Project ENGN4545

- Project description
- Frequency Synthesisers
- Introduction to the Radiofrequency chips used in the projects.
- Filters
ENGN4545 Project

➤ Two projects. A choice that depends on your skills and preferences.

➤ Transceiver 1. Based on the LM1496 balanced modulator/demodulator. Discrete design. Lots of practice in applying theory learnt in the course.

➤ Transceiver 2. Based on integrated solutions: AD9874 (IF digitising subsystem) as the receiver and the AD9854 (Direct digital synthesiser) as the transmitter.

➤ Work in pairs, collaborate as a class.
Transceiver 1

Preselector

T/R switch

PA

Amplifier

LNA

Down-converter
LM1496

LO
MC145170

Up-converter
LM1496
Transceiver 1

- Discrete. Design each sub-circuit.
- Easy to understand all the details and modify the design.
- Very flexible because it is a low IF down/up converter. Can handle any modulation scheme by leaving it to the baseband processor.
- Cheaper and faster in a one off.
- Easiest for those who understand the theoretical aspects of the course well and are good at RF design.
- Can do a breadboard dead-bug prototype to get working before you do the PCB. (Advisable)
Transceiver 2

Diagram showing the components of a transceiver, including a preselector, T/R switch, PA amplifier, down-converter AD9874, and up-converter AD9854.
Transceiver 2

- Integrated. Plug-n-play.
- Need to read the datasheets for the AD9854 and AD9874 carefully.
- Also very flexible for the same reason.
- Cheaper and faster in the long run.
- Ideal for those who wish to experience state of the art and are good at RF PCB design and soldering.
- Cannot do a breadboard dead-bug prototype. Start with a PCB layout. I.E. start EAGLE (or whatever) design immediately.
Frequency Synthesisers

➤ Provide the source of the Radiofrequency carrier signals
➤ Two types of circuit used...
➤ Phase lock loop (PLL) and voltage controlled oscillator (VCO)
➤ Direct Digital Synthesiser (DDS).
Phase Lock Loop and Voltage Controlled Oscillator
Phase Lock Loop and Voltage Controlled Oscillator

- Phase detector
- Prescalers to allow frequency tuning: \(Frequency = \left(\frac{N}{R} \right) F_{CLOCK} \)
- Thus \(\frac{F_{CLOCK}}{R} \) controls the frequency resolution.
- Loop filter to control the dynamic response
- Voltage controlled oscillator (VCO). For radiofrequency devices this is normally to be provided by the user as the quality output signal depend mostly on the VCO.
The MC145170

- Operates up to 185 MHz. But no internal VCO.
- R Counter Division Range: 1 and 5 to 32,767
- N Counter Division Range: 40 to 65,535
- Special patented bit grabbing interface to set the PLL parameters such as N and R prescaler values.
The MC145170

MC145170–2
BLOCK DIAGRAM

This device contains 4,600 active transistors.
The Voltage Controlled Oscillator

Back to back varactors

\[R_{b1} = 33k\Omega \]

\[V_{cc} \]

\[R_c = 2k\Omega \]

\[10nF \]

\[C_1 = 47pF \]

\[R_{b2} = 33k\Omega \]

\[R_L = 50\Omega \]

\[R_1 = 43\Omega \]

\[C_2 = 82pF \]

\[R_2 = 33k\Omega \]
The Direct Digital Synthesiser

➤ A totally digital device that produces a sine wave!
The Direct Digital Synthesiser

- An address counter fed by a clock cyclically reads out addresses into a sine wave look up table.
- The bytes in the L.U.T. represent a sine wave stored in memory.
- The L.U.T. is connected to a register that couples the L.U.T. address contents to a DAC, thus producing an analogue sine wave.
The Direct Digital Synthesiser

➤ A fundamental problem with this architecture is that the frequency cannot be varied except by changing the clock frequency.

➤ Consider a system in which the **delta phase or phase increment** is stored as well and added to a phase accumulator.

➤ This is the **numerically controlled oscillator** hardware.

➤ The frequency at the output of the DDS is given by

\[f = \frac{(M f_{\text{CLOCK}})}{2^M}. \]

➤ This gives a highly resolvable frequency. 48 bits of resolution is common in the L.U.T.

➤ However, the L.U.T. readout now occurs every M address locations, and so the DDS is subject to **Nyquist’s** theorem.

➤ Thus the highest frequency is half the clock frequency!
The Direct Digital Synthesiser

A FLEXIBLE DDS SYSTEM

\[f_o = \frac{M \cdot f_c}{2^n} \]

DAC

LPF

SERIAL OR BYTE LOAD REGISTER

PARALLEL DELTA PHASE REGISTER M

PHASE ACCUMULATOR

PHASE REGISTER

CLOCK

SIN ROM LOOKUP TABLE

FREQUENCY CONTROL

\(n = 24-32 \text{ BITS} \)
The Direct Digital Synthesiser

![Diagram of frequency response with labels: LPF, f₀ (30 MHz), IMAGE, fᵣ (100 MHz), dB scale, and frequency (MHz) scale.]
AD9854 Direct Digital Synthesiser

FUNCTIONAL BLOCK DIAGRAM
Perspective on Frequency Synthesisers

➤ PLL and VCOs are the way to produce up to microwave electromagnetic waves. This is because some form of tuning element is available to vary the frequency of the VCO which may work in the microwave range.

➤ For frequencies above about 10 GHz special semiconductor devices e.g. **Impatt sources** and **Gunn diodes** become available for low power applications. However these still need some frequency stabilisation.

➤ DDS and NCOs are complete digital solutions and are therefore restricted to frequencies.

➤ Often we need to embed a frequency synthesiser in digital hardware. In one limit this could be a sine wave generator in MATLAB when timing is non critical.

➤ For time critical applications we can use a **Coordinate Rotating Digital Computer (CORDIC)**.
AD9874 IF Digitising Subsystem

FUNCTIONAL BLOCK DIAGRAM

-16dB
LNA

MXOP MXON IF2P IF2N GCP GCN

DAC AGC

Σ-Δ ADC

DECIMATION FILTER

FORMATTING/SSI

AD9874

DOUTA DOUTB FS CLKOUT

IFIN

FREF

LO SYN

CLK SYN

VOLTAGE REFERENCE

CONTROL LOGIC

SPI

LO VCO AND LOOP FILTER

LOOP FILTER

IOUTH LOP LON IOUTH CLKP CLKN VREFP VCM VREFN PC PD PE SYNCB
Filters

Two different types...

➤ **LC ladder** Low pass (High pass).

➤ **LC ladder** Bandpass for large bandwidth.

➤ **Helical or LC resonator** for narrow band bandpass.
Low pass design

➤ Note the component numbering scheme.
➤ Normalisation as follows...

\[C'_{k} = \frac{C_{k}}{2\pi f_{3dB}Z_{o}} \quad L'_{k} = \frac{Z_{o}L_{k}}{2\pi f_{3dB}} \]

\[Z_{o} = R_{S} = R_{L} \]
```MATLAB
% Number of frequencies
Nvals = 200;

% Specify the number of nodes
N = 5;

% Initialise all y's
y = zeros(N, N-1, Nvals);
fc = 50e6;
Z0 = 50;

frequency = linspace(1e5, 1000e6, Nvals);
omega = 2*pi*frequency;

% Specify an L and C in SI units
C1 = 1.262; L2 = 1.520; C3 = 2.239; L4 = 1.680; C5 = 2.239; L6 = 1.520; C7 = 1.262;

L1 = C1 / (2*pi*fc) / Z0
L2 = Z0*L2 / (2*pi*fc)
L3 = C3 / (2*pi*fc) / Z0
L4 = Z0*L4 / (2*pi*fc)
L5 = C5 / (2*pi*fc) / Z0
L6 = Z0*L6 / (2*pi*fc)
L7 = C7 / (2*pi*fc) / Z0

y(1, 2, :) = 1/j/omega/L2; y(3, 2, :) = 1/j/omega/L4; y(4, 3, :) = 1/j/omega/L6;
y(2, 3, :) = 1/j/omega/L2; y(1, 3, :) = 1/j/omega/L4; y(3, 4, :) = 1/j/omega/L6;
y(1, 5, :) = j*omega*C1 + 1/Z0; y(2, 5, :) = j*omega*C3; y(3, 5, :) = j*omega*C5;
y(5, 1, :) = j*omega*C1 + 1/Z0; y(5, 2, :) = j*omega*C3; y(5, 3, :) = j*omega*C5;
y(4, 5, :) = j*omega*C7 + 1/Z0;
y(5, 4, :) = j*omega*C7 + 1/Z0;
```
solve_LOPASS.m

```matlab
close all
clear all
set(0,'DefaultLineWidth',3)
set(0,'DefaultAxesFontSize',20)
set(0,'DefaultTextFontSize',20)

LOPASS;

n = zeros(N-1,N-1,Nv); %
Current_Source = [1,zeros(1,N-2)]';

m = sum(y,1);

for i = 1:N-1
    m(i,i,:) = m(i,i,:);
    for j = 1:N-1
        if i == j
            m(i,j,:) = -y(j,1,:);
        end
    end
    Volts = zeros(N-1,Nv);
    for i = 1:Nv
        Volts(:,i) = inv(m(:,i))*Current_Source;
    end
    TF = 2/20*Volts(A,:);
    TF = 20*log10(abs(TF));
end

semilogx(freq,TF);
xlabel('Frequency [MHz]')
ylabel('dB')
axis([10^6 10^8 100 10])
title('transfer function')
```