
 1

Cache Oblivious Matrix Transposition:
Simulation and Experiment

Dimitrios Tsifakis, Alistair P. Rendell* and Peter E. Strazdins

Department of Computer Science
Australian National University
Canberra ACT0200, Australia

dt si f aki s@i eee. or g

al i st ai r . r endel l @anu. edu. au
 pet er . s t r azdi ns@anu. edu. au

Abstract. A cache oblivious matrix transposition algorithm is implemented and
analyzed using simulation and hardware performance counters. Contrary to its name,
the cache oblivious matrix transposition algorithm is found to exhibit a complex
cache behavior with a cache miss ratio that is strongly dependent on the associativity
of the cache. In some circumstances the cache behavior is found to be worst than
that of a naïve transposition algorithm. While the total size is an important factor in
determining cache usage efficiency, the sub-block size, associativity, and cache line
replacement policy are also shown to be very important.

1. Introduction

The concept of a cache oblivious algorithm was first introduced by Prokop in 1999
[1] and subsequently refined by Frigo and coworkers [2, 3]. The idea is to design an
algorithm that has asymptotically optimal cache performance without building into it
any explicit knowledge of the cache structure (or memory architecture) of the
machine on which it is running. The basic philosophy in developing a cache oblivious
algorithm is to use a recursive approach that repeatedly divides the data set until i t
eventually become cache resident, and therefore cache optimal. Cache oblivious
algorithms for matrix multiplication, matrix transposition, fast Fourier transform,
funnelsort and distribution sort have been outl ined (see [4] and references therein).

Although a number of cache oblivious algorithms have been proposed, to date most of
the analyses have been theoretical with few studies on actual machines. An exception
to this is a paper by Chatterjee and Sen [5] on “Cache-Efficient Matrix Transposition”.
In this paper Chatterjee and Sen outline a number of matrix transposition algorithms
and compare their performance using both machine simulation and elapsed times
recorded on a Sun UltraSPARC II based system. Their work is of interest in two
respects; first their simulations showed that while the cache oblivious transposition
algorithm had the smallest number of cache misses for small matrix dimensions, for
large dimensions it was actually the worst. Second, their timing runs showed that in
most cases the cache oblivious algorithm was signi ficantly slower than the other
transposition algorithms. It was suggested that the poor performance of the cache
oblivious matrix transposition algorithm was related to the associativity of the cache,
although this relationship was not fully explored.

 2

Today virtually all modern processors include a number of special registers that can
be programmed to count specific events. These so called “hardware performance
counters”, coupled with the availabili ty of a number of portable libraries to access
them [6, 7] means that it is now possible to gather very detailed information about
how a CPU is performing. Examples of the sort of events that can be counted include
machine cycles, floating point operations, pipeline stalls, cache misses etc. Using
these registers it is therefore possible to directly assess the performance of cache
oblivious algorithms on real machines, and perform details studies comparing
theoretical and observed performance. In this respect there have, very recently,
appeared a number of studies looking at cache oblivious algorithms using hardware
performance counters, e.g., cache oblivious priority queues [8, 9] and cache oblivious
sorting [10, 11].

The primary aim of this paper is to explore further the cache oblivious matrix
transposition algorithm with the aim of rationalizing the results of Chatterjee and Sen
[5]. To achieve this, a combination of machine simulation and hardware performance
counters is used, and in this respect the work presented here compliments the other
recent studies of cache oblivious algorithms [8–11]. In the following section matrix
transposition is first outlined and the three algorithms considered in this work are
detailed. In section 3 the cache behavior of the cache oblivious algorithm is studied
using simulation, while in section 4 equivalent data is obtained using hardware
performance counters on real machines. Conclusions are given in section 5.

2. Matr ix Transposition

In matrix transposition a matrix A of size m × n is transposed into a matrix B of size
m×n such that:

Frequently the transposition occurs “ in-situ”, in which case the memory used for
storing matrix A and B is identical. For the purpose of this paper the discussion wil l be
restricted to square (m=n) in-situ matrix transpositions. Three different algorithms
will be consider; cache ignorant, blocked, and cache oblivious.

2.1 Cache Ignorant Matr ix Transposition
A naïve implementation of matrix transposition is given by the following C code:

f or (i = 1; i < n; i ++) {
 f or (j = 0; j < i ; j ++) {
 t mp = A[j] [i] ;
 A[i] [j] =A[j] [i] ;
 A[j] [i] =t mp;

}
}

In this implementation the statements in the inner loop are executed n(n-1)/2 times
and no special care is made to use the cache efficiently.

]1[],1[njmiBA jii j
�� ∈∈∀=

 3

2.2 Cache Blocked Matr ix Transposition
In the cache blocked transposition algorithm the matrix is effectively divided into a
checkerboard of small blocks. Two blocks that are symmetrically distributed with
respect to the leading diagonal are identified and their data is copied into cache
resident buffers. The buffers are then copied back into the matrix, but in transposed
form. Pseudo code i llustrating this algorithm is given below:

f or (i = 0; i < n; i += si ze) {
 f or (j = 0; j < i ; j += s i ze) {
 copy A[i : i +s i ze- 1] [j : j +s i ze- 1] t o buf 1
 copy A[j : j +s i ze- 1] [i : i +s i ze- 1] t o buf 2
 t r anspose buf 1 t o A[j : j +si ze- 1] [i : i +si ze- 1]
 t r anspose buf 2 t o A[i : i +si ze- 1] [j : j +si ze- 1]
 }
}

In the above the dimension of the small blocks is given by si ze with the restriction
that 2×si ze2 is less than the cache size, and it has been assumed that si ze perfectly
divides the matrix dimension n. In contrast to the cache ignorant scheme, each
element of the matrix is now loaded into registers twice; once when copying the data
from matrix A to buf , and once when copying each element from buf back to A.

2.3 Cache Oblivious Matr ix Transposition
In the cache oblivious transposition of matrix A into matrix B the largest dimension of
the matrix is identified and split into two, creating two sub-matrices. Thus if n ≥ m the
matrices are partitioned as:

This process continues recursively until individual elements of A and B are obtained
at which point they are swapped.

3. Per formance Simulation

To analyse the performance of the transposition algorithms, a basic cache simulator
was written. This assumes a single level of cache, and includes parameters for the
cache line size, the number of cache l ines, the associativity, and the cache line
replacement policy. Code to perform the different matrix transposition algorithms was
written and annotated such that the memory address corresponding to every matrix
element access was passed to the cache simulator which then determined whether it
was either a cache hit or miss.

When simulating the cache, a number of other issues also need to be considered;
notably the initial alignment of the matrix with respect to the cache, the word size of
each matrix element, and the dimension of the matrix. For simplicity in the following

() ���
�����==

2

1
21 ,

B

B
BAAA

 4

experiments the first element of the matrix is always aligned perfectly with the start of
a cache l ine, the cache line size is a perfect multiple of the matrix element word size,
and the matrix dimensions are chosen such that different rows of the matrix never
share the same cache line.

Before considering the results of the simulator experiments, it is useful to illustrate
the typical access patterns of the three matrix transposition algorithms. This is shown
in figure 1. Of particular interest is the cache oblivious algorithm. This clearly shows
a natural partitioning of the matrix into a hierarchy of square blocks of dimensions 2x.
Thus if the cache line size was sufficient to hold exactly 4 matrix elements and the
total cache size was sufficient to hold 8 cache lines, then both of the shaded blocks
shown in figure 1.c could, in principle, reside in cache simultaneously and the
algorithm would therefore be expected to show minimal cache misses.

Figure 1: Typical access patterns for the three transposition algorithms on an
8×8 matrix (A blocking size of 4 is used in the cache blocked algorithm).

In their paper Chatterjee and Sen [5] presented a table of cache misses for a variety of
different matrix transpositions algorithms and for four different matrix sizes. Their
simulated results for the cache ignorant, cache blocked (full copy), and cache
oblivious algorithms are reproduced in table 1. The strange behavior of the cache
oblivious algorithm is immediately obvious; for N=1024 it has the lowest number of
cache misses, while for N=8192 it has the largest.

 ———— M atrix Dimension ————
Algorithm 1024 2048 4096 8192
Cache ignorant 589795 2362002 9453724 37826712
Ful l copy cache blocked 275550 1170003 4804808 19493808
Cache oblivious 131226 923295 7101600 56158873

Table 1: Cache misses for three matrix transposition algorithms. Data taken
from Chatterjee and Sen [5] and obtained by simulating a 16KB direct
mapped cache with a 32byte cache line. The matrix is square with a 4byte
word size.

In figure 2, the simulations of Chatterjee and Sen [5] have been extended to include
all matrix dimensions that are less than 10,000 but that are multiples of the cache line
size. The figure includes data for the cache ignorant and cache oblivious algorithms,
and also the minimum and maximum number of cache misses. The minimum cache
miss ratio assumes all data in a cache l ine is fully utilized before that cache l ine is
evicted, while the maximum cache miss ratio assumes a cache miss occurs for every
read, but the subsequent write is a cache hit. Assuming there are no cache line

0 1 3 5 7 9 11 13 0 1 2 3 13 14 15 16 0 2 4 6 14 16 22 24
2 0 15 17 19 21 23 25 4 0 5 6 17 18 19 20 1 0 8 10 18 20 26 28
4 16 0 27 29 31 33 35 7 8 0 19 21 22 23 24 3 7 0 12 30 32 38 40
6 18 28 0 37 39 41 43 10 11 12 0 25 26 27 28 5 9 11 0 34 36 42 44
8 20 30 38 0 45 47 49 29 30 31 32 0 45 46 47 13 17 29 33 0 46 48 50

10 22 32 40 46 0 51 53 33 34 35 36 48 0 49 50 15 19 31 35 45 0 52 54
12 24 34 42 48 52 0 55 37 38 39 40 51 52 0 53 21 25 37 41 47 51 0 56
14 26 36 44 50 54 56 0 41 42 43 44 54 55 56 0 23 27 39 43 49 53 55 0

a) Cache Ignorant b) Cache Blocked c) Cache Oblivious

 5

conflicts between the temporary buffers and the matrix elements then the cache
blocked algorithm wil l essentially give the minimum number of cache misses.

Figure 2: Simulated cache miss to access ratio for cache oblivious and cache
ignorant matrix transposition algorithms, using a 16KB, direct mapped cache
with a 32byte line size and 4byte matrix elements. Matrix dimensions are
always an exact multiple of the cache line size.

From figure 2, it is apparent that the cache oblivious transposition algorithm is far
from cache oblivious. Rather, the cache miss profile shows significant structure.
Furthermore the data points chosen by Chatterjee and Sen (N=1024, 2048, 4096 and
8192) [5] are actually some of the worst possible values; while for many other matrix
dimensions the cache oblivious algorithm achieves close to the minimum number of
possible cache misses.

The poor performance of the cache oblivious algorithm for N=4096 and 8192 is due
to the fact that for both of these dimensions one row of the matrix is an exact multiple
of the cache size. With a direct mapped cache this means that elements in the same

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000
Matrix Dimension

C
ac

h
e

M
is

s/
C

ac
h

e
A

cc
es

s

Cache Oblivious Cache Ignorant

Min Max

 6

column of the matrix map to the same cache l ine. Inspecting the access pattern for the
cache oblivious algorithm given in figure 1 clearly shows that this will be a problem.
For example, if a cache l ine is assumed to hold 4 matrix elements and the matrix is
aligned such that accesses { 13, 17, 29, 33} correspond to one cache line, then to fully
utilize the data in this cache line there must be no cache line conflicts between
accesses 13 and 33. However, between these accesses 7 other cache l ines will be
accessed – corresponding to accesses { 15,19,31,35} , { 21,25,37,41} { 23,27,39,43} ,
{14,16,22,24} , {18,20,26,28} , {30,32,38,40}, and { 34,36,42,44} . The first three of
these share the same cache line as the initial access, while the latter 4 will share
another cache line.

Evidently using the cache oblivious algorithm with a direct mapped cache when the
size of one row of the matrix is a multiple of the cache size is particularly bad.
Changing the matrix row size to be, e.g., 1.5 times the cache size will halve the
number of cache line conflicts, but wil l not totally eliminate then – as witnessed by
figure 2. Similar effects occurring for other partial multiples of the cache size give
rise to the complicated structure shown in figure 2.

From the above discussion it would appear that increasing cache l ine associativity
should lead to a decrease in the number of cache l ine confl icts. This is indeed the case,
and is demonstrated by the simulated results shown in figure 3. It is interesting to
note, however, that the reduction in cache misses is not universal for all matrix
dimensions. Thus while the cache miss ratio for N=4096 and 8192 decreases in going
from a direct to 2-way set associative cache, the cache miss ratio for N=6144 actually
increases slightly. This effect is due to the fact that increasing the cache line
associativity while maintaining the same total cache size actually doubles the number
of possible cache l ine conflicts, although also providing two possible cache l ines that
can be used to resolve each confl ict. For example, whereas with the direct mapped
cache, a cache line conflict was encountered every 4096 matrix elements and could
not be avoided, with a 2-way set associative cache a confl ict arises every 2048
elements but there are two possible cache line locations that can be used to remove
those conflicts. Thus predicting the overall effect of increasing cache line
associativity is hard, although from the general flattening of the plots in figure 3 it is
evident that increased associativity is an overall net benefit.

Interestingly with an 8-way set associative cache, the data points that originally gave
rise to the worst cache miss ratio, i.e. N=4096 and 8192, now actually give rise to a
minimum number of possible cache misses. This is evident in figure 3 as slight dips in
the cache miss ratios for these data points. The existence of such “magic dimensions”
is not surprising; with a 4-way associative cache the cache l ine conflict discussed
above for accesses { 13,17,29,33} , { 15,19,31,35} , { 21,25,37,41} and { 23,27,39,43}
would be removed. If these assesses also conflicted with those of { 14,16,22,24} ,
{18,20,26,28} , { 30,32,38,40} , and { 34,36,42,44} , then an 8-way set associative cache
would be required to remove the conflict.

This result can be generalized for a cache whose line size (l) is a power of 2.
Assuming that each matrix row starts with a new line, a cache-oblivious algorithm

 7

will attain minimum misses if i ts associativity is at least 2l. This is because it wil l
reach a stage where it will swap two l×l blocks, which wil l be stored in 2×l lines.
Providing a least recently used (LRU) replacement policy is used, the cache will be
able to hold all of these simultaneously. If matrix rows are not aligned with cache
lines, the two sub-blocks will be stored in at most 4×l lines; in this case, an
associativity of 4×l would be required in order to minimize cache misses.

Figure 3: Simulated cache miss to access ratio as a function of cache line
associtivity for the cache oblivious matrix transposition algorithms using a
16KB cache with a 32byte line size and 4byte matrix elements. Matrix
dimensions are chosen to be a direct multiple of the cache line size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 2000 4000 6000 8000 10000
Matrix Dimension

C
ac

h
e

M
is

s/
C

ac
h

e
A

cc
es

s

1-way + 0.0 2-way + 0.5

4-way + 1.0 8-way + 1.5

 8

4. Per formance Measurements

Using hardware performance counters cache miss data was gathered for two
machines:

• A 167MHz Sun UltraSPARC I system containing a 16KB direct mapped L1
data cache with 32-byte cache line and a 512KB level 2 cache

• A 750MHz Sun UltraSPARC III system containing a 64KB 4-way set
associative L1 data cache with a 32-byte cache l ine size and an 8MB level 2
cache

The Sun UltraSPARC I system was chosen as it has a direct mapped level 1 cache
that has identical structure to the cache used by Chatterjee and Sen [5]. The measured
and simulated number of cache misses obtained using the cache oblivious algorithm
for square matrix in-situ transpositions are given in table 3. The matrix elements are 4
bytes and data for various matrix dimensions around N=4096 and 8192 are given.
Two different simulated results are shown; in the first case (labeled “Sim#1”) a cache
line size of 32bytes is used, while in the second case (labeled “Sim#2”) a cache line
size of 16bytes is used. The rational for giving two simulator results is due to the fact
that the 32byte Ultra SPARC I cache line is actually split into two 16byte sub-blocks,
and halving the cache line size in the simulated results is an attempt to approximately
(but not exactly) account for this effect.

Table 3: Comparison of measured and simulated cache misses on the Ultra
SPARC I system for the square in-situ cache oblivious matrix transposition
algorithm and a variety of matrix dimensions (N). Simulated results
reported with both 32byte (Sim#1) and 16byte (Sim#2) cache line size

The results as measured by the hardware performance counters clearly show a large
number of cache misses at N=4096 and 8192, that decreases markedly for matrix
dimensions that are either slightly smaller or larger. At these dimensions both the
experimental and simulated results are approximately identical – reflecting the fact
that essentially every matrix access results in a cache miss. For other dimensions the
simulated results obtained using a 16byte cache line are closest to the experimentally
recorded results, with the experimental results showing slightly higher number of
cache misses. This is to be expected since the simulated results with a 16kbyte cache

N Ultr a I Sim #1 Sim #2 N Ultra I Sim #1 Sim #2

4072 5332209 2431533 4398797 8168 21475173 9847486 17747532

4080 5270060 2391376 4379033 8176 21408816 9646976 17621793

4088 5199068 2316901 4331751 8184 20438710 9301155 17393199

4096 12997199 12615680 12595200 8192 52589636 50479104 50397184

4104 6857957 4176906 4849009 8200 27268615 16677803 19370810

4112 5499487 2550567 4543409 8208 21899111 10117444 18110294

4120 5473447 2502286 4511176 8216 21723257 9994901 17979401

——— Cache Mis ses ——— ——— Cache Misses ———

 9

and a 16byte cache line has twice the number of cache l ines as a 16kbyte cache with a
sub-blocked 32byte cache line and is therefore a more flexible cache model. It should
also be noted that the results from the hardware counters show some sensitivity to the
choice of compilation flags; the above results were obtained using the –f ast option
and if this is lowered to –x01 the agreement between the measured and simulated
number of cache misses actually improves slightly.

In table 4, similar cache miss data is given for the Ultra SPARC III platform. On this
system there is a 4-way set associative level 1 cache. From the results given in section
3, it might be expected that there would be little difference between the number of
cache misses that occurs for N=4096 or 8192 and surrounding values of N. The
experimental results show, however, that this not the case; rather, the number of cache
misses is roughly double at these values of N compared to those at nearby values of N.
The reason for this is due to the cache line replacement policy on the UltraSPARC III,
which is pseudo random rather than LRU [12]. Running the simulator using a random
number generator to determine cache line placement gives the results labeled as
“Sim#Ran” in table 4. These show a considerable increase in the number of cache
misses when N=1024, 2048, 4096 and 8192, although the results are still somewhat
less than those recorded by the hardware performance counters. Outside these data
points there appears to be l ittle difference between the use of an LRU or random
cache l ine replacement policy.

Table 4: Comparison cache misses on an UltraSPARC III system with
simulated results using LRU (Sim#LRU) and random (Sim#Ran) cache
replacement policy for the square in-situ cache oblivious matrix
transposition algorithm and a variety of different matrix dimensions (N).

5. Conclusions

A cache oblivious matrix transposition algorithm has been implemented. Its
performance, with respect to cache misses, has been studied via both simulation and
through the use of hardware performance counters on two fundamentally different
Sun UltraSPARC systems. The results confirm earlier work by Chatterjee and Sen [5]
showing very high numbers of cache misses for certain critical matrix dimensions. In
general it was shown that the cache miss characteristics of the “cache oblivious”
matrix transposition algorithm has significant structure, the form of which depends on
a subtle interplay between cache size, matrix dimension, number of matrix elements

N Ultra III Sim #LRU Sim #Ran N Ultr a III Sim #LRU Sim #Ran

1000 263477 258290 265990 4072 4361124 4283628 4391355

1024 375028 262983 284788 4096 7751760 4232722 5973761

1048 289398 284628 292332 4120 4464945 4382333 4496696

2024 1075296 1058128 1083519 8168 17577433 17234628 17669072

2048 1923256 1056544 1491917 8192 30873556 16956716 23904911

2072 1128147 1108024 1136952 8216 17791597 17425642 17882604

——— Cache Mis ses ——— ——— Cache Misses ———

 10

per cache line, cache l ine size, cache associativity and the cache line replacement
policy. Predicting, a priori, when the cache oblivious algorithm will perform well and
when it will perform poorly is non-trivial, although increased cache line associativity
appears overall to be beneficial.

The work presented here has only been concerned with the cache usage characteristics
of cache oblivious matrix transposition. The observed performance of any algorithm
is of course dependent on other factors as well as efficient cache usage. Details of this
will be discussed in a subsequent publication.

Acknowledgements
APR and PES acknowledge support from Australian Research Council Linkage Grant
LP0347178 and Sun Microsystems. Discussions with Bill Clarke and Andrew Over
are also gratefully acknowledged.

References

1. H. Prokop, Cache-Oblivious Algoirthms, MSc Thesis, Dept. Electrical Eng.
and Computer Science, Massachusetts Institute of Technology, 1999

2. M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran, Cache-Oblivious
Algoirthms (extended abstract), Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, IEEE Computer Science Press, 285-
297, 1999.

3. M. Frigo, Portable High Performance Programs, PhD Thesis, Dept.
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1999.

4. E.D. Demaine, “ Cache-Oblivious Algoirthms and Data Structures” , Lecture
notes in Computer Science, BRICS, University of Aarhus, Denmark June 27-
July 1, 2002 (to appear).

5. S. Chatterjee and S. Sen, Cache-Efficient Matrix Transposition, Proceedings
of the 6th International Conference on High Performance Computing
Architecture, 195, 2000

6. Performance Application Programmer Interface (PAPI) http://icl.cs.utk.edu/
projects/papi

7. Performance Counter Library (PCL), http://www.fz-juelich.de/zam/PCL
8. J.H. Olsen and S.C. Skov, Cache-Oblivious Algoritsms in Practice, MSc

Thesis, Dept Computing, University of Copenhagen, 2002
9. L. Arge, M. Bender, E. Demaine, B. Holland-Minkley and J. Munro, Cache-

Oblivious Priority Queue and Graph ALgorithhm Applications, Submitted to
SIAM jornal on Computing, May 2003.

10. F. Rønn, Cache-0blivious Searching and Sorting, MSc thesis, Dept
Computer Science, University of Copenhagen, July 2003.

11. K. Vinther, Engineering Cache-Oblivious Sorting Algoirthms, MSc Thesis,
Dept. Computer Science, University of Aarhus, June 2003.

12. D. May, R. Pas and E. Loh, The RWTH SunFire SMP-Cluster User’s Guide
(version 3.1), http://www.rz.rwth-aachen.de/computing/info/sun/primer/
primer_V3.1.html, July 2003

