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Appendix A Generative Model of the Twitter-Network (TN) Topic Model

The TN topic model makes use of the accompanying hashtags, authors, and followers network to
model tweets better. The TN topic model is composed of two main components: a HPDP topic
model for the text and hashtags, and a GP based random function model for the followers network.
The authorship information serves to connect the two together.

We design the HPDP topic model as follows. For the word distributions, we first generate a parent
word distribution prior γ for all topics:

γ ∼ PDP(αγ , βγ , Hγ), (1)

where Hγ is the discrete uniform distribution over the word vocabulary V . Then, we sample the
hashtag distributions ψ′k and word distributions ψk for each topic k, treating γ as the base distribu-
tion:

ψ′k|γ ∼ PDP(αψ
′
, βψ

′
, γ), (2)

ψk|γ ∼ PDP(αψ, βψ, γ). (3)

Note that the tokens of hashtags are shared with the words, i.e. the hashtag #happy shares the same
token as the word happy. This treatment is important as some hashtags are used as words instead of
just labels, and it also allows any arbitrary words to be hashtags.

For topic distributions, we generate a global topic distribution µ0 that serves as a prior. Then generate
the authors’ topic distributions νi for each author i, and a miscellaneous topic distribution µ1 to
capture topics that deviate from the authors’ usual topics:

µ0 ∼ PDP(αµ0 , βµ0), (4)
µ1|µ0 ∼ PDP(αµ1 , βµ1 , µ0), (5)
νi|µ0 ∼ PDP(ανi , βνi , µ0). (6)

For each tweet m, given the ν’s and the observed authors am, we sample the mixing proportions ρνm
and the observed-authors topic distribution ηm:

ρνm|am ∼ Dir(λν1 , . . . , λ
ν
|am|), (7)

ηm|am, ρνm, ν ∼ PDP(αη, βη,
∑
i ρ
ν
m,iνi). (8)

The mixing proportions ρνm determine the contribution of each author in the document, although in
the case of tweets, |am| = 1 and hence ρνm = {1}. Next, we generate the topic distributions of the
observed hashtags (θ′m) and the observed words (θm), following the technique in the adaptive topic
model (Du et al., 2012). We explicitly model the influence of hashtags to words, by generating the
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words conditioned on the hashtags. The intuition comes from hashtags being the themes of a tweet,
and they drive the content of the tweet. Specifically, we sample the mixing proportions ρθ

′

m, which
control the contribution of ηm and µ1 in the base distribution of θ′m, and then generate θ′m:

ρθ
′

m ∼ Beta(λθ
′

0 , λ
θ′

1 ), (9)

θ′m|µ1, ηm ∼ PDP(αθ
′

m, β
θ′

m, ρ
θ′

mµ1 + (1−ρθ
′

m)ηm). (10)

We set θ′m and ηm as the parent distributions of θm. This flexible configuration allows us to investi-
gate the relationship between θm, θ′m and ηm, e.g., we can examine if θm is directly determined by
ηm, or through the θ′m. The mixing proportions ρθm and θm is generated similarly:

ρθm ∼ Beta(λθ0, λ
θ
1), (11)

θm|ηm, θ′m ∼ PDP(αθm, β
θ
m, ρ

θ
mηm + (1−ρθm)θ′m). (12)

The hashtags and words are then generated in a similar fashion as LDA. For each of theN ′m hashtags,
sample a topic and a hashtag:

z′m,n′ |θ′m ∼ Discrete(θ′m), (13)

ym,n′ |z′m,n′ , ψ′1:K ∼ Discrete(ψ′z′
m,n′

). (14)

For each of the Nm words, sample a topic and a word:

zm,n|θm ∼ Discrete(θm), (15)
wm,n|zm,n, ψ1:K ∼ Discrete(ψzm,n). (16)

We note that all above α’s, β’s and λ’s are hyperparameters of the model. Although the HPDP topic
model may seem complex, it is actually a simple network of PDP nodes since all distributions on
the probability vectors are modeled by the PDP.

At the network side, we adapt the GP based random function model (Lloyd et al., 2012) to model
the followers network. The network modeling is connected to the HPDP topic model via the author
topic distributions ν’s, where we treat them as inputs to the GP in the network model. The GP,
denoted as F , is used in determining xij , the binary variables indicating the existence of the social
links between the authors. For each pair of authors (i, j), we sample their connections with the
following random function model:

Qij |ν1:A ∼ F(νi, νj), (17)
wij |Qij = σ(Qij), (18)

xij |wij ∼ Bernoulli(wij), (19)

where σ() is the sigmoid function, F is modeled as a GP.

Appendix B Chinese Restaurant Process (CRP) Representation for the
Twitter-Network Topic Model

For the topic model, we adopt a Chinese Restaurant Process (CRP) metaphor (Teh and Jordan, 2010;
Blei et al., 2010) to represent the variables. We represent all words and hashtags as customers; the
PDP distributed nodes as restaurants; and the topics as dishes. We will use these terms interchange-
ably in this paper, e.g., topic ≡ dish. The intuition behind this is straightforward: in each restaurant,
each customer is allocated a table to sit at, and each table serves only one dish. Hence, customers
(words) who are on the same table share the same dish (topic). This is similar to the ‘counts’ in
LDA, albeit complicated by the fact that different tables can serve the same dish. Moreover, a table
in a restaurant is treated as a customer in its parent restaurant. Below shows a detailed explanation
on how this works.

For each document m, the first word enters node θm and opens a new table, which serves a dish
(topic) k that is available from its parent nodes. This word is assigned a topic k. Subsequent words,
upon entering node θm, can then choose to sit at the available tables or open a new table. If they
choose to sit at the existing tables, the word will have the same dish as other words on the same
table (each table serves only one dish). If a new table is opened, a new dish is sampled from the
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parent nodes. The same process happens to hashtags, which enter node θ′m instead of θm. Note that
all newly opened tables become a new customer in the parent node which offered the dish. This
process repeats recursively (for all customers) until the root (µ0), in which opening a new table
means inventing a new dish (creating a new topic) that can be passed down to children nodes. Note
that for word distributions γ, ψ′ and ψ, the dishes are vocabulary words. The customers no longer
choose table randomly since the dish corresponds to each customer is already known (words and
hashtags are observed variables).

Naively recording the seating arrangements (table and dish) of each customer brings computational
inefficiency in posterior inference. Instead, we marginalize the PDP and use the table multiplicity (or
table counts) representation (Chen et al., 2011), which requires no dynamic memory, thus consumes
only a factor of memory at no loss of inference efficiency. For each restaurant/nodeN , we store cNk ,
the number of customers having dish k, and tN→Pk , the number of tables serving dish k from parent
restaurant/node P . For example, cθmk is the number of customers in restaurant θm (the number of
words in document m that is assigned topic k). For each node N , we also define the total number
of customers as CN =

∑
k c
N
k , the total number of tables serving dish k as tNk =

∑
P t
N→P
k , the

total number of tables serving dishes from node P as TN→P =
∑
k t
N→P
k , and the number of total

tables as TN =
∑
k t
N
k =

∑
P T
N→P . Note that cPk =

∑
N t
N→P
k for all P except θ′m and θm.

After marginalizing out the latent variables, we can write down the model likelihood in terms of cNk
and tN→Pk . We denote W and Y as the set of all words and tags; Z and Z′ as the set of all topic
assignments for words and tags; T as the set of all table multiplicities; and Φ as the set of all model
parameters (e.g. α). The likelihood can easily be read out as p1(W,Y,Z,Z′,T|Φ) ∝

f(µ0)f(µ1)
( A∏
i=1

f(νi)
)( K∏

k=1

f(ψ′k)f(ψk)
)
f(γ)

( M∏
m=1

f(ηm)f(θ′m)f(θm)g(ρθ
′

m)g(ρθm)
)
, (20)

where f(N ) is the likelihood corresponding to node N and g(ρ) is the likelihood corresponding to
the probability ρ that controls which parent node to send a customer to. These likelihoods have the
following forms:

f(N ) =
(βN |αN )TN
(βN )CN

∏
k

S
cNk
tNk ,α

N , (21)

g(ρN ) = B(λN0 + TN→P0 , λN1 + TN→P1). (22)

(x)T and (x|y)T denote the Pochhammer symbol, (x|y)T = x(x + y) . . . (x + (T − 1)y) and
(x)T = (x|1)T . Sct,a is the generalized Stirling number, see Buntine and Hutter (2012), and B(x, y)
denotes the Beta function that normalizes a Dirichlet. With the CRP presentation, the likelihood is
modularized into product of nodes’ likelihood, which allows the posterior to compute very quickly.

In the network model, the GP based random function F allows us to easily marginalize out the
entries in F without observations, resulting in a finite dimension Gaussian prior. The conditional
posterior is written as p2(X , {Qij}|{νi}) ∝∏

i

∏
j

(
σ(Qij)

xij (1− σ(Qij))1−xij
)
|κ|− 1

2 × exp

(
−1

2
(Q− ξ)T κ−1 (Q− ξ)

)
, (23)

where Q ∼ GP(ξ, κ), ξ denotes the mean function and κ is the kernel function in the GP. Following
Lloyd et al. (2012), we would concatenate the author topic distributions (νm1 and νm2) as the feature
for linkm, and use them in the kernel function. However, this definition fails to consider the relation
between author topic distributions, i.e., we expect authors with similar topics are connected and vice
versa. To overcome this, we propose a new kernel function κmn(εm, εn) =

s2

2
exp

(
−|Dist(νm1, νm2)− Dist(νn1, νn2)|2

2l2

)
+ σ2δ(m = n), (24)

where s, l, σ are hyperparameters; εm = [νm1, νm2]; δ(·) is the indicator function; Dist(νm1, νm2)
is an arbitrary distance function, we use the cosine similarity in this paper. We can see that if εm and
εn have similar distance, they are likely to behave similarly. In addition, we set the mean function
as ξ(εm) = Dist(νm1, νm2).
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Appendix C Detailed Inference Procedure for the HPDP Topic Model

Combining a GP with a HPDP makes posterior inference for the TN topic model nontrivial. Hence,
we employ approximate inference by alternatively perform Markov chain Monte Carlo (MCMC)
sampling on the topic model and the network model, conditioned on each other. We develop a
framework to perform collapse Gibbs sampling generally on any Bayesian network of PDPs, built
upon the work of Buntine et al. (2010) and Chen et al. (2011), which allows quick prototyping
and development of new variants of topic model. For the network model, we derive a Metropolis-
Hastings (MH) algorithm based on the elliptical slice sampler (Murray et al., 2009). In addition, the
author topic distributions (νi) connecting the HPDP and GP are sampled with an MH schema since
their posteriors do not follow a standard form.

Appendix C.1 Collapsed Gibbs Sampling

Following Chen et al. (2011), we assign a Bernoulli variable u to each customer to indicate whether
the customer created the table, also known as the ‘head’ of the table. Doing so avoids the need to
record all seating arrangements and also improves the algorithm considerably. The Gibbs sampling
procedures follow standard LDA, i.e. for each word (and hashtag), decrement the observation, sam-
ple a new topic for the word and increment the associated counts; though each of the procedures is
more complicated here. We note that our collapsed Gibbs sampler is general for any HPDP topic
model represented by a PDP network. The only difference would be the explicit representation of
the posterior likelihood and counts.

Here, we describe a straightforward Gibbs sampling algorithm for training the HPDP topic model
(i.e. without network). The full conditional posterior probability for collapsed block Gibbs sampling
can be derived easily. For instance, the conditional posterior in sampling the topic assignment of
word wm,n is

p(zm,n,T|W,Y,Z−m,n,Z′,T−m,n,Φ) =
p1(W,Y,Z,Z′,T|Φ)

p1(W,Y,Z−m,n,Z′,T−m,n|Φ)
(25)

where the superscript −m,n indicates the word wm,n is removed from the respective sets. This ratio
is easy to compute because the table multiplicity tNk and the customer counts cNk will only increment
by at most 1, allowing simplification of the ratio of Pochhammer symbol and Beta function. The
ratio of Stirling number can be computed quickly via caching (see Buntine and Hutter (2012)).
Similarly, the conditional posterior probability for sampling the topic assignments of hashtag ym,n′
can be derived as

p(z′m,n′ ,T|W,Y,Z,Z′−m,n
′
,T−m,n

′
,Φ) =

p1(W,Y,Z,Z′,T|Φ)

p1(W,Y,Z,Z′−m,n′ ,T−m,n′ |Φ)
(26)

Decrementing a Word or a Hashtag To remove a word or a hashtag to perform Gibbs sampling,
we introduce an auxiliary variable similar to table indicator (Chen et al., 2011). Note that our table
indicator representation is different to that of Chen et al. (2011), due to the complexity of the TN
topic model. Instead of having a variable which indicates the level of table contribution, our table
indicators show to which parents a node is contributing a table. The sample space of the indicator
of a node is its parent nodes P1, . . . ,PP , plus the empty set ∅.
When a customer (a hashtag or a word) having dish k is removed from node N , we sample an
indicator uNk , which indicates whether to remove a table serving dish k and from which parent
nodes. When uNk is equal to Pi, we remove a table serving dish k from node Pi, decrement tN→Pik
and recursively remove a customer in node Pi (since the table removed is a customer in node Pi).
We repeat the process recursively until the root node is reached, or until uNk equals ∅, which means
the customer does not contribute to any table.

The value of uNk is sampled as follows:

p(uNk ) =

{
tN→Pik /cNk if uNk = Pi
1−

∑
Pi p(u

N
k = Pi) if uNk = ∅ (27)
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We give an illustrative example: When a word wm,n (with topic zm,n) is removed, we decrement
cθmzm,n , i.e. cθmzm,n = cθmzm,n − 1. Then we determine if this word contributes to any table in node θm,
by sampling uθmzm,n , if uθmzm,n = ∅, we do not remove any table and proceed with the next step in
the Gibbs sampling; otherwise, uθmzm,n can be either θ′m or ηm, in these cases, we would decrement

t
θm→uθmzm,n
zm,n and c

uθmzm,n
zm,n , and continue the process recursively.

Sampling The Gibbs sampling procedures follow standard LDA, i.e. for each word (and hashtag),
decrement the observation, sample a new topic for the word and increment the associated counts;
though each of the procedures is more complicated here. The algorithm for Gibbs sampling is
summarized in Algorithm 1.

Algorithm 1 Collapsed Gibbs Sampling for the HPDP Topic Model

1. Initialize the model by assigning topics to each word and each hashtag randomly, building
the relevant customer counts cNk and table counts tNk .

2. For each document m:
(a) For each word wm,n:

i. Remove the word and decrement associated counts.
ii. Sample zm,n and T from the conditional posterior (Equation 25).

iii. Increment the associated counts for the sampled topic.
(b) For each hashtag ym,n′ :

i. Remove the hashtag and decrement associated counts.
ii. Sample z′m,n′ and T from the conditional posterior (Equation 26).

iii. Increment the associated counts for the sampled topic.
3. Repeat step 2 until the model converges or when a fix number of iteration is reached.

Elliptical Slice Sampling and MH Update We jointly sample the author topic distribution νi
associated with the GP with an MH procedure. Specifically, we use independent Dirichlet distributed
proposals q(ν′i|νi) = q(ν′i), which are the posteriors of νi without the GP likelihood. The MH
sampling procedure is summarized in Algorithm 2.

Algorithm 2 The Metropolis-Hastings Algorithm
1. Propose a new ν′i from its proposal distribution

q(ν′i|νi) = Dir(cνi1 − ανiT
νi
1 + (ανiT νi + βνi)µ0,1,

· · · , cνiK − α
νiT νiK + (ανiT νi + βνi)µ0,K).

2. Re-sample Qij with the elliptical slice sampler, using ξ′ and κ′ calculated from ν′i.
3. Accept the proposed ν′i with probability A =

min
{
1,

p2(X ,{Qij}|{ν′i})
p2(X ,{Qij}|{νi})

CRP({ηm},ν′i)
CRP({ηm},νi)

q(νi)
q(ν′i)

}
, where CRP({ηm}, νi) denotes the proba-

bility of simulating the CRP for each ηm with base distribution νi.

Hyperparameter Sampling We sample the hyperparameters β using the auxiliary variable sam-
pler following Teh (2006). Sampling the concentration parameters allows the topic distributions of
each author to vary, i.e. some authors have few very specific topics and some other authors can have
many different topics, which is very important.

While both the α and β can be sampled with the auxiliary variable sampler, it is more efficient by
fixing α and sample only β. We also found the values of the parameters s, l and σ have no significant
impact on the model performance, thus we fixed them to 1 in the experiments.

Assuming β has a Gamma distributed hyperprior with shape a and rate b, we sample a new parameter
β′ of node N as follows:
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1. Sample x ∼ Beta(CN , β).
2. For i from 0 to (TN − 1), sample yi ∼ Bernoulli(β/(β + iα)).
3. Sample new β′ ∼ Gamma(a+

∑
i yi, b− log(1− x)).

Posterior Inference The final topic distributions and word distributions are reconstructed from
the table counts and customer counts. More specifically, the topic distribution (or word distribution)
s = {s0, . . . , sK} of each node N is estimated from its posterior mean:

E(sk|·) =
cNk − αN tNk + (αNTN + βN )pk

CN + βN

where pk is the base distribution (the parents’ distribution) and K is the number of seen dishes. For
instance, the topic distribution νi of each author i can be calculated recursively by first calculating
the topic distribution of µ0. The word distribution of each topic can be computed similarly.

Additionally, we can perform posterior predictive inference for various applications, such as author
recommendation by predicting the followers network.

Author Recommendation The goal of author recommendation is to predict the most likely au-
thors in the training dataset a new author/user would connect to. This is straightforward within
the GP framework. Suppose there are A authors in the training dataset, given a new author
j, we first infer its author topic distribution νj using the trained topic model. Based on re-
sults from the Gaussian process regression (Rasmussen and Williams, 2006), the strength of
the link between the new author j and author i in the training dataset (quantified by Qij) is
a Gaussian random variable with mean Q̃εi∗ = κ(εi∗, ε

i
1:A)κ(ε

i
1:A, ε

i
1:A)

−1Qi,1:A and covariance
κ̃ = κ(εi∗, ε

i
∗)− κ(εi∗, εi1:A)κ(εi1:A, εi1:A)−1κ(εi1:A, εi∗), where εi∗ = [νi; νj ] and εit = [νi; νt]. Author

recommendation can thus be done by choosing n authors with the largest Q̃εi∗ values as recom-
mended authors for the new user j.

Appendix D Additional Results

Appendix D.1 Clustering and Topic Coherence

Mehrotra et al. (2013) shows that using LDA on pooled tweets1 gives significant improvement. Here,
in contrast to their ad-hoc technique, we demonstrate that we can achieve a significantly better
performance with the TN topic model. We evaluate the TN topic model with standard clustering
measures, i.e. purity and normalized mutual information (NMI) (Manning et al., 2008), and topic
coherence measured by pointwise mutual information (PMI) (Newman et al., 2009). Note that due
to the lack of network information in this dataset, the TN topic model is equivalent to the ablated
model without network. Following Mehrotra et al. (2013), we assign each tweet to a cluster based
on its most dominant topic, and compare them with the ground truth, which are tweets queried
with certain keywords such as ‘movie’ and ‘food’. Since purity can be trivially improved with the
number of clusters, we limit the maximum number of topics to 20 for a fair comparison. We present
the results in the last row of Table 1, other rows are different pooling methods used with LDA,
obtained from the paper by Mehrotra et al. (2013) (Table 4). We can see that the TN topic model
outperforms all other methods.

1Multiple tweets combined into a single document.
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Table 1: Clustering and Topic Coherence Results

Methods Purity NMI Score PMI score
Generic Specific Events Generic Specific Events Generic Specific Events

No pooling 0.49 0.64 0.69 0.28 0.22 0.39 −1.27 0.47 0.47
Author 0.54 0.62 0.60 0.24 0.17 0.41 0.21 0.79 0.51
Hourly 0.45 0.61 0.61 0.07 0.09 0.32 −1.31 0.87 0.22
Burstwise 0.42 0.60 0.64 0.18 0.16 0.33 0.48 0.74 0.58
Hashtag 0.54 0.68 0.71 0.28 0.23 0.42 0.78 1.43 1.07

TN 0.66 0.68 0.79 0.43 0.31 0.52 0.79 0.81 1.66

Appendix D.2 Inference on the Mixing Probabilities

The posterior of the mixing probability ρN gives insight on the influence of the parents’ distributions
of a distribution node N . The posterior mean of ρN can be computed as:

E(ρN |·) = TN→P0 + λN0
TN→P0 + λN0 + TN→P1 + λN1

where P0 and P1 are the first and second parent nodes of nodeN , and ρN is the proportion of influ-
ence of the first parent. More specifically, ρθ

′

m is the proportion of the influence of the miscellaneous
topic distribution (node µ1) to node θ′m, and 1− ρθ′m is the proportion of influence from the author’s
topic distribution.

In the TN topic model, we expect that ρθ
′

m to be small since the miscellaneous topic distribution is
designed to capture topics that are not frequently used by authors. Figure 1 displays the empirical
cumulative frequency plot for the posterior of ρθ

′

m. We can see that more than 80% of the estimated
ρθ
′

m have proportion less than 0.4, which confirms that the TN topic model is working as intended.

On the other hand, the mixing probability ρθm is inversely related to the influence of hashtags to the
words, i.e. the lower the value of ρθm, the higher their influence. Figure 2 shows a relatively linear
empirical cumulative frequency plot, suggesting that equal contribution of ηm and θ′m towards node
θm. This mean that the hashtags do influence the words to a great extent.
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Figure 1: Cumulative Frequency of ρθ
′

m

0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

proportion

cu
m

ul
at

iv
e

 fr
eq

ue
n

cy

Figure 2: Cumulative Frequency of ρθm

Appendix D.3 Additional Topic Explorations

In this subsection, we show the qualitative results by running topic exploration task with the TN
topic model. Table 2 shows the top 10 significant topics from our corpus of 60370 tweets; while
Table 3, 4, and 5 show the top 10 topics from the dataset of Mehrotra et al. (2013).
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Table 2: Topics for 60370 Tweets

Hashtags Words
T0 #finance #money #economy finance money bank marketwatch stocks china group shares
T1 #politics #iranelection #tcot politics iran iranelection tcot tlot topprog obama music
T2 #music #folk #pop music folk monster head pop free indie album gratuit dernier
T3 #music #techno #listening music alexanderfog techno video gardian listening nyt videos
T4 #sports #women #asheville sports women football win game top world asheville vols team
T5 #tech #news #jobs tech news jquery jobs hiring engineer gizmos google reuters
T6 #politics #news #sonnet politics found news obama health care sonnet open david palin
T7 #politics #news #actavist politics news actavist wales bbc welshassembly iamcrazydave
T8 #science #news #biology science news source study scientists cancer researchers brain

biology health
T9 #tech #web #technology web tech technology found news social google iphone twitter

Table 3: Topics for “Specific” Dataset

Tags Words
T0 #obama #tcot #news obama president barack news michelle white house post usa
T1 #iphone #apple #app apple iphone store app at&t free mac check update itunes
T2 #pakcricket #cricket #baseball usa baseball cricket game team susan france spain cup brazil
T3 #microsoft #usability #bing microsoft thousands followers free windows bing found search
T4 #iranelection #gr88 #mousavi mousavi iranelection iran tehran gr88 arrested rally supporters
T5 #obama #lgbt #doma obama health president care bill reform gay barackobama plan
T6 #ipod #iphone #twitools apple ipod touch xbox sale microsoft iphone mp3 game
T7 #iranelection #neda #mousavi neda mousavi iran iranelection tehran internet anonymous

bypass send blocking
T8 #jobs #tweetmyjobs

#twitteranalyzer
united states jobs usa job manager thousands france business

services
T9 #iranelection #iran #gr88 obama iran iranelection mousavi iranian election ahmadinejad

president people tehran

Table 4: Topics for “Generic” Dataset

Tags Words
T0 #ecademy #socialmedia

#twitter
business home marketing internet online social based blog

twitter media
T1 #tcot #healthcare #gop health care obama reform insurance plan public tcot news
T2 #swineflu #h1n1

#thcommandment
health flu swine united states news world officials h1n1

T3 #food #cook #whereisgraeme food good eat fast great family wine eating fun network
T4 #iranelection #neda #gr88 family iranelection iran neda design sport iranian home

business tehran
T5 #news #business #mydonut business design news small blog social media health plan
T6 #design #webdesign

#wordpress
design web blog website graphic logo business inspiration site

wordpress
T7 #health #foodinc #food health food blog fitness weight diet healthy post good news
T8 #business #loan #quickbooks business small free online home cards money make start blog
T9 #travel #contest #tuesgiveaway family fun food free summer movie house sale single june
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Table 5: Topics for “Events” Dataset

Tags Words
T0 #conf #openvideo #conference conference press live news call video twitter great today june
T1 #swineflu #swine #health flu swine cases news death health confirmed pandemic case
T2 #recession #jobs #tweetmyjobs recession business money jobs jacksonville proof make home

marketing great
T3 #nba #lakers #jtv lakers game magic nba finals let0̆027s los orlando angeles day
T4 #iranelection #iran #tehran iran election iranelection elections tehran attack attacks twitter

protests ahmadinejad
T5 #michaeljackson #michael #nfl jackson michael hospital cardiac arrest breakingnews los

angeles bulletin reports
T6 #pakcricket #cricket #pakistan world pakistan live cricket cup india june sri icc lanka
T7 #sanford #tcot #fare flight air france conference breakingnews madoff world0̆027s

fraud prison sentenced
T8 #lakers #nba #ilist lakers jackson phil nba coach kobe fined bryant los title
T9 #tcot #news #gop scandal attack attacks sex scandals news attacked tcot cheney
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