80

Performance Programming: Theory, Practice and
Case Studies

Module II:
Optimizing Serial Programs
Part 2 - Source Code

i
Performance Programing Module II: Serial Optimization /@z‘?%\



Outline

Overview of Memory Hierarchy
Memory Levels & Memory Organization of RISC based sys-
tems

Memory Hierarchy Optimizations
Cache Blocking
Reducing Cache Conflicts
Reducing TLB Misses

Optimal Data Alignment
Aliasing Optimizations

Common Loop Optimization Techniques
Unrolling and tiling; Loop interchange; Loop fusion, fission an
peeling
Loops with conditionals; Strength reduction in loops

—
Summary W
81 Performance Programing Module II: Serial Optimization /@2?%5




Memory Levels

Gap between memory speed and processor speec
Increasing [ed. increased from 2 (US-I) to 5 (US-III

Levels (fastest to slowest):
Registers: On-chip
On-chip caches
Off-chip caches (possibly multiple levels)
Physical memory
Virtual memory (physical memory and/or disk)
Magnetic disks
Other storage media (tape, CDROM drives etc.)

7
82 Performance Programing Module 1I: Serial Optimization /@2?%5



Mermory Levels (contd.)

Caches: Fast memory storage
Harvard caches: Data+Program in separate caches
Unified caches: Data+Program in same cache
Direct mapped caches: Addresses map to unique locati
In cache
Set-associative and/or Fully-associative caches: Ad-
dresses map at multiple of any location in the cache
Write Through cache: Data updated in cache written intc
memory also
Write Back cache: Data updated in cache written only

when replaced

7
83 Performance Programing Module 1I: Serial Optimization /@2?%5



Memory Levels (contd.)

Physical and Virtual memory
Organized in pages (For e.g. default pagesize is 8KB In
Solaris 9 on UltraSPARC systems)
Virtual-to-Physical address translations stored in Transl:

tion Lookaside Buffer (TLB)

Memory performance benchmarks

Lmbench (to measure latency)
STREAM (to measure bandwidth)
Other benchmarks

7
84 Performance Programing Module 1I: Serial Optimization /@2?%5



Memory Levels (contd.)

Typical memory access times (in CPU clock cycles

Memory Level Size Access Time

CPU reqisters I1KB Order of 1 cycle
On-chip cache 16KB — 512KB Order of 3-4 cycles
Off-chip cache 256KB — 8MB Order of 10 cycles
RAM memory 64MB — 512 GB Order of 100 cycles
Magnetic Disk Terabytes Order of million cycles

7
85 Performance Programing Module 1I: Serial Optimization /@2?%5



W
-
a

Characteristics of Some Process

ﬁ'\

Processor pipeline features

Processor ~ Number of  Intruction Peak FP  No. Registers

Pipeline Issue Rate Issue Rate Int/FP
Stages (others)
UltraSPARC-II 10 4 2 32/32
UltraSPARC-Illcu 14 4 2 32/32
Intel Xeon 12 3 1 8/8 (40 rename)
Alpha 21264 7 4 4 32/32
ltanium?2 8 6 4 128/128
Power-4 14 5 4

7
86 Performance Programing Module 1I: Serial Optimization /@2?%5



System L1-I cache
size/line/
UliraSPARC-Il  16KB/32B/2

Cha

ﬁ\

wracteristics of some Processors (conid.)

Processor Cache features

L1-D cache L2 cache L3 cache
size/line/ size/line/ size/line/

Associativity Associativity Associativity Associativity

UltraSPARC-IIl Cu 32KB/32B/4

Intel Xeon 16KB/32B/4
Alpha 21264 64KB/64B/2
Itanium-2 16KB/64B/4
Power-4 64KB/128B/1
87 Performance Programing

16KB/32B/1 8MB/64B/1
64KB/32B/4 8MB/512B/2
P$ 2KB/64B/4
W$ 2KB/64B/4
16KB/32B/2 1MB/32B/4
64KB/64B/2 4MB/64B/1
16KB/64B/4 256KB/128B/8 3MB/128B/12
32KB/128B/2  1.44MB/128B/8 128MB/512B/8
(on a MCM)

Module 1I: Serial Optimization




Cache Blocking

Memory reference optimization that improves temporal and sp

tial locality of memory references
Decreases cache miss rate by increasing reuse of data
Computations with high ratio of computational to memory opera-
tions benefit most [for e.g. BLAS 3 operations have O(N) ratio]
Canonical matrix multiplication example

E E D N
C=AB
Blocked

= (block nbXnb)

7
88 Performance Programing Module 1I: Serial Optimization /@2?%5




Cacne Blocking (contd.)

Unblocked Blocked
for (i=0;i<nl;i++) { for (ii=0;ii<nl;ii+=na) {
for(j=0;j<n3;j++) { for (Jj=0;jj<n3;jj+=nb) {
sum = 0.0; for (i=ii;i<min((ii+na),n1)
#pragma pipeloop(0) A
for (k=0;k<n2;k++) { for (j=jj;j<min((jj+nb),n3)
sum = sum + J+) {
a[i][K]*b[][k]; sum = 0.0;
} #pragma pipeloop(0)
c[i][j] = sum; for (k=0;k<n2;k++) {
} sum = sum +
} : a[i][k]*b[][k];
c[i]ij] = sum;
}
}
}
}

7
89 Performance Programing Module 1I: Serial Optimization /@2?%5



90

Cacne Blocking (contd.)

Results of C = AB on Ultra-60 (450 MHz UltraSPARC-II, 4
MB L2-cache)

Size Unblocked Unblocked Blocking Blocked Blocked
L2 Cache Mflops Factor L2 Cache Mflops

Hit rate (nb) Hit rate
480 0.982 230 32 0.998 311
640 0.932 125 32 0.996 297
800 0.896 92 64 0.996 290
960 0.864 71 80 0.996 286
1120 0.849 63 80 0.996 282

i
Performance Programing Module II: Serial Optimization /@z‘?‘%\



Cacne Blocking (contd.)

For matrix multiplication, use Vendor provided math libran
(eg. Intel Math Kernel Library, Sun Performance Library)
Implementation as numerous other factors impact perform
ance (TLB sizes, prefetching, load/store flow in pipeline,
modulo scheduling of inner loops etc.)

Interpret performance metrics in context: a high cache hit-
rate I1s not necessarily indicative of good performance (bot
eneck may shift elsewhere and overall runtime may still re
main poor).

7
91 Performance Programing Module 1I: Serial Optimization /@2?%5



Reducing Cacne Conflicts

Direct mapped caches: low cache-hit times but higher cor
flict and collision misses

Conflict misses occur when multiple data items compete f
same cache locations in non fully associative caches (e.g
power of 2 accesses as Iin FFT’s, Strassen Matrix Multiplic
tion etc.)

Various approaches to reduce cache conflicts:
Compiler option in Fortran to pad local and common block
variables to avoid powers of 2 (e.g. -xpad in Sun Fortran con
piler)
Page coloring: affects mapping of free physical pages mapp:
to faulted virtual pages (e.g. reduces conflicts in level 2 cach
on UltraSPARC-II, |11

7
92 Performance Programing Module 1I: Serial Optimization /@2?%5




Reducing Cache Conflicts (contd.)

Example: performance penalty of conflicts in Level-1 D-
cache on UltraSPARC-II processor

AN+ )=A1)+A (N +i)

For N=2048: pathological cache conflicts occur

i Adi) E\

!r"-.-;l + 2048)

!.-'—'-.[i = 486} E

M = 2048: Ali), All + N), and Al + 2*N) map to the same cache line

Cache llne
boundaries

u u
E A :
[ |
: AT+ 20507 I :
| |
i !.:-.u + 4100} I
N = 2050 All). Adi + N}, and A(l + 2*N) map to two cache lines 2
||
" u
E Al l
L |
| |
| |

EA-;'L + zns:z]l !

. E.Mj + -uu-lll

—
MN=2002: Ad), Ali+MN), and Afi+2*N} map to distinct cache lines (.
93 Performance Programing Module II: Serial Optimization iz




Reducing Cacnhe Conflicts (contd.)

0.6

N=2042 N=2044 N=2052 N=2054
0-5 _'.-.-..-.-.-.‘-.--‘-‘-.--C .--‘-.-.--‘-‘..--.-'-.'-.-' _

041 -

031 .
-a-.r:{f-gp.%.§-. N " 2050

Data cache hit ratio

02 .

0 | 1 1 | wewew (ZIIITIIT]] PLIIITTELT] . | | | |
10 20 30 40 50 60 70 80 90 100 110 120

Measured Samples

Data cache hits are close to zero for array stride of N=2048. The
hit ratio improves once the stride doesn’t cause cache conflicts

The runtimes also are also worst with N=2048 —

i
Performance Programing Module II: Serial Optimization /@z‘?‘%\




Reducing TLB Misses

TLB speeds up address translation by keeping translated
dresses In buffer

TLB misses are costly as trap into kernel is required to co
plete the translation

No general recipe to avoid TLB misses except general gul
line of designing application to operate on localized data

Use multiple page-size support in the OS. Multiple page
sizes supported on nearly all architectures and many OS's
provide the support for applications to utilize pages of dif-
ferent sizes for program text, heap and stack space. E.qg.
HPUX, SGI IRIX, IBM AlX, Solaris 9

7
95 Performance Programing Module 1I: Serial Optimization /@2?%5



96

Reducing TLB Misses (conid.)

Solaris 9
PpPgsz -o heap=4M,stack=64k a.out

IRIX 6.5
dplace -data_pagesize 64k \
-stack _pagesize 64k a.out
AlX
LDR_CNTRL=LARGE_PAGE_DATA=Y envar, vmtune
command,

i
Performance Programing Module II: Serial Optimization /@z‘?‘%\



Optimal Data Alignment
Maintaining preferred alignment restrictions for different
data-types important for performance

Restructuring for better data alignment
Cache line Alignment

Restructuring for better data alignment
Data should be placed on preferred alignment boundarie
C: structs, globals and static variables should be orderec

from largest to smallest data-type
Fortran: In COMMON blocks variables should be ordere!

from largest to smallest data-type

Integer*1 a,zs(10)

real*4 ys(21)

real*8 x(len),y(len),z(len)

common /blk1/a,x,zs,y,ys,z | IMPROPERLY ALIGNED

common /blk1/x,y,z,ys,zs,a | PREFERRED: PROPERLY AJSHIED

97 Performance Programing Module 1I: Serial Optimization /@—Tﬁg



Optimal Data Alignment (contd.)

Dynamically allocated data-items and pointer manipulatiol
Care should be taken to keep the data properly aligned
char *x; double *y;
X = (char *) malloc(10*sizeof(char));
y = (double *) (x+2); /* y is misaligned */
malloc usually returns data aligned on at least 8-byte bounc
ary (e.g. In Solarimalloc  returns 8-byte aligned data in 32-

bit and 16-byte aligned data in 64-bit)
Finer control on alignment can be obtained thromgma-

lign, valloc or by manually aligning the pointer via use o

offset
Int *a, *b, len; unsigned long temp;
a = (int *) malloc(len*sizeof(int)+32);
temp = ((unsigned long) a + 32) & OxffffffeO;
b = (int *) temp;
[* b is aligned on 32-byte boundary */

7
98 Performance Programing Module 1I: Serial Optimization /@2?%5



99

Aliasing Optimizations
J

Effects of aliasing on correctness and perform-
ance

Aliasing in Fortran Programs

Aliasing in C Programs

Performance Programing Module 1I: Serial Optimization




Allasing Optimizations (contd.)

Aliasing in Fortran Programs
Language standard does not have restriction on locatior
of variables in memory
Compilers can optimize code under assumption that var
ables are independent and stored in nonoverlapping pot
tions of memory
Problems can occur withQUIVALENCEandCOMMON

variables

Problems can also occur if same variable is passed to ti
subroutine as different arguments (inducing memory aliz
Ing when compiler might assume none exists)

7
100 Performance Programing Module 1I: Serial Optimization /@2?%5



Allasing Optimizations (contd,.
]

Example Program:
c example_alias.f
c 77 -xO1 example_alias.f -0 example_alias
c 77 -xO3 example_alias.f -0 example_alias: wrong results

C
integer n, isum
do n=1,10
call foo(isum,isum,n)
print*,) n =", n, " isum =", isum
enddo
end
C

subroutine foo(i,isum,n)
integer n, isum, |
doi=1,n-1
isum = isum-+i
enddo
isum=(isum+1)/2
return
end
Unconventional way to compute powers of 2: program abuses argument passing rule
At -xO3 level in Sun Fortran compiler, the optimizer unrolls the loop with the assump.
tion that i, isum are distinct leading to incorrect results

i
101 Performance Programing Module II: Serial Optimization /@2?%5




Aliasing Optimizations (contd.)

Aliasing in C programs
In general a pointer can alias any other pointer reference or
global variable. It can also be an alias to a local variable whc
address Is accessed via & operator
Aliasing can occur regardless of data-type except if program
conforms to ANSI/ISO rules: pointers and variables of differe
basic data-types do not alias
Incorrect code can be generated if program violates ANSI/IS
aliasing rules but compiled assuming conformance (check pi
gram with lint)

7
102 Performance Programing Module 1I: Serial Optimization /@2?%5



Aliasing Optimizations (contd.)

Aliasing in C programs
#include <stdlib.h>
Int *p;
double *q;
void foo();
void foo() {
Int i;
p = (int *) malloc(sizeof(int)*10);
g = p; /* not allowed by ANSI C standard */
for (i=0;i<5;i++)
qli] = 1;
}

7
103 Performance Programing Module 1I: Serial Optimization /@2?%5



Allasing Optim

Unmodified
Int key, *array;
void binsearch(int n,
Int *loc)
{

Int a=0, b=n;
while (b-a > 8) {
*loc = (a+b)>>1;
If (array[*loc] > key)
b = *loc;
else
a = *loc;
}

for (*loc=a; *loc<b;
(*loc)++) {
If (array[*loc] == key)
break;
}
}

104 Performance Programing

ations (contd.)

Modified
Int key, *array;
void binsearchmod(int n,
Int *loc)
{

int a=0, b=n, c=*loc;
while (b-a > 8) {
c = (atb)>>1;
If (array[c] > key)
b =c;
else
a=c;
}

for (c=a; c<b; c++) {
iIf (array[c] == key){
*loc = c;
break;
}
}
}

Module 1I: Serial Optimization




Allasing Optimizations (contd.
J

Aliasing in C programs
Minor code changes help improve performance in two
situations: (a) possibility of aliasing in global variables/-
pointers, local variables/pointers and function-call argu-
ments (b) using pointer variable as loop index

7
105 Performance Programing Module 1I: Serial Optimization /@2?%5



Loop Optimization

Loops are one of most commonly used constructs in HPC
programs

Variety of optimization techniques have been developed
(many will be discussed here)

Compliler performs many of loop optimization techniques
automatically but in some cases source code modification
enhance optimizer’s analysis

Loop optimization related source code modifications shou
always be re-evaluated with the availability of newer com-
pilers and architecture (as may or may not be required an
longer. Can even hurt performance)

7
106 Performance Programing Module 1I: Serial Optimization /@2?%5



Loop Unrolling and Tiling

Untiled Loop Nest

do j=1,m
do i=1,n
do k=1,p
c(i=c(ij) +
a(k,i)*b(k,))
enddo
enddo
enddo

Floating Pt. Ops ~ 2mnp
Memoly Ops~2mnp+ 2mn

Register BlockingData partitioned to fit in on-chip registers (similar to

Cache Blockiny

Loop Tiling technique of register blocking applied to loop nests

Performance Programing

2x2 Tiled Loop Nest

do j=1,m,2
do i=1,n,2
f11=c(i,j)
f21=c(i+1,))
f12=c(i,j+1)
f22=c(i+1,j+1)
do k=1,p
f11=f11 + a(k,i) * b(k,))
f21=f21 + a(k,i+1) * b(k,))
f12=f12 + a(k,i) * b(k,j+1)
f22=f22 + a(k,i+1) * b(k,j+1)
enddo
c(i,j) =f11
c(i+1,)) =f21
c(i,j+1) =f12
c(i+1,j+1)=f22
enddo
enddo

Floating Pt. Ops ~ 2mnp
Memoly Ops~2mnp+ 2mn

Module 1I: Serial Optimization




Loop Tiling & Unrolling (conid.)

General Guidelines for loop tiling:
In general, Manual unrolling of loops Is discouraged.
Compiler performs loop unrolling very efficiently. Unroll-
Ing of loops should only be done for complex loop-nests
The iInnermost loop In a loop-nest should not be unrollec
The compiler unrolls and software pipelines the innermc
loop
Loop tiling should be used with cache-blocking as that it
creases effectiveness of software pipelining of innermos
loop
Tiling should be applied to outer loops: It increases the
spatial and temporal locality of computation

7
108 Performance Programing Module 1I: Serial Optimization /@2?%5



Loop Unrolling & Tiling (contd.)

Tile-size determination:
A difficult theoretical problem and usually heuristics ap-
plied
Tile-size depends on: latency to cache, latency of floatir
point operations, ratio of flops to mem-ops, number of
available registers on processor.
Tile should be selected to maximize ratio of flops to mer
ops without causing the compiler to generatgster
spills

7
109 Performance Programing Module 1I: Serial Optimization /@2?%5



Loop Unrolling & Tiling (contd.)

Times on Compag Alphaserver (500MHz)
4x3 tiling performs best in above mat-mul example: flops/mem-
ops=12/7 (12 adds + 12 muls, 7 loads)
Recommend to check if a particular tiling optimal when new comy
ers and chip become available change)

4x4 No tiling

Time in Seconds

i
110 Performance Programing Module II: Serial Optimization /@2?%5



Loop Interchange

Improves spatial locality and maximizes use of data brought into cache

Loops are reordered to minimize stride and align access pattern in loop w
pattern of data-storage in memory

No Interchange Loop Interchange
do i=1,nele do j=1,nele
do j=1,nele do i=1,nele
y(1)) = 2.0%(1,J) y(1,)) = 2.0%(1,J)
enddo enddo
enddo enddo

Time (sec.) on SunBlade 1000

. Interchanged order

Original
order

0 25 5 75 10 12.5 15 175 20 22,5 25 27.5 30 8245} 85} B7G! 40 425 45 475 50 525 55 57.5 60 (
111 Performance Programing Module II: Serial Optimization #mﬁ



Loop Fusion

Adjacent or closely spaced loops fused together:
Decreased loop overhead & increase in computational density en
ables improvement in software pipelining
Increase in cache-locality of data structures
Compilers performs fusion but in some cases this optimization no
performed and required to be done manually

Fused loop below takes advantage of temporal locality and reuse in {@hobescbf

ali] andc[i]
No Loop Fusion Loop Fusion

for (i=0;i<nodes;i++) { a[0] = a[O]*small;

Ali] = a[i]*small; c[0] = (a[0]+b[O])*relaxn;

CIli] = (a[i] + b[i])*relaxn; a[nodes-1] = a[nodes-1]*small;
} c[nodes-1] = c[nodes-1]*relaxn;
for (i=1;i<nodes-1;i++) { for (i=1;i<nodes-1;i++) {

DJi] = c[i] - a[i]; AJi] = a[i]*small;
} C[i] = (a]i] + b[i]D*relaxn;

DI[i] = c[i] - alil;
}

7
112 Performance Programing Module 1I: Serial Optimization /@2?%5




Loop Fusion (contd.)

Time (sec.) on SunBlade 1000

No-fusion

Fusion

Should not be applied indiscriminately. If the loop become
computationally “fat”, performance might degrade (as soft
ware pipelining efficiency decreases)

i
113 Performance Programing Module II: Serial Optimization /@2?%5



Loop Fission

Split the loop Iinto multiple loops
Ensure that trip count is sufficiently large for index over-
head to remain small
Can be used when loop has conditional: split into
conditional-free and conditional-containing loops
Computationally “fat”: splitting may decrease register
pressure

Pitfall
Compiler may fuse split loops back (check assembly list
Ing). Can peel first or last loop iteration (discussed next)
or insert a call to dummy function

7
114 Performance Programing Module 1I: Serial Optimization /@2?%5



Loop Fission (contd.)

Example
No Loop Fission Loop Fission
for (i=0;i<nodes;i++) { #pragma pipeloop(0)
afi] = a[iJ*small; for (i=0;i<nodes;i++) {
dtime = a[i] + bji]; a[i] = a[iJ*small;
dtime = fabs(dtime*ratinpmt); dtime = a[i] + bfi];
templ]i] = dtime*relaxn; dtime = fabs(dtime*ratinpmt);
if(templ[i] > hgreat) { templ[i] = dtime*relaxn;
*lerror = 4; }
break; for (i=0;i<nodes;i++) {
} if(temp1[i] > hgreat) {
*lerror = 4;
break;
}

B Fission

—Wssm

0o 05 1 15 2 25 3 35 4 45
Time (sec.) on SB1000 _

i
115 Performance Programing Module II: Serial Optimization /@2?%5




Loop Peeling

Peeling k iterations mean removing these from loop body and
placing them ahead or after the loop-body

Usually performed by compiler but may not happen in complex
cases

Example
Peeled loop has one load and store (unpeeled loop has extra loas
Running on Sun Blade1000 results in ~1.5X speedup

No Peeling Loop Peeling
doi=1,n t2 = y(n,n)
Y(i,n)= X(i,1)*y(n,n)
(1.0 — x(i,1))*y(1,n)+x (i,1)*y(n,n) y(1,n)= (1.0-x(1,1))*y(1,n)+x(1,1)*t2
enddo t1 =y(1,n)
doi=2,n-1
Y(i,n)= (1.0-x(i,1))*1 + x(i,1)*t2
enddo

y(n,n) = (1.0-x(n,1))*t1 + x(n,1)*t2

7
116 Performance Programing Module 1I: Serial Optimization /@2?%5



Loops witn Conditionals

Modern processors have deep pipelines to obtain high ILP

achieve high clock frequencies
Sun UltraSPARC-I,II: 10-stage; Sun UltraSPARC-III: 14-stage
IBM Power4: 14-stage; Intel Pentium4: 20-stage
Branch-misprediction penalty is high (pipeline is stalled and restarte
at branch target address)

Manual restructuring needed to alleviate impact of branche:
For example: loop with if statements almost certain to be not pipelir

Conditional statements in loops:
loop invariant conditionals
loop index dependent conditionals
Independent loop conditionals
dependent loop conditionals
reductions
Conditionals that transfer control

7
117 Performance Programing Module 1I: Serial Optimization /@2?%5



Loops with Conditionals (conid.)

Conditional No Conditional
do i=1,len2 do i=1,len2
Do j=1,len2 Do j=1,i-1
If(j < i) then A2d(j,i) = a2d(j,i) + b2d(j,i)*conl
A2d(j,i) = a2d(j,i) + b2d(j,i)*conl  Enddo
Else Do j=i,len2
A2d(j,)) = 1.0 A2d(j,i) = 1.0
Endif Enddo
Enddo enddo
enddo

Time (sec.) on Compaq AlphaServer (500MHz)

With conditional

Optimized

i
118 Performance Programing Module II: Serial Optimization /@zﬂ;'ﬂ%ﬂ



Strengtn Reduction in Loops

Strength Reduction: optimization of arithmetic ex-
pression by replacing computationally expensive o

erations with cheaper ones
When applied to loops it can magnify performance impa
Compiler usually performs this on simpler operations (e
Integer multiplication or division by powers of 2 replacec
by shifts)

We will consider 2 uncommon examples:

Division Replacement
Operations on complex and real operands

7
119 Performance Programing Module 1I: Serial Optimization /@2?%5



120

Strength Reduction in Loops (contd.)

Division Replacement

Unoptimized
z(i) = x()/y (i)
w(i) = u(i)/v(i)

Time (sec.) on Compaq AlphaServer (500MHz)

I O O

Optimized

tmp = 1.0/(y(i)*v(i))
(i) = x(i)*v(i)*tmp
w(i) = u(i)*y(i)*tmp

O

pt

1Ze

Performance Programing

Module 1I: Serial Optimization

Unoptimized




Strengtn Reduction in Loops (contd.)

Operations on complex and real operands

Re(a*b) = Re(a)*Re(b)-Im(a)*Im(b)

Im(a*b) = Im(a)*Re(b)+Re(a)*Im(b)

Re(a/b) = (Re(a)*Re(b)+Im(a)*Im(b))/(Re(b)*Re(b)+Im(b)*Im(b))
Im(a/b) = (Im(a)*Re(b)-Re(a)*Im(b))/(Re(b)*Re(b)+Im(b)*Im(b))

Can be implemented directly with real data types in nume
cally stable cases (for e.g. in division can give significant
Speedup)

|| No-opt
Ml Opt

T_
0) 2.5 ) 7.5 10
Time (sec.) on SB1000 (
121 Performance Programing Module II: Serial Optimization /@z‘?%\




sumrmary
Memory Hierarchy Optimizations have the potential for mc
performance improvement:
Organize data structures and algorithms keeping cache sizes
associativities, line sizes, memory latency and cache levels i
mind
Cache blocking increases spatial and temporal locality.
Avoid array strides with large powers of 2 to avoid cache ma
ping conflicts
Avoid strided access to decrease TLB miss penalties
Page coloring helps alleviate conflicts in direct mapped cacht
Memory interleaving crucial to obtain good memory b/w per-
formance

Misaligned data can cause significant performance penalt

Data aliasing in C and Fortran programs can also have bic
Impact on performance and correctness —

7
122 Performance Programing Module 1I: Serial Optimization /@2?%5




Summary (contd.)

Loops usually account for large portion of runtime
Monitor compiler optimization of loops and perform manual
loop restructuring as needed
|dentify hot loops with performance analysis tools
Always evaluate efficiency of manually restructured loops wit
availability of new compilers and chips

Common loop optimization technigues
Loop unrolling and tiling: improves pipelining and register us-
age
Loop fusion and fission: complementary techniques
Loop peeling
Loops with conditionals: difficult to optimize so try to separate
out the conditional
Strength reduction optimizations applied to loops magnify pel
formance gains

7
123 Performance Programing Module 1I: Serial Optimization /@2?%5



