ELECTROMAGNETISM SUMMARY

➤ Transmission line transformers
➤ Skin depth
➤ Matching circuits
➤ Noise
➤ Link Budgets
Rules for Transmission Line Transformers

➤ Always wind the windings in multifilar fashion.

➤ Can use either toroidal or linear or whatever shaped ferrites. Toroidal ferrites are usually the best.

➤ The dot on the transformer diagram points to one end of the wires at one end of the transformer.

➤ The voltage drop across all windings must be same. **WHY?**

➤ The currents in the same direction in the windings must sum to zero. **WHY?**

➤ Respects phase delays along the transmission line when doing its sums?
Transmission Line Transformer 180° Hybrid

![Diagram of a transmission line transformer with 180° Hybrid configuration. The diagram shows two input voltages V1 and V2, two input currents I1 and I2, and two output voltages V+ and V-. The transformer has a central V symbol indicating the phase shift.]
The Linear Phase Shift Combiner.
The Magic-T (Wilkinson)
The Magic-T Analysis

\[I_2 + I_4 + I_3 = 0 \]
\[\text{but} \ I_3 = 0 \]

\[I_1 + I_4 = I_2 = -I_4 \Rightarrow I_4 = -I_1/2 \]

\[V/2 = I_2 Z_L \Rightarrow \frac{V}{I_2} = 2Z_L \Rightarrow \frac{V}{I_1} = Z_L = 75\Omega \]

\[V/2 = -I_4 Z_L \Rightarrow \frac{V}{I_4} = -2Z_L \Rightarrow \frac{V}{I_2} = 2Z_L \]
Skin Depth

Electromagnetic waves, j, E, B, ... only penetrate a distance δ into a metal. Check the magnitude of δ in lab and web exercises.

The wave equation for metals simplifies to...

$$\frac{\partial^2 E_y(z)}{\partial z^2} = j\omega \sigma \mu_0 E_y(z)$$

The solution...

$$E_y(z) = \exp\left(-\frac{1}{\delta} + j \frac{\delta}{j} z\right)$$

where δ the **skin depth** is given by...

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}}$$
Skin Depth

Incident electric field, E

Metal-air interface

$j(0) = \sigma E(0)$

Metal

δ

z
Impedance per Square

- By integrating the formula for the electric field inside a metal,
 \[E_y(z) = \exp\left(-\frac{1 + \frac{j}{\delta}}{z} \right) \]
 to find the current per unit width \(I_s \) we defined the impedance per square as
 \[Z_s = \frac{E_y(0)}{I_s} = \frac{1 + \frac{j}{\sigma\delta}}{\sigma} = \sqrt{\frac{\pi\mu_0 f}{\sigma}} (1 + j) \]

- For a wire of radius, \(a \), length \(L \) and circumference \(2\pi a \), we obtain
 \[Z = \frac{L}{2\pi a} Z_s \]
Use Q to Design Matching Networks

➤ The formula for \(Q \) depends on whether we imagine the \(R \) to be in series with or in parallel with the reactance. Just an issue of convenience.

➤ \(R \) in series with \(X \), then \(Q = \frac{X}{R_s} \)

➤ \(R \) in parallel with \(X \), then \(Q = \frac{R_p}{X} \)

➤ Notice that \(R_s \) is not the same as \(R_p \) but they are related (an exercise).
Analysis of T and Pi Networks

➤ Choose Q.

➤ Consider the T or Pi network to be a pair of back to back L networks.

➤ The virtual resistance in a Pi network must be smaller than those on the source and load.
PI Matching Example

Match 75Ω source to the 1 kΩ / 100 nH load with a Q of 10.
PI Matching Example

Split into two halves with R_V in the middle.
Example Noise Power Calculation.

➤ Consider the following receiver chain which is typical of that in a wireless receiver.

➤ The noise figure of the mixer and filter (both passive devices with the given insertion losses) is 11dB.

➤ Find the overall noise figure of the receiver
Example Noise Power Calculation. (Contd)

➤ The noise factor of the amplifier is 2 ($=10\log_{10}(3)$).

➤ The noise figure of the mixer and filter is 11 dB and so the noise factor is 12.6 ($=10\log_{10}(11)$). Thus,

\[F_{TOT} = F_1 + \frac{F_2 - 1}{G_1} = 2 + \frac{12.6 - 1}{10} = 3.16. \]

➤ Finally we obtain

\[F_{TOT} = 10\log_{10}(3.16) = 5\, dB. \]
Receiver Noise Calculations

➤ The thermal noise added to a signal when passing through a system is given by,

\[N_o = k_B T B \]

➤ In dBm

\[N_o = 10 \log_{10} \left(\frac{k_B T B}{1 \times 10^{-3}} \right) \]

➤ If \(N_o \) and the NF are known, then the required input signal level for a given output SNR can be calculated,

\[S_i = NF + N_o + SNR_o \]
Specifying Phase Noise

➤ Common to specify phase noise as,

\[S_c(f) = \frac{S_N(\Delta f)/2}{\text{Carrier Power}} \]

where \(S_N(f) = V_o^2 S_{\Delta \theta}(f) \) and the carrier power = \(V_o^2 \).

➤ The factor of 2 dividing the P.S.D. arises because we only consider one sideband in the definition of \(S_c(f) \).

➤ \(S_c(f) \) has the units of dBc/Hz.

\[S_c(f) = S_{\Delta \theta}(f)/2 : \quad S_c(f)(\text{dB}) = 10 \log_{10} (S_c(f)) \]
Specifying Phase Noise

Figure 4. Single-sideband phase noise representation
Spectrum Analyser Revision

➤ LO Sweep generator is mixed with incoming signal
➤ IF signal is passed through two filters.
➤ *IF filter*: Resolution Bandwidth.
➤ *DC filter*: Video Bandwidth.
➤ Thus be wary when measuring the phase noise with a spectrum analyser.
Effective Aperture of a Dish Antenna

- Imagine a planar light beam illuminating a round hole on a black screen at normal incidence.

- The Rayleigh condition for a diffraction limited aperture describes the angle of expansion of the beam on exit from the hole.

\[\Delta \theta_B = \frac{4 \lambda}{\pi d} \]

where \(\lambda \) is the wavelength, \(\Delta \theta_B \) is the opening angle of the beam and \(d \) is the diameter of the aperture.
Antenna Aperture: Useful to compute received power.

- The effective aperture of any antenna is given by:

\[A_e = \frac{G\lambda^2}{4\pi} \]

where \(\lambda \) is the wavelength, \(G \) is the antenna gain.

- Effective aperture only depends on antenna gain and the wavelength of operation.

- E.G. A low gain monopole tuned to 3 MHz has an aperture

\[A_e = \frac{G\lambda^2}{4\pi} \approx \frac{100^2}{4\pi} = 800m^2 \]
Antenna Aperture

If an antenna is oriented for maximum signal and correctly tuned to the load, it will intercept a maximum signal power equal to:

\[P = S_i A_e \]

where \(S_i \) is the incident power flux density (Watts per \(m^2 \)) and \(A_e \) is the antenna effective aperture.

An antenna absorbs half this power into a matched load and reradiates (scatters) the other half.
The Friis Transmission Formula

- We know how to calculate the power radiated by an antenna, the maximum flux density of an antenna from its gain and the power intercepted by an antenna from A_e

- If we assume that the antennas are aligned for maximum transmission and reception, then in free space,

$$P_r = \frac{G_t A_r P_t}{4\pi r^2}$$

where A_r is the receiving aperture of the receiving antenna.

- Since $A_r = G_r \lambda^2 / (4\pi)$

$$P_r = G_t G_r P_t \left[\frac{\lambda}{4\pi r} \right]^2$$
Antennas (Cont.): Antenna Noise

♣ Random noise comes from the sky: E.G. The cosmic radiation background at $3^\circ K$.

♣ Black body radiation \Rightarrow it must be there at finite temperature even in a vacuum!

♣ This noise can be picked up by antennas. In a receiver it adds to the noise of the receiver electronics.

♣ PSD = $N_o = KT$ where $K = 1.38 \times 10^{-23} J/^{\circ}K$ and T is the absolute temperature. Thus the noise power is

$$P_n = kTB$$

♣ Such noise picked up by the antenna leads to the definition of antenna temperature.
Link Budget: Friis transmission

The Friis transmission formula describes e.m. propagation between line of sight antennas:

\[P_r = P_t \frac{G_1 G_2 \lambda^2}{(4\pi r)^2} \]

where \(P_t \) and \(P_r \) are the transmit and received powers, \(G(= G_1, G_2) \) is the gains of the antennas at each end of the link, \(r \) is the distance between the antennas and \(\lambda \) the wavelength.

Note in particular the dB with respect to 1 mW.. dBm

\[P(dBm) = 10 \log_{10} \frac{P(Watts)}{.001} \]
Link Budgets

Consider communications between a dish and an arbitrary antenna each matched to a pair of signal generators.