
Performance Programing Module II: Serial Optimization 80

Performance Programming: Theory, Practice and
Case Studies

Module II:
Optimizing Serial Programs

Part 2 - Source Code

Performance Programing Module II: Serial Optimization 81

OutlineOutline
� Overview of Memory Hierarchy
� Memory Levels & Memory Organization of RISC based sys-

tems

� Memory Hierarchy Optimizations
� Cache Blocking
� Reducing Cache Conflicts
� Reducing TLB Misses

� Optimal Data Alignment

� Aliasing Optimizations

� Common Loop Optimization Techniques
� Unrolling and tiling; Loop interchange; Loop fusion, fission and

peeling
� Loops with conditionals; Strength reduction in loops

� Summary

Performance Programing Module II: Serial Optimization 82

Memory LevelsMemory Levels

� Gap between memory speed and processor speed is
increasing [eg. increased from 2 (US-I) to 5 (US-III)]

� Levels (fastest to slowest):
� Registers: On-chip
� On-chip caches
� Off-chip caches (possibly multiple levels)
� Physical memory
� Virtual memory (physical memory and/or disk)
� Magnetic disks
� Other storage media (tape, CDROM drives etc.)

Performance Programing Module II: Serial Optimization 83

Memory Levels (contd.)Memory Levels (contd.)

� Caches: Fast memory storage
� Harvard caches: Data+Program in separate caches
� Unified caches: Data+Program in same cache
� Direct mapped caches: Addresses map to unique locations

in cache
� Set-associative and/or Fully-associative caches: Ad-

dresses map at multiple of any location in the cache
� Write Through cache: Data updated in cache written into

memory also
� Write Back cache: Data updated in cache written only

when replaced

Performance Programing Module II: Serial Optimization 84

Memory Levels (contd.)Memory Levels (contd.)

� Physical and Virtual memory
� Organized in pages (For e.g. default pagesize is 8KB in

Solaris 9 on UltraSPARC systems)
� Virtual-to-Physical address translations stored in Transla-

tion Lookaside Buffer (TLB)

� Memory performance benchmarks
� Lmbench (to measure latency)
� STREAM (to measure bandwidth)
� Other benchmarks

Performance Programing Module II: Serial Optimization 85

Memory Levels (contd.)Memory Levels (contd.)

� Typical memory access times (in CPU clock cycles)

Memory Level Size Access Time
CPU registers 1KB Order of 1 cycle
On-chip cache 16KB – 512KB Order of 3-4 cycles
Off-chip cache 256KB – 8MB Order of 10 cycles
RAM memory 64MB – 512 GB Order of 100 cycles
Magnetic Disk Terabytes Order of million cycles

Performance Programing Module II: Serial Optimization 86

Characteristics of Some Processors Characteristics of Some Processors

� Processor pipeline features

Processor Number of Intruction Peak FP No. Registers
Pipeline Issue Rate Issue Rate Int/FP
Stages (others)

UltraSPARC-II 10 4 2 32/32
UltraSPARC-IIIcu 14 4 2 32/32
Intel Xeon 12 3 1 8/8 (40 rename)
Alpha 21264 7 4 4 32/32
Itanium2 8 6 4 128/128
Power-4 14 5 4

Performance Programing Module II: Serial Optimization 87

Characteristics of some Processors (contd.)Characteristics of some Processors (contd.)

� Processor Cache features

System L1-I cache L1-D cache L2 cache L3 cache
size/line/ size/line/ size/line/ size/line/

Associativity Associativity Associativity Associativity

UltraSPARC-II 16KB/32B/2 16KB/32B/1 8MB/64B/1
UltraSPARC-III Cu 32KB/32B/4 64KB/32B/4 8MB/512B/2

P$ 2KB/64B/4
W$ 2KB/64B/4

Intel Xeon 16KB/32B/4 16KB/32B/2 1MB/32B/4
Alpha 21264 64KB/64B/2 64KB/64B/2 4MB/64B/1
Itanium-2 16KB/64B/4 16KB/64B/4 256KB/128B/8 3MB/128B/12
Power-4 64KB/128B/1 32KB/128B/2 1.44MB/128B/8 128MB/512B/8

(on a MCM)

Performance Programing Module II: Serial Optimization 88

Cache BlockingCache Blocking

� Memory reference optimization that improves temporal and spa-
tial locality of memory references
� Decreases cache miss rate by increasing reuse of data
� Computations with high ratio of computational to memory opera-

tions benefit most [for e.g. BLAS 3 operations have 0(N) ratio]
� Canonical matrix multiplication example

=

 =

UNBLOCKED

C = AB

Blocked
(block nbXnb)

Performance Programing Module II: Serial Optimization 89

Cache Blocking (contd.)Cache Blocking (contd.)

� Unblocked
for (i=0;i<n1;i++) {
 for(j=0;j<n3;j++) {
 sum = 0.0;
#pragma pipeloop(0)
 for (k=0;k<n2;k++) {
 sum = sum +
 a[i][k]*b[j][k];
 }
 c[i][j] = sum;
 }
}

� Blocked
for (ii=0;ii<n1;ii+=na) {
 for (jj=0;jj<n3;jj+=nb) {
 for (i=ii;i<min((ii+na),n1)
 ;i++) {
 for (j=jj;j<min((jj+nb),n3)
 ;j++) {
 sum = 0.0;
#pragma pipeloop(0)
 for (k=0;k<n2;k++) {
 sum = sum +
 a[i][k]*b[j][k];
 }
 c[i][j] = sum;
 }
 }
 }
 }

Performance Programing Module II: Serial Optimization 90

Cache Blocking (contd.)Cache Blocking (contd.)

� Results of C = ABT on Ultra-60 (450 MHz UltraSPARC-II, 4
MB L2-cache)

Size Unblocked Unblocked Blocking Blocked Blocked
L2 Cache Mflops Factor L2 Cache Mflops
Hit rate (nb) Hit rate

480 0.982 230 32 0.998 311
640 0.932 125 32 0.996 297
800 0.896 92 64 0.996 290
960 0.864 71 80 0.996 286
1120 0.849 63 80 0.996 282

Performance Programing Module II: Serial Optimization 91

Cache Blocking (contd.)Cache Blocking (contd.)
� For matrix multiplication, use Vendor provided math library

(eg. Intel Math Kernel Library, Sun Performance Library)
implementation as numerous other factors impact perform-
ance (TLB sizes, prefetching, load/store flow in pipeline,
modulo scheduling of inner loops etc.)

� Interpret performance metrics in context: a high cache hit-
rate is not necessarily indicative of good performance (bottl-
eneck may shift elsewhere and overall runtime may still re-
main poor).

Performance Programing Module II: Serial Optimization 92

Reducing Cache ConflictsReducing Cache Conflicts

� Direct mapped caches: low cache-hit times but higher con-
flict and collision misses

� Conflict misses occur when multiple data items compete for
same cache locations in non fully associative caches (e.g.
power of 2 accesses as in FFT’s, Strassen Matrix Multiplica-
tion etc.)

� Various approaches to reduce cache conflicts:
� Compiler option in Fortran to pad local and common block

variables to avoid powers of 2 (e.g. -xpad in Sun Fortran com-
piler)

� Page coloring: affects mapping of free physical pages mapped
to faulted virtual pages (e.g. reduces conflicts in level 2 cache
on UltraSPARC-II, III)

Performance Programing Module II: Serial Optimization 93

Reducing Cache Conflicts (contd.)Reducing Cache Conflicts (contd.)

� Example: performance penalty of conflicts in Level-1 D-
cache on UltraSPARC-II processor

A(2*N+i)=A(i)+A(N+i)
� For N=2048: pathological cache conflicts occur

Performance Programing Module II: Serial Optimization 94

Reducing Cache Conflicts (contd.)Reducing Cache Conflicts (contd.)

� Data cache hits are close to zero for array stride of N=2048. The
hit ratio improves once the stride doesn’t cause cache conflicts

� The runtimes also are also worst with N=2048

Performance Programing Module II: Serial Optimization 95

Reducing TLB MissesReducing TLB Misses
� TLB speeds up address translation by keeping translated ad-

dresses in buffer

� TLB misses are costly as trap into kernel is required to com-
plete the translation

� No general recipe to avoid TLB misses except general guide-
line of designing application to operate on localized data

� Use multiple page-size support in the OS. Multiple page
sizes supported on nearly all architectures and many OS's
provide the support for applications to utilize pages of dif-
ferent sizes for program text, heap and stack space. E.g.
HPUX, SGI IRIX, IBM AIX, Solaris 9

Performance Programing Module II: Serial Optimization 96

Reducing TLB Misses (contd.)Reducing TLB Misses (contd.)

� Solaris 9
ppgsz -o heap=4M,stack=64k a.out

� IRIX 6.5
dplace -data_pagesize 64k \
 -stack_pagesize 64k a.out

� AIX
LDR_CNTRL=LARGE_PAGE_DATA=Y envar, vmtune
command,

Performance Programing Module II: Serial Optimization 97

Optimal Data AlignmentOptimal Data Alignment
� Maintaining preferred alignment restrictions for different

data-types important for performance
� Restructuring for better data alignment
� Cache line Alignment

� Restructuring for better data alignment
� Data should be placed on preferred alignment boundaries
� C: structs, globals and static variables should be ordered

from largest to smallest data-type
� Fortran: In COMMON blocks variables should be ordered

from largest to smallest data-type

integer*1 a,zs(10)
real*4 ys(21)
real*8 x(len),y(len),z(len)
common /blk1/a,x,zs,y,ys,z ! IMPROPERLY ALIGNED

common /blk1/x,y,z,ys,zs,a ! PREFERRED: PROPERLY ALIGNED

Performance Programing Module II: Serial Optimization 98

Optimal Data Alignment (contd.)Optimal Data Alignment (contd.)

� Dynamically allocated data-items and pointer manipulation:
� Care should be taken to keep the data properly aligned

char *x; double *y;
x = (char *) malloc(10*sizeof(char));
y = (double *) (x+2); /* y is misaligned */

� malloc usually returns data aligned on at least 8-byte bound-
ary (e.g. In Solaris malloc returns 8-byte aligned data in 32-
bit and 16-byte aligned data in 64-bit)

� Finer control on alignment can be obtained through mema-
lign, valloc or by manually aligning the pointer via use of
offset

int *a, *b, len; unsigned long temp;
a = (int *) malloc(len*sizeof(int)+32);
temp = ((unsigned long) a + 32) & 0xffffffe0;
b = (int *) temp;
 /* b is aligned on 32-byte boundary */

Performance Programing Module II: Serial Optimization 99

Aliasing OptimizationsAliasing Optimizations

� Effects of aliasing on correctness and perform-
ance
� Aliasing in Fortran Programs
� Aliasing in C Programs

Performance Programing Module II: Serial Optimization 100

Aliasing Optimizations (contd.)Aliasing Optimizations (contd.)

� Aliasing in Fortran Programs
� Language standard does not have restriction on locations

of variables in memory
� Compilers can optimize code under assumption that vari-

ables are independent and stored in nonoverlapping por-
tions of memory

� Problems can occur with EQUIVALENCE and COMMON
variables

� Problems can also occur if same variable is passed to the
subroutine as different arguments (inducing memory alias-
ing when compiler might assume none exists)

Performance Programing Module II: Serial Optimization 101

Aliasing Optimizations (contd.)Aliasing Optimizations (contd.)
� Example Program:

c example_alias.f
c f77 -xO1 example_alias.f -o example_alias
c f77 -xO3 example_alias.f -o example_alias: wrong results
c
integer n, isum
 do n=1,10
 call foo(isum,isum,n)
 print*,’ n = ’, n, ’ isum = ’, isum
 enddo
end
c
subroutine foo(i,isum,n)
integer n, isum, i
 do i=1,n-1
 isum = isum+i
 enddo
 isum=(isum+1)/2
return
end

� Unconventional way to compute powers of 2: program abuses argument passing rules
� At -xO3 level in Sun Fortran compiler, the optimizer unrolls the loop with the assump-

tion that i, isum are distinct leading to incorrect results

Performance Programing Module II: Serial Optimization 102

Aliasing Optimizations (contd.)Aliasing Optimizations (contd.)

� Aliasing in C programs
� In general a pointer can alias any other pointer reference or

global variable. It can also be an alias to a local variable whose
address is accessed via & operator

� Aliasing can occur regardless of data-type except if program
conforms to ANSI/ISO rules: pointers and variables of different
basic data-types do not alias

� Incorrect code can be generated if program violates ANSI/ISO
aliasing rules but compiled assuming conformance (check pro-
gram with lint)

Performance Programing Module II: Serial Optimization 103

Aliasing Optimizations (contd.)Aliasing Optimizations (contd.)

� Aliasing in C programs
#include <stdlib.h>
int *p;
double *q;
void foo();
void foo() {
 int i;
 p = (int *) malloc(sizeof(int)*10);
 q = p; /* not allowed by ANSI C standard */
 for (i=0;i<5;i++)
 q[i] = i;
 }

Performance Programing Module II: Serial Optimization 104

Aliasing Optimizations (contd.)Aliasing Optimizations (contd.)

� Unmodified
int key, *array;
void binsearch(int n,
 int *loc)
{
 int a=0, b=n;
 while (b-a > 8) {
 *loc = (a+b)>>1;
 if (array[*loc] > key)
 b = *loc;
 else
 a = *loc;
 }
 for (*loc=a; *loc<b;
 (*loc)++) {
 if (array[*loc] == key)
 break;
 }
}

� Modified
int key, *array;
void binsearchmod(int n,
 int *loc)
{
 int a=0, b=n, c=*loc;
 while (b-a > 8) {
 c = (a+b)>>1;
 if (array[c] > key)
 b = c;
 else
 a = c;
 }
 for (c=a; c<b; c++) {
 if (array[c] == key){
 *loc = c;
 break;
 }
 }
}

Performance Programing Module II: Serial Optimization 105

Aliasing Optimizations (contd.)Aliasing Optimizations (contd.)

� Aliasing in C programs
� Minor code changes help improve performance in two

situations: (a) possibility of aliasing in global variables/-
pointers, local variables/pointers and function-call argu-
ments (b) using pointer variable as loop index

Performance Programing Module II: Serial Optimization 106

Loop OptimizationLoop Optimization

� Loops are one of most commonly used constructs in HPC
programs

� Variety of optimization techniques have been developed
(many will be discussed here)

� Compiler performs many of loop optimization techniques
automatically but in some cases source code modifications
enhance optimizer’s analysis

� Loop optimization related source code modifications should
always be re-evaluated with the availability of newer com-
pilers and architecture (as may or may not be required any
longer. Can even hurt performance)

Performance Programing Module II: Serial Optimization 107

Loop Unrolling and TilingLoop Unrolling and Tiling

� Register Blocking: Data partitioned to fit in on-chip registers (similar to
Cache Blocking)

� Loop Tiling: technique of register blocking applied to loop nests

Untiled Loop Nest

do j=1,m
 do i=1,n
 do k=1,p
 c(i,j)=c(i,j) +
 a(k,i)*b(k,j)
 enddo
 enddo
enddo

Floating Pt. Ops ~ 2mnp
M em ory O ps ~ 2m np + 2m n

2x2 Tiled Loop Nest
do j=1,m,2
 do i=1,n,2
 f11=c(i,j)
 f21=c(i+1,j)
 f12=c(i,j+1)
 f22=c(i+1,j+1)
 do k=1,p
 f11=f11 + a(k,i) * b(k,j)
 f21=f21 + a(k,i+1) * b(k,j)
 f12=f12 + a(k,i) * b(k,j+1)
 f22=f22 + a(k,i+1) * b(k,j+1)
 enddo
 c(i,j) =f11
 c(i+1,j) =f21
 c(i,j+1) =f12
 c(i+1,j+1)=f22
 enddo
enddo

Floating Pt. Ops ~ 2mnp
M em ory O ps ~ 2m np + 2m n

Performance Programing Module II: Serial Optimization 108

Loop Tiling & Unrolling (contd.)Loop Tiling & Unrolling (contd.)

� General Guidelines for loop tiling:
� In general, Manual unrolling of loops is discouraged.

Compiler performs loop unrolling very efficiently. Unroll-
ing of loops should only be done for complex loop-nests

� The innermost loop in a loop-nest should not be unrolled.
The compiler unrolls and software pipelines the innermost
loop

� Loop tiling should be used with cache-blocking as that in-
creases effectiveness of software pipelining of innermost
loop

� Tiling should be applied to outer loops: it increases the
spatial and temporal locality of computation

Performance Programing Module II: Serial Optimization 109

Loop Unrolling & Tiling (contd.)Loop Unrolling & Tiling (contd.)

� Tile-size determination:
� A difficult theoretical problem and usually heuristics ap-

plied
� Tile-size depends on: latency to cache, latency of floating

point operations, ratio of flops to mem-ops, number of
available registers on processor.

� Tile should be selected to maximize ratio of flops to mem-
ops without causing the compiler to generate register
spills

Performance Programing Module II: Serial Optimization 110

Loop Unrolling & Tiling (contd.)Loop Unrolling & Tiling (contd.)

� Times on Compaq Alphaserver (500MHz)
� 4x3 tiling performs best in above mat-mul example: flops/mem-

ops=12/7 (12 adds + 12 muls, 7 loads)
� Recommend to check if a particular tiling optimal when new compil-

ers and chip become available change)

0 1 2 3 4 5 6 7 8

Time in Seconds

4x3
3x4

4x4 No tiling

Performance Programing Module II: Serial Optimization 111

Loop InterchangeLoop Interchange

� Improves spatial locality and maximizes use of data brought into cache

� Loops are reordered to minimize stride and align access pattern in loop with
pattern of data-storage in memory

No Interchange Loop Interchange
do i=1,nele do j=1,nele
 do j=1,nele do i=1,nele
 y(i,j) = 2.0*x(i,j) y(i,j) = 2.0*x(i,j)
 enddo enddo
enddo enddo

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50 52.5 55 57.5 60

Time (sec.) on SunBlade 1000

Interchanged order
Original
order

Performance Programing Module II: Serial Optimization 112

Loop FusionLoop Fusion

� Adjacent or closely spaced loops fused together:
� Decreased loop overhead & increase in computational density en-

ables improvement in software pipelining
� Increase in cache-locality of data structures
� Compilers performs fusion but in some cases this optimization not

performed and required to be done manually

� Fused loop below takes advantage of temporal locality and reuse in loaded values of
a[i] and c[i]

No Loop Fusion Loop Fusion
for (i=0;i<nodes;i++) { a[0] = a[0]*small;

 A[i] = a[i]*small; c[0] = (a[0]+b[0])*relaxn;

 C[i] = (a[i] + b[i])*relaxn; a[nodes-1] = a[nodes-1]*small;

} c[nodes-1] = c[nodes-1]*relaxn;

for (i=1;i<nodes-1;i++) { for (i=1;i<nodes-1;i++) {

 D[i] = c[i] - a[i]; A[i] = a[i]*small;

} C[i] = (a[i] + b[i])*relaxn;

 D[i] = c[i] - a[i];

}

Performance Programing Module II: Serial Optimization 113

Loop Fusion (contd.)Loop Fusion (contd.)

� Should not be applied indiscriminately. If the loop becomes
computationally “fat”, performance might degrade (as soft-
ware pipelining efficiency decreases)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Time (sec.) on SunBlade 1000

No-fusion

Fusion

Performance Programing Module II: Serial Optimization 114

Loop FissionLoop Fission

� Split the loop into multiple loops:
� Ensure that trip count is sufficiently large for index over-

head to remain small
� Can be used when loop has conditional: split into

conditional-free and conditional-containing loops
� Computationally “fat”: splitting may decrease register

pressure

� Pitfall
� Compiler may fuse split loops back (check assembly list-

ing). Can peel first or last loop iteration (discussed next)
or insert a call to dummy function

Performance Programing Module II: Serial Optimization 115

Loop Fission (contd.)Loop Fission (contd.)
� Example

No Loop Fission Loop Fission
for (i=0;i<nodes;i++) { #pragma pipeloop(0)
a[i] = a[i]*small; for (i=0;i<nodes;i++) {
dtime = a[i] + b[i]; a[i] = a[i]*small;
dtime = fabs(dtime*ratinpmt); dtime = a[i] + b[i];
temp1[i] = dtime*relaxn; dtime = fabs(dtime*ratinpmt);
if(temp1[i] > hgreat) { temp1[i] = dtime*relaxn;
*ierror = 4; }
break; for (i=0;i<nodes;i++) {
} if(temp1[i] > hgreat) {

*ierror = 4;
break;
}

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fission

No Fission

Time (sec.) on SB1000

Performance Programing Module II: Serial Optimization 116

Loop PeelingLoop Peeling

� Peeling k iterations mean removing these from loop body and
placing them ahead or after the loop-body

� Usually performed by compiler but may not happen in complex
cases

� Example
� Peeled loop has one load and store (unpeeled loop has extra load).

Running on Sun Blade1000 results in ~1.5X speedup

No Peeling Loop Peeling
do i=1,n t2 = y(n,n)
 Y(i,n)= x(i,1)*y(n,n)

y(1,n)= (1.0-x(1,1))*y(1,n)+x(1,1)*t2
enddo t1 = y(1,n)

do i=2,n-1
 Y(i,n)= (1.0-x(i,1))*t1 + x(i,1)*t2
enddo
y(n,n) = (1.0-x(n,1))*t1 + x(n,1)*t2

 (1.0 – x(i,1))*y(1,n)+x (i,1)*y(n,n)

Performance Programing Module II: Serial Optimization 117

Loops with ConditionalsLoops with Conditionals
� Modern processors have deep pipelines to obtain high ILP and

achieve high clock frequencies
� Sun UltraSPARC-I,II: 10-stage; Sun UltraSPARC-III: 14-stage
� IBM Power4: 14-stage; Intel Pentium4: 20-stage
� Branch-misprediction penalty is high (pipeline is stalled and restarted

at branch target address)

� Manual restructuring needed to alleviate impact of branches
� For example: loop with if statements almost certain to be not pipelined

� Conditional statements in loops:
� loop invariant conditionals
� loop index dependent conditionals
� independent loop conditionals
� dependent loop conditionals
� reductions
� Conditionals that transfer control

Performance Programing Module II: Serial Optimization 118

Loops with Conditionals (contd.)Loops with Conditionals (contd.)

Conditional No Conditional
do i=1,len2 do i=1,len2
 Do j=1,len2 Do j=1,i-1
 If(j < i) then A2d(j,i) = a2d(j,i) + b2d(j,i)*con1
 A2d(j,i) = a2d(j,i) + b2d(j,i)*con1 Enddo
 Else Do j=i,len2
 A2d(j,i) = 1.0 A2d(j,i) = 1.0
 Endif Enddo
 Enddo enddo
enddo

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

Time (sec.) on Compaq AlphaServer (500MHz)

With conditional

Optimized

Performance Programing Module II: Serial Optimization 119

Strength Reduction in LoopsStrength Reduction in Loops

� Strength Reduction: optimization of arithmetic ex-
pression by replacing computationally expensive op-
erations with cheaper ones
� When applied to loops it can magnify performance impact
� Compiler usually performs this on simpler operations (eg.

integer multiplication or division by powers of 2 replaced
by shifts)

� We will consider 2 uncommon examples:
� Division Replacement
� Operations on complex and real operands

Performance Programing Module II: Serial Optimization 120

Strength Reduction in Loops (contd.)Strength Reduction in Loops (contd.)

� Division Replacement

Unoptimized Optimized
z(i) = x(i)/y(i) tmp = 1.0/(y(i)*v(i))
w(i) = u(i)/v(i) z(i) = x(i)*v(i)*tmp

w(i) = u(i)*y(i)*tmp

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

Time (sec.) on Compaq AlphaServer (500MHz)

Unoptimized

Optimized

Performance Programing Module II: Serial Optimization 121

Strength Reduction in Loops (contd.)Strength Reduction in Loops (contd.)

� Operations on complex and real operands

Re(a*b) = Re(a)*Re(b)-Im(a)*Im(b)
Im(a*b) = Im(a)*Re(b)+Re(a)*Im(b)
Re(a/b) = (Re(a)*Re(b)+Im(a)*Im(b))/(Re(b)*Re(b)+Im(b)*Im(b))
Im(a/b) = (Im(a)*Re(b)-Re(a)*Im(b))/(Re(b)*Re(b)+Im(b)*Im(b))

� Can be implemented directly with real data types in numeri-
cally stable cases (for e.g. in division can give significant
speedup)

0 2.5 5 7.5 10

No-opt
Opt

Time (sec.) on SB1000

Performance Programing Module II: Serial Optimization 122

SummarySummary
� Memory Hierarchy Optimizations have the potential for most

performance improvement:
� Organize data structures and algorithms keeping cache sizes,

associativities, line sizes, memory latency and cache levels in
mind

� Cache blocking increases spatial and temporal locality.
� Avoid array strides with large powers of 2 to avoid cache map-

ping conflicts
� Avoid strided access to decrease TLB miss penalties
� Page coloring helps alleviate conflicts in direct mapped caches
� Memory interleaving crucial to obtain good memory b/w per-

formance

� Misaligned data can cause significant performance penalty

� Data aliasing in C and Fortran programs can also have big
impact on performance and correctness

Performance Programing Module II: Serial Optimization 123

Summary (contd.)Summary (contd.)
� Loops usually account for large portion of runtime
� Monitor compiler optimization of loops and perform manual

loop restructuring as needed
� Identify hot loops with performance analysis tools
� Always evaluate efficiency of manually restructured loops with

availability of new compilers and chips

� Common loop optimization techniques
� Loop unrolling and tiling: improves pipelining and register us-

age
� Loop fusion and fission: complementary techniques
� Loop peeling
� Loops with conditionals: difficult to optimize so try to separate

out the conditional
� Strength reduction optimizations applied to loops magnify per-

formance gains

