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Abstract—The realistic simulation of ultrasound wave propa-
gation is computationally intensive. The large size of the grid and
low degree of reuse of data means that it places a great demand
on memory bandwidth. Graphics Processing Units (GPUs) have
attracted attention for performing scientific calculations due to
their potential for efficiently performing large numbers of floating
point computations. However, many applications may be limited
by memory bandwidth, especially for data sets whose size is larger
than that of the GPU platform. This problem is only partially
mitigated by applying the standard technique of breaking the
grid into regions and overlapping the computation of one region
with the host-device memory transfer of another.

In this paper, we implement a memory-bound GPU-based
ultrasound simulation and evaluate the use of a technique for
improving performance by compressing the data into a fixed-
point representation that reduces the time required for inter-
host-device transfers. We demonstrate a speedup of 1.5 times
on a simulation where the data is broken into regions that
must be copied back and forth between the CPU and GPU. We
develop a model that can be used to determine the amount of
temporal blocking required to achieve near optimal performance,
without extensive experimentation. This technique may also be
applied to GPU-based scientific simulations in other domains
such as computational fluid dynamics and electromagnetic wave
simulation.

Keywords—GPGPU, Data compression, Parallel architectures,
Memory architecture, Nonlinear acoustics

I. INTRODUCTION

The problem of efficiently simulating the propagation of
ultrasound waves has many important applications, such as
designing ultrasound imaging systems and high-intensity ther-
apeutic treatment [1], [2]. This simulation may be done by
deriving and then solving numerically a system of stencil-
like finite-difference equations [1], [3], [4], [5]. A variety of
different nonlinear effects such as power law absorption and
thermoviscous attenuation can be modelled with this approach.
GPUs are particularly of interest for this problem as they have
tremendous potential for performing scientific calculations
both quickly and energy efficiently [6]. This is due to their
inherently parallel architecture, containing hundreds of cores
able to execute calculations in parallel [7].

Realistic finite-difference ultrasound simulations are very
computationally intensive as achieving accuracies of practical
interest require at least 10 grid points per wavelength [8].
Consequently, a typical simulation may require a grid with
a side length of hundreds or thousands of grid points. This

places a great demand on memory, especially in the case of
3D simulations.

It is well known that stencil computations are frequently
memory bound [9]. As a consequence, one of the major diffi-
culties in achieving good performance on a GPU is overcoming
the memory bottlenecks inherent in the GPU architecture.
Here we focus our attention on the issue of performing 2D
simulations where the data is too large to fit completely on
the device memory present on the GPU. This necessitates
subdividing the problem into smaller pieces, and the bottleneck
is the rate at which data can be transferred between the CPU
and GPU. By compressing the data before it is transferred,
the transfer rate is effectively increased, at the cost of extra
computation (to perform the compression/decompression) and
accuracy.

An additional benefit in compressing the data is that the
GPU can operate on larger data sets in between communication
with the CPU. This has the effect of reducing the relative
amount of superfluous transfers/computation that has to be
done in order to accommodate the surrounding ‘ghost’ regions
needed to simulate the region of interest.

We demonstrate that for data sets too large to fit in the
GPU memory, overall performance is improved by the use of a
lossy compression scheme. This is true even when we perform
double buffering and temporal blocking to completely overlap
the computation and memory transfers.

II. RELATED WORK

A. FDTD for ultrasound simulation

The finite-difference time domain (FDTD) technique was
introduced by Yee [10] for the problem of numerical simulation
of electromagnetic wavefields. It involves discretising the re-
gion into a set of grid points and calculating an approximation
to the solution at each grid point. The simulation is stepped
forward in time using a stencil-like calculation with weights
chosen to minimise the local truncation error [11].

The method has been applied to the problem of ultrasound
simulation by many researchers [1], [3], [4], [5]. In addition,
there has been work on performing these simulations on a
variety of different architectures, including GPUs [12], [13],
and the Cell broadband engine [14].



B. Compression of floating-point data

There have been a number of attempts to use data com-
pression to improve the performance of bandwidth-limited
scientific applications. The simplest of these are compression
algorithms that can be applied to each piece of data indepen-
dently, which allows for efficient parallelisation [15], [16].

Due to the fact that GPU hardware was traditionally shaped
by the requirements of computer graphics applications [7],
much work on compression algorithms that run on GPUs has
been devoted to compressing the representation of graphical
structures such as meshes in order to facilitate applications
such as efficient remote rendering [17]. Similar techniques can
be used to compress the storage of sparse matrices [18].

In general, compression of floating point data is signifi-
cantly different to the compression of discrete data, as in order
to achieve a good compression ratio the compressor must take
account of the specifics of the representation of the floating-
point data. This is because of the different interpretation of
the bits representing the sign, significand and exponent. One
solution to this problem is to rewrite all the floating point
data in a fixed point format with an extremely large number
of bits, to ensure no information is lost, then apply standard
compression techniques [19].

A common approach is to use a scheme that predicts each
value then encodes the difference between the predicted and
actual value [20], [21], [22], which may be done efficiently if
the residual is usually small. Among the most significant of
these is a lossless compression scheme called FPC which uses
a polynomial interpolation-like prediction [23]. A variant of
this algorithm called GFC has been adapted to run efficiently
on GPUs [24].

Data that is the solution of a hyperbolic PDE, as in
our case, is likely to have a sparse representation under an
alternative basis. This can be exploited by techniques such as
a discrete Fourier or wavelet transform. Such techniques have
been successfully applied to the compression of floating point
scientific data [25], [26].

III. BACKGROUND

A. Ultrasound simulation

For this work we solve, in two spatial dimensions, the
Westervelt equation, a nonlinear partial differential equation
(PDE) that models wave propagation in addition to the effects
of thermal attenuation and cumulative nonlinear effects. It is
given by [12]
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where p is the acoustic pressure (Pa), c is the propagation speed
(ms−1), ρ0 is the ambient density (kgm−3), δ is the diffusivity
of sound (m2s−1), and β is the coefficient of nonlinearity. A
derivation can be found in [27].

We discretise with an equally spaced grid with points
(xi, yj) where xi = i∆x and yj = j∆y, and equally spaced
timesteps tn = n∆t such that we approximate p(xi, yj , tn) ≈
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with the corresponding scheme for ∂2p
∂y2 .

This leads to an explicit scheme which can be solved
for pn+1

i,j in terms of the pressure at the same grid point
in the previous 4 timesteps and values pni+k,j , p

n
i,j+k for

k = −2,−1, 1, 2. To ensure stability, ∆x and ∆t should be
chosen such that the Courant-Friedrichs-Lewy (CFL) value
cmax∆t

∆x � 1. A similar scheme is used in [28] and in cylindrical
coordinates in [1].

B. Compression

In this work we use a simple lossy scheme to compress
the single-precision floating point data by converting it into a
fixed point representation. This entails representing all values
as a sign and significand, with the exponent implicit by the
fact that it is the same for all values.

The reason for choosing this compression scheme is that
the values handled by the simulation occupy a relative small
range of orders of magnitude, so storing the exponent sep-
arately for each data point is largely redundant. In addition,
the actual compression can be carried out relatively efficiently.
It can be implemented without using a large number of bit-
manipulation instructions, which are unfavourable for GPU
execution. This makes it a good candidate to test whether com-
pression is a practical technique for improving performance.

Data stored in a floating point format consists of a sign,
exponent and significand. We exploit the fact that all floating-
point values in the range [2n, 2n+1) have the same exponent,
hence, if the values are constrained to this range, the exponent
does not need to be stored. Assuming the data is contained in
the range (−2n, 2n) compression is performed by either adding
or subtracting 2n depending on the sign so that the data lies
in the range (−2n+1,−2n)∪ [2n, 2n+1) and, consequently, the
exponent can be discarded. Decompression involves perform-
ing the same operations in reverse.

We consider two schemes: retaining either the 15 or 23
most significant bits of the significand (in addition to the sign
bit). These correspond to compressing 2 (single precision)
values into 4 bytes or 4 values into 12 bytes. We refer to these
as the 2 byte and 3 byte compression schemes, respectively.
Note that even though the 3 byte compression utilises the



#define EXP 2
#define HIGH 23
#define DELTA (1<<EXP)
void compress(float* in, char* out_c) {

unsigned int *out =
(unsigned int*)out_c;

unsigned int sign =
(*(unsigned int*)in) & (1<<31);

float v = *in + (sign ? -DELTA : DELTA);
*out = ((*(unsigned int*)&v) &

((1<<HIGH)-1)) + (sign?(1<<HIGH):0);
}

Fig. 1. Code for compressing single precision floating point value into 3
bytes for data in range (−2n, 2n) with n = 2
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Fig. 2. Schematic of GPU architecture

entire significand, it is not a lossless scheme because lower-
significance bits are lost when adding (or subtracting) 2n to
the initial value.

Fig. 1 gives the code to take a standard single-precision
floating-point stored in 4 bytes and compress it into 3 bytes.
The implementations for decompression and for the 2 byte
scheme are analogous.

IV. GPU ARCHITECTURE AND PROGRAMMING MODEL

NVIDIA GPUs are subdivided logically at a number of
levels, as shown in Fig. 2. At the highest level, a single GPU
is divided into a number of streaming multiprocessors (SMs).
Each streaming multiprocessor consists of many cores that can
execute threads in parallel [7]. As threads are grouped into
warps that execute in lockstep, GPUs can be considered a kind
of massively-SIMD architecture. Each SM switches frequently
between warps to hide high-latency instructions. The exact
specifics of the hardware such as the number of SMs per
GPU, cores per SM, threads per warp and amounts of memory
available vary depending on the exact GPU and its generation.

Memory consists of a similar hierarchy: registers private
to an individual thread, shared memory available to an entire
thread block, and global memory available to all threads.
Global memory is a separate address space to any existing

CPU memory and any copies must be managed by and initiated
from the CPU.

The user is exposed to this hardware via the NVIDIA
CUDA programming model, an extension to C that allows des-
ignated code (kernels) to be run on the GPU. Synchronisation
during kernels is only allowed between threads in the same
block, and global synchronisation is only generally possible by
finishing a kernel and returning control to the CPU, at which
point register and shared memory contents are flushed.

V. APPROACH

We implemented a simulation that carries out the computa-
tion from Section III-A. The calculation must be divided into
disjoint parts since we are interested in data sets that are too
large to fit in the GPU global memory. To do this we make use
of the ability of the GPU hardware and CUDA programming
model that allows the user to perform memory transfers and
computations (in the form of kernels) simultaneously. The
grid is divided conceptually into slices that each consist of
a contiguous subset of entire rows. We make use of double-
buffering so the memory transfer necessary to simulate one
slice can be done whilst the actual simulation of another slice
is being performed.

To do this we must declare on the host enough space to
store 10 copies of the entire uncompressed simulation grid:
4 previous timesteps, space for the next timestep (to avoid
dependency issues), and the same again in order to facilitate
double buffering. The host memory must be declared page-
locked in order to issue asynchronous copies. Similarly, on
the GPU we declare enough space for 10 copies of the largest
slice in compressed form. The grids are used in a cyclic fashion
i.e. when storing a new set of values from the next iteration,
it is stored in place of the oldest values, which are no longer
required.

Algorithm 1 Algorithm for performing the out-of-core simu-
lation with double-buffering and temporal block size t

1: Allocate memory for grids on CPU and fill with initial
conditions

2: Perform initial compression (if any) of data on CPU
3: Choose row boundaries yi (i = 0, 1...n) at which the

calculation shall be divided into parts
4: Issue copy contents of rows [y0, y1) + t-row ghost region

at timesteps [−4, 0) to GPU memory
5: for i = 0, t, 2t, ...T − t do
6: for j = 0→ n− 1 do
7: Launch sequence of kernels that calculates contents

of rows [yj , yj+1) for timesteps [i, i + t), decom-
pressing and compressing as required

8: Issue copy of contents of rows [yj+1, yj+2) + t-row
ghost region at timesteps [i−4, i) to GPU memory

9: Issue copy of contents of rows [yj , yj+1) at
timesteps [i+ t− 4, i+ t) back to CPU memory

10: end for
11: end for
12: Perform final decompression (if any) of data on CPU

Algorithm 1 gives the steps for performing this proce-
dure including the double buffering and handling of multiple
timesteps between copies. For small temporal block size t < 4,



our implementation takes special consideration (not described
in Algorithm 1) to avoid redundant copies by only copying
back the results of the previous t (instead of 4) timesteps.

Our implementation divides the grid into slices by choosing
yi (i = 0, 1, ...n) such that 0 = y0 < y1 < ... < yn = Y
and the number of rows in the largest slice maxi (yi+1 − yi)
is small enough to fit entirely on the device memory. The
number of slices n is chosen to be as small as possible within
this memory constraint as described below in section VI. In
many cases it will not be possible to divide the grid evenly but
our algorithm aims to balance the workload (number of rows
in each slice) as fairly as possible. In addition, we avoid a
complicated array boundary check by ensuring that the number
of rows in the last slice [yn−1, yn) is a multiple of the block
height.

For the actual kernel that performs the computation there
are many factors (such as thread block size) that affect the
performance. We have empirically tested some common op-
timisations in order to achieve good performance. These are
likely to be heavily device-specific. Since we have separate
kernels for operating on the compressed and uncompressed
data, we have tried to optimise each in a balanced manner.

VI. MODELLING PERFORMANCE

We give a simple model that estimates the performance of
the code as a function of a number of important parameters.
We are particularly interested in the behaviour depending on
t, the number of timesteps performed in each temporal block.

For a grid of size X × Y and a system with M bytes of
memory available on the GPU, if we compress by a factor of
λ (where λ = 0.5 for the 2 byte compression scheme and λ =
0.75 for the 3 byte compression scheme), then we can simulate
t timesteps without any intermediate CPU-GPU transfers on a
slice of size X × y iff

40λX(y + 4t) ≤M (7)

This is due to the fact that each data point is 4λ bytes and
we store 10 grids of the desired size. In addition, for each
extra timestep to perform, we need 4 extra rows (2 above and
below), since the simulatable region shrinks after each timestep
because the adjacent pressures are not available. To minimise
the total amount of computation and transfer, for a fixed t, it
is desirable to choose the largest possible y, which is given in
most cases by y(t) =

⌊
M

40Xλ − 4t
⌋
. This does not apply when

it is necessary to allocate an extra row due to the fact that the
number of rows is not evenly divisible by y, but our model
does not consider this.

Using T to denote the total number of timesteps, then the
entire simulation is divided up into

⌈
T
t

⌉
blocks of timesteps,

each of which (except possibly the last) consists of t timesteps
on
⌈
Y
y(t)

⌉
independent slices of data. For a single slice, each

block of t timesteps involves filling 4 of the 10 grids, contain-
ing the pressures from the previous 4 timesteps, on the GPU
with data that is copied from the CPU. Similarly, it requires
reading back the data in the non-ghost region (y(t) of the
y(t) + 4t rows) from the final min(t, 4) timesteps. Assuming
the entire M available bytes are used the total amount of host-
to-device data transfers is therefore 4

10M bytes, and the total
amount of device-to-host transfers is min(t,4)

10
y(t)

y(t)+4tM bytes.

In addition, let R be the CPU-GPU data transfer rate in
bytes/second (assuming for simplicity the same rate for both
host-to-device and device-to-host transfers). Let Cλ be the rate
of performing the actual simulation in seconds per grid point
per timestep, including the cost of and varying depending on
the amount of compression/decompression. These values can
be estimated both theoretically and using data from NVIDIA
Visual Profiler.

Since we can shrink the ghost region in a block after each
timestep, the total grid points to simulate t steps is the number
of columns X multiplied by y+(y+4)+ ...+(y+4(t−1)) =

yt + 4 t(t−1)
2 . Finally, assuming the computation and transfer

are totally overlapped, the total runtime is given roughly by
the function of t,
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(8)

This model illustrates the tradeoff between doing many
timesteps and saving memory transfers and doing few
timesteps and having smaller ghost regions.

VII. RESULTS

We test our implementation on a Fermi architecture GPU,
the NVIDIA GTX 580. It is connected to a server running
Ubuntu 12.04 server edition via a PCI-e 2.0 x16 bus. In our
implementation all memory allocations on the host are declared
page-locked so that the corresponding data will reside in the 47
GBytes of DDR3 DRAM available on our system. Though the
PCI-e 2.0 x16 bus has a peak transfer rate of 16 GBytes/s, our
CPU-GPU transfers achieve around 5.2 GBytes/s, as measured
by the CUDA Visual Profiler, which is around the known limit
when using cudaMemcpy [29].

The GTX 580 has 512 CUDA cores and approximately
1.5 GBytes of global device memory. We compile the CUDA-
specific code with the NVCC compiler from CUDA toolkit
5.0 targeted to compute capability 2.0 (the highest supported
by the GTX 580) and the remainder with GNU C++ compiler
version 4.6.4.

Each iteration consists of applying the iteration from Sec-
tion III-A at each grid point. When simulating points on the
boundary of the grid, we assume that the solution takes the
value 0 at all points outside the simulated region.

We have used the parameter values ∆t = 10−9 (s), ∆x =
10−5 (m) and c = 1500 (ms−1), giving a stable CFL value of
0.15. For the nonlinear parameters we have used δ = 4.5 ×
10−3 (m2s−1), β = 6 and ρ0 = 1100 (kgm−3), the same as
Karamalis et al. [12].

We have implemented an equivalent version of the simula-
tion in C++ using double precision calculations. This was done
for the purpose of checking correctness of the GPU version and
to quantify the error introduced by each compression scheme.
Our GPU (using uncompressed single precision data) and CPU
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implementations are in agreement to the expected level of
precision, which suggests that our GPU implementation is
correct.

For performance results, we perform simulations with 50
timesteps. Each test is repeated 5 times and we report the
minimum time as measured by the CUDA event API. As
expected this differs only very slightly from the average time
in almost all test cases, as our implementation is entirely
deterministic and so any variation in runtime will be solely
due to external factors. The only observed fluctuation seems
to be due to the creation/destruction of CUDA device contexts.

For the initial conditions, we select a subset of (1000)
grid cells at random and initiate them with a square-wave
pulse i.e. set the pressure to be 1 for the first 4 timesteps.
Correspondingly our compression scheme assumes all pressure
values to lie in the range (−4, 4). The range of values handled
by a simulation is highly domain and application specific but
we feel this to be a representative scenario.

All results ignore the cost of the initial compression and
final decompression that must be performed on the CPU. We
have made no effort to optimise these calculations e.g. by
using multiple threads. In addition, for a fixed grid size, this
cost is constant (for a 64512 × 1024 grid, it is around 4
seconds, similar to around 100 timesteps of simulation), and
is effectively amortised when performing a simulation with a
large number of timesteps.

A. Performance

First we describe the execution time for a simulation where
we artificially limit the amount of GPU device memory used
to 200 MBytes. This allows a comparison with the case
where the entire simulation can be fit onto the device and
carried out without any intermediate transfers, which illustrates
quantitatively the cost of splitting the computation into separate
parts.

We use a grid of 40960 columns and 1024 rows. This
is not a particularly large simulation compared to many 3D
simulations since the number of grid points is less than 4003.
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Since we divide the problem into slices of entire rows, the
total number of timesteps and height do not affect the runtime
except by an approximately constant multiple, and so the
relative speedup we achieve will be roughly the same for a
simulation of the same width but with many more rows and
timesteps (e.g. a 409602 grid).

Fig. 3 gives the execution time for this simulation as a
function of t, the maximum number of timesteps performed
in between transferring results back to the host. Table I
summarises the results assuming the optimal choice of tem-
poral block size t. For this small simulation with a restricted
amount of memory, both the 2 byte and 3 byte compression
schemes allow improved performance. The 2 byte compression
scheme gives a speed up more than 2 times while the 3 byte
compression scheme gives a speedup of approximately 1.5
times. Our model can explain why the speedups for this test
case are greater than the ratio to which the data is compressed.
This is because compression gives the double benefit of not
only reducing transfer time for memory bound simulations, but



it allows larger (in terms of number of rows) slices to be fit
in the device memory, since the data is only compressed/de-
compressed by the kernel as required. This factor reduces the
relative amount of data required to transfer the ghost regions
surrounding each slice.

We note that as a rule of thumb for fixed t, for memory-
bound cases the runtime should be roughly inversely propor-
tional to the compression performed. Indeed this is observed
when t = 1 as the uncompressed, 3 byte and 2 byte simulations
require around 8500 ms, 6500 ms, and 3700 ms respectively.
This rule begins to break down for larger t as the cost of com-
putation and amount of memory transfer/computation required
to handle the ghost regions grows differently depending on the
compression scheme used.

Ignoring the artificial memory constraint, the simulation
when fit entirely on the device, runs in around 400 ms,
ignoring the cost of the initial and final memory transfers.
Table I details how this compares to the case when only 200
MBytes is used. It is clear that the memory constraint, even
with optimal choice of t, so that transfers are overlapped by
computation, causes significant slowdown. The uncompressed
version requires around 1300 ms, more than three times
as slow. This demonstrates quantitatively how compression
pushes the runtime toward the performance bound of the
simulation performed entirely on the device.

Fig. 4 gives the predicted runtime for the same simulations
using the model introduced in Section VI. The data transfer
rate R is estimated to be 5.2 GBytes/s using information
from the NVIDIA Visual Profiler. The time required to sim-
ulate a single grid point Cλ is estimated from a number
of small benchmark test cases carried out entirely on the
device memory. We use the values C1 = 1.95 × 10−7 ms,
C0.75 = 2.61 × 10−7 ms, C0.5 = 2.13 × 10−7 ms for no
compression, 3 byte compression and 2 byte compression
schemes respectively.

It is apparent that the predicted (Fig. 4) and actual (Fig. 3)
runtimes match qualitatively. For example, the model is able
to predict the sharp increase in runtime in the simulation with
uncompressed data as t→ 30, as the ghost region becomes so
large that the expense of transferring its contents/simulating it
begins to become a substantial fraction of the total computa-
tional cost.

It is clear from both the experimental results and the
predictive model that the runtime as a function of the temporal
block size is not monotonic (decreasing then increasing). There
are some parameter choices such that increasing the temporal
block size by 1 actually causes a decrease in performance.
This is due to the fact that performing the extra timestep in
between communication requires the storage of 4 additional
rows of data on the GPU. The limited amount of memory may
force an increase in the total number of pieces into which the
entire grid must be divided to perform the calculation. This
increases the total amount of work (and hence runtime) since
the total number of grid points involved in the ghost regions
around each piece is increased.

This sharp change in runtime between some parameter
values is more pronounced in the predictive model than the
experimental results. This is due to the fact that the model
assumes a worst case scenario in terms of load balancing, i.e.

TABLE I. TIME IN MILLISECONDS FOR TWO SIMULATIONS FOR
OPTIMAL SIZE OF TEMPORAL BLOCK, WITH DIFFERENT COMPRESSION

SCHEMES

Runtime (ms) Speedup Runtime (ms) Speedup
Columns 40960 64512
Available memory 200 MBytes 1 GBytes
No compression 1333.24 1.000 970.37 1.000
3 byte compression 869.25 1.534 1032.37 0.940
2 byte compression 542.02 2.460 796.53 1.218
Entirely on device 399.52 3.337 n/a

completely uniform runtimes and a fixed schedule. In practice
random effects such as memory bus contention combined with
warp scheduling help to mitigate this factor. In addition, we
note that the slight mismatch between the location of the
sharp changes between the two graphs is due to the fact that
our simple model may sometimes incorrectly determine the
number of pieces into which the grid must be subdivided.
This includes the aforementioned complicated case such as
the allocating of an extra row in case the grid is not divisible
into equal pieces.

Intuitively we expect that because for a single slice compu-
tation increases and memory transfers decrease as a function
of the temporal block size, the optimal number of timesteps t
is such that the memory transfer overlaps as close as possible
with the computation. Our model suggests that for this size grid
and memory constraint, when using 2 byte compression this
occurs when t = 15, when using 3 byte compression it occurs
when t = 19 and when operating on uncompressed data the
simulation is always memory bound. Fig. 4 indicates that for
2 and 3 byte compression schemes these values of t give very
close to optimal performance. This suggests that our simple
model is a very useful tool for getting good performance in
simulations of other sizes without extensive experimentation.

Fig. 5 gives the results for a larger test case using 1 GByte
of device memory, which is the majority of the 1.5 GBytes
available on the GTX 580. This simulation uses a grid of 1024
rows and 64512 columns, and is otherwise the same as the
smaller case described above. Assuming the choice of optimal
temporal block size t, the 2 byte compression scheme provides
a speedup of around 1.2 times (see Table I). In addition, we
note that for almost all choices of the temporal block size t,
the 3 byte compression scheme outperforms the uncompressed
simulation. However, for optimal choice of t, the simulation on
uncompressed data performs better. We believe that this is due
to the fact that for this particular choice of t, the simulation
happens to divide conveniently into a number of pieces in a
way that slightly favours operating on uncompressed data.

This result combined with the small test case indicate that
compression is most beneficial when the problem size is large
relative to the amount of memory available. We note that the
relatively poor results on the large test case do not indicate
that our approach does not scale with problem size because
the important factor is not the absolute problem size but how
it compares to the available memory.

We can use our model to quantify this assertion by using it
to predict the grid size required for compression to beneficial.
With this we can predict (simply by testing many different
values) the minimum value of X (the number of columns in
the grid) required when M bytes of memory are available
for a given compression scheme to be beneficial. The number
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Fig. 6. Maximum absolute error over all grid points in a sample simulation
as a function of number of timesteps and compression scheme

of rows is not important because we can break the grid into
more pieces. When 1 GByte is available, 2 byte compression
becomes beneficial at around X = 58000 and 3 byte compres-
sion at around X = 90000. This concurs with the result we
have observed for this test case. For the small test case with
only 200 MBytes of memory available, 2 byte compression
becomes beneficial at around X = 16000 and 3 byte at around
X = 24000, which suggests speedups in both cases, which
were indeed observed.

B. Error

Here we quantify empirically the error introduced by both
the 2 byte and 3 byte compression schemes. We do this by
comparing the results for simulations of a variable number
of timesteps to our serial double precision described above. In
addition, we can compare the error to that introduced by single
precision by performing the simulation in using our baseline
GPU implementation.

The results are reported for a simulation on a grid of size
10242 with a single square-wave pulse of duration 4 timesteps
propagating from the center of the grid. All other simulation
parameters are the same as for the performance results detailed
above.

Fig. 6 shows the maximum absolute error over all grid
points as a function of the number of timesteps simulated,
when using single precision, 2 byte compression and 3 byte
compression, compared to double precision. Absolute error
is used as a metric instead of relative error because we
believe that the wave dissipation makes the relative error
appear overly pessimistic. We conclude that for this domain,
the 3 byte compression scheme is useful for performing at
least qualitatively accurate simulations. Unfortunately, in this
domain, the error in the 2 byte compression scheme seems to
accumulate too much for this scheme to be useful.

The absolute error seems initially to grows approximately
linearly as a function of the number of times compression is
applied. Notably it is apparent that the error is non-negligible
even for the uncompressed (single precision) simulation. In
this sense we can interpret the 2 byte and 3 byte compression

schemes as an extension of the transition from double to single
precision, that illustrate the trade off between computation time
and simulation accuracy. In terms of performance we expect a
memory-bound GPU-based double precision simulation would
be approximately twice as slow as the single precision version,
as twice as much data must be transferred.

The pattern in the error as a function of timestep plotted
in Fig. 6 is worth noting. We conjecture that the periodicity
seen here is related to the wavelength of the wave that is being
simulated, as they are both approximately in the range of 10
to 15 timesteps.

VIII. CONCLUSION AND FUTURE RESEARCH

In this paper we have investigated the performance ben-
efits of using data compression to improve effective memory
bandwidth on a stencil-like ultrasound simulation. We have
demonstrated a speedup of 1.5 times on a simulation that
compresses single-precision floating point values into 3 bytes,
whilst maintaining at least qualitative accuracy in the final
result. We believe that this technique and the further improve-
ments described below will be useful for a wide range of
other applications including electromagnetic wave propagation,
seismological simulations and computational fluid dynamics.

Our results show that in principle it is possible that by
dealing with a data set in compressed form including during
communication across a memory bottleneck, overall perfor-
mance can be improved. This is true even when the memory
transfer can be entirely hidden by using temporal blocking.
Our approach is likely to apply similarly to hardware utilising
similar memory models, such as those having separate host
and device address spaces, including a wider range of GPUs
supporting the OpenCL standard.

We plan to investigate the effect of more sophisticated
compression schemes, such as wavelet-type compression algo-
rithms, in order to achieve good performance combined with
high accuracy. Due to the large-scale homogeneities in many
pressure fields of interest, it should be possible to achieve
very high compression with minimal loss in accuracy. We also
plan to move to 3D simulations where the amount of memory
available becomes a more severe limitation.

In the future it is likely that CPUs and GPUs and their
address spaces will become more tightly integrated. However,
this technique is equally applicable to the problem of per-
forming simulations distributed across multiple GPUs. Since it
applies broadly to problems where the computation is divided
into many independent parts, it will work equally if the parts
are divided between multiple GPUs instead of being performed
sequentially on a single GPU.
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