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Abstract

 

A definition of the scope of a scientific theory of hu-
man cognition is proposed in which for any psycho-
logical state a corresponding physiological state can
be identified, and causal relationships between psy-
chological states have corresponding causal rela-
tionships between physiological states. The vital
role of a simple functional architecture in function-
ally complex commercial electronic systems is de-
scribed, and it is argued that selection pressures have
resulted in simple functional architectures in biolog-
ical brains. However, the functional architecture is
qualitatively different from the architectures in elec-
tronic systems. Electronic systems have the instruc-
tion architecture in which functional components
exchange unambiguous information. The only alter-
native is the recommendation architecture in which
functional components exchange ambiguous infor-
mation. Systems with the recommendation architec-
ture demonstrate phenomena with a striking
similarity to psychological experiences such as
learning, object recognition, associative memory,
dream sleep without recall, constant sensory inde-
pendent sequences of mental images, and individual
differences between the experience of the same con-
ditions. All of these phenomena can be described in
a consistent fashion on both psychological and
physiological levels. It is therefore argued that bio-
logical brains have the recommendation architec-
ture, and that this architecture makes possible a
scientific theory of cognition. The nature of repre-
sentation in such an architecture is discussed.

 

Characteristics of a 
Neurophysiologically Based 

Theory of Cognition

 

A theory in the physical sciences establishes a cor-
respondence between physical states at different
levels of description detail in such a way that causal
connections between states at the more detailed

level exist whenever there are causal connections
between the corresponding states at a higher level of
description. For example, the Bardeen, Cooper and
Schrieffer (1957) theory of superconductivity
established descriptions of electrical current flow at
normal and extremely low temperatures. At a high
temperature these descriptions were in terms of
metals, electrical current, and temperature. At a
detailed quantum mechanical level the descriptions
were in terms of ordered atomic structure with lim-
ited defects in the order, electron states which
moved electrical charge, and energies. Causal con-
nections at high level involved the decay of current
with time (i.e. electrical resistance) at normal tem-
peratures and the absence of such decay at low tem-
peratures. The corresponding causal connections at
the quantum mechanical level involved the move-
ment of charge by individual electrons at normal
temperatures and the scattering of individual elec-
trons by defects blocking the movement of charge.
Moving associations of electrons which can only
form at low temperatures carry the charge at those
temperatures, and these associations cannot be scat-
tered by defects because such scattering would
require enough energy to break up the association.
Such a theory is regarded as highly successful in the
physical sciences.

An analogous theory of cognition would need to
propose psychological state descriptions 

 

X

 

 and cor-
responding physiological state descriptions 

 

x

 

 for
which if a causal connection exists between states

 

X

 

1

 

 and 

 

X

 

2

 

 then a causal connection also exists
between the corresponding states 

 

x

 

1

 

 and 

 

x

 

2

 

. A psy-
chological state description would include emo-
tional, mental, perceptual and activity descriptions.
An example might be simultaneously over a short
period of time feeling mildly angry, reminiscing
about some specific past event, and performing a
task involving comparison of two visual images.
The corresponding physiological state description
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would include the activation states of all neurons
and the concentrations of all neurochemicals at all
points, including dynamic variations, over the same
time period.

Although 

 

x

 

 and 

 

X

 

 describe exactly the same state,
the state description 

 

x

 

 contains much more informa-
tion than 

 

X

 

. If two states differ at the psychological
level then the corresponding states at the physiolog-
ical level must also differ. However, if two states dif-
fer at the physiological level it is possible that
because of the much higher level of description
information that the difference between the corre-
sponding states at the psychological level may be too
small to detect at that level. So although the percep-
tion of red and blue at the psychological level cannot
correspond with the same physiological state, there
may be multiple states at the physiological level
which correspond with indistinguishably different
perceptions of red at the psychological level.

Differences between similar experiences at the
psychological level, for example between two indi-
viduals, must correspond with differences at the
physiological level in a consistent fashion. When
there is a difference between two experiences of the
color red described at the psychological level, and
those differences are described in a number of
instances, then consistent differences must be
observed in the corresponding physiological states.
An individually unique feel at the psychological
level must correlate consistently with individually
unique physiological states.

If such correlations exist between physiological
and psychological states, a further question is the
degree to which some of these correlations can be
regarded as representations. There are a number of
different definitions of representation which could
apply. One major issue, following Peschl and Rie-
gler (1997), centers around the relationship between
the state of external environmental reality R and the
state of the mind 

 

W

 

. The classical concept of repre-
sentation is that 

 

W

 

 =

 

 f 

 

(

 

R

 

). An alternative would be
if 

 

W

 

 = 

 

f 

 

(

 

R

 

, 

 

O

 

) where 

 

O

 

 is the properties of the
observer. For example, if 

 

R

 

 was the presence of an
object of category dog, 

 

W

 

 could depend both on the
presence of the dog and whether the mind was feel-
ing aggressive, friendly or fearful towards the dog.
Further variables could be the experience and
immediate past states of the mind. A second issue is
the consistency of the representation. This issue is
whether the state

 

 W

 

 always reflects the presence of

 

R

 

, or is there is a probabilistic relationship in which

 

W

 

 indicates 

 

R

 

 with some degree of probability. A
third issue is the robustness of the correlation
between 

 

W

 

 and 

 

R

 

. If w is the physiological state cor-
responding with psychological state 

 

W

 

, and small
changes in w result in major changes in 

 

W

 

, then w
can be regarded as a symbol for 

 

R

 

, but a very high
degree of information integrity will be required at
the physiological level to avoid confusion at the
psychological level. High information integrity
means that if errors in single data elements may cor-
respond with significant differences at high level
then there must be a low probability of such errors
occurring. In computer systems this information
integrity exists, sustained by parity checks and
check sums etc. to detect and eliminate errors at the
elementary device level. Such information integrity
is implausible in a biological system.

Establishing the correlation between physiologi-
cal and psychological states in practice is poten-
tially a very complex undertaking, because of the
disparity in information content referred to earlier.
If multiple physiological states 

 

x

 

1

 

, 

 

x

 

2

 

, 

 

x

 

3

 

, etc. and

 

y

 

1

 

, 

 

y

 

2

 

, 

 

y

 

2

 

 etc. could somehow be packaged into
intermediate states 

 

x

 

 

 

and 

 

y

 

, and these intermediate
states packaged into yet higher states and so on until
it became possible to package a relatively small
number of states into psychological states, then the
correlation between physiological and psychologi-
cal would be possible despite the disparity in infor-
mation content. Such a hierarchy of states in fact
exists in well designed electronic systems. The crit-
ical question is whether such a hierarchy exists in
biological systems. The reason the hierarchy exists
in electronic systems is that without such a hierar-
chy it is extremely difficult to build, repair or mod-
ify the system. The argument developed in the rest
of this paper is that the needs to build from DNA,
recover from damage, adjust to changing environ-
mental conditions, and add features in the course of
evolution has resulted in an analogous hierarchy in
biological systems. However, the structure of the
biological hierarchy is qualitatively different from
any current electronic system.

 

The requirement for a functional 
architecture

 

Some currently operational commercial electronic
products have billions of devices in a single system
and perform very complex combinations of func-
tions. For example, a large telecommunications
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switch may contain over 4 thousand million transis-
tor devices and provide telecommunications ser-
vices to 100 thousand users. These services include
actual voice and data services, billing, self diagnos-
tics to ensure that the system is not totally out of ser-
vice for more than two hours in forty years, and
maintenance to adjust for service changes and addi-
tional capabilities. Provision of these services
requires thousands of interacting functions, where
“interacting” means that the functions must
exchange information to be able to perform their
independent functionality, and may act upon and
change the system inputs available to other func-
tions.

Any system which performs a complex combina-
tion of interacting functions using very large num-
bers of devices is forced to adopt a simple func-
tional architecture. A functional architecture is
illustrated in figure 1. It divides system functional-
ity into functional components on many levels of
detail. At the highest level, total system functional-
ity is divided into major components. Each of these
components is divided into subcomponents at the
next level of detail, and so on all the way down to
the operations of individual devices. Although a
component at one level contains exactly the same
functionality as its subcomponents, that functional-
ity is defined in a simpler manner at the higher level.

In other words, there is compression of the informa-
tion in the description.

The reason a simple functional architecture is
required is that without such an architecture it is not
practical to build, repair or modify the system. For
example, suppose that one device in the four billion
fails. The system result might be connections from
some telephones to some other telephones which
are sometimes noisy. In order to repair the problem
it must be possible to find some simple logical path
which links this system deficit to an individual tran-
sistor or at least a small set of transistors. The use of
software does not change this argument, it adds
another dimension to the domain in which simple
logical paths must exist. Any error in a construction
process would immediately face the same problem.
To understand the full issue for construction or
modification, consider a system which was not cre-
ated by design but by random selection and inter-
connection of devices until a working version in
terms of system functions was found by trial and
error. The first problem is that the only way to build
a second copy is by duplicating the original device
by device, connection by connection, there are no
generic device selection and connection processes
which can be repeated many times. The second
problem would arise if it were necessary to modify
the system functionality to add a feature or adjust to

certain telephone calls have
noisy connections

specific device is defective

Functional description
at high level

Functional descriptions
at intermediate levels

Functional description
at device level

Figure 1: A functional hierarchy in which functionality at high level is separated into components. A component
contains all the functionality of its subcomponents. The functionality at one level is precisely equivalent to the
functionality at any other level, but with different description detail. The existence of this hierarchy makes it pos-
sible to relate system functionality to the operations of individual devices.
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different environmental conditions. Identifying a
small set of device changes which would make the
desired functional change without undesirable side
effects would be impossible.

For the required simple logical paths to be possi-
ble, there are two additional constraints on the func-
tional architecture. The first is that all functional
components on one level must perform roughly the
same proportion of system functionality. In the
opposite extreme, a functional architecture which at
the highest level divided system functionality into
two components which were the functionality of
one transistor and the functionality of all the rest
would have minimal value. The second constraint is
that information exchange between components,
although essential, must be minimized. If informa-
tion exchange between two components were very
high, it would be difficult to determine which of the
two contained the defective subcomponent in the
event of system failure.

Given functional components at every level
which contain all the functionality of their subcom-
ponents at the next more detailed level, compres-
sion of description information, roughly equal com-
ponent size on any one level, and minimized
information exchange between components, the
result is a simple functional architecture in which
system construction, repair, and modification are
possible.

Although biological brains are not the result of an
intellect driven design process, they are subject to
very similar constraints. Copies of biological brains
must be constructed from DNA “blueprints”. Bio-
logical brains have some capability to recover from
failures, for example the damage caused by strokes.
Biological brains must be able to adjust to individ-
ual body differences resulting from growth differ-
ences and accidents. In the process of evolution, a
random mutation must occasionally result in a use-
ful functional change without catastrophic side
effects. As a result, biological brains experience
strong selection pressures in favor of simple func-
tional architectures.

However, biological brains have minimal func-
tional similarity to any current electronic system,
and any biological functional architecture must
therefore be radically different from conventional
commercial architectures. It turns out that there are
two qualitatively different types of functional archi-
tecture (Coward 1990, 1997) and in fact only two
qualitatively different types are possible (Coward

1998). The critical difference between them centers
around the type of information which is exchanged
internally between their functional components.
Such information can be either unambiguous or
ambiguous.

To understand the difference between the use of
unambiguous and ambiguous information, consider
the simple calculator system with two major func-
tional components illustrated in figure 2. One func-
tional component A receives two numbers from a
keyboard and multiplies them together. The other
component B receives information from the first
component and determines which pixels on a dis-
play are illuminated. Assume that the first function
uses a human like multiplication algorithm with dif-
ferent subcomponents choosing appropriate sub-
products to calculate, calculating the results, and
summing these subproduct results. In the illustra-
tion subproducts 168 and 1260 are summed to pro-
duce a total of 1428 which is communicated to the
second component where it is used to determine the
display. All the numbers exchanged in this example
were unambiguous to the receiving component or
subcomponent.

Consider the number 168. It was unambiguous
when exchanged between subcomponents of func-
tion A, but it would be ambiguous if it were the only
information communicated directly to function B
because its meaning would depend on other infor-
mation about function A which would not be avail-

Function A

Function B

Keyboard

Display

1428

34

42

3 × 10 × 42

4 × 42

1260

168

arrange

multiply

multiply

add

determine pixels to
be illuminated

Figure 2: A simple calculator system which ex-
changes only unambiguous information between
components. If the information 168 were communi-
cated directly to function B it would be ambiguous
to the recipient and could not be used to generate an
unambiguous system command.
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able. It would not necessarily be meaningless. 168
could not occur as an intermediate product for most
possible products. For example, there is no combi-
nation of two integers which if multiplied together
generates 825 as the result with 168 as an interme-
diate result. But 168 is ambiguous because there are
multiple products which could have 168 as an inter-
mediate result: less than half of one percent of all
numbers less than 10,000 for example, a small pro-
portion but a significant set.

So a functional component which received and
used a number like 168 could not issue an unambig-
uous system command, such as illuminate a specific
combination of display pixels, but it could make
recommendations. A system which used ambiguous
information would need multiple functional compo-
nents creating a range of alternative recommenda-
tions, and a competitive function to generate a high
integrity system action.

Commercial systems always exchange unambig-
uous information between functional components.
Such functional components detect patterns of
unambiguous information and generate commands
for system actions. Such components are called
instructions, and in an instruction functional archi-
tecture detailed instructions are combined into

higher level instructions through many levels of
detail as illustrated in figure 3. Use of unambiguous
information requires a reference location where
such information is stored for access by any compo-
nent. This reference location is called memory.
Because while one location is using and perhaps
changing an element of information, that informa-
tion element is ambiguous to any other components,
components can only operate sequentially, and for
efficiency purposes the sequential operation takes
place in a processor. The use of unambiguous infor-
mation therefore forces the memory/processing
separation and sequential execution ubiquitous in
commercial systems. Parallel processing is only
possible if unambiguous information can be parti-
tioned into orthogonal sets with different compo-
nents operating on different sets. In functionally
complex systems this partitioning needs to be
dynamic to accommodate changes in information
requirements, and is extremely difficult to imple-
ment successfully.

In a system in which components exchange
ambiguous information the functional components
detect ambiguous repetitions of information condi-
tions and generate recommendations. The outputs
of higher level components represent the outputs of

subcomponent

function

component

device type

instruction hierarchy recommendation hierarchy

similarity
superclusters

similarity
clusters

repetition
devices

similarity
functional
layers

x = y  whileTrue
    1 to: time do:

jump:1A

fork:

procedures

software
code

transistors

assembly
code

Figure 3: Functional hierarchies for alternative functional element paradigms. In the instruction architecture, in-
structions are combined into higher level instructions. In the recommendation architecture, repetitions are com-
bined into clusters that generate recommendations. At each level a part of the higher level is shown, in the greater
detail of the lower level.
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large subsets of their subcomponents. The recom-
mendation functional hierarchy is therefore a hier-
archy of repetition similarity, with sets of repeti-
tions forming clusters, sets of clusters forming
superclusters as illustrated in figure 3. If the infor-
mation were unambiguous this would be a pattern,
category, supercategory hierarchy (which in fact is
one way to formally describe an instruction archi-
tecture). Because the information is ambiguous the
clusters for example will correlate only partially
with identifiable categories, and such categories
may be cognitively very complex. For example, a
cluster might correlate partially with “object which
is bright and moving to the right” but would some-
times produce an output when the condition was not
present or no output when the condition was
present. Because the outputs are ambiguous recom-
mendations, there must be a separate competitive
function to generate high integrity behavior. The
use of ambiguous information therefore results in a
similarity clustering/competition separation radi-
cally different from the memory/processing separa-
tion in commercial electronic systems, and the
sequential operation imposed by the use of unam-
biguous information is not present. This architec-
tural separation is shown in figure 4.

 

Neural Networks

 

The distinction between clustering and competition
in a recommendation architecture is in some ways
analogous with the distinction between unsuper-

vised and supervised learning in neural networks.
The typical unsupervised learning algorithms such
as adaptive resonance (Carpenter and Grossberg
1988) and Kohonen Nets (Kohonen1990) reduce
input data to a smaller number of output types.
However, they associate those outputs with features
rather than ambiguous functionality, and they do not
address how to create a multifunctional hierarchy
with compression of the information content of
descriptions between levels. As a result they have
problems scaling to interacting functionality
exchanging ambiguous information. For example,
if a set of major features output from a Kohonen net
are processed through a competitive function to
generate functionality, that functionality cannot be
integrated with other functionality except in a
sequential instruction architecture.

One source of confusion in the discussion of
whether neural networks can handle complexity is
lack of clarity around the distinction between algo-
rithmic and functional complexity. This critical dis-
tinction is illustrated in figure 5. In an algorithmi-
cally complex system, a high volume of input
information is processed by a number of compo-
nents which exchange information. Individual com-
ponents perform complex algorithms on their inputs
to generate outputs, and some of these outputs are
system outputs. In a functionally complex system,
the algorithms performed by individual components
may be simple or complex. However, these compo-
nents dynamically change the input information
available to itself and all other components. To
illustrate the difference, an algorithmically complex
system might take inputs from a retina and generate
outputs indicating the presence of different shapes.
A functionally complex system might take inputs
from a retina plus inputs indicating orientation of
the retina and different components would generate
outputs which produced shifts in the orientation of
the retina and actions which changed the environ-
ment being perceived. The essential difference is
that in a functionally complex system individual
components produce outputs which change the
information available to other components dynami-
cally in the real time in which those other compo-
nents are also generating their outputs. The output
from one component therefore depends on whether
other components have already acted on the exter-
nal environment or the system itself and changed
the information derived from those sources. When
functionality is partitioned between components in

- - - - - - - - - - - - -

clustering

clustering

- - - - - - - - - - - - -

- - - - - - - - - - - - -

Recommendation Architecture

common information
distribution route

processing

memory

collection of
information from
environment

delivery of action
to environment

Instruction Architecture

competition

competition

competition

clustering

Figure 4: Comparison of the major functional sepa-
rations in the two possible types of functional archi-
tecture.
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such a system the ability to get access to appropriate
information in real time is a critical consideration in
selecting the partitioning. If the problem to be
solved is only algorithmically complex then the par-
titioning problem is reduced to performing the nec-
essary calculations in the correct logical sequence.
The information exchange issue is simpler and a
functional architecture is not required to the same
degree. 

In practice actual systems will vary in their degree
of functional complexity, but the greater the func-
tional complexity the greater the requirement for a
simple functional architecture. A system which per-
forms algorithmically complex processes on a
series of static information states is functionally
extremely simple. Most problems solved using neu-
ral networks are of this type.

 

Learning: the Heuristic Definition of 
Functionality

 

In commercial instruction architectures, instruc-
tions themselves are handled as unambiguous infor-
mation and recorded in memory. As a result it is dif-

ficult to build systems with complex functionality
which can change their own functionality, or learn.
However, learning is straightforward in a recom-
mendation architecture. Such learning depends on
an imprinting mechanism at the device level.

Suppose a device with a large number of physical
inputs is presented with a combination of informa-
tion in the form of the activation of a subset of its
inputs. If a higher level functional signal (which
would be the output of a functional group of devices
as described below) is also present, the device pro-
duces an output in response to the active informa-
tion, and in addition is programmed so that the
device will produce output in the future if a similar
information combination repeats, whether or not the
higher level signal is present. In other words, the
mechanism imprints an information combination
which will be detected if it ever repeats. A very sim-
ple version of this algorithm would be if all inactive
inputs were deleted. Such a device could only be
programmed with one repetition. More biologically
realistic versions with many repetitions per device
can with the support of the extensive feedback con-
nectivity observed in biological brains (Cauller

Algorithmic Complexity
Input information
indicating the state of the
environment including
physical state of system.
Lines indicate different
elements of information

Functional Complexity

exchange path

outputs indicating
conclusions about inputs

outputs
dynamically
changing the
state of the
environment

system
component

information

Figure 5: The difference between algorithmically and functionally complex systems. Both receive high volumes
of information from an external source. In an algorithmically complex problem individual components perform
algorithmically complex processes on their inputs from the external source and/or other components, but do not
change the input information from the external source. A subset of components generate system outputs which
are conclusions on the external input. In a functionally complex problem individual components perform process-
es which may be simple or complex on their inputs, but their outputs can dynamically change the external input
information.
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1995) generate the same functionality as the simple
algorithm (Coward 1998). 

At a somewhat higher functional level, all system
input experiences can be sorted into repetition sim-
ilarity clusters made up of devices which can record
information combinations. A simple version of a
cluster as illustrated in figure 6 might be made up of
a set of devices 

 

α

 

 which can be programmed to
imprint combinations of input information, a set of
devices 

 

β

 

 which can be imprinted with combina-
tions of outputs from 

 

α

 

, and a set of devices 

 

γ

 

 which
can be imprinted with combinations of outputs from

 

β

 

 and which generate outputs from the cluster. To
illustrate the experience sorting process, suppose
that a system made up of an arbitrary number of
clusters is presented with a series of apples, onions
and tomatoes. All objects are different but, for
example, a typical apple is generally much more
different from an onion than from another apple.
The input to the system is sensory input extracted
from these objects.

Suppose that several clusters have been already
established, and another apple is perceived. The new
apple has some sensory characteristics in common
with past objects, and 

 

α

 

 devices are activated in
many of the clusters. In some clusters activation is
limited to this 

 

α

 

 level, in others there is some 

 

β

 

 acti-
vation, but suppose that no cluster has any 

 

γ

 

 activa-

tion and therefore output. In any cluster in which
there is significant 

 

β

 

 activation and no 

 

γ

 

 activation,
imprinting of additional information combinations
occurs at 

 

α

 

, 

 

β

 

, and 

 

γ

 

 levels until an output results.
The combination of significant 

 

β

 

 activation and no 

 

γ

 

activation is the higher level functional signal
referred to earlier. If no cluster has significant 

 

β

 

 acti-
vation, a new cluster is imprinted to produce an out-
put and from then on is available to respond to addi-
tional objects. The process could be initiated from
no clusters at all, with clusters being added until an
output was produced in response to every object.
This process thus sorts experience into a set of repe-
tition similarity conditions implemented as clusters
as illustrated in figure 7. The similarity conditions
are defined heuristically, and do not correspond with
cognitive categories, but can be used by a competi-
tive function with pleasure/pain feedback to gener-
ate behavior appropriate to cognitive categories.

To illustrate the competitive mechanism, suppose
that the output from any cluster in the set were l rec-
ommendation to eat the perceived object, and that
five clusters had been created which sorted the sys-
tem perceptions of apples, onions and tomatoes.
Because of the ambiguous nature of the clusters, the
typical output in response to an apple might be
strong from cluster one, weak from cluster two and
moderate from cluster four, while the typical

α layer

β layer

γ layer

regular device

virgin device available
for imprinting
additional repetitions

stimulative forward
connection
inhibitive feedback
connection
stimulative  feedback
connection

device layers are functional
subcomponents

Figure 6: Connectivity of a simple repetition similarity cluster module using the repetition imprinting mechanism
at the device level. The layers perform similarity subfunctions as discussed in the text. Single examples of con-
nectivity which performs required layer to device functionality are given, realistic functionality requires many
more connections as discussed in the text.



 

A. Riegler & M. Peschl 

 

| 9 |

 

 Understanding Representation

The Recommendation Functional Architecture as the Basis for a Neurophysiological Understanding of Cognition

 

response to an onion might be weak from cluster
one, strong from cluster two, and weak from cluster
five. A very small number of trials with pleasure/
pain feedback on the consequences of an action can
lead to acceptance of cluster based eating recom-
mendations in response to apples and rejection of
recommendations in response to onions, even when
no two apples and no two onions are identical. Elec-
tronic simulations confirm this learning effective-
ness (Coward 1996). 

Note that the competitive process does not change
the clustering. Such a change would complicate the
simple functional architecture and make it impossi-
ble to handle complex functional combinations.

The output of clusters can be clustered into more
detailed clusters, and at a higher functional level
hierarchies of clusters form superclusters. Super-
clusters generate different types of behavioral rec-
ommendations, such as aggressive, food seeking,
and fearful as illustrated in figure 8. Each superclus-
ter sorts experience into its own repetition similarity
cluster hierarchy. In response to perceiving a dog,
different superclusters will generate a configuration
of cluster outputs which are the recommended
behavior of the supercluster type towards the cur-
rently perceived dog. 

Although in principle the same cluster hierarchy
could be used for all types of behavior by making
different use of the same outputs, there are func-
tional advantages to the parallel hierarchies. The
advantages can be understood by recalling that the
sorting into repetition similarity clusters is both heu-

ristic and ambiguous, and that a simple functional
architecture needs to minimize information distribu-
tion. Consider now the cluster hierarchies generating
recommended responses of food seeking and
aggressive types, and in particular the clusters which
generate recommended responses involving apples.
Such responses might be to eat the apple or to throw
the apple. Now suppose that eating behavior in
response to the same set of cluster activations
resulted sometimes in pleasure and sometimes pain.
Such a situation might arise if two types of apple
with radically different tastes differed perceptually
only in skin texture, and the perception of skin tex-
ture was information not included in current cluster
inputs. Detection of the condition ‘contradictory
results from acceptance of identical recommenda-
tions’ is a recommendation to add additional input
information to the cluster inputs and recluster.
Acceptance of such a recommendation would be
functionally valuable in the food seeking superclus-
ter, but would simply add information distribution
with no functional advantage if the apple is to be
used only as a missile. Hence functional optimiza-
tion is better if independent superclusters generate
recommendations for different behavioral types.
There is evidently a tradeoff here between functional
optimization and greater use of clustering resources.

input information available to all cluster modules

regular device, not firing
virgin device, not firing
regular device, firing

Figure 7: Information repetitions extracted from a
condition or object are presented to a range of clus-
ters, and the clusters with the strongest activation
imprint additional repetitions to produce an output.
Conditions are thus heuristically sorted into clusters.

kick
dog like
condition

avoid
dog like
condition

eat
dog like
condition

incoming information

aggressive
supercluster

fearful
supercluster

food seeking
supercluster

activated
cluster

cluster

Figure 8: Parallel hierarchies of heuristically creat-
ed clusters generate alternative behavioral recom-
mendations towards the same perceived object or
condition. The activation of a set of clusters corre-
sponds with the recommendation.
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‘Memory’ in a Recommendation 
Architecture

 

What is memory in a recommendation architecture?
The first point to note is that all the information
combinations active at the time an object is experi-
enced are permanently recorded. Many of these are
repetitions of combinations recorded in earlier
experiences of other objects, and a small subset are
combinations instantaneously imprinted at the time
of the experience. Therefore a permanent trace of
any past experience is available. If somehow that
trace could be completely reactivated, the system
state would be indistinguishable from the original
experience. In practice as discussed below, only
subsets of the trace can be activated independent of
sensory input, but such subsets will nevertheless
strongly resemble the original. The permanent trace
allows the system to distinguish between objects
which have been seen before and other objects. If
minimal imprinting is required to generate recom-
mendations, the object has been seen before. The
phenomena which result from the permanent trace
thus strongly resemble declarative memory in
human brains, in which in general an object seen
once will be recognized as familiar if seen again at
any later time, can be bought to mind in the absence
of the object only if the right combination of stimu-
lative memories are present, but once brought to
mind the mental image has some qualitative simi-
larity to the original experience, for example in its
ability to generate similar emotional states.

The second point is that because the permanent
trace is the basis for generating behavioral recom-
mendations, it is physically distributed across the
superclusters discussed earlier. Local damage will
typically affect only one or two superclusters, and
could not remove all of the trace. Previously experi-
enced objects will therefore still be recognized as
familiar. Such local damage will reduce the ability
of the affected superclusters to produce recommen-
dations. Local damage will therefore affect behav-
ior but not declarative memory, again a strong
resemblance to biological brains (Harlow 1868,
Lashley 1950).

The third point depends on the fact that repeti-
tions are combinations of ambiguous information.
Suppose the system perceives a dog and imprints to
generate recommendations, but a cat and a tree are
also present. Some information from cat and/or tree
may be incorporated in the imprinted repetitions. If

later a cat and a tree were seen at the same time, the
information overlap might generate a weak dog
related recommendation, which would be experi-
enced as a weak mental image of a dog. This phe-
nomenon is reminiscent of associative memory in
biological brains, but amplification would be
needed to generate a significant image. The mecha-
nisms and value of such amplification are discussed
in later sections.

The fourth point depends on the heuristic defini-
tion of the permanent memory traces. Because the
process is heuristic, the combination of repetitions
which will be activated in a system in response to,
for example, the color red will depend on the past
experience of the system. The information content
of those repetitions will include information from
whatever objects happened to be present at the same
time in the past, subject to whether the option to
include such information was provided by the infor-
mation distribution management process discussed
in the next section. Two systems will differ in the
similarity definitions of clusters which are estab-
lished and in the information combinations making
up device level repetitions. The type and combina-
tion of repetitions activated in response to an expe-
rience will therefore by very individual specific.

A final point relates to the learning of skills. In a
recommendation architecture such learning depends
on creating the appropriate associations between
clusters and behaviors through a competitive func-
tion. The relative ability of different clusters to gain
control of behavior is adjusted by pleasure/pain type
feedback on the competitive function. Unlike the
imprinting mechanism in the clustering function, no
permanent trace is created of past states of the com-
petitive function. There is therefore no permanent
record of past states of procedural memory.

In summary, there is a very strong resemblance
between phenomena in a system with the recom-
mendation architecture which heuristically defines
its own functionality and the phenomena of memory
in biological brains. For a more extensive discussion
see Coward (1990).

 

Dream Sleep: The Management of 
Information Distribution

 

As discussed earlier, a simple functional architec-
ture requires minimized distribution of information.
In a system which heuristically defines its own
functional components, the distribution of informa-
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tion between such components must also be heuris-
tically minimized. 

Consider two aspects of this problem. The first is
that at the device level, the inputs most likely to
result in functionally useful repetitions are inputs
similar to those forming functionally useful repeti-
tions in other devices at the same functional level.
Provisional inputs to devices can be assigned ran-
domly, but a statistical bias on inputs which have
frequently participated in firing devices at the same
level in the past would increase the probability of
useful combinations and reduce information distri-
bution. At a higher level, the output of a cluster may
be information valuable in achieving a functionally
valuable similarity condition in another cluster.
However, connecting every cluster to every other
cluster would massively complicate the functional
architecture. The alternative is to assume that simul-
taneous activation is a probable indicator of func-
tional value, and assign provisional inputs to com-
plex clusters from simpler clusters which have
frequently been active at the same time in the past.

The requirement is therefore to achieve provi-
sional connectivity between two functional compo-
nents whenever there is frequent correlated activa-
tion is the past. Coward (1990) has argued that
providing an environment in which frequent past
correlation can be determined is a primary function
of dream sleep, achieved by performing a fast rerun
of an averaged past, with a bias towards the most
recent past. Work by Skaggs and McNaughton
(1996) provides evidence in favor of this proposal.

The general absence of memory from dream
sleep is as expected for a process which is configur-
ing the resources which will be required for mem-
ory in a subsequent wake period. Electronic simula-
tions have confirmed that a process of this type
substantially improves the effectiveness of learning
(Coward 1996). 

 

Role of Sensory Independent Mental Images

 

How can the weak associative activations described
in an earlier section be amplified into a full mental
image, and what would be the functional value of
such amplifications? First, how could they be
amplified? Consider the operation of signals
between two systems with the recommendation
architecture. A system sees a lion. A set of repeti-
tions are activated by the sensory input which gen-
erate recommendations to run from the lion, and

also shout “lion”. The hearing of the shout “lion” by
a second system generates in that system a subset of
the same repetitions which would be activated if
that second system had actually seen the lion. These
repetitions generate the same recommendations as
if a lion had been seen. However, because the first
system could hear its own shout, a feedback route
has been established. Such a feedback route could
amplify the weak associative activations if those
activations corresponded with recommendations to
speak the signal for the associatively activated
object. 

What would be the functional value of such feed-
back driven activations? Consider now how a sys-
tem with the recommendation architecture would
make tools. The problem to be solved is how to acti-
vate tool making recommendations within the sys-
tem. The simplest mechanism is to use an existing
tool as a model. Repetitions extracted from seeing a
finished tool and a piece of rock combine to gener-
ate carving recommendations. However, if the fin-
ished tool is broken or lost a model is not available.
If current inputs to the system from the environment
were similar to conditions under which a tool was
used in the past, the associative overlap process
could lead to the word “tool” being spoken. The
word is heard by the speaker and activates a large
set of the type of repetitions which would be gener-
ated by perceiving a tool. These repetitions can then
generate tool making recommendations in the
absence of a model.

If physical routes internal to the system develop
to carry the feedback independent of externally spo-
ken signals, then the range of mental images which
can be activated is not limited by the current signal
vocabulary. A mental image of different parts of the
tool can be activated even if they have no name,
making much more detailed control of carving pos-
sible.

Such feedback routes activate the simple repeti-
tions which have frequently been active when the
currently active complex repetitions have been
active in the past. An additional functional advan-
tage can develop once this capability is in place.
Suppose such a system perceives a dog, and gener-
ates a range of recommendations: to pat the dog,
kick the dog etc. If a recommendation to kick the
dog can activate the type of repetitions which were
frequently active in the past when the system has
kicked objects, these repetitions would be added to
current sensory repetitions and expand the range of
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alternatives, for example to include avoiding the
dog. In other words, it becomes possible to perform
a much more extensive search of individual specific
memory to generate behavioral recommendations. 

Such a search takes time, and delays response. It
is therefore only valuable for generating behavior
under extremely complex conditions in which a
delay can be tolerated. Such a situation exists for
complex social interactions between systems. A
system with this search capability would experience
a constant succession of mental images independent
of sensory input. 

 

Nature of Representation in a 
Recommendation Architecture

 

The response to an external condition in a system
with the recommendation architecture is the activa-
tion of a large set of device level information combi-
nations. In a system with the ability to heuristically
define its own functionality, most of these combina-
tions are repetitions of combinations recorded in
earlier experiences and a small subset are combina-
tions recorded during the experience of the condi-
tion and which will be available as possible repeti-
tions in future experiences. Combinations include
information from both the external condition and the
system itself, in other words 
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In what sense can such activations be regarded as

representations? Peschl and Riegler (1997) identify
three points on which the traditional concept of rep-
resentation can be seriously questioned: linguistic
transparency; referential representation; and
embodiment, construction and dynamics of knowl-
edge. In the recommendation architecture, groups
of repetitions (i.e. clusters) generate outputs. The
ambiguity of information within the clustering
function means that a wide range of different com-
binations of cluster activations may act through a
competitive function to generate the behavior of
speaking the same category naming word. So acti-
vations in the recommendation architecture support
the suggestion of Peschl and Riegler that “… the
processes responsible for generating … linguistic
categories [do not] … have to be based on these cat-
egories”.

The function of an activation is to generate behav-
ioral alternatives, not to map the environment, and
the activation in response to similar external condi-
tions will vary considerably depending on the needs

of the organism (e.g. hunger, sense of threat, sense
of weakness etc.). There are therefore “… [no] neu-
rons (or groups of neurons) whose activations cor-
relate with external events in a stable and referential
manner”.

A system with the recommendation architecture
“actively extracts and constructs those environ-
mental regularities which are relevant to its partic-
ular survival”. There is a sense in which no condi-
tion in the external environment ever exactly
repeats a past condition. An organism must extract
repetition in order to guide behavior, and in this
sense patterns and categories are artifacts of a men-
tal architecture dependent on repetition (Coward
1990).

 

Conclusions

 

Biological brains are strongly constrained by selec-
tion pressures to adopt simple functional architec-
tures. The recommendation architecture is the only
qualitatively different alternative to the instruction
architecture ubiquitous in commercial electronic
systems. The functionality in a system with the rec-
ommendation architecture strongly resembles psy-
chological experiences such as learning, object rec-
ognition, associative memory, dream sleep without
recall, constant sensory independent sequences of
mental images, and individual differences between
the experience of the same conditions.

In a recommendation architecture these phenom-
ena can be described in both psychological and
device terms, and causal connections at the psycho-
logical level are reflected in causal connections at
the device level. It is argued, following Coward
1990, that biological brains, and in particular
human brains, have the recommendation functional
architecture. As a result, complete descriptions of
human psychology in equivalent neurophysiologi-
cal terms are possible.
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