FLAC Decoding Using GPU Acceleration

Haolei Ye and Eric C. McCreath
Research School of Computer Science,
The Australian National University,
Canberra, Australia
Email: haolei.ye@anu.edu.au, eric.mccreath@anu.edu.au

Abstract—Free Lossless Audio Codec (FLAC) format is
a widely used format for audio storage. Using a lower
performance single threaded approach, FLAC is easily de-
coded faster than the rate at which it is played at. However,
if you wish to transcode or edit long FLAC audio files
then decoding times using single thread CPU approaches
becomes significant. The FLAC format contains a sequence
of frames, these frames vary in size so start locations
are unknown until the previous frame is decoded. This
complicates parallelizing decoding. However, frames start
with known fixed bit patterns and each frame contains a
frame index, it is possible to locate and decode frames in
parallel. In this paper, we present an approach that exploits
this characteristic enabling all the frames to be decoded in
parallel. This approach is implemented and evaluated using
an NVIDIA GeForce® GTX 1080 graphics card showing a
5 times performance improvements than the widely used
official implementation running on an Intel Core™ i7-6770K
CPU.

Index Terms—Audio, FLAC, Codec, GPU, Decoder, CUDA,
Linear-predictive coding, Parallel Processing, Pascal, GP104,
Signal processing

I. INTRODUCTION

Free Lossless Audio Codec (FLAC) format is a popular
audio codec first released in 2000 by Josh Coalson [1]. As
the name suggests it is a lossless compression format
and is also non-proprietary and open source [2]. The
FLAC format is supported by a variety of hardware
and software [3]. There are two main FLAC decoder
implementations: one is the official FLAC encoder and
decoder implementation by Josh Coalson from Xiph.Org
Foundation [4], the other is used in FFMpeg and im-
plemented by the FFMpeg team, this implementation
was first released in 2009 [5]. These implementations
are basically serial so as FLAC files become larger the
decoding time will also increasing linearly. If a user
is intending to just play FLAC audio then this can be
simply accomplished with a serial implementation as
the time for playing the audio increases linearly with
the size of the file to be decoded, moreover, these serial
implementations can easily decode faster than the rate at
which they are played. However if your wish to decode
FLAC audio for other purposes, such as data mining
or audio editing, then the decoding time can become
significant. Graphics processing units (GPUs) provide
computing devices which clearly have the potential to
improve decoding performance. However, because of

the serial nature of the format implementing a FLAC
decoder on a GPU is non-trivial.

A number of researches have explored the use of
GPU acceleration for audio decoding. These including
Xiaoliang et al. [6] who proposed a CUDA based MP3
audio decoder. In this paper a CPU is used to locate the
MP3 frames within the entire file and the frame data
is transfer to the GPU device, then the GPU is used
to decode to a PCM format, and finally the decoded
PCM data is transferred back to primary memory. Their
results showed a more than five times performance
improvement by using an NVIDIA GeForce® GTX 260
graphics card compared to the CPU version on Intel
Quad 2.33 GHz CPU [6]. The approach taken has many
advantages as the part of the decoding that can be
easily parallized are done using GPU acceleration, and
the parts that are not easily parallized are done using
a general purpose processor. However, as audio files
become longer the serial aspect of this approach will
mean the overall performance will grown linearly no
matter how much parallel resources one has.

R. Ahmed and M. S. Islam introduced an optimised
Apple Lossless Audio Codec (ALAC) decoder in 2016
[7]. They explored an architecture for decoding a mono
or stereo ALAC format audio. Their decoder, running on
an NVIDIA GeForce® GTX 960 graphics card, obtained
an average of 80% to 95% speed up for un-mixing audio
data compared to the CPU version running on Intel
Core i5-4590 processor. The decoding phase contains
three steps: decompressing the ALAC data, convert the
data into PCM data, and concatenate the channels into
a single output buffer. In a similar way to Xiaoliang et
al.,, Ahmed et al. method only deploys the last stage to
the GPU.

More broadly a number of researchers have explored
the use of GPUs for high performance decoding. So Shen
et al. used techniques for real-time playback of high
definition video using a GPU [8]. Johnson and McCreath
investigated a fast and scalable parallel decoding algo-
rithm for Huffman decoding on a GPU [9]. Also Falcao
et al. implemented an efficiently algorithm on GPUs for
decoding LDPC codes [10].

In this paper, a new practical audio decoding imple-
mentation, named GPURAKU, is proposed for decoding
FLAC file data into a PCM signal using a GPU. FLAC

was designed for fast and low memory serial lossless
decoding and also only requires integer operations [11].
A significant part of FLAC decoding code is branch
constructs. This is well suited to modern CPUs allowing
full use of pipeline and branch prediction. FLAC also
supports streamable audio which means each frame
stores all the parameters, this allows us to find a frame
in the middle of the entire FLAC audio. Hence, FLAC
itself is a seekable format, this enabling us to finding all
the frames concurrently. This is a key characteristic we
exploited to let us parallelize the decoding implementa-
tion. We also introduced several methods to reduce the
number or eliminate branches which improves overall
performance. The framework is implemented in CUDA
C/C++ and runs on NVIDIA GPUs.

In the next section we provide a background to GPU
computing along with an overview of the FLAC format.
Section III states the parallel algorithm used and also
evaluates the complexity of this algorithm. In Section IV
a summary of the framework along with the CUDA
implementation is given. This is followed by Section V
which describes the various optimisations used in our
implementation. Section VI gives the experimental eval-
uation of our implementation. Finally a conclusion is
provided in Section VIL

II. BACKGROUND

A. GPU Computing

NVIDIA has been instrumental in the introduc-
tion of Graphics Processing Units (GPUs). In in 1999
NVIDIA introduced the GeForce® 256 chips [12], and
in 2001 General-purpose computing on graphics pro-
cessing units (GPGPU) was made available [13]. In
2006 the Compute Unified Device Architecture (CUDA),
which is a parallel computing platform model created
by NVIDIA, was first released with its GeForce® 8800
GTX [14]. This allowed programmers to more easily
write parallel programs making use of the computing
power of GPUs [14]. CUDA allows programmers to
launch kernels from a variety of languages, including
c++ and ¢, and write parallel kernels in a constrained
¢ language [13]. The Pascal architecture, developed by
NVIDIA, is the successor to the Maxwell architecture
[15]. It was first released with Tesla P100 in 2016 and
used in the GeForce® 10 series graphics cards [15]. A
CUDA Processor has a fully pipelined ALU and FPU as
its major computing components [16]. The ALU sup-
ports full 32-bit precision for all instructions [16]. Each
CUDA Processor also has its own dispatch port, operand
collector and result queue [16], but does not contain
any branch prediction circuitry [17]. With no branch
prediction, before the next instruction is fetched, the
CUDA Processor has to wait the jump instruction pass the
execute stage in the pipeline [18]. Although having many
threads in the pipeline will hide most of this latency,

however, the CUDA Processor may perform poorly when
executing branch-bound programs.

In the Pascal architecture, one Streaming Multiproces-
sors and a Polymorph Engine combine as a Texture /
Processor Cluster (TPC). 5 TPCs and a Raster Engine com-
bine as a Graphics Processing Clusters (GPC). On NVIDIA
GeForce® GTX 1080, it uses a Pascal architecture GP104
GPU consists of 4 GPCs, runs at 1607 MHz, boosts up
to 1733 MHz and provides 8873 GFLOPS calculation
capability [19]. Therefore, GP104 provides in total 20
Streaming Multiprocessors, 2560 CUDA processors and 320
gigabytes per second memory bandwidth.

The memory resources could be categorized as regis-
ters, local memory, shared memory, global memory, con-
stant memory, texture memory [20]. Table I summarizes
the characteristics of the CUDA memory hierarchy of
the GP104 on the official NVIDIA GeForce® GTX 1080
graphics card.

Memory Latency Size (Total) | Location | Access
Registers | 0(r) / 20(raw) 5120 KB On-Chip R/W
LT Cache 28 960 KB On-Chip -
Shared 92 1920 KB On-Chip R/W
L2 Cache 200 2048 KB On-Chip -
Local 400 - 800 - DRAM R/W
Constant 400 - 800 64 KB DRAM R
Texture 400 - 800 Up to 8 GB DRAM R
Global 400 - 800 Up to 8 GB DRAM R/W

TABLE I: Memory characteristics of the GeForce® GTX
1080 [21] [22] [23] [24] (The Latency column is in clock
cycles. For Constant and Texture memory, the latency
given in the table includes cache misses.)

B. The FLAC format

FLAC [25] was designed for fast low memory serial
lossless decoding. A FLAC encoded audio is made of
several metadata block structures and an audio stream.
The STREAMINFO block structure stores the minimum
and maximum block size, channels and bits per sample
of the audio stream.

The audio stream is separated into several frames.
Each frame contains: a frame header, subframes, zero-
paddings, and a frame footer. The frame header contains
a 14-bit sync code (11111111111110) which marks the
start of a frame, the information of the frame (including
block size, sample rate, channel assignment and sample
size), the sample or frame index (this uses from 8 to 56
bits to provide either a sample or frame index), and an
8-bit CRC value of the frame header. The combination
of the sync code, checking for invalid values within the
frame header, and the CRC result provides an approach
to detect the frame header within a stream.

The FLAC format supports up to 8 channels, hence
there are at most 8 subframes inside a frame. Except
stereo audio (2 channels), all the other channel types
of subframes are all stored independently. For stereo

audio, there are four channel assignments: independent,
left/side stereo, right/side stereo and mid/side stereo.
Each subframe should be one of the four following types:
CONSTANT (filling the entire subframe block with one
value), VERBATIM (storing the unencoded samples), LPC
(unencoded warm-up samples with FIR-Linear Predic-
tion encoded residuals) and FIXED (unencoded warm-
up samples with Fixed-Linear Prediction encoded). [25]

The LPC subframes stores the un-coded warm-up
samples followed by the Rice encoded residuals in LPC
and FIXED type subframes [25]. FLAC uses 0 for count-
ing and 1 for ending [25], and expressing the signed
values with the odd unsigned notation. For example,
with order 2 rice encoding, 0001 10 (14 in unsigned
value) stands for 7 in FLAC rice coding notation, and
0001 11 (15 in unsigned value) stands for —8. [25]

C. FFMpeg Framework for Decoding

The workflow of decoding FLAC audio with FFMpeg
library API is shown in Figure 1. The CPU decoding ver-
sion is using this workflow. The framework is modified
from the official example “trancoding_aac.c” [26].

Open FLAC file

‘ Initial an audio frame

v

‘ Decode frame ‘

v

‘ Encode WAV frame ‘

v

‘ Write WAV frame }

Find & load decoder ‘

v

‘ Open WAV encoder ‘

Have data to
decode?

End

CPU
Fig. 1: FLAC decoding framework with FFMpeg API

The workflow of FFMpeg framework is straight-
forward. It first opens the FLAC file and finds the
FLAC decoder from its decoder list. Then allocates
and sets the decoder context for the specific file. In
the FFMpeg API, the user has to prepare the decoder
first for decoding a specific file. It provides functions
like avcodec_find_decoder and avcodec_open2
for preparing the decoder [27]. And then, it uses a loop
to decode the entire audio data. In the implementation
of the FEMpeg API uses a first-in first-out structure to
cache the decoded frames. Once the data of the decoded
samples is enough for encoding the resulting frame, it
will encode the frame into the WAV format. The entire
FFMpeg API decoding framework is running on the
CPU.

ITI. PARALLEL FLAC DECODING ALGORITHM

The FLAC decoding algorithm proposed has three
stages. Firstly the number of frames is determined, this
can be done in constant time by working back from the
end of the file until the last frame in the file is found.
This enables us to know the number of frames that will
be decoded in the following stages. Secondly the frame
header locations are found, this is done by searching for
sync markers and then checking for correctly formatted
headers in parallel. Once this is done the frames can be
decoded independently with the decoded data placed
directly into its final location. Algorithm 1 gives the
pseudo code where F denotes the FLAC data to be
decoded, H is the minimum size of the FLAC frame
headers, S; is the start byte location of frame i, and P
is the decoded PCM data.

input : F - FLAC to decode

output : P - decoded PCM

// Stage 1 - determine the number of
frames

pos < |F|

while frame header does not start at position pos do
| pos < pos—1
od
n < index of header starting at pos
// Stage 2 - Find header locations
fori =0 to n —1 dopar
forj=[ix |F|/n] to [(i+1) x |F|/n] —1do
if frame header starts at byte j then
w < index of this header
Swj
end
od
odpar
// Stage 3 - Decode frames
for i =0 to n — 1 dopar
| decode frame i which starts at byte S;
odpar
Algorithm 1: Parallel FLAC decoding

Using a Parallel Random Access Machine (PRAM)
model of computation and assuming we have access to
n processors and also assuming the number of samples
in each frame is bound, which we denoted sy, then
the decoding algorithm above is O(1) where n is the
number of frames in the FLAC file to decode. If there
is a bound on the number of samples in a frame then
the number of bytes in a frame will also be bound as
the number of bytes in the frame and subframe header
and footer sections is bound and the bits per sample is
also bound. The algorithm is O(1) as each of the stages
in the algorithm is O(1). So in the first stage the while
loop goes around at most the maximum size of bytes
in a frame times. Stages 2 and 3 have parallel for loops

which can be executed concurrently by the n processors.
The code within these parallel for loops are both O(1)
as the size of each frame has a fixed maximum size and
fixed maximum number of samples.

IV. CUDA IMPLEMENTATION

FFMpeg provides the general workflow of decoding
FLAC audio. Basically each frame is decoded sequen-
tially and as such the execution time of this implementa-
tion will grow linearly with the size of the file to decode.

GPURAKU is our audio decoding framework which is
implemented using CUDA. This framework is shown in
Figure 2.

/e]
et
[rac |
oo e |
eyl

| e - o

Find Frames

]
e o] - [

Decode Frame Header
]

(e e e [o] - [o]

Decode Sub Frame at Channel ¢

(e e e [e] - [o]

Restore Signal at Channel ¢

Ll

Restore Assignment

I
GPU

Last Channel? -

Y
e Asmen |
Copy PCM from GPU }f

Write PCM data

End

CPU

Fig. 2: FLAC decoding framework with CUDA GPU

CPU first reads the entire raw FLAC data, and parses
the metadata block and then jumps to the start position
of the start frames. Next, the CPU searches the last frame
and records its frame index to get the frame count. After
that, CPU transfers the frame raw data to the GPU. The
GPU finds all frame start positions, these positions are
saved into an array. Then, the GPU decodes all the frame
headers concurrently, and prepares the frame header
data for the subframes. Our implementation then loops
the number of channel times, decoding and restoring the
subframes. Finally, GPU processes the channel assign-
ments and transfers the data back to CPU. CPU simply
writes the PCM data out in the WAV format.

The algorithm is O(1) assuming we have n proces-
sors, however, on any real system, such as our GPU
implementation, the number of processing elements is
fixed. And hence, the performance becomes linear when
n becomes larger than the number of processors. Now
on modern high-end GPUs the number of cores is very
large, so for example on the NVIDIA Tesla V100 GPU
there is 5,120 cores [28]. Thus as we implement our
algorithm on the GPU we are focused on improving
overall performance.

V. OPTIMIZATION POLICIES

Although the approach implemented directly should
improve overall performance, there are still many opti-
mizations that are important in improving performance.
These optimizations are explained in the following sec-
tions.

A. Replace Conditional Constructs with Tables

GPUs perform poorly when the kernel code has condi-
tional constructs. Now a lot of FLAC decoding processes
have conditional code, these include reading: the UTF-
8 frame index, frame header information, rice encoding
residuals, and specific bits integers. Some branch con-
structs could be directly transferred, like the bit stream
reader for the subframes. The usual implementation of
reading n bits is repeating the read bit function for n
times. The program would execute n conditional con-
structs for checking if it should switch to the next bit.
For reading more than 8 bits it might go through 2 bytes
or more, however, most of these could be reduced to
only one conditional statement by checking the position
of the current bit of the byte. This reduction is straight
forward. There are many other means to reduce the
number conditional constructs. One method of reducing
the conditional constructs is replacing them with tables.
We use this approach in a number of places within our
implementation these are now described.

1) Constant Value Table: In the FLAC frame header
structure, all parameters are encoded in under 4 bits.
So each parameter has maximum 16 different possible
values. Hence, the massive branch construct of value
checking (a switch statement) could be replaced by a
look-up table. The only aspect we need to prepare is
a table which stores all the possible values. This table is
reused in all the frame headers. It only needs 64 bytes
(16 x 4) for one parameter so it is stored in the constant
memory for lower latency.

The constant value table replacement is used for all
the frame header parameters (block size, sample rate,
channels and bits per sample) and part of the CRC-
8 calculation. For the channel parameter, it contains
two things: one is the number of channels, and the
other is the channel assignment for stereo audio. So the
channel parameter needs two tables, because the channel
assignment only exists for stereo audio, so the number of

channels for the frame that has channel assignment is 2,
and for those frames that have only 1 channel or more
than 2 channels, they only have independent channel
assignment.

2) Function Pointer Table: The constant value table was
used to eliminate the control transfer instructions of
the value assignment, but it cannot apply to the UTF-
8 calculation and specific bits integer fetching. This type
of calculations was optimized with function tables. One
of the typical calculation is reading a number of specific
bits. Another calculation done is in the bit stream for the
decoding residuals. With the limitations of the bits per
sample, on a general purpose CPU, this part could be
implemented as a massive-branch construct like a switch
statement in C. However, on GPUs, executing massive
branch constructs like this would cause divergence. It is
difficult to avoided due to the different calculation meth-
ods that are applied, but the control transfer instruction
of the bit number checking are simplified and replace
the calculation with a function pointer lookup table. The
length and calculation result of fetching specific bits are
both needed in parsing the rice encoding. This is done
with the help of the function pointer lookup table, it will
only execute the branch construct once to get the correct
function pointer. From then on, it would executes that
function for fetching bits from binary data. This removes
repeating conditional code.

The similar situation could be found in CRC-8 cal-
culation. In FLAC decoding, CRC-8 calculation and the
sample reading is this kind of calculation. The value of
CRC-8 at different positions have been calculated and
replaced by a constant table as mentioned before. The
problem is it needs to loop from the start position to
the end position. It is difficult to enumerate all the pos-
sibilities of the CRC-8 calculation. However, the length
of the frame header is limited. The minimum size of a
FLAC frame header is 4 basic bytes and 1 UTE-8 byte,
total 5 bytes. The maximum size is 4 basic bytes, 7 UTF-8
bytes, 2 block size bytes and 2 sample rate bytes, total 15
bytes. So the CRC-8 calculation in our implementation is
enumerated. All the calculations are stored in a function
tables replacing the original multiple branch construct
by that table.

B. Reduce Global Memory Access

The raw FLAC audio data and PCM decoded data
have to be stored in global memory. It is impossible to
avoid global memory access, but still possible to reduce
the access times for better performance.

To restore the PCM data for LPC and FIXED subframes,
it requires warm up samples, coefficients, shift bits, and
residuals. Warm up samples and residuals are stored in
the space of final PCM data. The shift bits are stored
in an 8-bit unsigned integer. The maximum coefficients
size appears in LPC subframe, which is an array of 32-bit
signed integers containing at most 32 elements. Hence,

the memory space required for decoding LPC and FIXED
subframes is predictable.

When all these parameters have been read from raw
LPC and FIXED subframes, it still needs to use the coef-
ficients with the known samples to restore the original
PCM samples. Calculating the polynomial needs access-
ing the previous samples frequently. Assuming restoring
PCM samples in an [coefficients LPC subframe with m
samples and the samples are stored in global memory,
it needs to access the global memory for I(m —) times,
which will waste many processor cycles. The following
two methods are introduced to reduce the memory
access to 2m — | times.

1) Sample Cache Array: One simple idea is to store all
the previous samples in an array of on-chip memory, e.g.
shared memory. The decoder reads the first | samples
and saves them to the cache array at beginning. This
costs [access. And then in the decoding loop from the
first residual to the last, it only accesses the PCM samples
twice per loop: one for reading the current PCM samples,
and the other for writing the new samples. This costs
2(m —1) access. Hence, the overall number of memory
accesses is 2m — [.

2) N-Level Increased Progression: Although sample
cache array could accelerate all the LPC calculation, it
still needs to do multiplications. However, it is possible
to reduce them to only additions when restoring the
FIXED subframes signal. Consider the following coeffi-
cients: 3, —3,1. Suppose the warm up samples are rq, 13,
r3 and residuals are r4, 5, 16, - - . If p1, p2, p3, - - - are the
final PCM samples, according to the definition of FIXED
subframes, it is obviously that:

p1=n
p2="12 1)
ps =13

Now according to the definition of FIR-Linear Predic-
tion,

pa =14+ 3p3 —3p2 + p1
=1r4+3r3 =3+ 11
15 +3ps — 3p3 + p2
r5 4+ 314 + 613 — 8rp 4 3714 2)
Pe =16 +3ps —3ps+ps3
=16 + 3r5 + 61r4 + 1073 — 151 + 619

ps

Assign progression ¢/, which

’ r3 — 712
Cy =
Px — Px—-1

Then we have

(x =3)
(x > 3)

ch=r3—17

C4 = pa—p3
=r4+2r3 =341

c5 = p5 — P4
=15+2r4+3r3 —5rp 4+ 2r1

Co = P6 — Ps
=16+ 2r5+3ry +4r3 — 71y + 311

®)

Assign progression ¢y which
r3—2ry+r; (x =23)
Cry =
’ Ce—Ch (x>3)
thus

c3=13—2rp+11
cy = Cy — 4

rg+1r3—2rp+11
c5 = 5 — ¢y @
=r5+ry4+r3—2r+nr
C6 = Cp — C5
=re+r5+rs+r3—2r+11

Assign progression dy = cx — cy_1 and x > 3, then

dy=c4—c3

=14
ds =c5— ¢4

=75 @)
de = c6 —C5

=74

Progression dy is the same as the residual . The new
algorithm is actually the reversed way to calculate py.
Algorithm 2 shows the approach we take to restore PCM
signal of the fixed coefficients [3, —3,1].

In the first two assignment statements, it only needs
to access global memory 3 times to get pcm|[0], pcm|1]
and pcm[2]. In the loop, the pcm[i — 1] is stored and
updated by a local variable within a register, thus it only
accesses global memory for 2 times for reading pcm|i]
and update pcm|i]. Now it needs 2m — 3 global memory
accesses, which performs the same as the Sample Cache
Array. However, the loop only has addition statements,
removing the multiplication by the coefficients. In our
implementation, array pcm and r share the same memory
for better memory consumption.

The other two fixed coefficients have the same regular
pattern. For [2, —1], it needs 1 variable c initialized with
pem[1] — pcm[0]. For [4, —6,4,1], it needs 3 variables.

input : m - FLAC frame block size (sample size), r -
FLAC warm-up samples and residuals array
output: pcm - FLAC frame PCM samples
pem[0] < r[0]
pem[1] < r[1]
pem|2] < r[2]
¢« r[2] =2 xr[1] +7[0]
¢« r[2] —r[1]
for i € [3,m) do
¢ c+rli]
d—cd+c
pemli] <= ' + pem[i — 1]
od
Algorithm 2: FLAC Restore No.3 Fixed PCM Signal

¢’ = pem[3] — 3 x pcm|2] + 3 x pem[1] — pcm|0]
¢’ = pem[3] — 2 x pem(2] + pem[1] (6)
¢ = pem[3] — pem|2]

For N coefficients, it needs N — 1 level progression
additions to restore the PCM signal. We call this the N-
level increased progression. This approach helps decrease
both global memory access and reduce the amount of
calculation for restoring the FIXED subframe signal.

VI. EXPERIMENT RESULTS

A series of tests are now presented which show the
performance of our implementation in comparison to
the official FLAC 1.3.1 and FFMpeg 2.8.15 decoders on
Ubuntu 16.04.3 LTS from the Canonical software sources.
The GPURAKU is compiled by NVCC with parameter
-03 -lineinfo for the best optimization. These tests
are all conducted on an Intel Core™ i7-6770K CPU,
16GB DDR4 2400 RAM, 240GB SATA-3 SSD with an
NVIDIA GeForce® GTX 1080 graphics card. To construct
the FLAC test sets the official FLAC encoder implemen-
tation is used with parameters set to ~no-seektable
—--best for the smallest compression and no seek table
for no seeking optimization.

All the test audio files are 16-bit signed stereo audio
data sampled at 48,000 Hz. The original WAV file is a
4,620 seconds (1 hour 17 minutes) long. 76 test FLAC files
are created from this WAV file, this is done by increasing
linearly the frame size and duration of the original audio.
The last test set in this series is the original file encoded
as FLAC. The time usage results of all the candidate
decoders are shown in Figure 3.

From the experiment result, GPURAKU is at best 5.09
times faster than the official FLAC decoder, and at best
2.62 times faster than the FFMpeg decoder. The time of
GPURAKU is not linear for two reasons. Firstly there is
a constant set-up time associated with host/device data
transfers, although once the transfer starts the time is

i~ —e— GPURAKU
% 6,000 ¢ —»— FFMpeg
‘2 —— FLAC
in}
)
& 4,000 |
ja}
(9]
£
2 2,000 |
3 00 00000000000000
o JPPPPPPeS
g 0000000000006007T T
@)
WLl lisiiikd s 1 1 1 1 1 1
1 11 22 33 44 55 66 77

File indeces

Fig. 3: Time usage of official FLAC, FEMpeg and GPURAKU decoders

linear with respect to the amount of data transferred.
Figure 4 shows the H/D and D/H data transferring
time from the total data. If we remove the time from
the GPURAKU time usage (for example, if the data of
audio stream is already loaded at the video RAM) and
only consider the computation time, then GPURAKU is
maximum 7.8 times the CPU decoders. Currently, there
are two ways to reduce the time usage of the data
transferring. One of the solutions is using streaming. Our
implementation did not use any streaming approaches.
Streaming would enable the transfer time to overlap is
computation, improving the overall performance. An-
other method that could be explored is the use the
unified memory which is available on Pascal and later
GPUs with hardware page faulting and migration [24].

UH/D & D/H
B GPURrAkU

1,500 +

1,000 |

Time (unit: ms)

File indeces

Fig. 4: Data transfer time compared to overall time

Also our GPU has only a fixed number of CUDA
cores this also limits the overall performance. The O(1)
time complexity could only be established when there

are as many cores as frames. When the number of
multi-processors (each having a fixed number of CUDA
cores) is insufficient, blocks need to wait until there
are available multi-processors. Figure 5 shows the time
usage of each frame.

256

—e— Time/Frame

7 128

=

5 o4

)

£

= 32
16

1 11 22 33 44 55 66 77
File indeces

Fig. 5: Time for decoding a single frame

VII. CONCLUSION

A new concurrent decoding framework using CUDA
to decode FLAC audio is proposed and implemented.
As the experiment results show, the new framework is
approximately five times faster than the CPU imple-
mentations (for large files). The results are dependent
on the number of CUDA cores. If the experiments had
been undertaken on a GPU with more cores, for instance,
GV100 on TITAN YV, it would have performed better.

The O(1) algorithm for FLAC decoding is the key part
of the framework presented. This algorithm lets the time
usage increase related to the single frame computing
complexity but not the entire audio stream compared
to the CPU implementations. Given divergence issues
in GPUs kernels, multiple methods to reduce branch

constructs have been introduced. Furthermore, the time
of accessing memory is one of the most important as-
pects to be optimized. Two methods of reducing the FIR-
Linear Prediction decoding memory access have been
introduced.

There is still room to improve the CUDA implemen-
tation. Rice coding is a branch-bound algorithm and
the time for parsing Rice encoding residuals of FIXED
and LPC subframes take a significant proportion of the
GPUs time. A new method of decoding rice coding
with less conditional constructs is a possible direction to
explore for improving performance. As the Rice codes
are less than 64 bits long, a single warp (made up of 32
threads with each thread associated with 2 bits) could
be used with CUDA warp level primitives to decode
concurrently. Also most of these residuals are not large,
with most begin less than 5 bits. Hence it does need to
execute many branches. So another approach to explore
would be using tables for small Rice codes.

The N-Level Increased Progression is introduced for ac-
celerating the FIXED subframes. The possibility of apply-
ing this progression to LPC subframes is worth consider-
ing.

gfhe framework needs to copy the entire FLAC frame
data to the CUDA device. The situation when the audio
file is larger than the memory of CUDA device should be
considered. Hence, a method of dividing the large FLAC
audio file is needed. The first approach to explore would
be to implement a streaming approach, this would also
hide transfer times. Once this is done, the use of multiple
GPUs could also be investigated.

ACKNOWLEDGMENT

We would like to thank the Research School of Com-
puter Science at the Australian National University for
providing the hardware and supporting this research.

We would also like to thank the reviewers for their
valuable feedback.

REFERENCES

[1] Josh Coalson and Xiph.Org Foundation, “FLAC - news,” https:
/ /xiph.org/flac/news.html, 10 2014, online; access 30-Jan-2018.

[2] , “FLAC - Free Lossless Audio Codec,” https://xiph.org/
flac/index.html, 10 2014, online; access 30-Jan-2018.

3] , “FLAC - links,” https://xiph.org/flac/links.html, 10 2014,
online; access 30-Jan-2018.

[4] —, “FLAC - download,” https://xiph.org/flac/download.
html, 10 2014, online; access 31-Oct-2017.

[5] FFMpeg team, “FFmpeg/libavcodec at master FFm-
peg/FFmpeg,” https://github.com/FFmpeg/FFmpeg/tree/
master/libavcodec, 2010, online; access 31-Oct-2017.

[6] C. Xiaoliang, Z. Chengshi, M. Longhua, C. Xiaobin, and L. Xi-
aodong, “Design and implementation of MPEG audio layer III
decoder using graphics processing units,” in 2010 International
Conference on Image Analysis and Signal Processing, April 2010, pp.
484-487.

[7] R. Ahmed and M. S. Islam, “Optimizing apples lossless audio
codec algorithm using NVIDIA CUDA,” 66 Mohakhali, Dhaka
1212, Bangladesh, 12 2016.

[8] G.Shen, G.-P. Gao, S. Li, H.-Y. Shum, and Y.-Q. Zhang, “Accelerate
video decoding with generic gpu,” IEEE Transactions on circuits
and systems for video technology, vol. 15, no. 5, pp. 685693, 2005.

[9] B. Johnston and E. McCreath, “Parallel huffman decoding: Pre-
senting a fast and scalable algorithm for increasingly mul-
ticore devices,” in Ubiquitous Computing and Communications
(ISPA/IUCC), 2017 IEEE International Symposium on Parallel and
Distributed Processing with Applications and 2017 IEEE International
Conference on. 1EEE, 2017, pp. 949-958.

[10] G. Falcdo, L. Sousa, and V. Silva, “Massive parallel ldpc decoding
on gpu,” in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming. ~ACM, 2008, pp.
83-90.

[11] Josh Coalson and Xiph.Org Foundation, “FLAC - features,” https:
/ /xiph.org/flac/features.html, 10 2014, online; access 31-Oct-
2017.

[12] Nvidia Corporation, “NVIDIA Launches the World’s First Graph-
ics Processing Unit: GeForce 256,” http://www.nvidia.com/
object/10_20020111_5424.html, 8 1999, online; access 30-Jan-2018.

[13] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory
Peterson and Jack Dongarra, “From CUDA to OpenCL: Towards a
Performance-portable Solution for Multi-platform GPU Program-
ming,” Parallel Computing, vol. 38, no. 8, pp. 391-407, 2012.

[14] Jason Sanders and Edward Kandrot, CUDA by example: an intro-
duction to general-purpose GPU programming, 1st ed., ser. 1. Rights
and Contracts Department, 501 Boylston Street, Suite 900 Boston,
MA 02116: Addison-Wesley Professional, 7 2010, vol. 1.

[15] Sumit Gupta, “NVIDIA Updates GPU Roadmap; Announces Pas-
cal,” https:/ /blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-
pascal/, 03 2014, online; access 11-Mar-2018.

[16] Nvidia Corporation, NVIDIAs Next Generation CUDA™Compute
Architecture: Fermi™Whitepaper, Nvidia Corporation, 2701 San
Tomas Expressway, Santa Clara, CA 95050, 2009.

[17] Basheer Ershaad Ahamed, Advanced School in High Performance
and GRID Computing - Introduction to GPU programming in the
nvidia CUDA environment, Jawaharlal Nehru Centre for Advanced
Scientific Research Centre for Computational Materials Science,
Jakkur P.O., Bangalore 560064 Karnataka India, 11 2008.

[18] Ben Lee, Alexey Malishevsky, Douglas Beck, Andreas Schmid and
Eric Landry, Dynamic Branch Prediction, Oregon State University,
1500 SW Jefferson St., Corvallis, OR 97331, 541-737-1000, 12 2001.

[19] Nvidia Corporation, NVIDIA GeForce GTX 1080 Whitepaper,
Nvidia Corporation, 2701 San Tomas Expressway, Santa Clara,
CA 95050, 2016.

[20] Gregory Ruetsch and Massimiliano Fatica, CUDA Fortran for
Scientists and Engineers: Best Practices for Efficient CUDA Fortran
Programming, 1st ed., ser. 1. Rights and Contracts Department,
501 Boylston Street, Suite 900 Boston, MA 02116: Elsevier, 2013,
vol. 1.

[21] Julien Demouth and Cliff Woolley, CUDA Optimization with Nvidia
NSIGHT™Eclipse Edition, Nvidia Corporation, 2701 San Tomas
Expressway, Santa Clara, CA 95050, 2014.

[22] Justin Luitjens, Global Memory Usage and Strategy, Nvidia Corpo-
ration, 2701 San Tomas Expressway, Santa Clara, CA 95050, 2011.

[23] John Cheng, Max Grossman and Ty McKercher, Professional CUDA
C Programming, 1st ed., ser. 1. Rights and Contracts Department,
501 Boylston Street, Suite 900 Boston, MA 02116: John Wiley &
Sons, Inc., 2014, vol. 1.

[24] Nvidia Corporation, “CUDA C Programming Guide,” Nvidia
Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050,
2017.

[25] Josh Coalson and Xiph.Org Foundation, “FLAC format, Xiph. Org
Foundation Std,” https://xiph.org/flac/format.html, 10 2014, on-
line; access 31-Oct-2017.

[26] Andreas Unterweger and FFmpeg team, “FFmpeg:
transcode_aac.c,” http:/ /www.ffmpeg.org/doxygen/2.8/
transcode_aac_8c-example.html, 10 2015, online; access 28-
Jan-2018.

[27] Fabrice Bellard and Martin Bohme, “An ffmpeg and SDL Tutorial
or How to Write a Video Player in Less Than 1000 Lines,” http:
/ /dranger.com/ffmpeg/tutorial03.html, 2 2015, online; access 28-
Jan-2018.

[28] Nvidia Corporation, Nvidia Tesla V100 GPU Architecture, Nvidia
Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050,
8 2017.

