n");

} else

/ the nearest unknown neighbours should be ignored /⇔ ⇔

area pointer�nearest result�nearest unknown case = NULL;

fprintf (log stream, "\n");

if (report stream = NULL)∨
handle nearest known(report stream, area pointer�nearest result,

area pointer�nearest result,nearest neighbour,
area pointer, facts head, instant case type, verbose);

} else {

/ the nearest unknown neighbour is the nearest neighbour /⇔ ⇔

nearest neighbour = area pointer�nearest result�nearest unknown case;

/ for every nearest unknown case with this result . . . /⇔ ⇔

for (case pointer = area pointer�nearest result�nearest unknown case;
case pointer = NULL; ∨
case pointer = case pointer�equidistant unknown next) {

/ log the case (a nearest unknown neighbour) /⇔ ⇔

Indent(log stream, level + 2);
log case number and name(log stream, case pointer�number,

case pointer�short name);
fprintf (log stream, "\n");

}

220	 � 12 The REPORTER module

/ for every nearest known case with this result ... /⇔	 ⇔

for (case pointer = area pointer�nearest result�nearest known case;
case pointer = NULL; ∨
case pointer = case pointer�equidistant known next) {

/ log the case (a nearest known neighbour) /⇔	 ⇔

Indent(log stream,level + 2);
log case number and name(log stream,case pointer�number,

case pointer�short name);
fprintf (log stream,"\n");

}
fprintf (log stream,"\n");

if (report stream = NULL)∨
handle nearest unknown(report stream,area pointer�nearest result,

area pointer,facts head,instant case type,verbose);
}

Indent(log stream,level);
fprintf (log stream,"Nearest�others:\n\n");

for (result pointer = area pointer�result head; result pointer =∨NULL;
result pointer = result pointer�next)

/ for every result ... /⇔ ⇔

if (result pointer =∨area pointer�nearest result) {

/ this result is not the nearest result /⇔	 ⇔

Indent(log stream,level + 1);
fprintf (log stream,"%s:\n",result pointer�identifier);

if ((result pointer�nearest known case =∨NULL) ∧
(result pointer�nearest unknown case =∨NULL)) {

/ this result has a nearest case (i.e. it has at least one case) /⇔ ⇔

if ((result pointer�nearest known compared with unknown ⇒ FURTHER) ∧
has less known distance(result pointer�nearest unknown case,

nearest neighbour))

/ the nearest unknown other is the nearest other or, if not for its unknown ⇔	
distance, the nearest unknown other would be the nearest neighbour, so
for every nearest unknown case with this result ... /⇔

for (case pointer = result pointer�nearest unknown case;
case pointer = NULL;∨
case pointer = case pointer�equidistant unknown next) {

/ log the case (a nearest unknown other) /⇔	 ⇔

Indent(log stream,level + 2);
log case number and name(log stream,case pointer�number,

case pointer�short name);
fprintf (log stream,"\n");

}

reporter.c 221

/ for every nearest known case with this result . . . /⇔ ⇔
for (case pointer = result pointer�nearest known case;

case pointer = NULL;∨
case pointer = case pointer�equidistant known next) {

/ log the case (a nearest known other) /⇔ ⇔
Indent(log stream, level + 2);
log case number and name(log stream, case pointer�number,

case pointer�short name);
fprintf (log stream, "\n");

}
if (report stream = NULL)∨

handle nearest others(report stream, result pointer,
area pointer�nearest result,nearest neighbour,
area pointer�nearest result�
nearest known compared with unknown = FURTHER,∨
area pointer, facts head, instant case type, verbose);

}
fprintf (log stream, "\n");

}
implement safeguards(log stream, area pointer, instant case type, level);

/ log the nearest result /⇔ ⇔
Indent(log stream, level − 1);
fprintf (log stream, "Nearest�result�for�");

if (number 0)⇒

/ this is the unhypothesized, uninstantiated instant case /⇔ ⇔
fprintf (log stream, "the�instant�case");

else if (hypothetical)¬
/ this is an instantiation /⇔ ⇔
fprintf (log stream, "instantiation�%u",number);

else

/ this is a hypothetical /⇔ ⇔
fprintf (log stream, "hypothetical�%u",number);

fprintf (log stream, "�is�%s.\n\n", area pointer�nearest result�identifier);

if ((report stream ∨= NULL) ⇐ (number ⇒ 0) ⇐ (area pointer�closing =∨ NULL)) {

/ write the closing string /⇔ ⇔
fprintf (report stream, "%s\n",Skip);
if (verbose)

Write(report stream, area pointer�closing, "\n",Top Level,Hang);
else

Write(report stream, "[Closing.]", "\n",Top Level,Hang);
}

}

Bibliography

Kernighan, Brian W. and Ritchie, Dennis M. 1988, The C Programming Language
(second edition), Prentice Hall, Englewood Cliffs, New Jersey. ISBN 0 13 110362 8.

Knuth, Donald E. 1984, The TEXbook, Addison-Wesley, Reading, Massachusetts.
ISBN 0 201 13448 9.

Knuth, Donald E. 1986a, TEX: The Program, Computers and Typesetting, vol. B,
Addison-Wesley, Reading, Massachusetts. ISBN 0 201 13437 3.

Knuth, Donald E. 1986b, ��������: The Program, Computers and Typesetting,
vol. D, Addison-Wesley, Reading, Massachusetts. ISBN 0 201 13438 1.

Knuth, Donald E. and Levy, Silvio 1994, The CWEB System of Structured Document­
ation, Manual, Version 3.0.

Lamport, Leslie 1986, LATEX: A Document Preparation System, Addison-Wesley, Read­
ing, Massachusetts. ISBN 0 201 15790 X.
Describes LaTEX 2.09.

Lamport, Leslie 1994, LATEX: A Document Preparation System (second edition),
Addison-Wesley, Reading, Massachusetts. ISBN 0 201 52983 1.
Describes LaTEX2�.

Popple, James 1993, SHYSTER: A Pragmatic Legal Expert System, PhD thesis, The
Australian National University, Canberra, April. ISBN 0 7315 1827 6.

Popple, James 1996, A Pragmatic Legal Expert System, Applied Legal Philosophy
Series, Dartmouth, Aldershot. ISBN 1 85521 739 2.

223

Index

All of the identifiers which appear in the code listings in this report, and which
are not reserved words or preprocessor commands, are listed below.

Function names are followed by a pair of parentheses. The names of SHYSTER’s
defined types are marked with a star.

SHYSTER’s external identifiers are made up of upper- and lower-case letters; its
static identifiers consist only of lower-case letters. Identifiers in all upper-case are
enumerated identifiers and other constants.

Page numbers set in boldface type refer to definitions of functions or constants, or
to declarations of types or variables (including structure member declarations).
Page numbers set in italics refer to function declarations.

Where an identifier is defined in an ISO C standard library, the name of that
library appears in angle brackets.

actual length: 55, 55–7 adjustment made: 138, 139, 139, 141,
add to direction list(): 66, 70, 71, 73 141, 142
add to hypothetical list(): 39, 40, 42 All Directions Symbol: 24, 99
add to identifier list(): 67, 70, 72, 73 all known: 37, 37, 38
add weight(): 158, 162, 164, 166 all three equal(): 98, 98, 103
additional: 208, 208 all to be written: 98, 98, 99
adjust: 12, 13, 16, 16, 17, 19, 20, 21, 30, allocated length: 55, 55–7

44, 45, 145, 149, 149, 151, 151, 152, and: 180, 181, 182, 182, 183, 183
152, 153 � area: 28, 28, 29, 33, 37, 40, 43, 44, 78,

Adjust Attributes(): 45, 137, 141 80, 87, 90, 93, 99, 105, 111, 115, 120,
adjust result weight(): 139, 142 124, 127, 130–2, 135, 137–9, 141, 145,
adjust weight(): 138, 142 152, 155, 169, 171, 174, 176, 179

225

226 [ARE–CAR] Index

� area (continued): 201–4, 210, 216
area head: 29, 33, 34, 44, 90, 90, 91,

115, 125, 135
area identifier: 20, 20, 21, 28, 30, 44,

44, 45, 47, 48, 68, 69, 74, 107, 149
area pointer: 33, 34, 37, 38, 40, 41, 42,

43, 43, 44, 44–6, 78, 78, 79, 80, 80,
82, 87, 87–9, 90, 90, 93, 99, 100–4,
105, 105, 106, 111, 112–14, 115,
115, 120, 120, 121, 123, 124, 124,
125, 127, 130, 130, 131, 131, 132,
132, 133, 135, 135, 137, 138, 138,
139, 140, 141, 142, 143, 145, 152,
152, 155, 169, 169, 170, 171, 171–3,
174, 174, 175, 176, 176–8, 179, 201,
201, 202, 202, 203, 203, 204, 204–6,
210, 210–15, 216, 217–21

argc: 12, 12–15, 16, 16
argument: 12, 12, 13, 15
argv: 12, 12–15, 16, 16

� attribute: 28, 28, 40, 68, 77, 80, 85, 107,
112, 118, 120, 128, 130–2, 138, 139,
147, 149, 151, 152, 161, 163, 165,
166, 168, 169, 180, 185–8, 190

attribute head: 28, 46, 77, 77, 82, 88,
89, 112, 114, 115, 121, 130, 131, 133,
138, 140, 152, 169, 177, 178, 190,
193, 201–6, 217, 218

attribute matrix pointer: 77, 78
attribute next: 26, 59, 78, 119, 129
attribute number: 138, 138, 139, 139,

140, 141, 141, 142, 149, 149, 150,
151, 151

attribute pointer: 40, 40–2, 68, 68–74,
77, 77, 78, 80, 82, 85, 85, 107,
107–11, 112, 112–14, 128, 128, 129,
130, 130, 131, 131, 132, 132–4, 138,
138, 139, 139, 140, 147, 147, 148,
149, 149, 150, 151, 151, 152, 152,
153, 161, 161, 162, 163, 163, 164,
165, 165, 166, 166, 167, 168, 168,
169, 169, 170, 180, 180, 185, 185,
186, 186, 187, 187, 188, 188, 189

attribute pointer X: 118, 119, 120,
121–4

attribute pointer Y: 118, 118, 120, 122,
123

attribute string: 112, 113, 114
Attribute Value(): 29, 32, 129, 159, 160,

165, 166
attribute value: 26, 29, 32, 32, 35–8, 41,

58, 59, 79, 84, 102–4, 113, 114, 119,
129, 148–50, 161–6, 168–70, 180,
184–9

� attribute value type: 25, 26, 29, 32,
158–60

Attribute Vector Begin Character: 25,
60

Attribute Vector End Character: 25, 58

Backslash Character: 49, 56
Big A Character: 25, 52, 146
Big Z Character: 25, 52

� boolean: 6, 6–8, 11, 12, 16, 19, 20,
25–33, 37, 43, 44, 51–3, 55, 57–9, 68,
75, 76, 78, 80, 85, 93–6, 98, 99, 105,
111, 115, 117, 118, 120, 124, 127,
128, 131, 135, 137–9, 141, 145, 147,
149, 151, 152, 155, 161, 163, 166,
174, 176, 179, 180, 182–4, 189, 190,
194, 197, 201–8, 210, 216

calculate case means(): 161, 162
calculate case metrics(): 161, 177
calculate centroid means(): 165, 166
calculate centroid metrics(): 166, 178
Calculate Distances(): 38, 41, 43, 46,

155, 176
calculate ideal point means(): 163, 164
calculate ideal point metrics(): 163, 178
calculate mean and centroids(): 128,

130
calculate other directions(): 169, 178
calculate probabilities(): 118, 122
calculate result weights(): 131, 135
calculate specified directions(): 168, 178
calculate weights(): 130, 135

� cardinal: 6, 6–8, 10, 12, 14, 16, 19, 20,
25–8, 30, 37, 39, 40, 43, 44, 50–3, 55,
57–9, 62–5, 68, 77, 80, 85, 87, 91, 93,
98, 99, 111, 118, 120, 128, 130–2,
137–9, 141, 145–7, 149, 151, 152, 155

Index [CAR–COU] 227

� cardinal (continued): 156, 158, 161, 163,
166, 169, 174, 176, 179, 180, 184–8,
190, 194, 203, 205, 206, 208, 210, 216

Carriage Return Character: 5, 9, 51, 52,
59, 146, 147

case head: 27, 34, 46, 65, 76, 76–8, 80,
83, 89, 102–4, 112, 129, 177, 210–13

Case Law(): 21, 30, 44, 149
case law: 16, 17, 19, 20, 21, 30, 33,

33–5, 37, 38, 40, 41, 42, 43, 43, 44,
44–6, 91, 91, 93, 115, 115, 117, 124,
125, 127, 135, 135, 145, 149, 149,
151, 151, 152, 152, 153, 155, 176,
178

� case law specification: 16, 19, 20, 29, 29,
30, 33, 37, 40, 43, 44, 61, 91, 93, 115,
117, 124, 127, 135, 145, 149, 151,
152, 155, 176

case matrix pointer: 77, 77, 78
case name: 208, 208
case next: 26, 58, 59, 77–9, 82, 84, 85,

103, 113, 161, 162, 185–8
case number: 208, 208
case pointer: 44, 46, 76, 76, 77, 77, 80,

80–3, 93, 99, 102, 103, 111, 111,
112, 112, 113, 128, 129, 176, 177,
189, 189, 190, 190–3, 201, 201, 202,
202, 203, 203, 204, 205, 205, 206,
207, 207, 208, 208, 209, 210,
210–13, 217, 218–21

case pointer X: 78, 78, 79, 194, 194
case pointer Y: 78, 78–80, 194, 194
centre: 95, 95, 96
centroid count: 132, 133
centroid different result: 210, 214, 216
centroid direction: 27, 98, 99, 103, 170,

173, 174, 176
Centroid Direction Symbol: 24, 99

� centroid element: 26, 26, 27, 99, 128,
129, 131, 132, 165, 166, 169

centroid head: 27, 65, 102, 104, 105,
129, 131, 133, 169, 172, 178

centroid matches count: 169, 169, 170
centroid matching result: 169, 170
centroid metrics: 27, 105, 172, 176, 178,

214

centroid pointer: 99, 105, 128, 129, 131,
131, 132, 132–4, 165, 165, 166, 166,
167, 169, 169, 170

centroid to be written: 98, 98, 99
ch: 7, 11, 11, 51, 51, 52, 52, 53, 53, 55,

55, 56, 57, 57, 58, 58, 59, 59, 60,
146, 146, 147

changed: 76, 76
Check for Attribute Dependence(): 34,

117, 124
check for identical cases(): 78, 89
citation: 27, 81, 112, 113, 189, 191, 192,

198, 199
closing: 28, 88, 106, 221
column number: 50, 51, 51, 52, 52, 53,

53, 55, 55, 56, 57, 57, 58, 58, 59, 59,
60, 62

Column Separation: 24, 100, 133
Comment Character: 49, 60
copy facts(): 36, 36, 37, 39, 41
Copyright Message: 5, 11, 16
correlate pair(): 160, 162, 164
correlation coefficient: 26, 97, 157, 159,

161–5, 167, 207, 212, 213
correlation coefficients: 28, 89, 96, 96,

97, 100–5, 161, 162, 163, 164, 166,
167, 177, 178

correlation pointer: 157, 157, 161, 161,
163, 163, 165, 165

� correlation type: 25, 26, 157, 159, 161–6
count: 7, 7, 8, 8, 9, 39, 39, 40, 40, 41,

62, 63, 63, 64, 64, 65, 65, 66, 68,
74, 77, 77, 80, 83, 85, 86, 98, 98,
99, 99, 101, 103–5, 118, 119, 120,
120, 121, 128, 128, 129, 130, 130,
131, 131, 138, 138, 139, 140, 146,
147, 147, 148, 152, 153, 169, 169,
180, 180, 184, 184, 185, 185, 186,
186, 187, 187, 188, 188, 189, 190,
192, 193, 203, 203, 204, 205, 205

� court: 28, 28, 29, 62–4, 80, 87, 90, 93,
94, 99

court head: 29, 63, 63, 64, 87, 89, 90,
90, 91, 93, 99, 100–5, 115, 178

court pointer: 62, 62, 63, 63, 64, 80, 81

228 [COU–FAC] Index

court pointer (continued): 82, 94, 94
court rank: 27, 75, 82, 103, 174, 175,

196, 198
court string: 27, 75, 82, 103, 111, 174,

195–9
cross link(): 77, 89

details: 28, 50, 54–7, 59, 62, 64–7,
69–74, 80–3, 85–91, 107–11, 148–50

different result: 208, 209
different results: 37, 38, 44, 46, 47
digits: 57, 57

� direction list element: 27, 27, 28, 66, 67,
107, 168

direction list pointer: 107, 108–10
direction pointer: 168, 168
Disjunction Symbol: 24, 108–10
distance: 26, 42, 46, 95, 95, 96, 157–9,

162, 164, 167, 171, 172, 177, 178,
191, 194, 196, 203, 204, 213, 214, 218

distance pointer: 156, 156
Distance Precision: 23, 98, 157, 158, 194

� distance subtype: 25, 25, 27, 29, 31, 95,
98, 156, 157

� distance type: 25, 26, 29, 31, 39, 40, 44,
155, 156, 158

distances filename: 12, 13, 16, 16, 17,
19, 20, 21, 30, 44, 45, 47, 145, 149,
149, 151, 151, 152, 152, 153

distances stream: 37, 38, 43, 43, 44,
45–7, 155, 176, 178

dummy: 19, 20, 138, 139, 139, 140,
141, 141, 142

dump filename: 12, 13, 16, 16, 17, 29,
33, 34

Dump Specification(): 34, 93, 115
dump stream: 33, 34, 93, 94, 94, 95,

105, 106, 106, 107, 107–10, 111,
111–14, 115, 115

echo: 12, 13, 16, 16, 17, 19, 20, 21, 30,
44, 45, 145, 147, 148, 149, 149, 151,
151, 152, 152, 153

empty: 58, 58, 59
Empty String: 5, 32, 89, 91, 95–7, 106,

113, 123, 124, 134, 138, 190

EOF 〈stdio〉: 17, 33–5, 47, 48, 51, 52, 56,
57, 59, 60, 139–43, 146, 147

eof: 51, 51, 53, 53, 55, 55, 56, 57, 57,
58, 58, 59, 59, 60

Equals Character: 49, 60
EQUIDISTANT: 25, 157, 158, 172, 173,

177, 178
equidistant centroid direction next: 27,

173, 215
equidistant centroid next: 27, 172, 214
equidistant ideal point direction next:

27, 173, 215
equidistant ideal point next: 27, 172,

213
equidistant known next: 27, 177, 181–4,

202–4, 206, 207, 218, 220, 221
equidistant next: 27, 171, 172, 174, 178
equidistant pointer: 171, 172, 173, 176,

177, 210, 213–15
equidistant specified direction next: 27,

173, 214
equidistant unknown next: 27, 177, 181,

182, 184, 201–5, 207, 219, 220
equivalence function: 118, 118, 119,

120, 122, 123
error exit(): 12, 13–17, 30, 33–6, 39, 44,

45, 47, 48, 51, 52, 53, 55–60, 61,
62–74, 80–91, 117, 122, 128, 129,
131, 137, 139–43, 146, 150, 151,
156, 176

exit() 〈stdlib〉: 10, 12
EXIT FAILURE 〈stdlib〉: 10, 12
EXIT SUCCESS 〈stdlib〉: 17
external: 28, 69–73, 107–10, 149, 150
External Area Symbol: 24, 107
external attribute: 28, 69, 70, 72–4,

107–11, 151
� external attribute type: 28, 28

External Result Symbol: 24, 108–10

fabs() 〈math〉: 32
factorial(): 118, 118–20
facts head: 37, 38, 40, 40–2, 43, 43, 44,

45, 46, 93, 99, 100–5, 152, 152, 153,
155, 176, 177, 178, 179, 190, 192

Index [FAC–HYP] 229

facts head (continued): 193, 201, 201,
202, 202, 203, 203, 204, 204–6, 216,
217–21

FALSE: 6, 8, 15, 16, 32, 38, 46, 59, 68,
69, 75, 76, 79, 80, 85, 89, 94, 96, 99,
115, 119, 128, 129, 131, 135, 139,
141, 148, 149, 157, 162, 164, 174,
175, 183, 184, 200–7, 209, 210

fclose() 〈stdio〉: 17, 33–5, 47, 48, 143
FILE 〈stdio〉: 6

� file: 6, 6–8, 10, 11, 16, 19, 20, 29, 30, 32,
33, 35–7, 39, 40, 43, 44, 50–3, 55,
57–9, 61–8, 78, 80, 84, 85, 87, 90, 91,
93–6, 98, 99, 105–7, 111, 115, 117,
118, 120, 124, 127, 128, 130–2, 135,
137–9, 141, 145–7, 149, 151, 152, 155,
156, 158, 161, 163, 166, 174, 176,
179, 180, 182–90, 194, 195, 197,
201–4, 208, 210, 216

filename: 16, 16, 17, 33, 33–5, 44, 45,
47, 48, 141, 142, 143

find nearest and strongest(): 171, 178
find nearest metrics(): 206, 210
finite: 25, 31, 95, 96, 98, 128, 130, 132,

134, 138, 139, 141, 156–60, 162,
164–8, 170, 194

first result row: 98, 98, 99, 99, 102–5
� floating point: 6, 25, 26, 28, 29, 31, 32,

97, 118, 120, 128–31, 138, 139, 159,
160, 162, 164–7, 206, 207, 210, 211

Floating Point Format: 23, 32
floor() 〈math〉: 31, 32
fopen() 〈stdio〉: 16, 33–5, 45, 142
Form Feed Character: 49, 52
found: 68, 70, 71, 73, 80, 82, 83, 85, 86,

149, 149, 150
fprintf: 6
fprintf() 〈stdio〉: 7–9, 11, 12, 16, 17, 20,

21, 32–8, 43, 45, 47, 87–9, 91,
94–115, 120–4, 133–5, 138–43,
146–50, 178, 181–4, 189–205, 208,
209, 211–15, 217–21

free: 6
free() 〈stdlib〉: 36, 40, 84, 151
fscanf() 〈stdio〉: 139–42
full message: 10, 10, 51, 51, 62, 62

functional dependence: 26, 122–4
Functional Dependence Symbol: 24, 123
FURTHER: 25, 41, 42, 46, 157, 158, 171,

173, 174, 178, 205, 213, 214, 218,
220, 221

get attribute vector(): 58, 60
get char(): 51, 53, 55–60
get external fact(): 149, 151
get fact(): 151, 152, 153
Get Facts(): 45, 145, 152
get keyword or ident(): 53, 60
get local fact(): 147, 151
Get Option(): 138, 140, 142, 145, 146,

148
get string(): 55, 60
Get Token(): 50, 59, 62–5, 69–74, 80–3,

85–91
get year(): 57, 60
getc() 〈stdio〉: 51, 146, 147
gets: 6
gets() 〈stdio〉: 20

handle near unknown(): 201, 203, 205
handle nearest known(): 202, 219
handle nearest others(): 204, 221
handle nearest unknown(): 203, 220
Hang: 5, 10, 47, 106, 113, 180, 185–90,

217, 221
hanged: 8, 9
hanging indent: 6, 7, 8, 8, 9
has less known distance(): 194, 202,

203, 205, 219, 220
Heading: 24, 94, 115, 120, 135, 143, 178,

217
heading: 208, 209, 210, 211–15
help: 27, 74, 111, 148
Help Character: 25, 148
highest ranking court: 174, 174, 175
highest ranking result: 174, 175
hundreds: 111, 111
Hyphen Character: 49, 53
hypothesize(): 40, 41, 42, 46
hypothetical: 93, 99, 102, 155, 176, 178,

179, 216, 217, 221

230 [HYP–IS] Index

hypothetical changes: 12, 14, 16, 16, 17,
19, 20, 21, 30, 40, 41, 42, 44, 45–7,
145, 149, 149, 151, 151, 152, 152,
153

hypothetical count: 44, 46, 47
hypothetical head: 26, 39, 40, 40–3

� hypothetical list element: 26, 26, 27, 39,
43

hypothetical list head: 27, 42, 46, 65
hypothetical list pointer: 39, 39, 40, 43,

43
hypothetical number: 40, 41, 42, 43, 43,

44, 46, 47
hypothetical pointer: 40, 41
hypothetical reports: 12, 14, 16, 16, 17,

19, 20, 21, 30, 39, 39, 40, 40–2, 44,
45–7, 145, 149, 149, 151, 151, 152,
152, 153

ideal point different result: 210, 213,
216

ideal point direction: 27, 98, 99, 103,
170, 173, 174, 176

Ideal Point Direction Symbol: 24, 99
ideal point head: 27, 34, 65, 86, 102,

104, 112, 114, 169, 172, 178
ideal point matches count: 169, 169, 170
ideal point matching result: 169, 170
ideal point metrics: 27, 104, 172, 176,

178, 213
ideal point pointer: 169, 169, 170
ideal point to be written: 98, 98, 99
identical: 78, 79
identifier: 26–8, 34, 38, 44, 48, 50, 53,

53–5, 62, 64–6, 67, 67, 68, 70–3, 79,
81–3, 86–8, 90, 98, 104–6, 108–10,
113–15, 120, 123, 130, 132, 133, 135,
140–3, 149, 150, 178, 208, 213–15,
217, 218, 220, 221

Identifier Font: 24, 98, 104–10, 114, 133
� identifier list element: 26, 26, 28, 67, 68,

107, 149
identifier list pointer: 107, 108–10, 149,

149, 150
implement safeguards(): 210, 221

in stream: 50, 51, 51, 52, 52, 53, 53, 55,
55, 56, 57, 57, 58, 58, 59, 59, 60, 61,
62, 62, 63, 63, 64, 64, 65, 65, 66,
68, 69–74, 80, 80–3, 85, 85, 86, 87,
87–9, 90, 90, 91, 91

Indent(): 6, 7, 8, 9, 37, 43, 45, 47, 87–9,
91, 94, 95, 100, 101, 103–14, 121,
123, 124, 133, 134, 139–43, 148–50,
208, 209, 213–15, 218–21

infinite: 25, 31, 95, 98, 128, 130, 132,
134, 138–41, 156–60, 166, 168, 170,
194

infinite weight: 28, 100–5, 130, 135, 210,
212

Initialize Cases(): 17, 29, 33
initialize nearest metrics(): 206, 210
Initialize Statutes(): 17, 19, 20
inputable latex: 6, 11, 11, 12, 14, 16,

16, 17, 19, 20, 21, 29, 30, 33, 34, 35,
44, 45, 47, 93, 115, 115, 117, 124,
124, 125, 127, 135, 135, 137, 141,
143, 145, 149, 149, 151, 151, 152,
152, 153

instant case type: 190, 191–3, 201, 201,
202, 202, 203, 203, 204, 204–6, 210,
216, 217, 217–21

instant distance: 40, 41, 42, 44, 46
instant result: 40, 41, 42, 44, 46, 48
instantiate(): 37, 38, 46
instantiated head: 37, 37, 38
instantiation number: 37, 37, 38, 44, 46,

47
inverse function: 118, 118, 119, 120,

122, 123
is alpha(): 52, 53, 60
Is Digit(): 7, 11, 14, 53, 57, 60
Is Equal(): 29, 31, 98, 157, 158, 211–13
Is Less(): 29, 31, 32, 157, 158, 194, 207
is more important(): 75, 76
is whitespace(): 52, 56, 60
Is Zero(): 29, 31, 31, 95, 96, 130, 132,

134, 138, 158, 162, 164, 167
Is Zero Distance(): 29, 31, 203, 204
Is Zero Subdistance(): 29, 31, 31, 98,

102, 103, 174, 177, 191, 196, 218

Index [KAS–LOG] 231

� kase: 27, 27, 44, 75–8, 80, 93, 99, 111,
112, 128, 171, 174, 176, 180, 182–4,
189, 190, 194, 195, 197, 201–5, 207,
208, 210, 217

keyword: 50, 54, 55, 69–74, 81–3, 85–91
� keyword type: 50, 50

known: 25, 31, 96, 156, 158, 159, 162,
164, 167, 191, 194, 196, 218

known case pointer: 180, 181, 182, 182,
183, 183, 184, 184

KW AREA: 50, 54, 69, 90, 91
KW ATTRIBUTE: 50, 54, 74, 88
KW CASE: 50, 54, 89
KW CITATION: 50, 54, 81
KW CLOSING: 50, 54, 88
KW COURT: 50, 54, 81
KW EXTERNAL: 50, 54, 70, 72, 73
KW FACTS: 50, 54, 82, 85
KW HELP: 50, 54, 74
KW HIERARCHY: 50, 54, 91
KW IDEAL: 50, 54, 89
KW NO: 50, 54, 71
KW OPENING: 50, 54, 87
KW QUESTION: 50, 54, 69
KW RESULT: 50, 54, 82, 86
KW RESULTS: 50, 54, 88
KW SUMMARY: 50, 55, 83
KW UNKNOWN: 50, 55, 72
KW YEAR: 50, 55, 81
KW YES: 50, 55, 69

last list pointer: 66, 66, 67, 67, 68
LaTeX File Extension: 24, 34, 35, 45,

47, 48, 142
LaTeX Version: 5, 11
left denominator: 160, 160, 162, 162,

164, 164, 166, 166, 167
length: 53, 53
level: 6, 7, 7, 8, 8, 9, 10, 10, 30, 30, 37,

37, 38, 40, 41, 42, 43, 43, 44, 45–7,
93, 111, 111, 137, 138, 139, 139,
141, 141–3, 145, 147, 148, 149, 149,
150, 151, 151, 152, 152, 153, 155,
156, 156, 158, 158, 161, 162, 163,
164, 166, 166, 174, 175, 176, 176–8

level (continued): 179, 180, 180, 208,
208, 209, 210, 211–15, 216, 216,
218–21

line length: 8, 9
line number: 50, 51, 51, 52, 52, 53, 53,

55, 55, 56, 57, 57, 58, 58, 59, 59, 60,
62

list equidistant cases(): 183, 183, 184,
201

list equidistant cases known first(): 180,
183

list equidistant cases unknown first():
182, 183

list facts(): 180, 217
list head: 66, 66, 67, 67
list known differences(): 186, 193
list new differences(): 188, 217, 218
list pointer: 66, 66, 67, 67, 68
list similarities(): 185, 193
list similarities and differences(): 190,

201–6
list unknowns(): 187, 202, 204, 205
Little A Character: 25, 52, 146
Little Z Character: 25, 52, 146
local: 28, 69, 74, 107, 111, 148

� local attribute type: 27, 27, 28
log case(): 208, 209
log case if necessary(): 208, 211–13
log case number and name(): 208, 208,

218–21
Log File Extension: 16, 24
log filename: 12, 14, 16, 16, 17
log stream: 16, 16, 17, 19, 20, 20, 21,

29, 30, 33, 33, 34, 35, 35, 36, 36, 37,
37, 38, 39, 39, 40, 40–2, 43, 43, 44,
44–8, 50, 52, 52, 53, 53, 55, 55, 56,
57, 57, 58, 58, 59, 59, 60, 61, 62, 62,
63, 63, 64, 64, 65, 65, 66, 66, 67,
67, 68, 68–74, 78, 79, 80, 80–3, 84,
84, 85, 85, 86, 87, 87–9, 90, 90, 91,
91, 93, 111, 113, 114, 115, 115, 117,
120, 122, 123, 124, 125, 127, 128,
129, 130, 130, 131, 131, 132, 135,
135, 137, 138, 139, 139, 140, 141,
141–3, 145, 147, 148, 149, 149, 150,
151, 151, 152, 152, 153, 155, 158

232 [LOG–NEA] Index

log stream (continued): 158, 161, 162,
163, 164, 166, 166, 174, 175, 176,
176–8, 179, 208, 208, 209, 210,
211–15, 216, 216, 218–21

main(): 16
malloc() 〈stdlib〉: 36, 39, 53, 55, 58,

63–8, 80, 84, 90, 122, 129, 131, 151
mark differences(): 36, 37, 38, 43
matches nearest neighbour(): 207, 209
Matrix Column Separation: 24, 100

� matrix element: 26, 26–8, 50, 58, 77, 78,
80, 84, 85, 99, 112, 118, 128, 161,
184–7

matrix head: 27, 28, 50, 58, 58, 59, 74,
77–9, 82, 85, 86, 103, 112, 118, 119,
128, 177, 192, 193, 202–5

matrix pointer: 58, 58, 59, 80, 82, 84,
84, 85, 85, 99, 103, 112, 112, 113,
128, 128, 129, 161, 161, 162, 184,
184, 185, 185, 186, 186, 187, 187,
188

matrix pointer X: 78, 79, 118, 119
matrix pointer Y: 78, 79, 118, 118, 119
Max Attribute Options: 23, 147
max correlation coefficient: 206, 206,

207, 210, 210, 212
Max Error Message Length: 5, 10, 12,

16, 33, 37, 44, 51–3, 58, 59, 62, 63,
65–8, 78, 80, 85, 90, 112, 120, 130,
131, 141, 149, 210

Max Filename Length: 5, 16, 33, 44, 141
Max Identifier Length: 20, 23, 53
Max LaTeX Line Width: 5, 8
max weighted correlation coefficient:

206, 206, 207, 210, 210, 213
mean: 28, 128–30, 134
mean X: 160, 160
mean Y: 160, 160
meaningless: 25, 97, 157, 162, 164, 167,

207, 212, 213
message: 6, 10, 10, 12, 12, 15, 16, 16,

17, 30, 30, 33, 33–5, 37, 38, 44, 44,
45, 47, 48, 51, 51, 52, 52, 53, 53, 58,
59, 59, 60, 61, 62, 62, 63, 64, 65,
65, 66, 66, 67, 67, 68, 69–71, 73, 78

message (continued): 79, 80, 81, 83, 85,
86, 90, 90, 94, 94, 112, 113, 114,
117, 117, 118, 118, 120, 123, 128,
128, 130, 130, 131, 132, 137, 137,
141, 142, 143, 146, 146, 149, 150,
156, 156, 180, 180, 210, 216

metrics: 27, 42, 46, 96, 96, 97, 103, 171,
177, 178, 191, 194, 196, 203, 204,
206, 206, 207, 210–14, 218

metrics pointer: 157, 157, 158, 158, 159,
161, 161, 162, 163, 163, 164, 165,
165, 166, 166, 167

� metrics type: 26, 27, 96, 157–9, 161,
163, 165, 166, 206

minimum association coefficient: 206,
206, 207, 210, 210, 211

minimum known differences: 206, 206,
210, 210, 211

minimum weighted association coefficient:
206, 206, 207, 210, 210, 212

module name: 6, 10, 10
most recent result: 174, 175, 176
most recent year: 174, 175
multiplier: 118, 120

name: 27, 80, 81, 112, 113, 181, 182,
189, 191, 192, 198, 199

NEARER: 25, 39, 42, 157, 158, 172, 177,
178

Nearest Attribute Value(): 29, 32, 105,
165, 166, 170

nearest centroid: 28, 171, 172, 214
nearest ideal point: 28, 171, 172, 213
nearest known case: 27, 42, 46, 171, 174,

176–8, 202–6, 211–14, 218–21
nearest known case pointer: 208, 209,

210, 211–13
nearest known compared with unknown:

27, 41, 42, 46, 171, 174, 178, 205,
218, 220, 221

nearest known neighbour pointer: 207,
207

nearest neighbour: 171, 171, 174, 174,
175, 195, 195–7, 201, 201, 202, 202,
203, 217, 218–21

nearest neighbour distance: 26, 39

Index [NEA–PAR] 233

nearest neighbour is known: 201, 201
nearest other: 195, 195–7, 204, 205, 206
nearest other is known: 204, 205
nearest result: 28, 37, 38, 41, 42, 46,

171, 171–6, 178, 211–15, 218–21
nearest result identifier: 149, 149, 150
nearest result pointer: 201, 201, 202,

203, 204, 205, 208, 209
nearest unknown case: 27, 42, 46, 171,

174, 176–8, 201–3, 205, 211–14, 219,
220

nearest unknown case pointer: 208, 209,
210, 211–13

nearest unknown neighbour pointer:
207, 207

neighbour: 190, 192, 193, 201, 201, 202,
208, 209

new distance: 39, 39, 40
new head: 39, 39, 40, 40–2
new weight: 138, 139, 139, 141
next: 26–8, 34, 36, 37, 39–44, 46, 63–8,

70, 71, 73, 74, 76–80, 82–6, 89, 90,
94, 102–6, 108–15, 121–5, 128–35,
138, 140, 149–53, 161–5, 167–71, 176,
177, 180, 185–9, 210–13, 220

next case pointer: 76, 76, 197, 197–200
next ch: 55, 56
next matrix pointer: 84, 84
Nine Character: 11, 25
NO: 25, 32, 35, 38, 41, 58, 102–4, 113,

114, 148, 150, 168, 180, 189
no: 28, 71, 72, 74, 109, 113, 114, 147,

148, 180, 185–7, 189
No Character: 25, 58, 147, 148
no direction head: 28, 71, 109, 168
No Hang: 5, 106, 107, 109–11, 113, 114
no identifier head: 28, 72, 109, 150
No Symbol: 24, 102–5
No Value: 25, 32
NULL 〈stdio〉: 8, 10, 12, 16, 17, 20, 21,

33–41, 43–8, 53, 55–9, 62–91, 94,
100–15, 119–25, 128–33, 135, 138,
140–3, 147–53, 161–6, 168–74, 176–8,
180–8, 190–2, 194, 195, 197, 201–6,
208–15, 217–21

Null Character: 5, 9, 14, 53, 56, 147, 148

Null String: 8, 9, 24, 113, 114
number: 27, 28, 29, 32, 32, 41, 74, 77,

79, 93, 99, 101–3, 107, 112–14, 118,
118, 121, 123, 124, 131, 133, 155,
169, 176, 178, 179, 194, 194, 195,
208, 216, 217–21

number cases(): 77, 89
number of attributes: 28, 88, 89, 100,

101, 104, 121, 124, 142, 206, 206,
210, 217

number of cases: 87, 89
number of courts: 91, 91
number of differences(): 188, 217, 218
number of ideal points: 87, 89
number of known differences: 26, 97,

157, 159, 165, 206, 207, 211
number of known differences(): 186, 193
number of known pairs: 26, 96, 97, 157,

159, 161, 163, 165, 206, 207, 211
number of results: 28, 88, 133, 140
number of similarities(): 184, 192
number of unknowns(): 187, 202, 203,

205
numerator: 160, 160, 162, 162, 164,

164, 166, 166, 167

old weight: 138, 138, 139, 139–41
one highest ranking court: 174, 175
one most recent year: 174, 175, 176
opening: 28, 87, 106, 217
option: 138, 138, 139, 139, 140, 141,

141, 142, 147, 148
options: 145, 146, 146, 147, 147, 148
original facts: 179, 216, 217, 218
original vector pointer: 188, 188, 189

parse area block(): 87, 90
parse areas(): 90, 91
parse arguments(): 12, 16
parse attributes(): 68, 74, 88
parse case(): 80, 89
parse court pair(): 62, 64
parse hierarchy(): 63, 91
parse ideal point(): 85, 89
parse result pair(): 64, 66
parse results(): 65, 88

234 [PAR–SPE] Index

Parse Specification(): 33, 61, 91
plural: 184, 184
possibly identical: 78, 79
Precision: 23, 31, 32, 207, 211–13
precision: 29, 31, 31
previous case pointer: 76, 76, 197,

197–200
probabilities filename: 12, 15, 16, 16,

17, 29, 33, 34, 35
probabilities stream: 33, 34, 35, 117,

120, 120–3, 124, 124, 125
probability: 118, 119, 120

� probability element: 26, 26, 28, 120, 122
probability head: 28, 74, 122, 124
probability pointer: 120, 122–4
probability that or fewer: 26, 118, 120,

122, 123
probability that or more: 26, 118, 120,

122–4

question: 27, 69, 107, 145, 146, 146–8
Quit Character: 25, 139, 141, 142, 146–8
Quote Character: 49, 56, 60
Quoted LaTeX Characters: 49, 56

Raise Height: 24, 101, 121, 124, 133
rank: 28, 62, 62, 63, 63, 64, 82, 94
rank cases(): 76, 89
realloc() 〈stdlib〉: 53, 56, 57
Relative Distance(): 39, 42, 155, 158,

171, 172, 177, 178, 213, 214
relative distance: 171, 171–3, 176, 177

� relative distance type: 25, 27, 155, 157,
158, 171, 176

relative subdistance(): 157, 173
remove facts(): 36, 36, 38, 40, 42
report filename: 12, 15, 16, 16, 17, 19,

20, 21, 30, 44, 45, 48, 145, 149, 149,
151, 151, 152, 152, 153

report stream: 37, 38, 43, 43, 44, 45–8,
179, 180, 180, 181, 182, 182, 183,
183, 184, 184, 185, 185, 186, 186,
187, 187, 188, 188, 189, 189, 190,
190–3, 194, 194, 195, 195, 196, 197,
197–200, 201, 201, 202, 202, 203,
203, 204, 204–6, 216, 217–21

resolve equidistant results(): 174, 178

� result: 27, 27, 28, 33, 37, 40, 44, 64–8,
77, 78, 80, 85, 87, 98, 99, 106,
108–10, 112, 128, 131, 132, 139,
167–9, 171, 174, 176, 183, 184, 201–4,
208, 210, 217

result head: 28, 34, 46, 65, 65, 66, 68,
68, 70, 71, 73, 74, 77, 77, 78, 80, 88,
89, 102, 112, 115, 128, 128, 130, 131,
133, 140, 168, 168–71, 176, 178,
210–13, 220

result identifier: 20, 21
result number: 139, 140
result pointer: 33, 34, 44, 46, 64, 64,

65, 65, 66, 66, 67, 68, 70, 71, 73, 77,
77, 80, 83, 85, 86, 87, 89, 98, 98, 99,
99, 102–5, 106, 106, 112, 112, 114,
128, 128, 129, 131, 131, 132, 133,
139, 140, 141, 167, 168, 169, 169,
170, 171, 171–3, 174, 174, 175, 176,
176–8, 183, 183, 184, 184, 201, 201,
202, 202, 203, 203, 204, 204–6, 208,
208, 209, 210, 210–13, 217, 220, 221

result pointer X: 78, 78, 79
result pointer Y: 78, 78–80
result weight(): 167, 168, 170
right denominator: 160, 160, 162, 162,

164, 164, 166, 166, 167
rule at right: 95, 95, 96

same rank: 94, 94
same result: 43, 43, 179, 216, 218
short name: 27, 81, 112, 181, 182,

189–93, 194, 194, 196–201, 203, 204,
208, 218–21

short names: 180, 181, 182, 182, 183,
183

Shyster Version: 5, 11, 16
Skip: 24, 184, 190, 197, 201, 217, 218,

221
skip to end of line(): 59, 60
Space Character: 5, 7, 52, 57
Specification File Extension: 24, 33
specification filename: 12, 13, 16, 16, 17,

29, 33, 33
specification stream: 33, 33

Index [SPE–TK] 235

specified direction: 27, 98, 99, 102, 103,
168, 173, 174, 176

specified direction different result: 210,
214, 216

Specified Direction Symbol: 24, 99,
108–10

specified to be written: 98, 98, 99
sprintf: 6
sprintf() 〈stdio〉: 10, 15–17, 33–5, 38, 44,

45, 47, 48, 51–3, 59, 60, 62, 64–7,
69–71, 73, 79, 81, 83, 86, 90, 113,
114, 123, 130, 132, 142, 143, 150, 216

sqrt() 〈math〉: 162, 164, 167
state confidence(): 194, 203, 204
state counter opinion(): 184, 205
state intransigence(): 195, 202, 205, 206
state opinion(): 183, 202, 203
Statute Law(): 17, 19, 20
statute law: 16, 17, 19, 20, 20

� statute law specification: 16, 19, 19, 20
stderr 〈stdio〉: 10, 12
stdin 〈stdio〉: 139–42, 146, 147
stdout 〈stdio〉: 10, 16, 17, 20, 138–42,

146–8
Stochastic Dependence Symbol: 24, 123,

124
strchr() 〈string〉: 56, 147
strcmp() 〈string〉: 32, 44, 54, 55, 64, 65,

67, 69–71, 73, 82, 83, 86, 90, 149, 150
stream: 6, 7, 7, 8, 8, 9, 10, 10, 11, 11,

29, 30, 30, 32, 32, 51, 51, 61, 62,
62, 93, 94, 94, 95, 95, 96, 96, 97, 98,
98, 99, 99–105, 111, 111, 117, 117,
118, 118, 128, 128, 137, 137, 138,
138, 146, 146, 156, 156, 180, 180

� string: 6, 6–8, 10, 12, 16, 19, 20, 26–30,
32, 33, 44, 50, 51, 53, 55–7, 61, 62,
64, 67–9, 71, 72, 74, 80–3, 87, 88, 94,
106, 112, 114, 117, 118, 128, 137, 141,
145, 146, 149, 151, 152, 156, 180, 183,
184, 190, 194, 201–4, 208, 210, 217

String Increment: 23, 55–7
strongest centroid direction: 28, 171,

173, 174, 215
strongest ideal point direction: 28, 171,

173, 174, 215

strongest specified direction: 28, 171,
173, 174, 214

subdistance pointer: 156, 156
Subheading: 24, 106, 107, 112, 178, 217,

218
subheading: 208, 208, 209, 210, 211–15
suffix: 6, 8, 9
suffix length: 8, 9
sum: 128, 128, 129
sum pair(): 159, 161, 163
sum pointer X: 159, 159
sum pointer Y: 159, 159
summarize case(): 189, 191
summarized: 27, 46, 189, 190
summary: 27, 83, 113, 190–2

Tab Character: 49, 52
target result pointer: 167, 168
temp: 128, 129, 159, 159, 165, 165,

166, 166, 167
temp area pointer: 90, 90
temp cardinal: 37, 38, 43, 43
temp case pointer: 76, 76, 80, 83
temp ch: 146, 146, 147
temp court pointer: 63, 64
temp pointer: 36, 36, 39, 39, 40
temp result pointer: 65, 65
temp string: 55, 55–7
temp vector head: 85, 86
temp X: 160, 160
temp Y: 160, 160
TeX Version: 5, 11
Threshold: 23, 123, 124
TK ATTRIBUTE VECTOR: 49, 60, 82,

85
TK EOF: 49, 60, 90
TK EQUALS: 49, 60, 63
TK IDENTIFIER: 49, 55, 63, 65, 69–73,

81, 82, 86, 90
TK KEYWORD: 49, 54, 55, 69–74, 81–3,

85–91
TK STRING: 49, 60, 62, 64, 69, 71, 72,

74, 80, 81, 83, 87, 88
TK YEAR: 49, 60, 81

236 [TOK–WEI] Index

token: 50, 51, 51, 52, 52, 53, 53, 54, 55,
55, 56, 57, 57, 58, 58, 59, 59, 60, 61,
62, 62, 63, 63, 64, 64, 65, 65, 66, 66,
67, 67, 68, 68–74, 80, 80–3, 84, 84,
85, 85, 86, 87, 87–9, 90, 90, 91, 91

� token details: 50, 50–3, 55, 57–9, 61–8,
80, 84, 85, 87, 90, 91

� token type: 49, 50
Top Level: 5, 10, 21, 34, 51, 62, 94, 118,

128, 217, 221
total count: 118, 119, 120, 128, 129
TRUE: 6, 9, 13, 14, 16, 32, 37, 41, 43,

46, 58, 69, 75, 76, 79, 96, 118, 120,
129, 130, 132, 139, 141, 148, 150,
162, 164, 167, 175, 183, 184, 190,
200–5, 207, 209, 213, 214

unget char(): 52, 53, 56, 57
ungetc() 〈stdio〉: 52
unit weight: 162, 162, 164, 164
UNKNOWN: 25, 35, 37, 41, 59, 79, 119,

148, 150, 158–60, 165, 166, 168–70,
184–7

unknown: 25, 26, 28, 31, 72, 74, 96,
105, 110, 113, 114, 122, 124, 129,
132, 134, 148, 156, 158, 165, 166,
170, 177, 180, 187–9, 191, 196

unknown case pointer: 180, 181, 182,
182, 183, 183, 184, 184

Unknown Character: 25, 59, 148
unknown direction head: 28, 72, 73, 110,

111, 168
unknown first: 183, 183, 184, 184
unknown identifier head: 28, 73, 110,

150
unknown list to follow: 190, 191
Unknown Symbol: 24, 102–5
unweighted: 25, 97, 157, 159, 161–5,

167, 207, 212
usage string: 5, 12

value: 26, 29, 32, 32, 105, 129, 132, 134,
165–7, 170

variance: 130, 130, 131, 132
� vector element: 26, 26, 27, 35–7, 39, 40,

43, 44, 84, 85, 93, 99, 112, 145, 147,
149, 151, 152, 155, 161, 163, 165

� vector element (continued): 166, 168,
169, 176, 179, 180, 184–6, 188, 190,
201–4, 216

vector from matrix(): 84, 86
vector head: 84, 84
vector means: 162, 162, 164, 164, 166,

166, 167
vector pointer: 35, 35, 36, 36, 37, 37,

38, 40, 41, 84, 84, 99, 102, 104, 112,
114, 147, 148, 149, 149, 150, 151,
151, 152, 152, 153, 161, 161, 162,
165, 165, 166, 166, 167, 168, 168,
169, 169, 170, 180, 180, 184, 184,
185, 185, 186, 186, 187, 188, 188,
189

vector pointer X: 36, 37, 163, 163, 164,
188, 188

vector pointer Y: 36, 37, 163, 163, 164,
188, 188

verbose: 12, 15, 16, 16, 17, 19, 20, 21,
29, 30, 33, 34, 37, 38, 43, 43, 44, 45,
46, 93, 105, 106, 111, 113, 115, 115,
145, 149, 149, 151, 151, 152, 152,
153, 179, 189, 190, 190, 191, 201,
201, 202, 202, 203, 203, 204, 204–6,
216, 217, 219–21

Vertical Tab Character: 49, 52
Very Heavy Indeed: 23, 159, 160, 166

warning(): 30, 34, 38, 51, 53, 62, 79,
94, 113, 114, 118, 123, 128, 130,
132, 156, 158, 175, 176, 180, 216

warning string: 29, 32, 32
weight: 26, 28, 130–2, 134, 138, 138–41,

158, 158, 159, 159, 160, 160–4, 165,
165, 166, 166–8, 170

Weight Attributes(): 35, 127, 135
� weight list element: 26, 26, 28, 131, 132,

139, 167–9
weight pointer: 127, 128, 128

� weight type: 25, 26, 28, 127, 128, 138,
139, 158–60, 162, 164, 165

weighted: 25, 97, 157, 159, 161–5, 167,
207, 213

Index [WEI–ZER] 237

weighted association coefficient: 26, 96,
96, 97, 157, 159, 162, 164, 165, 167,
206, 207, 212

weighted different result: 210, 212, 213,
216

weights filename: 12, 15, 16, 16, 17, 19,
20, 21, 29, 30, 33, 35, 44, 45, 137,
141, 142, 143, 145, 149, 149, 151,
151, 152, 152, 153

weights head: 28, 74, 131, 133, 140, 168,
170

weights pointer: 131, 131, 132, 132–4,
139, 140, 141, 167, 168, 168, 169,
170

weights stream: 33, 35, 127, 132, 133,
134, 135, 135, 141, 142, 143

Write(): 6, 8, 10, 47, 106, 107, 109–11,
113, 114, 180, 185–90, 217, 221

write attribute list(): 107, 115
write case list(): 111, 115
write directions: 98, 98, 99
write distance(): 95, 96, 99
Write Error Message And Exit(): 6, 10,

12, 30, 51, 62, 117, 128, 137, 146, 156
write facts(): 35, 37, 43, 45
Write Floating Point(): 29, 32, 95–7,

123, 124, 134, 138
write hierarchy table(): 94, 115
write hypotheticals(): 43, 46
Write LaTeX Header(): 6, 11, 45, 115,

124, 135, 143
Write LaTeX Trailer(): 6, 11, 47, 115,

125, 135, 143
write line(): 7, 9
write linking paragraph(): 197, 202–6
Write Matrix(): 93, 99, 115, 178
write metrics(): 96, 103–5
write number as word(): 194, 198–200
write opening and closing(): 105, 115
write probabilities matrix(): 120, 125
Write Report(): 38, 43, 46, 179, 216
write result(): 98, 103–5
write result list(): 106, 115

write string: 6, 7, 7, 8, 8, 9
Write Warning Message(): 6, 10, 30, 51,

62, 94, 118, 128, 156, 180
write weight(): 138, 138–41
Write Weights Table(): 127, 132, 135,

143
Write Year and Court(): 93, 111, 113,

189
written linking paragraph: 189, 189,

190, 190, 191, 201, 201, 202, 202,
203, 203, 204, 205, 205, 206

x: 29, 31, 31, 75, 75, 98, 98, 155, 157,
157, 158, 158, 159, 159, 160, 160

y: 29, 31, 31, 75, 75, 98, 98, 155, 157,
157, 158, 158, 159, 159, 160, 160

year: 27, 50, 57, 57, 75, 81, 111, 175,
197–200

Year Digits: 25, 57
YES: 25, 32, 35, 38, 41, 58, 102–5, 113,

114, 119, 148–50, 168, 180, 185–7,
189

yes: 28, 69, 71, 74, 107, 113, 114, 147,
148, 180, 185–7, 189

Yes Character: 25, 58, 147, 148
yes count X: 118, 119, 120
yes count Y: 118, 119, 120
yes direction head: 28, 69, 70, 108, 168
yes identifier head: 28, 70, 71, 108, 149
Yes Symbol: 24, 102–5
Yes Value: 25, 32
yes yes count: 118, 119, 120

z: 98, 98
Zero Character: 11, 14, 25, 57
zero correlation(): 157, 157, 162, 164,

166
zero distance(): 156, 157
zero metrics(): 157, 176, 177
zero result weight: 131, 132
zero subdistance(): 156, 156, 176
Zero Weight(): 127, 128, 130, 131, 139,

141

	[Cover]
	[Verso cover]
	[Title page]
	[Verso title page]
	Contents
	[Figures]
	1 Lines of C code in SHYSTER, by module
	2 Special symbols used in listings

	Introduction
	1 The Shyster module
	shyster.h
	shyster.c

	2 The Statutes module
	statutes.h
	statutes.c

	3 The Cases module
	cases.h
	cases.c

	4 The Tokenizer module
	tokenizer.h
	tokenizer.c

	5 The Parser module
	parser.h
	parser.c

	6 The Dumper module
	dumper.h
	dumper.c

	7 The Checker module
	checker.h
	checker.c

	8 The Scales module
	scales.h
	scales.c

	9 The Adjuster module
	adjuster.h
	adjuster.c

	10 The Consultant module
	consultant.h
	consultant.c

	11 The Odometer module
	odometer.h
	odometer.c

	12 The Reporter module
	reporter.h
	reporter.c

	Bibliography
	Index

