
1

Escaping the Relational Database Paradigm:
Case Management in the High Court of Australia

James Popple

Deputy Registrar, High Court of Australia
Visiting Fellow, Faculty of Engineering and Information Technology, Australian National University

Tony de la Fosse

Deputy Marshal (Administration), High Court of Australia

The Australian Institute of Judicial Administration Inc.
Technology for Justice Conference

Melbourne, Australia

23 March 1998

Introduction

The High Court is the highest court in the Australian judicial system. Its functions
are to interpret and apply the law of Australia; to decide cases of special federal
significance, including challenges to the constitutional validity of statutes; and to
hear appeals from Federal, State and Territory courts.

The Principal Registry of the High Court is in Canberra, in the Court’s own
building within the Parliamentary Triangle. In addition, there are offices of the High
Court Registry in the capital of each State and in the Northern Territory. High Court
officers staff the Canberra, Sydney and Melbourne offices of the Registry; staff of
state and federal courts provide registry counter services in the other six capitals.

The High Court Registry provides traditional registry services to the Court. These
include managing the case flow of the Court, providing information to Justices
concerning matters filed, and providing information to the profession and the public
about the case flow and practice of the Court. Registry staff also respond to counter,
telephone and written enquiries concerning the status and disposition of cases.

An appreciation of the judicial workload of the Court can be gained from the table
in Figure 1, extracted from information in the 1996–97 Annual Report.1 In the 1996/97
year, a total of 1,175 matters were filed in the Court.

In early 1996 the Court decided to replace its case management system. The old
system was developed in 1987 and operated on a Prime mid-range 5340 processor. It
was written in the Prime Information (Pick) language, running under the Primos
operating system. The system was script-based and provided Registry staff with
basic information concerning the status of cases before the Court. By early 1996 the
system had reached the end of its useful life, and the cost of supporting the
proprietary Prime processor was excessive.

2 Escaping the relational database paradigm:

Category Matters
Special leave applications (civil) 268
Special leave applications (criminal) 101
Appeals (civil) 51
Appeals (criminal) 18
Writs of summons 700
Applications for removal 9
Orders nisi and applications referred to Full Court 21
Electoral matters 0
Other 7
Total 1,175

Figure 1: Categories of matters filed in the High Court of Australia in the 1996/97 year.

The Court required a new case management system which:

• facilitated workflow;
• had a graphical user interface;
• was intuitive to use;
• allowed “objects” to be embedded within the database;
• was robust;
• was secure;
• had an open architecture, and was capable of running on a variety of platforms;
• was flexible enough to allow routine changes to its database structure be made

by Registry staff;
• integrated seamlessly with existing desktop applications;
• provided extensive statistical information;
• had advanced reporting and ad-hoc query functionality; and
• (optionally) allowed data at the field level to be published to the Internet.

After preparing formal specifications and reviewing existing case management
systems in a number of other courts, it was decided to construct the new system “in-
house” rather than attempt to modify an existing system. At that time, it was
decided that Lotus Notes might offer an appropriate environment in which to
construct the new system. To confirm that a system developed using Notes could
meet all of the Court’s specifications, a prototype system was constructed. The
prototype was completed in mid-1996, and the Court decided to proceed with the
project utilizing Notes.

Price Waterhouse Urwick was selected to construct the system. Application
development proceeded through 1997 and the final data migration from the old to
the new system was completed on Christmas Day. The new system “went live” for
the first time on the 2 January 1998.

Case management in the High Court of Australia 3

Lotus Notes

The decision to develop the system using Notes involved a departure from a
traditional relational database architecture. Unlike traditional relational database
solutions, emerging groupware2 products such as Notes allow unstructured
information (text, sound, pictures, video, etc.) to be embedded in a database, and
indexed and manipulated in new ways. Workflow functionality can also be
provided, and selected information from the database can be dynamically published
directly to the Internet.

Lotus Notes databases consist of any number of documents. These documents, in
turn, contain fields which can contain, essentially, any kind of electronic information.
A scripting language, LotusScript, allows Notes developers to construct sophisticated
mechanisms for processing the information contained in these databases. Document
templates, or forms, determine how the information in a document is displayed,
allowing information to be hidden for clarity or for security purposes, if required.
Views display hierarchical lists of documents to assist the user in traversing a
database.

All of the data in the documents that make up a database (including any
embedded objects, or attachments, which are part of a field of a document) can be
indexed for full text searching purposes.

Notes has the largest installed base of any groupware product, and provides
considerable functionality. As well as having the flexibility to process any kind of
electronic information, Notes has the ability to access relational and transaction
based data stores. It also provides a client/server message system and discussion
databases. Tools exist which allow large amounts of data to be replicated between
Notes and other database systems. These features allow Notes to act as the central
point of access to distributed organizational data, regardless of its source.

Domino is an addition to Notes that brings the functionality of Notes that allows
content to be dynamically published to the Internet or to an Intranet. Using Domino,
a Notes client on a LAN, or a web browser on the Internet, can securely access the
same Notes database.

System structure

The new case management system comprises several interconnected Notes
databases:

• the cases database holds information about cases in the High Court;
• the representatives database holds information about the representatives of parties

to matters in the Court (firms of solicitors, or self-represented persons);
• the practitioners database is the register of legal practitioners who are entitled (by

virtue of their ability to practice as practitioners in one or more states or
territories) to practice in any federal court, including the High Court;

• the letters database holds correspondence generated by the system;

4 Escaping the relational database paradigm:

Figure 2: An example case document from the cases database, showing some of the fields
available for storing information about cases of this particular type.

• the reports database generates tables suitable for inclusion in the High Court’s
annual report; and

• the private database holds, in a completely distinct database, information about
cases which is accessible to only a few High Court officers (e.g. the real name of
parties to a matter which involves the custody of children, who are known by
their initials).

The interconnectedness of these databases is such that a user of the system need
not be aware of the division of information within the system. Information is passed
between the different databases, and users move between databases by following
links between documents. So, for example, in a document in the cases database, the
user is shown the name and contact details of a party’s legal representatives. That
information is obtained by the cases database from the representatives database. At
the click of a button in the document in the cases database, the system opens a
document in the representatives database allowing information on that firm of
solicitors to be changed. Those changes are reflected in the document in the cases
database when that document is next opened.

Case management in the High Court of Australia 5

Figure 3: An example party document from the cases database.

The cases database

The cases database contains three different kinds of document: cases, parties and
events. There is a case document for every matter, or case, which comes before the
Court (see Figure 2). Each contains information about the case: what type of case it is
(e.g. an appeal, an application for prerogative relief, a writ of summons) what it is
called, what it is about, where and when it was commenced, which officer is
responsible for it, the location of the (paper) file, etc. The fields displayed in a case
document vary depending on the type of the case: only those fields that are relevant
to cases of that type are displayed.

There is a party document for each party to each case (see Figure 3). This
document stores information about who that party is, and who are its legal
representatives. A summary of information about each party to the case is displayed
in the case document and, by clicking a button, the user is taken to the party
document for that case.

Similarly, from each party document there are links into the representatives
database, connecting a party with information about its firm of solicitors (if
represented) or with contact information (if self-represented). There are also links
from party documents into the practitioners database, connecting a party with its
solicitors and barristers.

6 Escaping the relational database paradigm:

Figure 4: An example representative document from the representatives database.

Information about events which have occurred, and which may occur, in a case is
stored in event documents. These events are the essence of the system’s structure,
and are discussed below.

The representatives database

A party’s representative is either a firm of solicitors or her/himself (if self-
represented). The representatives database is a collection of documents with contact
information about these firms and persons (see Figure 4).

The practitioners database

Like the representatives database, the practitioners database is an uncomplicated
collection of documents. Each document contains contact and admission details for a
legal practitioner, and includes links to firm details in the representatives database
where appropriate (see Figure 5).

(Practising certificates and certificates of good conduct, issued to practitioners, are
generated by this database and details of their issue are stored here for future
reference.)

Case management in the High Court of Australia 7

Figure 5: An example practitioner document from the practitioners database.

The letters database

At present, there are 22 standard letters which are generated by the case
management system (see Figure 6). These letters are constructed upon the
occurrence of various events; a letter is produced for each party to a case, as
appropriate, and stored in the letters database. Some of these letters are quite
complicated, and have many variants depending upon the values of different fields
in the event document which generated them, and upon fields in case, party,
representative and practitioner documents.

Once generated, each letter can be individually edited if necessary. Each can be
printed immediately, or stored for printing (with other letters) later. The user can
opt to print each letter to a printer, with a postal or a DX (document exchange)
address as appropriate. An e-mail gateway can be enabled if required. The user can
also opt to send each letter directly to a fax gateway, transmitting the letter by
facsimile without ever having to print it.

Once printed, or faxed, a letter document can be marked as having been processed
and stored in the letters database as a record of correspondence.

8 Escaping the relational database paradigm:

Figure 6: An example letter from the letters database.

The reports database

The High Court’s annual report includes 30 different tables analyzing the judicial
workload over different periods of time. Each of these tables can be generated by the
reports database, which interrogates the cases database for the information it needs.

The private database

Like most documents kept on the paper file associated with each case, most of the
information stored in the case management system is public information.
Information, which is not public, is stored in the “private” (classified) database. So,
for example, if a case involves the custody of children, the parties to that case are
known only by their initials. The appropriate party document is changed so that
only the initials are kept in that document: the party’s real name is stored in a new
document in the private database, with a link between the party document and the
private document (see Figure 7). Only users with a high security level can access the
private database, so only those users can find out the real names of parties who are
known by their initials.

Case management in the High Court of Australia 9

Figure 7: One of the links between the cases database and the private database. In this
(fictitious) example, an alias is about to be created for a party. The party’s full
name and alias will be stored in the private database, and will be accessible (via
the cases database) only by users with a sufficient level of access. After the “OK”
button has been clicked, only the alias will be stored in the cases database.

Storing sensitive information in a separate database, means that users cannot use
Notes’s powerful full text searching capability to circumvent restrictions the system
places upon their access to information. A search for “Smith” would not return a
party document for a person with that family name if that person were to be known
by an alias because the word “Smith” would not occur in that party document (as a
visible or a hidden field). A user could only connect the word “Smith” and that
person’s party document via the private database.

Making Notes (slightly) relational

In a traditional, relational database, information can be thought of as being stored in
tables. Every record (or row) in a table is distinct due to a unique field (or
combination of fields) called the primary key. Every field (or column) has a distinct
name, but the same field can appear in many tables. The requirement of referential
integrity in a relational database ensures that tables within that database are
consistent with each other.

10 Escaping the relational database paradigm:

A Notes database is not a relational database. Much of its flexibility and power
derives from its being freed of the constraints of relational databases. This
distinction is best illustrated by example—an example which demonstrates how case
management system developed for the High Court makes use of Notes’s flexibility,
but also forces Notes to behave like a relational database in some ways.

In every party document in the cases database, information is displayed about that
party’s legal representatives (unless the party is self-represented). In addition to the
name and contact number for the firm of solicitors representing that party, there is
displayed the name and contact number of the solicitor on the record (that is, the
practitioner with carriage of the matter) and that party’s counsel.

If a practitioner’s phone number changes in the practitioners database (because
she/he has moved firms) that change is reflected in the information displayed in the
party document only if the practitioner is that party’s counsel—not if the practitioner
is that party’s solicitor. The system behaves like a relational database (ensuring that
that practitioner’s new phone number appears beside her/his name wherever it is
displayed throughout the system) only if the practitioner is a barrister; Notes’s
freedom from referential integrity means that a different phone number might
appear beside a given practitioner’s name in several party documents.

This asymmetrical treatment of practitioners reflects the difference between
barristers and solicitors. If a barrister changes phone numbers, she/he is still likely
to be the appropriate contact for a given party in a given case. If a solicitor changes
phone numbers, she/he has most likely changed firms; although solicitors sometimes
take their clients with them when they move firms, it is more likely that the
appropriate contact number for that party will remain unchanged because the
solicitor’s replacement (or someone close to that telephone) will have carriage of the
case. (Of course, if a solicitor changes numbers and takes a client with her/him, the
contact number displayed in the party document can be updated.)

Events

For the case management system, an event is something that happens in a case. These
events fall into one or more of three categories:

• a document having been filed (e.g. an application for special leave to appeal);
• correspondence having gone out from the Registry (e.g. a draft index to an

appeal book having been sent to all parties for comment); or
• something having happened (e.g. a case having been heard by the Court).

An event can be shared by more than one case. So, for example, when several
cases are heard together, a single hearing event—a single event document—is linked
to each of those cases.

Case management in the High Court of Australia 11

Figure 8: An example case document, from the cases database, showing the lists of past
and pending events.

An event is either past or pending. A past event has happened; a pending event
may happen. Each case document has two scrollable windows (one for past events,
one for pending) which list all of the events attached to that case. This allows the
user to see, at a glance, the status of the case: what has happened in the case thus far,
and what is expected to happen next (see Figure 8).

An event becomes past when the user confirms that the event has “happened”.
An event becomes pending when it is created by a user (because she/he expects that
it will happen, and wants to indicate that expectation on the system) or it is
automatically created by the system because another event has been set to past
(because the normal sequence of events, for this type of case, suggests that the
pending event will probably follow the event which has just happened).

When the user creates an event for a case, she/he has more than 50 basic events
from which to choose. The system assists the user in this choice by suggesting the
next most likely event from a list giving the normal sequence of events for cases of
that type (see Figure 9). If the required event is not in this first list, the user is able to
choose from a list of all events that can occur in cases of that type. Finally (for
extremely unusual events) the user is able to choose from a canonical list of all
possible events, for all possible case types.

12 Escaping the relational database paradigm:

Figure 9: An example case document, with a dialogue box (brought up because the “Create
Event” button was clicked) listing the events most likely to occur in a case of this
type (an application for special leave to appeal). When the dialogue box is
brought up, the event initially selected is that most likely to occur next, given the
events that have already occurred in this case.

Sometimes the link between two events is stronger than merely the occurrence of
one suggesting the occurrence of another. For example, when an index to an
application book is settled (i.e. when an “index settled” event occurs) the application
book becomes due at a specified time (i.e. an “application book” event is expected).
So, when an “index settled” event is set to past, an “application book” event (with an
appropriate date) is added to the list of pending events for that case (see Figure 10).
As well as clearly indicating the status of the case—that the index has been settled
and the application book is due—the automatic creation of pending events in this
way reduces the amount of data entry required of the user by filling-in as many as
possible of the fields in the pending event when it is created. For example, the likely
date, and filing party of the “application book” event can be filled-in based upon the
values of fields in the “index settled” event when that event is set to past.

The fields that make up a given event document vary depending upon the type of
the event, allowing various information to be stored about different types of event.

Case management in the High Court of Australia 13

Figure 10: A pending “index settled” event document from the cases database. When the
user clicks the “Confirm event has happened” button, the event is set to past and
a new (pending) “application book” event is created with various fields set on
the basis of the values of fields in the “index settled” event.

The use of events means that on-line copies of transcripts, for example, can be
attached to the event document logically associated with that transcript (a “hearing”
event) rather than to the case document itself. Notes’s full text searching mechanism
means that a search for a string which occurs in the transcript attached to a “hearing”
event will return that event, giving the user information about the hearing as well as
ready access to a copy of the transcript itself.

Similarly, if a party or its legal representatives were to create and electronically file
a document in the Court (a process not presently permitted by the High Court Rules)
that document could be automatically attached to an appropriate event document in
the cases database. Like any document in the database, the electronically filed
document (which would not have to be a Notes document) would also be indexed
for Notes’s full text searching.

Views

Several different views of the documents in each database are available. Users can
access different views, depending on their needs. Some of these views restrict the
documents shown (e.g. showing only documents for current cases); some sort the
documents on different bases (e.g. by case type; by responsible officer); and some do
both (e.g. showing only current cases, sorted by case type). Still other views display
documents of different types, grouped in a logical fashion (e.g. events, grouped by
case; parties grouped by case). A view can list documents (see Figure 11), or display
them in a calendar format (see Figure 12).

Of course, none of these views changes the way in which the data is stored in each
database. They merely provide different views of the same data, allowing the user to
choose the most convenient view for her/his purposes.

14 Escaping the relational database paradigm:

Figure 11: An example view of documents in the cases database: current cases, grouped by
their originating Registry.3

Security

Notes has sophisticated built-in security mechanisms. In addition (as discussed
above) information held in the case management system which is not public is kept
in the private database, reducing the sensitivity of the other databases.

The system requires that each user be assigned to one or more of seven groups.
Each group of users has specific “access rights” assigned to them. A user’s level of
access determines what information she/he can read, and what information she/he
can change, right down to the field level.

For example, the composition of the Court which will hear a particular matter will
be displayed only to a user with a certain level of access when she/he views the
relevant pending “hearing” event. However, when viewing that same event, a user
with a lower level of access will see only the number of justices who will hear the
matter, and not their names.

The main users of the case management system are Registry staff, though other
Court staff and Justices have access. Generally, only Registry staff have levels of
access sufficient to change information, whilst other users can only read information.

Case management in the High Court of Australia 15

Figure 12: An example calendar view of documents in the cases database: summaries of
argument. The red up-arrows indicate past events; the blue down-arrow
indicates a pending event (in this example, an overdue one).

Ad hoc queries

In addition to the generation of statistical tables for the High Court’s annual report
(discussed above), the system allows the use of Notes’s full text searching capabilities
to generate ad hoc queries. Whilst packages exist which allow powerful statistical
analysis of Notes databases the Registry’s needs have to date been met by Notes’s
simple search interface which allows the user to construct, and save for future use,
complex search queries.

Delivering Notes to the desktop

The Court faced two significant problems in delivering the new system to the
desktops of users.

• Operating System Requirements. The latest version of Notes (version 4.6) requires
the client to be installed on a 32-bit operating system. The Court Registry had a
predominance of Windows 3.11 terminals and old 486 PCs. If Notes were to be
run on each desktop using traditional client/server architecture, all of the PCs
used in the Registry would have to be replaced with new equipment.

16 Escaping the relational database paradigm:

0

10

20

30

40

50

1 8 15 20 25 30

Number of Background WinFrame Clients

%
 D

eg
ra

da
tio

n
of

 C
lie

nt
 R

es
po

ns
iv

en
es

s

Figure 13: Performance degradation using WinFrame with 1–30 concurrent users.4

• Remote Access Performance. Judges and Court staff who are geographically
isolated from the Court’s Local Area Network (LAN) faced delays in accessing
applications that run in traditional client/server architecture. (This problem is
not unique to Notes, and affects many applications that use a client/server
architecture.)

Emerging thin-client technologies such as Citrix WinFrame offer a solution to both
of these problems. Thin-client technologies allow remotely based staff to access
bandwidth-hungry applications over both standard telephone lines and ISDN
connections at performance levels that would normally only be achieved over a
10 Mb per second network connection. Additionally, these technologies allow
applications that require a 32-bit operating system to be accessed from desktops
using older 16-bit operating systems.

The bandwidth problem stems from the fact that client server applications
perform much of their processing of data on the client workstation rather than on the
server. This normally requires the installation of a large and complex client. Often
the sheer quantity of data passing between the client and server across either an
ISDN or dial-up modem connection results in sluggish performance.

Citrix WinFrame allows a user located in another State to take control of a virtual
computer inside a separate dedicated server located in another location, which will
then complete all data processing locally. Importantly WinFrame allows all data
processing to be completed locally. The latest version of the software operates by
slicing the application’s logic, sending only interface information across the
connection. Once operational, any 16- or 32-bit application can be accessed remotely
at performance levels comparable to those obtained within a 10baseT LAN using
structured cabling.

Case management in the High Court of Australia 17

Remote Winframe client achieving the
same performance levels as LAN
based client

Microcom
DeskPorte FAST

28.8 Modem

Microcom
DeskPorte FAST

28.8 Modem

Analog Telephone Lines

LAN WinFrame Clients
Up to 15 Winframe concurrent sessions (expandable)

10 Mbit/s Ethernet LAN

WinFrame Server (15 sessions)
running CD ROMs

Pentium 180 MHz
64 MB RAM

Figure 14: The High Court’s WinFrame LAN/remote access configuration.

Whilst a number of different remote control software products were available
(such as NTrigue), Citrix WinFrame5 running on a modest Windows NT server6 was
eventually selected as the preferred solution for the High Court.

The WinFrame licensing arrangements chosen by the Court allow up to 15
concurrent sessions on the Citrix server. There is no significant degradation in
response times with this many concurrent users (see Figure 13). Additional user
licences can be added at a later stage if necessary; a large Canberra-based
organization7 recently commissioned a 300 concurrent user Citrix WinFrame server.

The High Court’s WinFrame LAN/remote access configuration is shown in
Figure 14. A user can access the server from an ISDN, dial-in modem or Internet
connection using an Intel-based PC (286 or above), Macintosh or Unix workstation.
Once connected by modem, 32-bit applications can be run at nearly the same speed
as would be achieved if the user were actually connected to the LAN.

One of the benefits of the WinFrame solution is greatly simplified administration
of applications. In a traditional client/server architecture, the arrival of a new
application or application upgrade would generally demand the immediate
reinstallation of a new client on all users’ PCs. This is a time-consuming exercise,
particularly if the client is physically located in another State. As the Citrix
WinFrame solution requires the various application clients to be installed on a single
processor, applications, software updates and patches can be rapidly and easily
deployed.

Utilizing WinFrame, users can still cut and paste text between local and remote
applications, and local printing is still possible. WinFrame allows each user to have a
unique profile recorded on the server. User access, screens and printing options can
be fully customized. In effect, a “virtual” PC desktop is configured for each user.

One notable advantage of a WinFrame solution is a significant extension of the life
of existing hardware. For example, an organization with a large collection of old
286/386 PCs, and heritage cabling infrastructure, could install a single Citrix
WinFrame Pentium server and simulate the processing speed of the Pentium
computer across all WinFrame client workstations. Users could access the latest 32-
bit resource-hungry applications from their existing 286 PCs, without memory or
processor upgrades.

18 Escaping the relational database paradigm:

Publishing selected information to the Internet

The next phase of the project, pending approval from the Court, will involve making
selected information from the case management system available over the Internet to
any person with a web browser. If implemented, this will doubtless prove of great
utility to parties and interested members of the public, and should reduce the
number of routine enquiries about the status of various cases presently dealt with by
Registry staff.

Web access to this information would be made possible by regularly copying, to a
proxy server, selected information from the databases which make up the case
management system. A Notes Domino server on that proxy server would respond to
connections from web browsers by dynamically producing hypertext markup
language (HTML) documents.

One of the strengths of Notes is its ability to publish nominated objects from
within a Notes database dynamically to the Internet. Unlike many competing
relational database products electronic publishing to the Internet can be done
seamlessly and without the need for third party products. Notes allows Internet
publication down to individual database field level.

Subject to the Court’s approval, the Notes server would be programmed to
replicate nominated fields to a second web server on an hourly basis during business
hours. The use of a proxy server to publish information to the Internet would
guarantee the integrity of the primary Notes server: no direct connection to the
server from the Internet would be possible. At worst, a hacker could gain access only
to the proxy server. Any fields on this server that had been damaged or changed
would be restored at the next replication.

Whilst the decision whether to proceed with this phase of the project is yet to be
taken, Notes does include native web publishing and server replication facilities.
The ability to publish selected fields, including embedded objects, is an added
advantage.

Conclusion

The High Court’s new case management system has been operational since the
beginning of 1998. The system has already assisted workflow and improved
management of cases within the Registry. It has also greatly simplified the
generation of sophisticated correspondence, which has increased the amount of
information regularly supplied to parties explaining the status of cases and the
procedures that have to be followed.

Case management in the High Court of Australia 19

The system contains data, migrated from the old case management system, for
cases filed in the Court as early as 1980. The cases database has been developed to
allow three types of case record: full (for cases active since the new case management
system became operational), partial (with a restricted set of possible events, for cases
whose details were stored in the old case management system), and minimal (for
cases for which the Court has no on-line information). These minimal case records
could be used to store limited information on every case filed in the Court since its
establishment in 1903 for which there is not already information stored in a full or
partial case record. In this way, the new case management system could encompass
the Court’s entire past.

Of course, the system has also been designed with regard to the Court’s future.
The decision to develop the new system using Notes was significantly motivated by
a belief that Notes will be available, and will continue to be improved, for many
years to come, and that people skilled in the maintenance and improvement of Notes
applications will continue to be widespread. Notes has rich functionality and, to the
extent possible in today’s rapidly changing world, provides a “future-proof”
environment within which to operate a powerful and complex case management
system.

1 Available on-line at <http://www.highcourt.gov.au/AREP96-7.HTM>.
2 “Groupware” is the IT infrastructure that allows work groups to work as a unit toward

common goals. It is premised on the assumption that productivity can be improved in an
environment of frictionless information exchange and seamless communication
throughout the entire organization.

3 In this figure, the blue diamonds indicate full cases; the green diamonds indicate partial
cases. The difference between full, partial and minimal cases is explained in the
“Conclusion” section of this paper.

4 The Tolly Group (1996).
5 WinFrame has been developed as an authorized extension to Microsoft Windows NT,

under license from Microsoft. See <http://www.citrix.com>.
6 An Intel Pentium Pro 180 MHz, with 64 Mb RAM.
7 The Australian Federal Police.

http://www.highcourt.gov.au/
http://www.citrix.com/

	[Figures]
	1 Categories of matters filed
	2 Example case document
	3 Example party document
	4 Example representative document
	5 Example practitioner document
	6 Example letter
	7 Link between the cases and private databases
	8 Example case document showing lists of past and pending events
	9 Example case document with dialogue box listing likely events
	10 Pending event document
	11 Example view
	12 Example calendar view
	13 Performance degradation using WinFrame
	14 WinFrame LAN/remote access configuration

	Introduction
	Lotus Notes
	System structure
	The cases database
	The representatives database
	The practitioners database
	The letters database
	The reports database
	The private database

	Making Notes (slightly) relational
	Events
	Views
	Security
	Ad hoc queries
	Delivering Notes to the desktop
	Publishing selected information to the Internet
	Conclusion

