Object-Oriented Design Patterns in Fortran
90/95

Viktor K. Decyk® and Henry J. Gardner®

& Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099 USA

and
Department of Physics and Astronomy
University of California, Los Angeles
Los Angeles, CA 90095-1547 USA
email: decyk@physics.ucla.edu

b Department of Computer Science, College of Engineering and Computer Science,
Australian National University, Canberra, ACT 0200, Australia
email: Henry. Gardner@anu.edu.au

Abstract

This paper discusses the concept, application, and usefulness of software design pat-
terns for scientific programming in Fortran 90/95. An example from the discipline of
object-oriented design patterns, that of a game based on navigation through a maze,
is used to describe how some important patterns can be implemented in Fortran
90/95 and how the progressive introduction of design patterns can usefully restruc-
ture Fortran software as it evolves. This example is complemented by a discussion
of how design patterns have been used in a real-life simulation of Particle-in-Cell
plasma physics. The following patterns are mentioned in this paper: Factory, Strat-
egy, Template, Abstract Factory and Facade.

Key words:
object-oriented, design patterns, Fortran
PACS: 89.80, 07.05.Wr

Preprint submitted to Elsevier Science 6 July 2007

1 Introduction

As computers become more powerful, there is a growing desire to make scien-
tific codes increasingly complex. In the computer science literature, researchers
have discovered that similar solutions to programming complex problems have
appeared in different contexts, and they have called such solutions design pat-
terns. The seminal work by Gamma, Helm, Johnson, and Vlissides [1], identi-
fied 23 recurring design patterns. These patterns are intended to be language
independent, and, indeed, a number of texts have appeared discussing their
application to C++, Java, and other languages (see, for example, [2,3]). But
the treatment of design patterns in Fortran 90/95 is quite lacking by compar-
ison to these languages.

Fortran 90/95 is a non-object-oriented language but it contains a language
construct, the module, which can be used to emulate “classes”. The resulting
“object-based” style of programming has been recommended by some authors
[4-8] as a way of enhancing the encapsulation and reuse of Fortran 90/95 code
“components”.

In the following two sections we review the basic concepts behind object-based
programming in Fortran 90/95 and introduce the running example of the maze
game. This example is used to illustrate the implementation of three important
design patterns, Template, Strategy and Factory, in Secs. 4 and 5. The way in
which a design patterns approach has been used to construct a framework for
particle-in-cell simulation is described in Sec. 6 and the paper concludes with

Sec. 7.

2 Classes in Fortran 90/95

In the following sections we will illustrate how some object-oriented (OO)
design patterns can be usefully emulated in Fortran 90/95. As a vehicle for
this discussion, we will use a running example which has been adapted from
[1]. This is a game program which creates a two-dimensional maze through
which a player needs to navigate in order to find an exit. The various versions
of the software that we discuss will be available through the CPC software
archive.

In our discussions, we will refer to listings of sample Fortran 90/95 code as well
as to some simple diagrams. The first example, in Listing 1 and Fig. 1, is an
abridged Fortran 90/95 class which models the concept of a room in our maze.
The class defines a type, Room, which contains an integer field for the room
number and an array of logical variables which determine whether this room

has walls in the north, south, east and west directions. The class also defines 4
constants to denote these directions of the compass. It has a constructor which
initializes the values of variables inside the Room type (and which would also
allocate space for allocatable variables). Good object-oriented programming
practice recommends that data be kept private and that public procedures be
written to access or modify that data: the fields of the Room type are private
but the procedures used to access or to modify those fields are public. (In
performance-critical procedures, direct data access is sometimes favored for
reasons of program optimization. We will comment further on information
hiding between classes throughout this paper.)

The emulation of classes in Fortran 90/95 has been discussed in [4-8]. Classes
are meant to define a type together with procedures which operate on data of
that type. Objects of that type are constructed using constructor procedures
and destructed (deallocated), if necessary, by destructor procedures. In For-
tran 90/95, the selection of the correct procedure for a given type needs to be
made by passing an object of the required type. By convention, we give this
object the name this and make it the first argument in the argument list.

Listing 1. A class describing a room in a maze
module Room_class
implicit none

public
! Room — definition
type Room
private
I room number
integer :: roomNumber
I walls in directions NSEW?
logical , dimension(4) :: walls

end type Room

I parameters

integer , parameter :: NORTH=1, SOUTH=2, EAST=3, WEST=4
contains

! — constructor

subroutine new_Room(this, roomNumber, N, S, E, W)
type(Room) :: this
integer , intent(in) :: roomNumber

logical , intent(in) :: N, S, E, W
! set the values of the Room type

(Call random_number to find walls.

Either a wall is read in as true or

a coin is flipped to see if it will be true
or false.)

end subroutine new_Room

function getRoomNumber(this) result(res)
! accessor procedure for private data

type(Room) :: this
integer :: res
res = this%roomnumber

end function getRoomNumber

function getWalls(this) result(wallList)
! accessor procedure for private data

type(Room), intent(in) :: this
logical , dimension(4) :: wallList
! return current list

wallList = this%walls

end function getWalls
end module Room_class

Software engineers use diagrammatic notations, the most famous of which
is the Unified Modeling Language [9]. We shall use a simplified version of
one of these UML notations, called class diagrams, to illustrate the various
versions of our maze game and the use of patterns in it. UML represents classes
as boxes with compartments which list the type components, other module
data (for example, static data and constants) and module procedures. A UML
diagram for the Room_class might look like Fig. 1.

Room

—roomNumber:integer
—walls:logical(4)
+NORTH,SOUTH
+EAST,WEST

+new_Room()

+getRoomNumber()
+getWalls()

Fig. 1. UML diagram for the Room_class. Private data and methods are flagged
with “”. Public data and methods are flagged with “+”. Static data and constants
are underlined. Where shown, data types are given after the variable names. Full
argument lists for procedures are not shown.

3 The Maze Game: mazevl

In this section we present our simple programming example as if it were a
larger software development project.

Imagine that you set out to write a Fortran 90/95 program for a maze game.
Good software engineering practice would dictate that you would start this
exercise by defining the requirements of your system, that you would follow
this phase by an analysis of these requirements before moving on to design
and, subsequently, implement and test your software. Standard software pro-
cess methodologies recognize that there are feedback loops between (at least
adjacent) development phases.

The requirements for our system might read as follows:

(1) The program will create two-dimensional maze structures of arbitrary
row and column dimensions.

(2) Each room in the maze can have between zero and four walls. Movement
between rooms can be made providing it is unimpeded by a wall.

(3) A player starts in a particular room and needs to find the exit room.

(4) A player can quit at any time, and lose the game, or can find the exit
room and win the game.

An analysis of these requirements would flesh out important issues and it
could specify a sequence of steps which the program would walk through from
the perspective of a player (called a use case). As an example, Requirement
4 raises the issue of whether it is always possible for a player to find the exit
room or whether this might be blocked by walls. Another example is that
Requirement 2 raises the issue of whether walls can be one-way (when moving
from room i to room j but not when moving from room j to room 1i).

Procedural software design can start by taking the requirements and use cases
and expressing these as pseudocode or flow-charts and progressively refining
these models until coding of the algorithms can begin. Object-oriented design
starts by considering the data-structures needed in the software and then
attempts to locate the procedures in the same classes as the data on which
they operate. There are two major data entities in our example which can be
candidates for classes:

e the maze
e rooms in the maze

Our requirements also mention another data entity, walls. But walls are most
properly modelled as fields within rooms rather than classes in their own right.
Discovering classes and allocating entities to fields within these classes is part

of the art of object-oriented software analysis and design.

In the previous section, we gave an example of how a room class would look
for this simple maze example. The Maze_class would contain a data-structure
made up of rooms and it would enable movement from room to room. Rooms
might be labeled by numbers. One of the rooms might be the “exit” room and
another might be the “current” room in a particular game. This class may
also return the array of walls about the current room. Figure 2 shows a UML
diagram for such a Maze_class module.

Maze

—sizeW,sizeH:integer
—arrMaze:Room(:,:),pointer
—currentRoom,exitRoom:integer

—arrRow,arrCol:integer

+new_Maze()

+del_Maze()

+moveRoom()
+getCurrentRoomNumber():integer

+getExitRoomNumber():integer
+getCurrentWalls():1ogical(4)

Fig. 2. UML diagram for the Maze_class.

An interesting question is where to locate the game logic of our program. The
procedures making up the game logic will handle user input and oversee the
movement between rooms during the course of the game. It is most clearly
associated with the data entity of the maze, but it could be decoupled from
the Maze_class and placed in a MazeGame_class of its own. We will assume
that our designer has chosen to do this, and we will subsequently show that
this was a wise decision to make. Although it involves some extra typing at
this stage, we have chosen to define a MazeGame type which contains only a
Maze data element. The UML for this class is shown in Fig. 3.

MazeGame

—Maze

+new_MazeGame()
+del_MazeGame()
+gamelLoop()

Fig. 3. UML diagram for the MazeGame_class.

Our system just needs one other class to initialize the maze and to repeatedly
call the game loop until a termination condition is obtained. This client class
is the main program shown in Listing 2.

Listing 2. The main program for the maze game

program MazeGame_Test

use MazeGame _class

implicit none

type(MazeGame) :: game

logical :: bEndGame=.false., bWonGame

call new_MazeGame(game, 3, 4)

do while (bEndGame .eqv. .false.)

bEndGame = gameloop (game, bWonGame)

end do

print x, 'Game Over!’

if (bWonGame .eqv. .true.) then

print %, 'Congratulations, you won!’
else

print x, 'Bad luck, you lost!’
end if

call del_MazeGame(game)
end program MazeGame_Test

A full UML class diagram for the system has open arrows between classes
which are associated with one another by virtue of having a Fortran 90/95 use
statement. For example, our main program MazeGame _Test, has an association
with MazeGame_class which can be seen from Fig. 4 (as well as from Listing
2). The “multiplicity indicators” on the classes Maze_class and Room_class
represent how many objects of one class type on one side of the association
arrow will be associated with one object of the type on the other side. By
default, no multiplicity indicators implies a one-to-one association.

The implication of an association chain, such as that shown between Maze-
Game_Test and Room in Fig. 4, is that all public entities of Room are available
to MazeGame_Test. However, the global access modifiers, and the information-
hiding and renaming facilities provided by the Fortran 90/95 use statement,
complicate this picture. For example the two statements near the beginning
of MazeGame_class:

private
public :: MazeGame, new_MazeGame, del_MazeGame, gameloop

imply that only those public entities which are explicitly listed in this state-
ment can be accessed from MazeGame Test. Specifically, the only access by
MazeGame_Test to entities in Maze_class and Room_class are those controlled
by MazeGame_class; by-passing MazeGame _class to directly manipulate mazes

and rooms is not allowed. We have represented this “privatizing” by placing
the symbol “#” (traditionally the “protected” symbol in UML) above the
association link of Fig. 4. Fortran 90/95 is very good at privatizing things
and this form of information hiding is a very good thing for object-oriented
software.

MazeGame_Test

¥

MazeGame Maze

Room

Fig. 4. Class diagram for mazev1.

4 The Template and Strategy Patterns: mazev2

With all of the attention to encapsulation and information hiding described in
the previous section, our mazev1 program represents good software engineering
practice for the implementation of a single maze game. Design patterns will
now be introduced for the first time to enable the program structure to be
generalized to support different maze games.

Suppose we wanted to have several options for an algorithm such as the game
logic of the maze game. The Template design pattern is used to encapsulate
the invariant part of a particular algorithm in one class and varying parts
in other classes. The Strategy design pattern controls the switching between
the varying parts of the algorithm. These two patterns are commonly used
together.

In the maze game the game logic can been split into two parts. The first part
contains the main loop which solicits input from a user (“Where do you want to
go?”) and determines the status of the game (whether the exit room has been
found). The actual movement within the maze might vary with the particular
game logic and this can be encapsulated in a procedure, nextMove (), which
is implemented in different ways in different classes. In this version of the

software, we illustrate this by implementing the original game logic as well as
a new game which does not have walls about the rooms. The Template pattern
is illustrated in Fig. 5 which shows the splitting of the game loop between the
original MazeGame_class and the new StandardGameComponent_class.

MazeGame

—Maze
—gameType

+gameLoop()

$

StandardGameComponent

+nextMove()

Fig. 5. Illustration of a Template pattern for the maze game logic.

We implement the switching between different movement strategies in the
MazeGame_class. A flag, gameType, needs to be added to the MazeGame type
and a case statement needs to be added to the gameLoop () procedure to select
the appropriate version of nextMove (). The flag will be passed through from
the main program in a modified MazeGame _class constructor. Associations
will be maintained between MazeGame _class and the two component classes
(StandardGameComponent_class and NoWallsGameComponent_class). Bec-
ause the procedure name nextMove is used in each of the component classes,
the Fortran 90/95 renaming facility is used to avoid name conflicts within
MazeGame_class. Listing 3 shows part of the revised MazeGame _class mod-
ule. The possible values of the gameType flag are represented as the constants
STANDARD and NOWALLS which are defined in the mazev2 specification state-
ments. These new constants have been made public but all of the other entities
in the program are still hidden from the main program as before.

Figure 6 shows the class diagram for this version of the program. In comparison
with mazev1, the old MazeGame_class has been articulated into a hierarchy
of classes.

In this restructuring to mazev2 almost all of the changes have been local-
ized to MazeGame_class and the game component classes. Room_class and
Maze_class are identical to those in mazev1. Only the call to the constructor
needed to be modified in the main MazeGame_Test program.

MazeGame_Test

Maze

MazeGame Room

v v

StandardGame— NoWallsGame—
Component

Component

Fig. 6. Class diagram for mazev2.

Listing 3. The first part of the revised MazeGame class in mazev2
module MazeGame_class
use StandardGameComponent_class, standardNextMove => nextMove
use NoWallsGameComponent_class, nowallsNextMove => nextMove
implicit none
private
public :: MazeGame, new_MazeGame, del_MazeGame, gameloop
public :: STANDARD, NOWALLS
type MazeGame

private
type(Maze) :: maze
integer :: gameType

end type MazeGame
integer , parameter :: STANDARD=0,NOWALLS=1
contains

function gameloop(this, wonGame) result(res)

select case(this%gameType)
case (STANDARD)

call standardNextMove (this%maze, iDirection)
case (NOWALLS)

call nowallsNextMove(this%maze,iDirection)
end select

end function gameloop
end module MazeGame_class

The idea of restructuring code to split up algorithms into varying and non-

10

varying parts is already familiar to Fortran programmers. In traditional For-
tran programming, this restructuring is carried out using multiple functions
and subroutines but without any additional structure. The Template and
Strategy pattern locate the varying and non-varying parts of algorithms in
identifiable classes. This makes the restructuring more formal and evident
and helps in reasoning about programming complex algorithms.

5 A Factory Pattern: mazev3

We now consider a case where the maze game is further extended to have
rooms in the maze with different properties. Specifically, we will introduce a
TreasureRoom_class module which will contain a number of treasures which
must be collected by entering each room. A treasure room is a room with
additional properties and in object-oriented languages this relationship would
be modeled by inheritance.

Factory patterns encapsulate the creation of objects within an inheritance
hierarchy. In the case of our new version of the maze game, the software will
need to be able to create mazes made up of ordinary rooms or of “treasure
rooms”. We achieve this by defining a GenericRoom_class class which has
associations to both the conventional Room_class and the new Treasure-
Room_class and which creates the correct object according to the value of a
flag.

Before describing the details of the Factory pattern itself, we now take the
opportunity to discuss how to emulate inheritance in Fortran 90/95.

5.1 A new method of emulating inheritance in Fortran 90/95

Inheritance specializes the behavior of a class by adding data and functionality
to it. A parent class in an inheritance chain might model a general concept
like a Room. A child of this class might add entities such as data representing
treasure and procedures to add, retrieve and count this treasure.

Fortran 90/95 can emulate inheritance by delegating from the child class to its
parent. There are several ways in which this delegation can be implemented,
but they all share characteristics of a simple “structural” [1] design pattern:
a client class calls procedures on one class, the child, in blissful ignorance of
the fact that a number of these calls are being delegated up to the parent.

A detailed discussion of earlier models for implementing inheritance in Fortran
90/95 can be found in [4,8]. The present implementation, found in mazev3,

11

is shown in Fig. 7. The extra information needed to specialize a Room to
a TreasureRoom has been placed in a new ExtendRoom class module and
this class provides methods to read and write this private data. We made
three changes to the Room_class. The first was to add a new element to
the Room type which is a pointer reference to ExtendRoom_class. The second
was to allocate this pointer in the newRoom() constructor. The third was to
add accessor procedures to obtain pointers to the ExtendRoom object and to
the Room object itself. In TreasureRoom_class we have a constructor which
delegates to Room_class and to ExtendRoom_class. The association between
Room_class and ExtendRoom_class only uses the ExtendRoom type so that
exisiting code in Room_class is ignorant of the details of ExtendRoom.

This implementation of inheritance differs from a simple-minded association
between TreasureRoom_class and Room_class in order to let objects of both
classes have the same type (Room) while preserving privacy. If the types were
different, then the names of every function which is shared would need to be
rewritten to explicitly delegate to the parent class.

ExtendRoom

—treasureCount:integer

+getTreasureCount()

+setTreasureCount()

s

Room

—extra:ExtendRoom,pointer

+getRoomPtr:Room,pointer
HgetRoomExtra:extra,pointer

TreasureRoom

+newTreasureRoom()

Fig. 7. Implementation of an inheritance hierarchy which includes TreasureRoom
and Room.

12

5.2 Factory pattern implementation

Our Factory pattern is encapsulated in a new module GenericRoom_class
which maintains associations with both Room_class and TreasureRoom_class.
Objects of either of these classes are created in the GenericRoom _class con-
structor according to the value of a flag. No other coding is needed in Generic-
Room_class apart from defining constants which represent legal values of the
room type flag. The situation is shown in Fig. 8.

ExtendRoom

Room TreasureRoom

GenericRoom

+PLAIN_ROOM
+TREASURE_ROOM

+newGenericRoom()

Fig. 8. The GenericRoom_class maintains links to both room classes and creates
one or the other according to the value of a flag.

5.8 Modifications to the rest of the maze game

The Maze_class needs to be modified slightly to link to GenericRoom_class,
rather than directly to Room_class. It also needs to include a procedure
to count treasure over the entire maze. There is one additional procedure,
collectTreasure(), which can be called to remove a treasure item from a
particular room. This procedure delegates to setTreasureCount () in Extend-
Room_class.

A further modification to Maze_class is that its default access modifier has
now been made private. Only a well-defined set of procedures and types has
been denoted public. This is an additional “privatization” to that introduced
by the MazeGame_class in Sec. 3. It makes the room subsystem in our program
safe from modification by the other, game, subsystem. These privatizations of

13

subsystems are like the Facade design pattern which will be discussed in Sec. 6.
A class diagram for the modified MazeGame class is shown in Fig. 9.

GenericRoom

Maze

+getTreasureTotal
+collectTreasure

Fig. 9. The revised Maze _class used in version 3 of the maze game.

The other modifications to the software are quite straightforward. There is
a new game component, TreasureGameComponent_class, whose nextMove ()
procedure is identical to that in StandardGameComponent_class with the ad-
dition of one line to collect treasure. We have also created one additional
function in each game component to test for specialized game termination
conditions. (The treasure game needs to test for the presence of treasure be-
fore terminating a game and, in general, future game logics may have their own
termination conditions.) The MazeGame_class needs to have a new constant
for the new game type and the case statement to select the next move needs to
have an additional option. The test for termination in MazeGame_class now
calls the termination test functions within the game components. Finally, the
MazeGame_class constructor selects the room type based on the game type
and passes a room type flag down to the Maze_class constructor. No signifi-
cant changes are needed for the main MazeGameTest_class. A class diagram
for the complete system is shown in Fig. 11.

6 Design Patterns in a Particle In Cell simulation framework

In this section, we briefly describe how the design patterns introduced above
have been applied in a living scientific simulation code. The application is a
framework for Particle in Cell (PIC) plasma simulation. PIC plasma codes
integrate the self-consistent equations of motion of a large number of charged
particles in electromagnetic fields. Their basic structure is to calculate the
density of charge, and possibly current, on a fixed grid (by calling “deposit”
procedures). Maxwell’s equations, or a subset thereof, are solved on this grid

14

MazeGame_Test #
Maze
1
#
MazeGame GenericRoom
TreasureRoom
StandardGame— NoWallsGame— TreasureGame—
Component Component Component
\ \ \

Room

ExtendRoom

Fig. 10. Class diagram for mazev3.

and the forces on all particles are calculated using Newton’s Law and the
Lorentz force. Particle motion is advanced (by calling “push” procedures) and
new densities are calculated at the next time step. It is a common practice for
scientists to build a set of PIC models to study plasma phenomena at differing
levels of complexity: an electrostatic code models particles that respond to
Coulomb forces only; electromagnetic codes deal with particles which interact
to both electric and magnetic fields; relativistic codes deal with relativistic
effects; multispecies codes can model the interactions of several different types
of ions as well as electrons in the plasmas. Many of these PIC code types have
a need to treat differing boundary conditions and differing solution techniques
for the electromagnetic fields. A framework for PIC models of this type needs
to allow all of these submodels to be generated and for common code to be
maintained and reused between them.

The starting point for our PIC framework is a simple Fortran 90/95 class
for electrostatic particles which respond to Coulomb forces only. The type
declaration describes properties of particles, but it does not actually contain
the particle position and velocity data which are stored elsewhere in normal
Fortran arrays and are passed to the class in the subroutine argument “part”.
The type stores a particle’s charge, qm, charge to mass ratio, qbm, and the
number of particles of that type, npp. Most of the subroutines included in this
module provide a simple interface to legacy code:

Listing 4. Module for the electrostatic particles class in the PIC framework
module es_particles_class
type particles

integer :: npp

real :: gm, gbm

15

end type

contains

subroutine new_es_particles(this ,gm,gbm)
! "this ' is of type ’'particles’
I set this%npp, this%qm, this%qgbm

subroutine initialize_es_particles(this, part,idimp,hnpp)
! initialize particle positions and velocities
(includes calls to legacy code)

subroutine charge_deposit(this,part,q)
! deposit particle charge onto mesh
(includes calls to legacy code)

subroutine es_push(this, part,fxyz,hdt)
! advance particles in time from forces
(includes calls to legacy code)

subroutine particle_manager(this,h part)
! handle boundary conditions

(includes calls to legacy code)

end module es_particles_class

Electromagnetic particles respond to both electric and magnetic forces. Their
push procedure is different, and there needs to be a current deposit in addi-
tion to the charge deposit. But the initialization, charge deposit, and particle
manager are the same as in the electrostatic class and they can be reused. An
electromagnetic particle class is created by association with the electrostatic
class in a structural pattern as a substitute for inheritance:

Listing 5. Module for the electromagnetic particles class.
module em_particles_class
use es_particles_class
contains
subroutine em_current_deposit(this, part,cu,dt)
! deposit particle current onto mesh

subroutine em_push(this , part,fxyz,h bxyz, dt)
! advance particles in time from electromagnetic forces

end module em _particles_class

A Factory pattern can be used to create particles of the the correct type. In
common with the Factory pattern described in Sec. 5, a “generic particle” class
is constructed which creates storage for particles of the relevant type and which

16

then ensures that the correct type of push and current deposit subroutines are
chosen for a given particle type. The implementation details of this pattern
are described in reference [10], but we note that this implementation uses the
conventional modeling of inheritance in Fortran 90/95 rather than the trick
described in Sec. 5.

In the PIC framework, is it now necessary to create the correct type of fields
corresponding to the particles: electrostatic particles need to solve a Poisson
equation to obtain an electric field but electromagnetic particles need to solve
the full Maxwell equations for both the electric and magnetic fields. This
variation of fields can also be encapsulated in a field factory. The creation of
the correct type of field and for the correct type of particle is an example
of the coordination of families of factory patterns which is an example of an
Abstract Factory design pattern.

The Strategy pattern is used in the PIC framework to encapsulate algorithms
for solving for the electromagnetic fields under different boundary conditions
(periodic, Dirichlet and Neumann). The implementation of this pattern is
discussed further in reference [11].

Finally, the Facade pattern has been used to wrap up a subsystem of the PIC
framework for modelling the plasma response to particles which are acceler-
ated in a particle accelerator. The idea of the Facade pattern is to provide a
simplified, high level interface to a subsystem. If one starts with a well-written
Fortran 90/95 code, it is possible to turn it into a subsystem with a facade
in three steps: Instead of a main program, one creates a module, and the
declaration section becomes static data in that module. Active code in the
old main program gets wrapped up into constructors and procedures. Finally,
some objects of data will need to be passed between the new main program
and the old subsystem. These data types will need to be defined inside the
subsystem and the code needed to pass the data will need to be written.

7 Conclusions

In this paper we have discussed how some object-oriented design patterns
can usefully be incorporated into software written in Fortran 90/95. The de-
sign patterns that we have mentioned, Factory, Strategy, Template, Abstract
Factory and Facade, are all concerned with the encapsulation and reuse of sub-
systems of Fortran 90/95 programs. If there is one message from this paper,
it is that Fortran 90/95 programmers can profitably direct their design focus
to encapsulation at the subsystem level. As long as subsystems are clearly
encapsulated through privatization, then minor, object-oriented “sins”, such
as letting some data entities be public inside a subsystem, can be tolerated if

17

they are needed for performance reasons.

Other work on design patterns in Fortran 90/95 has recently appeared in the
literature. In addition to those references by ourselves discussed in the body
of this paper, we note that [12,13] contain a discussion of implementation de-
tails of some patterns in Fortran 90/95. Clearly there is much scope for this
discussion to continue as the scientific programming community engages in
better software engineering practice to manage growing complexity. Similarly,
the advent of Fortran 2003 will encourage scientific programmers to consider
how patterns might best be incorporated into that language. We note that
well-written Fortran 90/95 code which uses design patterns to encapsulate
subsystems should be more easily reused a mixed Fortran 2003/90/95 frame-
work than one which is not.

8 Acknowledgements

The authors express their appreciation for a reviewer’s recommendation that
the maze game would make a good study for illustrating design patterns in
Fortran 90/95. They also greatly appreciate the work done by Joseph Antony
on the maze game simulation software.

Viktor Decyk’s work was performed, in part, at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with NASA. Decyk was
also partly supported by the US Department of Energy, under the SCIDAC
program.

Henry Gardner wishes to acknowledge the support of the Education, Outreach
and Training program of the Australian Partnership for Advanced Computing

(APAQC).

References

[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements
of Reusable Object Oriented Software, Addison-Wesley, 1995, ISBN 0201633612.

[2] Shalloway, A. and Trott, J. R., Design Patterns Ezplained, Addison-Wesley,
2002, ISBN 0201715945.

[3] Metsker, S. J., Design Patterns Java Workbook, Addison-Wesley, 2002, ISBN
0201743973.

[4] Decyk, V. K., Norton, C. D., and Szymanski, B. K., Scientific Programming 6
(1997) 363.

18

[5] Gray, M. G. and Roberts, R. M., Computers in Physics 11 (1997) 355.

[6] Machiels, L. and Deville, M. O., ACM Transactions on Mathematical Software
23 (1997) 32.

[7] Decyk, V. K., Norton, C. D., and Szymanski, B. K., Computer Physics
Communications 115 (1998) 9.

[8] Decyk, V. K. and Norton, C. D., Scientific Programming 12 (2004) 45.

[9] Object Management Group, (2007), http://www.uml.org/. Last accessed 28
March 2007.

[10] Decyk, V. K. and Gardner, H. J., A factory pattern in fortran 95, in Proceedings
of the International Conference on Computational Science, ICCS2007, in
Lecture Notes in Computer Science, pages 576-583, Springer Verlag, 2007.

[11] Norton, C. D., Decyk, V. K., Szymanski, B. K., and Gardner, H., Scientific
Programming 14 (2007), In press.

[12] Markus, A., SIGPLAN Fortran Forum 25 (2006) 13.

[13] Gardner, H. J. and Decyk, V. K., SIGPLAN Fortran Forum 25 (2006) 8.

19

