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Abstract 
There are a set of theoretical bounds on any system which must 
learn to perform a complex combination of features with limited 
information handling resources. A cognitive architecture 
implemented within these bounds has the capability to generate 
human-like “conscious” behaviours with mechanisms that are 
physiologically plausible. 
 
The Characteristics of a Physiologically Realistic Model 
of Consciousness 

As discussed in [1], the objective of a physiologically 
realistic model of consciousness is not to “understand” 
subjective individual experience in a philosophical sense. 
Rather, the objective is to model observable phenomena 
labelled “conscious” in terms of physiological structures, in 
such a way that observed cognitive inputs (perceptions etc.) 
result in physiological states, and these physiological states 
cause other physiological states that generate the observed 
high level cognitive outputs.  

Take, for example, the phenomenon of dichotic listening 
[2]. This is the phenomenon that occurs when different texts 
are presented to the left and right ears of human subjects and 
the subjects are told to echo (repeat) the text delivered to just 
one ear. If the texts are switched between ears during the 
shadowing, subjects switch ears to the meaningful 
continuation without being aware of having switched. 
Subjects have no memory of the unshadowed text. Thus 
although there is no memory of the text presented to the 
unshadowed ear, such text must be able to influence 
behaviour because it is able to trigger a switch. A 
physiological model needs to describe the physiological 
states that result from the presentation of the two texts and 
how those states generated other states, and demonstrate that 
those later states result in the ability to switch from one ear 
to the other when the texts switched between ears, but create 
future memories of only one text. It is of course possible that 
physiological models of this type may give insight into the 
issues of philosophical understanding. 

Many different phenomena have been labelled 
“conscious”, and there is no a priori guarantee that these 
phenomena are supported by exactly the same physiological 
mechanisms. It could also be that it is the occurrence of a 
sequence of physiological processes in a particular order that  
results in “conscious” phenomena, where all of the same 
processes in a different order might not result in a 
“conscious” process. In this context, searches for “neural 
correlates of consciousness”, or detectable physiological 
states that occur consistently at the same time as a wide 
range of conscious phenomena, may be somewhat simplistic.  

Phenomena labelled conscious have been classified into 
a number of types including  access consciousness and 
phenomenal consciousness [3]. Access conscious is defined 
as the ability to report and act upon an experience and 
requires the existence of some “representation” of the 
experience in the brain, the content of which is available for 
verbal report and for high level processes such as conscious 
judgments, reasoning, and the planning and guidance of 
action. Phenomenal consciousness refers to the qualitative 
nature of experience, for example why the experience of the 
colour red feels as it does and not like something else. 

As a starting point for creation of a physiologically 
realistic model, it is essential to have more specific examples 
of these phenomena and other phenomena that are not 
“conscious” for comparison purposes. In the case of access 
consciousness, one such phenomenon is dichotic listening as 
described above. To provide phenomena for different types 
of consciousness, consider the following scenario (similar to 
that discussed in [1]). In the scenario, a person is out 
walking with a companion, and encounters a tree partially 
blocking the path. One behaviour is simple avoidance: 
stepping around the tree. A second behaviour is to make the 
comment "That tree is small but looks old. Up in the 
mountains I saw a whole area covered with trees like it". A 
third behaviour is to focus attention on the tree and “become 
aware” of the tree as a tree.  The cognitive processes 
suggested by these scenarios could be visual input from a 
tree, unconscious activation, conscious activation, avoidance 
behaviour, and higher cognitive behaviour (including 
associative thinking, and verbal report of associative 
thinking).  

The first behaviour can generally be unconscious. 
Sensory input from the tree and the path etc. generates some 
activation state internal to the brain which leads to avoidance 
behavior but does not lead to higher cognitive functions, 
verbal report, or in many cases even later memory. The 
second behaviour falls within the definition of access 
consciousness. The internal brain activation state in response 
to the tree generates both cognitive processing and a 
complex verbal report. 

The third behaviour appears to have some relationship 
with what is often called phenomenal consciousness. 
Becoming aware of the tree as a tree is subjectively a richer 
experience of the tree, the experience is difficult to express 
in speech and may be very individual specific. The cognitive 
phenomena resulting from this third behaviour are therefore 
verbalization of the presence of a richer experience which 
cannot be described verbally in detail, but may be very 
idiosyncratic.   

The objective of this paper is to demonstrate how a 



physiologically realistic machine model could be given 
sensory inputs, and from the physiological states generated 
by those inputs would in turn generate physiological states 
corresponding with observed “conscious” cognitive outputs. 

 
Architectural Constraints on Complex Learning Systems 

It has been demonstrated [4] that any system which must 
learn to perform a complex combination of behaviours with 
limited information handling resources will be forced within 
some very specific architectural bounds by a number of 
practical considerations. The practical considerations are (1) 
the need to perform a large number of behavioural features 
with relatively limited physical resources for information 
recording, information processing and internal information 
communication; (2) the need to add and modify features 
without side effects on other features; (3) the need to protect 
the many different meanings of information generated by 
one part of the system and utilized for different purposes by 
each of a number of other parts of the system; (4) the need to 
maintain the association between results obtained by 
different parts of the system from a set of system inputs 
arriving at the same time (i.e. maintain synchronicity); (5) 
the need to limit the volume of information required to 
specify the system construction process; (6) the need to limit 
the complexity of the construction process; and (7) the need 
to recover from construction errors and subsequent physical 
failures or damage. All of these considerations apply in 
some form to biological brains. For example, a brain which 
can learn to perform a given set of behavioural features with 
fewer resources will have a natural selection advantage over 
a brain requiring more resources for the same behaviours. A 
brain needs to learn without excessive interference with 
prior learning and so on. 

The architectural bounds have been labelled the 
recommendation architecture. The bounds include a number 
of specific requirements. One requirement is for a hierarchy 
of  modules (called clustering) that defines and detects 
conditions within the information available to the system. 
This information includes current raw sensory inputs, 
information indirectly activated by conditions detected 
within those inputs, and information about the current state 
of the system itself. One module defines and detects a group 
of similar conditions. Modules do not correspond with 
cognitive circumstances like categories, and the groups of 
modules that detect conditions in response to instances of 
different categories may overlap. However, these groups are 
sufficiently different that it is possible to discriminate 
between instances of different categories. 

A second requirement is for a separate hierarchy of 
components (called competition) that receives a subset of the 
current condition detections from clustering, interprets each 
condition detection as a range of recommendations in favour 
of different behaviours, each with a different weight, and 
selects the most strongly recommended behaviour. 
Consequence feedback can change the recommendation 
weights of recently performed behaviours but not the 
condition definitions. 

A third requirement is that devices within clustering can 
record conditions, but with a strong tendency for any 

subsequent repetition of the exact condition at any point in 
the future to be detected. A fourth requirement is for careful 
management of when and where additional conditions will 
be recorded, based upon the degree of condition detection in 
different parts of the modular hierarchy. 

A fifth requirement is for devices in clustering to be 
arranged in layers to maintain an adequate level of 
synchronization between conditions within one input state 
detected by different modules. A modular hierarchy of 
columns, arrays and areas must be overlaid on the layered 
structure. 

A sixth requirement is for some mechanism to allow 
simultaneous detection of conditions derived from multiple 
input states within the same physical group of modules, in 
such a way that the condition detections are kept separate 
until it is appropriate to detect combination conditions. For 
example, if conditions recommending behaviours in 
response to a group of objects are needed, conditions must 
first be detected within each object separately, then 
conditions detected that are combinations of individual 
object conditions. Resource limitations will tend to require 
use of the same modules for all the object condition 
detections. 

A seventh requirement is for the components in 
competition to correspond with specific behaviours, types of 
behaviours or sequences of behaviours. The competition 
process is that current condition detections from clustering 
are first provided to components corresponding with 
different general types of behaviour. The component 
corresponding with the type most strongly recommended by 
these condition detections releases the subset of condition 
detection instantiating the accepted recommendation 
(perhaps with some intermediate processing by clustering) to 
a group of components corresponding with different types of 
behaviour within its general type. Competition between 
these components results in selection of a yet more specific 
behaviour or type until an end point at which a small subset 
of condition detections are released from clustering to drive 
behaviour.  

The reasons these architectural constraints result from 
the practical considerations are described in detail in [4].  
One critical observation is that if resource limitations are a 
significant factor, there will be very little direct resemblance 
between “user manual” type models that describe how 
cognitive features work in terms easily understood by an 
outside observer, and “system architecture” type models that 
describe how physiological resources are organized to 
provide the processes required to support those cognitive 
features. The differences arise because the physical modules 
in a system architecture will be defined in such a way that 
each module is customized to efficiently perform a group of 
similar system processes. Many cognitive features could 
require processes performed by one module, and one module 
will therefore support many such features. The relationship 
between “system architecture” modules and “user manual” 
features will therefore be very complex, a commonplace 
situation for example in commercial electronic systems. 
Direct implementation of a user manual would be extremely 
resource intensive because it would imply separate resources 



for each user manual defined feature. The implication is that 
“user manual” type descriptions of consciousness with 
“modules” corresponding with clearly identified cognitive 
features or processes (e.g. [5]) may be valuable for 
understanding at the cognitive level but the mapping 
between such models and physiology will be very complex, 
and attempts to implement machine versions of such models 
will be very resource intensive and physiologically 
unrealistic. 

 
The Recommendation Architecture Cognitive Model 

A physiologically realistic cognitive model within these 
architectural bounds has been described [4]. In this model, 
the cortex corresponds with the recommendation 
architecture clustering subsystem. Cortex devices are 
organized into layers, columns and areas as required by the 
recommendation architecture bounds. The thalamus, basal 
ganglia and cerebellum correspond with competition 
subsystems making behaviour selections determining, 
respectively, the sensory information which will be allowed 
to influence behaviour, the general type of behaviour and the 
specific behaviour. Nuclei within the thalamus and basal 
ganglia correspond with different more specific behaviour 
types. The hippocampus corresponds with the 
recommendation architecture subsystem that manages the 
assignment of clustering (cortex) resources. Other brain 
structures correspond with other recommendation 
architecture subsystems [4]. 
 

 
 

Figure 1. Pyramidal neuron as a condition recording device. 
 

Pyramidal neurons in the cortex correspond with devices 
that define and detect conditions. The physiological 
mechanisms involved can be understood by consideration of 
figure 1. In the figure, there are initially a group of synaptic 
inputs to a pyramidal neuron dendrite branch. This branch 
integrates the post synaptic potentials from these synapses, 
and injects potential into the dendrite if a threshold is 
exceeded. Further integration occurs within the dendrite as a 
whole, and then integration within the neuron body (soma) 
determines the generation of action potentials into the output 
axon. In information terms, such an action potential 
indicates the detection of a significant number of the 
conditions programmed on the dendrites. There are several 
types of synaptic inputs to the dendrite branch. A number of 
inputs are from pyramidal neurons in the preceding cortex 
layer. These inputs in information terms have the capability 
to define a condition. They are excitatory and for simplicity 

in the diagram all have the same weight w. Initially these 
inputs do not have enough total synaptic strength to activate 
their branch. There are two other types of input. One type is 
excitatory and in information terms excites condition 
recording. The other type is inhibitory and in information 
terms inhibits condition recording. Both these types of input 
indicate the overall level of activity in some specific module 
of pyramidal neurons, in general via some neuron (spiny 
stellate for excitatory, interneuron for inhibitory) located in 
that module and receiving inputs from the pyramidal 
neurons in that module. The condition defining inputs alone 
cannot activate the branch. However, if a high proportion of 
those inputs are active, and at the same time the excite 
condition recording input is active and the inhibit input is 
inactive, there may be enough postsynaptic potential to 
activate the branch. If this activation is followed a short 
while later by the soma producing an action potential, the 
strengths of the recently active synapses is increased, and the 
absolute strengths of the condition definition management 
inputs is decreased. These changes are similar to the LTP 
and LTD effects observed in pyramidal neurons [e.g. 6]. The 
effect is that the recently active synapses acquire enough 
postsynaptic strength to activate the branch independent of 
the state of the management inputs. In information terms the 
branch has recorded a condition. 

 

 
 

Figure 2. Condition recording change management connectivity within one 
column and from other columns. 

 
Pyramidal neurons are organized into layers, with 

columns of neurons penetrating several layers. These 
columns are organized into arrays in which the same input 
space is available to all the columns in the array. Columns 
and arrays manage the circumstances under which 
conditions will be recorded, as illustrated in figure 2 for a 
four level column. Note that the recommendation 
architecture bounds do not specify the number of layers in a 
column, only the different functions which must be 
performed. The four layer model is based upon current 
physiological knowledge of inter and intra layer connectivity 
in the Macaque cortex (for further details see [4]). Not all 
connectivity is illustrated, but within column A there is 
connectivity from layer 3 to layers 2 and 3 which excites 
condition recording, and similar connectivity that inhibits 
condition recording. There is analogous connectivity from 
layer 4 to layer 4 and layer 1. If connectivity from other 
columns is ignored, the effect is that there can only be a low 
level of activity in layers 3 and 4, or a high level. An 



intermediate level would result in condition recording to 
push activity to a high level. For a more detailed discussion, 
see [4]. The effect of intercolumn connectivity is that if there 
is a moderate level of activity in layer 3 of a number of 
columns, in some columns it will increase to high, in others 
it will reduce to low.  

The overall effect of the column connectivity is that at 
least a minimum number of columns in an array will detect 
conditions in response to every input state, with conditions 
present within that input state being recorded if necessary to 
reach the minimum level. An array of columns defined in 
this fashion will divide up an input space into statistically 
relatively independent components (analogous with but 
significantly different from independent components 
analysis [7]). Such arrays of columns will discriminate 
between different types of input states, although no one 
column will correspond with one type of input space [8]. 

 

 
 

Figure 3. A sequence of arrays of columns detecting conditions on 
different levels of complexity that can discriminate between different types 

of cognitive circumstances. 
 
Arrays will be arranged in a sequence as illustrated in 

figure 3. In the figure, array 1 of columns detects conditions 
which are combinations of relatively raw sensory inputs. 
Array 2 detects conditions which are combinations of the 
conditions detected by array 2 and so on. Successive arrays 
therefore detect conditions of increasing complexity, where 
the complexity of a condition is the total number of raw 
sensory inputs that contribute to it, either directly or 
indirectly via intermediate conditions. Conditions with 
different levels of complexity will be effective for 
discriminating between different types of cognitive 
situations. Relatively simple conditions will be effective for 
discriminating between cognitive features, somewhat more 
complex conditions for discriminating between cognitive 
objects, yet more complex conditions for discriminating 
between different groups of objects and so on. 

In order to detect conditions within a group of objects, it 
is necessary for conditions to be detected simultaneously 
within the individual objects in arrays 1 through 5  in figure 
3, then combination conditions detected in the following 
arrays. However, it is important that the “object” conditions 
are kept separate. In other words, in arrays 1 through 5 it is 
important not to detect conditions containing information 
derived from several objects. As described in detail in [9] the 

requirement to keep independent populations of condition 
detections active without interference within the same 
physical groups of neurons can be achieved by a frequency 
modulation mechanism. 

 
 

Figure 4. An irregular sequence of output action potentials from a neuron at 
the top is frequency modulated by an imposed signal in the middle to 

generate the bottom, modulated spike sequence. 
 
As illustrated in figure 4, if the outputs of neurons are 

sequences of voltage spikes, frequency modulation means 
that each spike is shifted slightly towards the nearest peak in 
the modulation frequency. Neurons can be viewed as 
integrating their spike inputs over an integration time. For 
appropriate threshold levels, a modulated group of inputs 
will generate a much stronger response than the same inputs 
unmodulated. Hence modulation of the inputs derived, say, 
from one object in a visual field, will result in condition 
detection within that object and not with the rest of the field.  

 
 

Figure 5. Two groups of neuron outputs, modulated with different phases of 
the same frequency, tend to have most of their output action potentials 

within different integration windows. 
 
As illustrated in figure 5, if one group of inputs are 

frequency modulated with the same phase, and another 
group with the same frequency but a different phase, then 
provided the integration window is significantly smaller than 
the modulation frequency, spikes from the different groups 
will tend to occur in non-overlapping integration windows. 
The spikes generated by the neurons targetted by those 
inputs will tend to have the same frequency modulation as 
their inputs. Hence in figure 3, by placing different phases of 
frequency modulation on raw sensory inputs derived from 
different visual objects, condition detection in the upper 
arrays can proceed for the different objects with limited 
interaction between them. If the outputs from (say) layer 4 
are brought into the same phase, layer 5 and subsequent 
layers will detect conditions within the group of objects. 

Individual columns will not correspond exactly with 
specific cognitive circumstances. Rather, each column will 



have recommendation strengths in competition in favour of a 
wide range of different behaviours appropriate in response to 
different cognitive circumstances which may contain 
conditions recorded within the column. Some of the 
behaviours which may be recommended by a column are 
listed in table 1.  

 
Table 1. Different types of behavioural recommendation strengths which 

may be possessed to different degrees by even a single column 

 
 
Recommendation strengths are instantiated in the 

connection strengths of the outputs from cortex columns into 
neurons in different nuclei within subcortical structures such 
as the thalamus and basal ganglia. Behaviour types A and B 
ultimately result in physical muscle movements outside the 
brain. However, the other types result in different 
information management behaviours within the brain that 
are important intermediate steps in the course of generating 
behaviour. 

Consider first  attention behaviours (type C). Columns 
detecting conditions correlating with the presence of closed 
boundaries at different places in the visual field all have 
recommendation strengths in favour of shifting the attention 
domain to correspond with their boundary. Acceptance of 
one such recommendation may require eye movements, but 
the key result of acceptance is that all the sensory inputs 
derived from the area within the closed boundary are 
modulated with the same phase, and conditions within the 
selected object are therefore preferentially detected. 
Sequences of attention behaviours exist for learned cognitive 
processes. For example, in processing an arithmetic 
equation, attention shifts in a particular sequence between 
different sub-objects within the equation [4]. 

Information availability recommendation types (D)  are 
required to manage how long a group of condition detections 
will be allowed to influence behaviour selection, and also to 
manage when the outputs from several separate active 
column populations (at different phases) in one array will be 
synchronized and released to the next layer. 

Indirect activation recommendations (E, F, and G) can 
expand the population of condition detections available to 
influence behaviour. The conditions detected within the 
visual objects currently the focus of attention will have 
recommendation strengths in favour of externally directed 
behaviours in response to the object. However, there may be 

other conditions which are not currently being detected but 
which may have appropriate recommendation strengths for 
current circumstances. For example, columns which are 
currently inactive (i.e. not detecting conditions) but which 
have often been active in the past at the same time as 
currently active columns may have relevant recommendation 
strengths in some circumstances.  

Columns therefore have recommendation strengths in 
favour of activating such other columns. Similarly, if two 
columns record conditions at the same time, each column 
acquires recommendation strength in favour of activating the 
other. Such recommendation strengths will in general decay 
with time unless reinforced by actual use followed by 
positive consequence feedback. As discussed in [10], 
indirect activation on the basis of frequent past simultaneous 
activity supports semantic memory, and indirect activation 
on the basis of past simultaneous condition recording 
supports episodic memory. Such indirect activations must be 
recommendations that compete with, for example, externally 
directed behaviours, otherwise the brain could be swamped 
with irrelevant information in the course of performing any 
behaviour.   
 
Modelling Conscious Phenomena 

This cognitive model makes it possible to model 
conscious phenomena in terms of physiology.  

 
Dichotic Listening 

Consider first the dichotic listening phenomenon 
discussed earlier. A version of the cognitive architecture 
simplified for the purposes of explanation is illustrated in 
figure 6. The sequence of clustering arrays illustrated in 
figure 3 has been compressed to three arrays in the case of 
visual processing, and one array for each ear in the case of 
auditory processing. The columns in the first visual 
processing array detect conditions which can discriminate 
between different types of visual object, those in the second 
array can discriminate between different types of groups of 
objects and so on. The columns in the array detecting 
conditions in the auditory information presented to the left 
ear can discriminate between different words, and similarly 
for the right ear. 

 
 
Figure 6. A simplified set of column arrays for the purpose 

of describing dichotic listening. 
 
The activation state at the point at which the text switch 

occurs is illustrated in figure 7. When a word is heard in the 
left ear, columns detect conditions within the auditory 
information contained in the word. To simplify speech 
learning considerably (for a somewhat more realistic 
discussion see [4]), the “auditory” columns activated by 



hearing a word like “dog” have often been active in the past 
when visual columns activated by seeing a dog have also 
been activated, because a teacher has often spoken the word 
when the learner’s attention was directed towards the visual 
object. The auditory columns have therefore acquired 
recommendation strengths in favour of activating the visual 
columns.  

 
 

Figure 7. The pattern of column activation just as the switch of 
texts between ears occurs. 

 
Hence the word “dog” results in activation of a visual 

image of an average dog, although only in arrays detecting 
conditions at intermediate levels of complexity (i.e. not at 
the simpler levels where the result would be a visual 
hallucination, because there is much less consistency in past 
activity between the auditory columns and the visual 
columns at these levels). Hearing a phrase like “the black 
dog” first indirectly activates columns in the top visual array 
corresponding with “the” and holds them active, then 
columns (at a different modulation phase) corresponding 
with “black”, then columns corresponding with “dog”. The 
outputs from the three column populations in the top array 
are then synchronized and released to the middle array and 
conditions detected corresponding with a visual image of the 
phrase, or group of objects. This population is held active.  

A similar process then occurs in response to the phrase 
“chased the cat”, resulting in a second activated column 
population in the middle array. After the phrase “up the tree” 
there are three separate activated column populations in the 
middle array, and the outputs from these populations are 
synchronized and released to the bottom visual array. A 
population of columns is activated in that bottom array that 
detects conditions in the group of phrases “the black dog 
chased the cat up the tree”. Hearing the next phrase “and the 
cat” leads to an activated column population in the middle 
array, then hearing the word “got” results in a single 
activated population in the top array. At this point, as 
illustrated in figure 7,  there is one population active in the 
bottom array, one population in the middle array, and one in 
the top array. 

At each point in this process, there were also 
recommendation strengths in favour of indirect activation of 
visual  columns corresponding with the words heard in the 
right ear, but the recommendation strengths of words heard 
in the left ear were enhanced by the instruction to echo the 
text heard in that ear. 

Consider now the situation when the word “business” is 
heard in the favoured left ear, and the meaningful 
continuation “stuck” in the right ear. There are some 
additional recommendation strengths which must be 
considered. The visual columns currently active in the three 
arrays have recommendation strengths in favour of 
activating portfolios which have often been active at similar 
times (the same time or shortly after) in the past. Because 
“stuck” is the meaningful continuation, these strengths 
reinforce the indirect activation strengths of the auditory 
portfolios corresponding with the left ear. These strengths 
are sufficient to shift the predominant recommendation 
strengths over in favour of that meaningful continuation. 
Note that these strengths were always present, but until the 
switch reinforced contiuation in the targetted ear. The 
indirect activation recommendation strengths of columns 
activated by the untargetted right ear were also always 
present, but did not result in pseudovisual activation and 
therefore (through condition recording) memory. However, 
their constant presence results in the switch when they are 
reinforced by the recommendation strengths of the currently 
active visual portfolios. 
 
The behavioural scenario 

To understand how physiology could lead to the 
behavioural scenarios described earlier, it is necessary first 
to briefly outline the mechanisms supporting episodic 
memory of events in the recommendation architecture 
cognitive model (for more details see [10]). In the 
architecture illustrated figure 3, consider the pattern of 
column activation generated in response to viewing news of 
a novel event on television. The pattern of activation will 
extend through all the layers, and the novelty of the event 
means that there will be significant condition recording 
particularly at the group of objects and group of groups 
levels. 

Later, words are spoken with some relationship with the 
original event. The auditory portfolios directly activated by 
the words will generate an indirect activation in the “object” 
levels 3 and 4. This activation will drive column activation 
in the group of objects levels 5 to 7 and perhaps beyond. 
Suppose now that the behaviour type indirect activation of 
columns on the basis of simultaneous past condition 
recording is favoured.  

The currently active columns will all have 
recommendation strengths of this type, derived from all the 
past events during which they recorded conditions at the 
same time as other columns. Each such past event will have 
resulted in some such recommendation strength. However, if 
the words spoken have been chosen well, the reactivation 
strengths established by the target event may be relatively 
small but will be greater than for any other event.  

Hence the population of columns activated in response to 
the words will evolve to a secondary population with a 
higher proportion of columns that recorded conditions 
during the target event. This in turn could evolve on the 
same basis to a tertiary population with an even higher 
proportion of target columns. The end point is a population 
of columns in which a major proportion are columns which 



were active during the original event. This population will 
have recommendation strengths in favour of, for example, 
speaking about that event. Hence use of indirect activation 
on the basis of correlations in past condition recording can 
support cued episodic memory for events. 

In the behavioural scenario discussed earlier, a person is 
out walking with a companion, and encounters a tree 
partially blocking the path. One behaviour is simple 
avoidance: stepping around the tree. A second behaviour is 
to make the comment "That tree is small but looks old. Up in 
the mountains I saw a whole area covered with trees like it". 
A third behaviour is to focus attention on the tree and 
“become aware” of the tree as a tree. 

 

 
 
Figure 8. Pattern of column activation supporting motor behaviours 

avoiding a tree without “conscious” awareness. 
 
To understand the physiological processes supporting 

this scenario, consider the pattern of activation illustrated in 
figure 8 for the same architecture as illustrated in figure 3. 
The figure illustrates the activation pattern when the tree is 
first perceived. There is an activated population of columns 
in arrays 1 to 4 in response to visual input from the tree, and 
another activated population in response to visual input from 
the path.  

These two populations are modulated at the same 
frequency but different phases to maintain separation. The 
outputs from the two populations in array 4 are synchronized 
and released to array 5, and activated populations are 
generated as a result in arrays 6 and 7. The columns 
activated in arrays 6 and 7 have recommendation strengths 
in favour of appropriate walking behaviours. All these 
column activations are the result of detection of conditions 
directly within current sensory inputs. If there is little 
novelty in the tree and path objects, there may be little 
condition recording. Hence motor behaviours are generated, 
but there may be little future memory of the event. 

Now suppose that indirect activation behaviours are 
encouraged. This will mean that the activated population 
will be larger (with higher biological cost), and may have 
overall motor recommendation strengths somewhat less 
appropriate for the walking motions required. However, 
these indirectly activated populations have recommendation 
strengths in favour of columns that would be directly 

activated by objects or groups of objects that are not 
currently present. Such objects or groups would be any that 
resulted in condition recording at some past time when the 
currently active columns were also active, such as the 
mountain area covered with small trees, and have 
recommendation strengths in favour of speaking about those 
objects. If there is one object or group of objects with a 
strong overlap (in terms of simultaneous past condition 
recording) with the current directly activated column 
population, such a verbal behaviour is quite probable.  

The experience of “becoming aware” of the tree can be 
understood in a similar fashion. If sensory input is taken 
only from the tree, a population of columns is directly 
activated. Suppose now that recommendation strengths in 
favour of indirect activation, on the basis of both past 
correlated activity and past correlated condition recording, 
are encouraged. The effect is to generate a much larger 
population of activated columns. Different subset of this 
population will be subsets of the populations active during 
the very large number of past experiences in which trees 
were present. In general, none of these subsets will be large 
enough to generate speech behaviour appropriate to the 
corresponding past experience. The effect will therefore be a 
much richer mental experience which it is not possible to 
describe verbally, and which will be specific to the past 
experience of the individual. 

Note that the behavioural value of such “conscious” 
activations is to search a much larger space of possible 
appropriate behaviours than is available from conditions 
actually present in current sensory inputs. The costs are 
higher biological effort, and the risk of interference with the 
most appropriate behaviour in response to the currently 
perceived objects. Hence selection of “conscious” activation 
behaviours will depend upon the value of such behaviours 
compared with simpler motor behaviours. Thus in the case 
of verbal behaviour, the social value of communication is 
greater that the (potentially slight) reduction in the 
effectiveness of motor behaviour. In the case of the 
awareness behaviour, the implication is that there is nothing 
in the current environment that requires an immediate 
response, and there is value in an almost random search for a 
possible behaviour in response to one particular object. 

 
Machine Implementations of Required Information 
Mechanisms 

The objective of the discussion has been to outline the 
architecture for a machine system which could implement 
conscious like phenomena in a physiologically realistic 
manner. There have been various electronic implementations 
of simplified versions of different subsets of the architecture 
which demonstrate that the various information mechanisms 
can be implemented. The use of very simple condition 
recording devices to heuristically define columns that divide 
up an input space in a way that discriminates between input 
states that have behaviourally different implications has been 
demonstrated [11]. The ability of such column arrays to 
learn with limited interference with prior learning has also 
been demonstrated [12]. The effectiveness of indirect 
activation mechanisms in supporting activation of 



pseudovisual images in response to verbal inputs, and to 
support activation of pseudovisual images of objects often 
present in the past at the same time as currently perceived 
objects has also been shown [13]. The capability of the 
frequency modulation mechanism to implement attention 
functions at the physiological level has also been 
demonstrated [9]. 

The electronic implementation of the key information 
mechanisms required by the architectural model of 
consciousness supports the feasibility of electronic 
implementation of the full model.  
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