
1

T a b l e of Co n t e n t s

M O L E C U L A R I N T E G R A L S

O V E R G A U S S I A N B A S I S F U N C T I O N S

P e t e r M . W . G i l l

D e p a r t m e n t o f C h e m i s t r y

C a r n e g i e M e l l o n U n i v e r s i t y

P i t t s b u r g h , P A 1 5 2 1 3 , U S A

2

1. Quantum Chemical Procedures

2. Basis Functions
2.1 Slater Functions
2.2 Gaussian Functions
2.3 Contracted Gaussian Functions
2.4 Gaussian Lobe Functions
2.5 Delta Functions

3. A Survey of Gaussian Integral Algorithms
3.1 Performance Measures

3.1.1 Flop-Cost
3.1.2 Mop-Cost
3.1.3 CPU-Time

3.2 Fundamental Integrals
3.2.1 The Overlap Integral
3.2.2 The Kinetic-Energy Integral
3.2.3 The Electron-Repulsion Integral
3.2.4 The Nuclear-Attraction Integral
3.2.5 The Anti-Coulomb Integral

3.3 The Boys Algorithm
3.4 The Contraction Problem
3.5 The Pople-Hehre Algorithm
3.6 Bras, Kets and Brakets
3.7 The McMurchie-Davidson Algorithm
3.8 The Obara-Saika-Schlegel Algorithm
3.9 The Head-Gordon-Pople Algorithm
3.10 Variations on the HGP Theme

4. The PRISM Algorithm
4.1 Shell-Pair Data
4.2 Selection of Shell-Quartets
4.3 Generation of the [0] Integrals
4.4 Contraction Steps
4.5 Transformation Steps

4.5.1 Two-Electron Transformations on the MD PRISM
4.5.2 One-Electron Transformations on the MD PRISM
4.5.3 Two-Electron Transformations on the HGP PRISM
4.5.4 One-Electron Transformations on the HGP PRISM

4.6 Loop Structure of PRISM in Gaussian 92
4.7 Performance of PRISM in Gaussian 92

5. Prospects for the Future

6. Acknowledgments

7. References
1 . Q U A N T U M CH E M I C A L P R O C E D U R E S

3

The major goal of Quantum Chemistry is to obtain solutions to atomic and
molecular Schrödinger equations [1]. To be useful to chemists, such solutions
must be obtainable at a tolerable computational cost and must be reasonably
accurate, yet devising solution methods which meet both of these requirements
has proven remarkably difficult. Indeed, although very many variations have
been developed over the years, almost every currently existing method can be
traced to a prototype introduced within ten years of Schrödinger's seminal paper.

The most uniformly successful family of methods begins with the simplest
possible n-electron wavefunction satisfying the Pauli antisymmetry principle – a
Slater determinant [2] of one-electron
functions χ

Error!

In SCF methods, the n-electron Schrödinger equation is replaced by a set
of n coupled integro-differential one-electron equations. The HF equations are a
well-defined approximation to the Schrödinger equation and constitute the
starting point for a variety of subsequent treatments [17]: the equations of KS
theory are formally equivalent [18] to the original Schrödinger equation for the
ground state. In both cases, the equations are highly non-linear and require
iterative techniques for their solution.

Commonly, initial guesses for the molecular orbitals are obtained and
these are then used to compute the potential felt by an electron in the field of the
nuclei and the other electrons. The corresponding one-electron Schrödinger
equation is then solved to determine another set of orbitals and the process is
continued until successive sets of orbitals differ negligibly, at which point self-
consistency is said to have been achieved. The most time-consuming part of this
procedure is the evaluation of the potential which, within a basis set (Section 2),
is represented by various types of integrals (Section 3). Moreover, even if we
proceed beyond the HF SCF level, to correlated levels of theory, these integrals
remain central to the problem of determining the energy and wavefunction [17].

The result of any quantum chemical procedure is the molecular energy,
parametrically determined by the nuclear geometry. To locate equilibrium and
transition structures, we usually compute the first derivatives of the energy with

4

respect to nuclear motion [19]; harmonic vibrational frequencies can be obtained
if second derivatives are available [20]; third and higher derivatives are
needed [21] for higher-level studies of potential surfaces. Not surprisingly, nth-
derivatives of the integrals are required to compute nth-derivatives of the energy
and the efficient generation of integrals and their nth-derivatives is the focus of
this Review.

2 . B A S I S F U N C T I O N S

Because computers can represent numbers, but not functions, the
molecular orbitals at each stage of the SCF procedure have to be represented by
an expansion in a finite set of basis functions φi (r), i = 1, 2, . .. N. If the set is
mathematically complete, the result of the SCF procedure is termed the HF or KS
limit: otherwise the result is dependent on the basis set used. Many types of basis
funtion have been explored, and several are currently used in routine applications.
However, their interrelationships and relative strengths and weaknesses are not
often clarified and it may be instructive to do so here.

2 . 1 S l a t e r F u n c t i o n s

Until the 1960's, Slater basis functions [22]

φa
Slater (r) ≡ (x − Ax)ax (y − Ay)

ay (z − Az)az exp −α r − A[] (1)

were very popular. Like exact wavefunctions, they exhibit cusps at the nuclei and
decay exponentially but their use necessitates the evaluation of integrals which
are very time-consuming to compute. Although several groups have made useful
progress in developing efficient algorithms for the evaluation of such integrals,
explicit use of Slater basis functions is presently restricted to rather small
molecules. It should be noted, however, that any Slater function can be
approximated, to any desired accuracy, by a sum of Gaussian functions and the
difficult Slater integrals then become relatively easy contracted Gaussian integrals
(see below). This is the philosophy of the STO–nG basis sets [23]. In a similar
vein, the product of a pair of Slater functions can also be approximated to any
accuracy by a sum of Gaussians and this approach has been suggested and
explored by Harris and Monkhorst [24].

2 . 2 G a u s s i a n F u n c t i o n s

5

A primitive Gaussian function

φa
PGF(r) ≡ (x − Ax)ax (y − Ay)

ay (z − A z)az exp −α r − A 2[] (2)

has center A = (Ax, Ay, Az), angular momentum a = (ax, ay, az), and exponent α.
The suggestion by Boys [25] to use Gaussians as basis functions was a crucial
step in the progression of quantum chemistry from a largely qualitative, to a
largely quantitative, discipline. The use of a Gaussian basis set in a HF or KS
calculation leads to very much simpler integrals (see below) than those which
arise within a Slater basis and, although it is known [26] that more Gaussian than
Slater functions are required to achieve a given basis set quality, the simplicity of
Gaussian integrals more than compensates for this.

A set of primitive basis functions with the same center and exponent are
known as a primitive shell. For example, a set of p-functions {px, py, pz} on an
atom is termed a primitive p-shell and, if an s-function (with the same exponent)
is added, the shell becomes a primitive sp-shell. The most commonly occuring
shells in modern computational chemistry are s, p, sp, d and f.

2 . 3 C o n t r a c t e d G a u s s i a n F u n c t i o n s

It is found that contracted Gaussian functions (CGFs) [27]

φa
CGF(r) ≡ Dak (x − Ax)ax (y − Ay)

ay (z − Az)az exp −αk r − A 2[]
k=1

KA

∑ (3)

where KA is the degree of contraction and the Dak are contraction coefficients, are
even more computationally effective [26] than Slater functions. It is crucial to
note that, although they have different contraction coefficients and exponents, all
of the primitive functions in a contracted function share the same center A and
angular momentum a. A set of CGFs with the same center and the same set of
exponents is termed a contracted shell by analogy with a primitive shell (defined
above).

6

Over the years, many contracted Gaussian basis sets have been constructed
and the interested reader will find the excellent review by Davidson and
Feller [26] very illuminating. As a rule, one or two CGFs are used to model each
of the core atomic orbitals (1s for lithium to neon; 1s, 2s and 2p for sodium to
argon; etc.) and the CGFs are often highly contracted (a typical K value is 6).
Each valence atomic orbital (1s for hydrogen and helium; 2s and 2p for lithium to
neon; etc.) is generally more weakly contracted (K less than about 4). Finally,
high-quality basis sets contain functions whose angular momenta are higher than
that of the valence orbitals (e.g. p for hydrogen and helium, d for lithium to argon,
etc.) and, in most cases, these functions are uncontracted (K = 1).

Two distinct classes of contracted Gaussian functions are in common use.
In general contraction schemes, different contracted functions share the same
primitive exponents (with different contraction coefficients) while, in segmented
schemes, different contracted functions are constructed from primitive functions
with different exponents. As a rule, basis functions of the former type tend to
have higher degrees of contraction but the higher computational cost implied by
this can be partially ameliorated by the use of algorithms which are carefully
constructed to take maximum advantage of the exponent sharing. In this Review,
we will confine our attention to the efficient treatment of segmented basis sets:
we will extend our analysis to the generally contracted case in a future paper.

2 . 4 G a u s s i a n Lo b e F u n c t i o n s

Many of the programming complexities which arise when general
contracted Gaussian functions are used disappear if all of the functions are
constrained to be s-functions, i.e.

φa
Lobe (r) ≡ Dak exp −αk r − A 2[]

k=1

KA

∑ (4)

Such basis functions were advocated by a number of authors [28] on the basis of
their manifest simplicity and because an array of variously centered s functions
can mimic functions of higher angular momentum (p, d, f, etc.). However, for
obvious reasons, Gaussian Lobe basis sets have to be rather large to yield useful
results and become unwieldy in high angular momentum cases. They are rarely
used nowadays because of the availability of highly efficient algorithms and
programs which can handle CGFs of arbitrary angular momentum.

7

2 . 5 D e l t a F u n c t i o n s

Still more of the programming complexities vanish if another constraint is
applied to the Gaussian basis set, namely that its exponents be infinite, which
yields a basis composed entirely of Dirac delta functions

φa
Delta (r) ≡ δ(r − A) (5)

The set of delta functions at all points in space is mathematically complete and
procedures based on these simplest of basis functions have been devised and
implemented, first [29–33] for diatomics and, more recently, [34–36] for arbitrary
polyatomic systems.

The manifest simplicity of delta functions is both their strength and
weakness: computer programs based on them are refreshingly straightforward
but, to yield results of chemical significance, delta basis sets must be large,
typically thousands of functions per atom. The construction of efficient delta
basis sets (i.e. 3-dimensional grids) remains an active area of research but, most
commonly, they consist of points on concentric spheres about each atom. Most
workers use the results of Lebedev [37] who has found optimal quadrature
formulae for the surface of a sphere. However, agreement has not yet been
reached on which spherical radii are best [38–42].

8

3 . S U R V E Y O F G A U S S I A N IN T E G R A L AL G O R I T H M S

What are these "integrals" to which we have referred? From the fact that
the Schrödinger Hamiltonian contains only one- and two-electron operators, it is
straightforward to show [17] that most of the matrix elements [43] which arise in
computing the SCF energy and its derivatives with respect to nuclear motion can
be written in terms of integrals of the general form

ab cd() ≡ φa (r1)φb(r1∫∫) f r1 − r2() φc(r2)φd (r2) dr1dr2 (6)

and their nth-derivatives with respect to displacement of the basis functions. Each
of the integrations in (6) is over 3-dimensional space and, thus, the integral is
6-dimensional. The function f(x) is normally very simple – for example,
f(x) ≡ 1/x in the familiar case of two-electron repulsion integrals – but it suffices
for our present purposes to consider a general function.

The integral (6) is based on two pairs of basis functions, one describing
electron 1 and the other describing electron 2. Since there are N functions in the
basis set, there are N(N +1) 2 distinct basis function pairs and, similarly, there are

N total =
1

2
N(N +1)

2






N(N +1)
2 +1



 =

1

8
N (N + 1) (N2 + N + 2) (7)

distinct integrals of the form (6). A class of integrals (and/or their nth-derivatives)
is defined as the set of all integrals associated with a shell-quartet. For example,
a (pp|pp) class is the set of 81 (pp|pp) integrals associated with four p-shells each
containing three p-functions. Because all of the integrals in a class share the same
four centers and sets of exponents, their generation involves many common
intermediate quantites. For this reason, it is always computationally expedient to
compute integrals and their derivatives in classes rather than individually.

When large basis sets N > 102
 are used, the generation of the integrals is a

major computational task: in fact, in the most common quantum chemistry
methods (such as direct SCF, either in the context of HF [44] or KS [45]
calculations), it is rate-determining. Obviously, therefore, it is of paramount
importance to devise and implement highly efficient generation algorithms. This
realization has stimulated the development of a series of integral strategies
[46–61] over the last two decades.

9

It is convenient to divide the evolution of two-electron integral methods
into three generations which are distinguished from one another by the general
goals which motivated their development. In the 1950's and early 1960's, the
target was simply to be able to perform SCF calculations at the most primitive
level. The first algorithm for Gaussian functions was outlined by Boys in his
classic paper [25] on the use of such functions in SCF calculations and his
methodology was subsequently developed and elaborated by a number of
workers, including Shavitt [46], Taketa, Huzinaga and O-ohata [47] and Clementi
and Davis [48]. Probably the most remarkable achievements of these First
Generation methods were Clementi's minimal-basis SCF calculations on pyrrole,
pyridine and pyrazine [49] which, while trivial by today's standards, must have
used an astonishing amount of computer time in 1967. However, despite opening
the door to computational quantum chemistry, these early algorithms and their
implementations were both inefficient and slow.

The "axis-switch" method of Pople and Hehre (PH), which was the
centerpiece of the Gaussian 70 program [50], revolutionized notions in the early
1970's of the range of chemical systems which could routinely be submitted to a
HF calculation. It constitutes a Second Generation method because, unlike its
predecessors, its objective was to enable quantum chemical SCF calculations to
become a standard tool in the repetoire of practising chemists. To achieve this,
the algorithm had to be fully optimized and the implementation carefully designed
with contemporary computer architectures in mind. The PH algorithm, which
was constructed principally to deal with basis functions of low angular
momentum and high degree of contraction, becomes very inefficient under other
conditions and this deficiency motivated the development of the Dupuis-Rys-
King (DRK) [51] and McMurchie-Davidson (MD) [52] schemes in the mid-
1970's. Until the mid-1980's, many computer programs included both PH for s
and p functions and one of DRK and MD for higher functions (d, f, etc.). These
Second Generation approaches enabled quantum chemists to perform high-quality
SCF calculations on an enormous variety of molecular systems and paved the way
for rigorous quantum chemistry to become established as a part of mainstream
chemistry.

The success of the Second Generation methods soon spawned a number of
new algorithms [53–61], each of which sought to improve upon the ones which
had preceded it. The primary goal for these Third Generation methods has been
maximum computational efficiency and the main driving force behind their
development has been the desire to apply rigorous SCF methods to molecular
systems with tens, hundreds, or even thousands, of atoms.

10

The most recent integral algorithms evolved with, and were influenced by,
the advent of supercomputer technologies – if a new method cannot be
"vectorized" and/or "parallelized", it faces a cool reception these days – and, of
these, the Obara-Saika-Schlegel (OS) [53, 54], Head-Gordon-Pople (HGP) [55]
and PRISM [61] algorithms are the most significant.

3 . 1 P e r f o r m a n c e Me a s u r e s

Every integral method exhibits certain strengths and certain weaknesses
and there is always a trade-off between the complexity of an algorithm (which is
normally directly related to the difficulty of implementing it) and its
computational performance. For example, the original Boys algorithm is not very
difficult to understand or to code into a computer program but, as we have seen,
its practical performance leaves plenty of room for improvement. At the
other extreme, while the performance of the PRISM algorithm is much
more satisfactory, it is also greatly more complicated conceptually and
implementationally. However, since performance is ultimately more important to
more people than is the difficulty of writing the underlying computer program, we
will take a pragmatic stance and ignore the latter in this Review.

If we wish to compare a variety of integral algorithms, it is certainly
highly desirable to be able to quantify their relative performances. Hitherto, three
measures of performance have been proposed and used in the literature and,
although related, they are distinct and it is instructive to describe each briefly at
this point.

3 . 1 . 1 F l o p - C o s t

The ubiquitous measure of the theoretical performance of an integral
algorithm is its Flop-cost. More precisely, this is the number of Flops which are
required to form a specified class of integrals from a defined set of starting
quantities and a Flop (Floating-Point Operation) is defined to be a floating-point
add, subtract, multiply or divide. For example, (using values quoted by
Head-Gordon and Pople [55]), the Flop-cost of computing a (pp|pp) class, i.e. 81
(pp|pp) integrals, where each of the p-functions is a sum of two primitive
functions (i.e. K = 2), is 20,000 using MD but only 15,170 using HGP.

11

It should be re-emphasized that a Flop-cost is a theoretical measure and
that comparisons like the one above are practically useful only if the two
algorithms have been implemented equally well: a well-written MD program
would undoubtedly generate a (pp|pp) class much more rapidly then a poorly
written HGP program. Thus, establishing that a given algorithm has a small Flop-
cost for a certain integral class tells us only that the potential exists for an
implementation of that algorithm to perform well. It is prudent to view with
considerable skepticism claims which are based exclusively on a purely
theoretical measure like a Flop-count.

3 . 1 . 2 M o p - C o s t

A newer measure of an algorithm's theoretical performance is its Mop-
Cost which is defined exactly as the Flop-cost except that Memory Operations
(Mops) are counted instead of Floating-Point Operations (Flops). A Mop is a load
from, or a store to, fast memory. There are sound theoretical reasons why Mops
should be a better indicator of practical performance than Flops, especially on
recent computers employing vector or RISC architectures, and this has been
discussed in detail by Frisch et al. [62]: to cut a long story short, the Mops
measure is useful because, on modern computers and in contrast to older ones,
memory traffic generally presents a tighter bottleneck than floating-point
arithmetic.

The Mop-cost of forming an integral class depends on the intrinsic
expense of the algorithm and on implementational detail. Consider, for example,
the following two versions of a subroutine:

Version #1 DO 10 I = 1,N

A(I) = B(I) + C(I) * D(I)

10 CONTINUE

DO 20 I = 1,N

E(I) = A(I) + F(I)

20 CONTINUE

Version #2 DO 10 I = 1,N

A(I) = B(I) + C(I) * D(I)

E(I) = A(I) + F(I)

10 CONTINUE

12

The two versions achieve the same results but the second will run faster on many
computers. Both versions have Flop-costs of 3N but their Mop-costs are
different, 7N and 6N, respectively. This is because, in the second version, A(I)
does not need to be loaded from fast memory since, having just been produced, it
will already reside in a register. This example is certainly a very simplistic one
but it serves to illustrate the principle of Mop reduction.

Mop comparisons between integral programs have not yet begun to appear
in the literature but these may be anticipated in the near future. As a design rule
for the future, an algorithm which minimizes Mops is a better target than one
which minimizes Flops. A particularly striking example of the usefulness of this
approach is the recent discovery by Johnson et al. that a certain family of novel
recurrence relations, which appear uncompetitive with older recurrence relations
on the basis of Flop-cost, are exceedingly competitive in Mop-cost and in actual
timings [63].

3 . 1 . 3 C P U - T i m e

The most popular measure of the practical performance of an algorithm is
the amount of CPU time which a specified computer requires to complete a
specified task, commonly a single iteration of a specified SCF procedure. While
this is certainly a very appealing measure (it directly reflects an expense which is
uppermost in the minds of most computational chemists), it will be extremely
difficult for another worker to reproduce the timing unless the specifications are
very complete.

It is important not only to specify precisely the computer whose CPU time
has been measured, but also to record the compiler version, any non-default
compiler options that were used and the operating system. Specification of the
task which was performed is even more demanding. To write, for example, that
the timing pertains to one cycle of a HF calculation is far from complete. It is
necessary also to state clearly exactly what was timed: Was it the integral
generation only? Was Fock matrix formation included? Was the diagonalization
included? And, even more important, which integrals were actually computed?
As we shall shortly see, most modern integral programs use sophisticated
"screening" techniques to avoid computing very small integrals. Unless a clear
description of the screening procedure used is given, including the cutoff
threshold, any quoted CPU-time is obviously meaningless. However, provided
that all of the various requirements above are met, a CPU-time measurement can
be a very useful indication of the performance of an integral algorithm.

13

The optimal strategy to adopt when comparing algorithms is to employ as
many measures as possible in the comparison. Previous reviews of integral
algorithms [64–67] have been helpful in this regard, that of Hegarty and van der
Velde [66] being particularly noteworthy.

3 . 2 F u n d a m e n t a l In t e g r a l s

One of the problems which plagues the two-electron integral literature is
that of notation and we certainly hope that this Review does not add to the
confusion. We will adopt a notation system which appears (slowly!) to be
becoming the standard and will introduce it as the need arises. We will use A, B,
C and D to represent the position vectors of the centers of the four basis functions
in (6) and will use α, β, γ and δ to represent exponents of generic primitives
within these functions.

All discussion of two-electron integrals ultimately begins by considering
the special case of the integral (6) in which each of the four functions is a
primitive s-Gaussian, i.e.

I ≡ e
−α r1− A 2

e
−β r1−B 2

f r1 − r2() e
−γ r2 −C 2

e
−δ r2−D 2

dr1dr2∫∫ (8)

and we will refer to this as the Fundamental Integral. The first step in its
evaluation is to invoke the Gaussian Product Rule ([17], p. 411) which
immediately reduces the integral to

I = GABGCD e−ζ r1 −P 2
f r1 − r2() e−η r2−Q 2

dr1dr2∫∫ (9)

where

GAB = exp
−α β
α + β A − B 2[] GCD = exp

− γ δ
γ + δ C − D 2[] (10)

ζ = α +β η = γ +δ (11)

P =
αA +βB

α + β
Q =

γ C + δD
γ + δ (12)

14

The reduction from (8) to (9) is a crucial simplification because it transforms a
four-center (A, B, C, D) problem into a two-center (P, Q) one. Most of the
difficulties associated with the use of Slater functions can be traced to the fact that
a corresponding reduction is not possible for these functions.

Next, we replace each of the three factors in the integrand of (9) by its
Fourier representation

e
−ζ r1−P 2

= (2π)−3 π
ζ







3 /2

e
−k1

2 / 4ζ
eik1 ⋅(r1− P) dk1∫ (13)

f r1 − r2() = (2π)−3 ℑ(k2) eik2 ⋅(r1−r 2) dk2∫ (14)

e
− ηr2 −Q 2

= (2π)−3 π
η()3/2

e
− k3

2 / 4η
eik3 ⋅(r2− Q) dk3∫ (15)

Substituting (13) – (15) into (9) and re-ordering the integrations yields

I = (2π)−3GABGCD
π2

ζ η






3/2
e

− k1
2 / 4ζ−k3

2 / 4η
e−ik1 ⋅P−ik3⋅Qℑ(k2)∫∫∫

(2π)−3 eir1 ⋅(k1 +k2) dr1 (2π)−3 eir2 ⋅(k 3−k2) dr2 dk1∫∫ dk2dk3

(16)

The fourth and fifth integrals in (16) are Fourier representations of the three-
dimensional Dirac delta function, whence

I =
GABGCD

8(ζη)3 /2

e
−k1

2 / 4ζ− k3
2 / 4η−ik1 ⋅P−ik3 ⋅Q

ℑ(k2) δ(k1 + k2) δ(k 3 − k 2) dk1dk2dk 3
∫∫∫

(17)

15

By virtue of the "sampling" property of the delta function, the triple integral in
(17) collapses to a single integral, yielding

I =
πGABGCD

2(ζ η)3/2R3 u sin u e−u2 / 4T ℑ(u / R) du

0

∞

∫ (18)

where

ϑ 2 =
ζ η

ζ + η
(19)

R = Q − P (20)

T = ϑ2R2 (21)

Our evaluation of the Fundamental Integral cannot proceed further than (18)
unless we now specify the two-electron function f(x). We are now in a position to
consider some of the integral types which arise in quantum chemical calculations:
overlap, kinetic-energy, electron-repulsion, nuclear-attraction and anti-coulomb.

3 . 2 . 1 T h e O v e r l a p I n t e g r a l

The Fundamental Overlap Integral is given by

Ioverlap ≡ e
−α r−A 2

e
− γ r−C 2

dr∫ (22)

and the first task which arises is to write this in the form (8). To achieve this, we
choose

β = δ = 0 (23)

f overlap(r) ≡ δ(r) (24)

in order to convert a four-center problem into a two-center one and to convert a
two-electron integral into a one-electron one. This simple trick enables us to treat
overlap integrals on an equal footing with any other integrals which we may be
able to cast in the form (8).

16

The Fourier transform of (24) is easily shown to be

ℑoverlap(k) = 1 (25)

and the expression which is obtained if (25) is substituted into (18) is readily
integrable by parts, finally yielding

Ioverlap = π
α+γ[]3/2

e−αγ A−C 2 /(α+γ) (26)

which is the familiar formula for the overlap of two s-Gaussians.

3 . 2 . 2 T h e K i n e t i c - E n e r g y I n t e g r a l

The Fundamental Kinetic-Energy Integral is given by

Ikinetic ≡ e−α r− A 2
− 1

2 ∇2[] e− γ r−C 2
dr∫ (27)

where the Laplacian denotes differentiation with respect to r. However, it is
clearly equivalent to differentiate with respect to C, from which it immediately
follows that

Ikinetic = −
1

2
∂2

∂Cx
2 + ∂2

∂C y
2 + ∂2

∂Cz
2









 e−α r−A 2

e− γ r−C 2
dr∫ (28)

Thus, the Fundamental Kinetic-Energy Integral can be obtained from the second
derivatives of the Fundamental Overlap Integral with respect to motion of the
center C. Since we are interested in algorithms which offer nth-derivatives of
two-electron integrals, the problem of generating kinetic-energy integrals and
their nth-derivatives is subsumed into the problem of generating overlap integrals
and their nth-derivatives.

17

3 . 2 . 3 T h e E l e c t r o n - R e p u l s i o n I n t e g r a l

The Fundamental Electron-Repulsion Integral is given by

IEE ≡ e−α r1− A 2

e−β r1 −B 2 1

r1 − r2
e−γ r2 −C 2

e−δ r2 −D 2

dr1dr2∫∫ (29)

which is obviously already of the form (8) with

f EE(r) ≡ r−1 (30)

The Fourier transform of (30) is

ℑEE (k) = 4πk−2 (31)

and, upon substituting (31) into (18), we obtain

IEE = GABGCD
2π2

(ζη)3 /2 R

sin u
u e− u2 / 4T du

0

∞

∫ (32)

which is related to the error function and is often re-written

IEE = GABGCD
2π5 /2

ζη(ζ+ η)1 /2 F0
EE (T) (33)

where

F0
EE(T) = e−Tu2

du = 1 − T 3 + T2 10 − .. .

0

1

∫ (34)

The efficient computation of the function (34) has been discussed in a number of
papers [46, 50–52, 54, 55, 61, 68–71] and it is generally agreed that a carefully
constructed interpolation scheme, such as that described in [71], is the most
effective approach.

18

3 . 2 . 4 T h e N u c l e a r - A t t r a c t i o n I n t e g r a l

The Fundamental Nuclear-Attraction Integral is given by

INE ≡ e−α r−A 2
e−β r−B 2 1

r − C
dr∫ (35)

and, as with the Fundamental Overlap Integral, we must begin by casting this in
the form (8). This can be accomplished by taking

γ = ∞ (36)

δ = 0 (37)

f NE(r) ≡ r−1 (38)

which replaces the nuclear center by a Gaussian with an extremely large exponent
and thereby transforms the problem into that of the Fundamental Electron-
Repulsion Integral.

3 . 2 . 5 T h e A n t i - C o u l o m b I n t e g r a l

Recently, we have developed a straightforward least-squares method [72]
for modeling the potential of a charge distribution using a second, simpler,
distribution and Kutzelnigg and coworkers have developed a promising method
[73] to enhance the rate of convergence of CI-type expansions. Curiously, both of
these methods are ultimately based on the Fundamental Anti-Coulomb Integral

IAC ≡ e−α r1 −A 2

e−β r1−B 2

r1 − r2 e− γ r2−C 2

e−δ r2 −D 2

dr1dr2∫∫ (39)

We note that the only feature which distinguishes (39) from (29) is the two-
electron function

f AC(r) ≡ r+1 (40)

and the evaluation of the Fundamental Anti-Coulomb Integral is similar [74–76]
to that of the Fundamental Electron-Repulsion Integral.

19

3 . 3 T h e Bo y s Al g o r i t h m [2 5]

Boys noted in his original paper that, if one differentiates the Fundamental
Integral with respect to one of the coordinates of one of the centers, one obtains a
primitive integral over a p and three s functions. Moreover, further
differentiations lead to primitive integrals over still higher angular momentum
functions. Based on this observation, Boys proposed that formulae for general
primitive integrals be obtained by the repeated differentiation of the formula for
the Fundamental Integral.

In the event that we wish to compute an integral (6) in which one or more
of the four Gaussian basis functions is contracted, the Boys algorithm expresses
the contracted integral as a sum of primitive integrals and then computes each of
the latter using the formulae described in the foregoing paragraph.

The Boys algorithm is pedagogically useful and also serves to emphasize
the highly important connection between the derivatives of Gaussian integrals and
Gaussian integrals over higher angular momentum functions. However, its
practical usefulness is limited by three important considerations:

(a) It rapidly becomes exceptionally tedious (and error-prone) to generate
formulae by repeated differentiation of expressions such as (26) and (33);

(b) The resulting formulae are inefficient because they fail to make use of the
fact that integrals in the same class share many common intermediates;

(c) The resulting formulae are inefficient because they fail to make use of the
fact that the primitives in a contracted basis function all share the same
center. The task of making the best possible use of this is called the
Contraction Problem.

More recent integral algorithms have sought to ameliorate, to a greater or
lesser degree, each of these three deficiencies. As we will see, all of these
algorithms employ recurrence relations (RR's) to express integrals of high angular
momentum in terms of integrals of lower angular momentum. This tactic
automatically improves consideration (a) and (b) above. Addressing (c) is more
difficult but the rewards are very significant: the greatest improvements in
computational efficiency over the last decade have almost all resulted from new
solutions to the Contraction Problem.

20

3 . 4 T h e Co n t r a c t i o n P r o b l e m

Suppose that we wish to form a class of contracted integrals and that each
of the basis functions is K-fold contracted, i.e. is a sum of K primitive functions.
Then, in a straightforward method (such as the Boys algorithm), each contracted
integral (ab|cd) is expressed as a sum of its component primitive integrals [ab|cd]
which, in turn, are computed individually, i.e.

abcd() = DaiDbjDckDdl aib j ckdl[]
l=1

K

∑
k =1

K

∑
j=1

K

∑
i=1

K

∑ (41)

It is clear from (41) that the computational effort to construct the desired class of
(ab|cd) integrals will rise with the fourth power of K. In fact, it is easily shown
[66] that the total Flop-cost of forming the class can always be expressed as

Flop − cost = x K4 + y K2 + z (42)

Of course, an analogous expression for the Mop-cost also exists.

Table I: Flop-cost parameters for generating integral classesa

Class Parameter PH MD HGP

(pp|pp) x 220 1,100 920
y 2,300 600 30
z 4,000 0 330

(sp,sp|sp,sp) x 220 1,500 1,400
y 2,300 1,700 30
z 4,000 0 800

(dd|dd) x ____ 27,300 14,600
y ____ 24,000 30
z ____ 0 11,300

(ff|ff) x ____ 342,000 108,000
y ____ 383,000 30
z ____ 0 135,000

(a) Taken from [55].

21

The x, y and z parameters for various algorithms and various integral
classes have been tabulated in a number of papers [55, 57, 59, 61] and are
valuable in rationalizing the observed performances of different integral methods.
In Table I, for example, we list Flop-cost parameters for the PH, MD and HGP
methods to generate various integral classes. Clearly, each method is
characterized by unique sets of parameters and these yield important information
about the method's theoretical performance behavior. For example, the
remarkably small x parameter and remarkably large z parameter for PH argue that
it should be a very powerful method for generating highly contracted (pp|pp)
integrals but a wasteful one for forming uncontracted ones. Similar qualitative
analyses for other methods are summarized in Table II.

Table II: Algorithmic costs as a function of degree of contraction

PH HGP OS MD DRK

Small K High Low Moderate Moderate Moderate

Large K Low Moderate High High High

Contractiona Early Midway Late Late Late

(a) At what point in the algorithm, the contraction step occurs.

It is clear from Table II that none of the five algorithms included is the
universal panacea for all integral problems. The best single method is HGP but,
since typical SCF calculations on large molecules involve highly contracted,
mildly contracted and weakly contracted integrals (see Section 2), a program
which seeks to be near-optimal under all circumstances has to switch from one
integral algorithm to another, basing its decision upon the type of integral under
consideration at any moment. The Gaussian 82 [77] and Gaussian 86 [78]
programs adopted this hybrid approach, employing a PH routine (Link 311) for all
integrals involving only s and p functions and a DRK routine (Link 314) for any
others. However, such strategies are not only arbitrary and artificial but also
render the program complicated and difficult to improve.

The third row of Table II reveals that there is a very simple correlation
between the performance behaviour of an algorithm and the point at which the
primitive integrals are added together into contracted integrals: early-contraction
methods are best suited to highly contracted integrals; late-contraction methods
are best suited to weakly contracted integrals. This observation underlies the
PRISM algorithm which we will discuss shortly.

22

3 . 5 T h e P o p l e - H e h r e Al g o r i t h m [5 0]

We have seen that PH is exceptionally efficient for highly contracted
classes, exhibiting x parameters (for classes involving only s and p functions)
which are very much smaller than those of other, more recent, methods. How is
this efficiency achieved?

Pople and Hehre showed that, given the position vectors A, B, C and D
and two exponents γ and δ, there exists a unique Cartesian axis system [79] in
which many primitive integrals vanish by symmetry. Moreover, because this axis
system is independent of the exponents α and β, it can be used for all α,β pairs.
After looping over these, the accumulated integral combinations are rotated into a
second Cartesian system [80] which depends only on A, B, C and D, and the next
γ,δ pair is then selected. When all γ,δ pairs have been treated, the desired
integrals are finally obtained by rotating back to the original Cartesian system of
the molecule.

The x parameter in (42) measures the work required to form and
manipulate exclusively primitive quantities. Thus, of the steps in the PH method,
only the computation and accumulation of the non-vanishing primitive integrals
contributes to x and, since the unique axis system described in the foregoing
paragraph was carefully designed to minimize the number of such integrals, x is
correspondingly small.

The y and z parameters in (42) measure the computational effort to rotate
from the first cartesian frame to the second, and from the second to the third,
respectively, and to accumulate them therein. These are relatively substantial
tasks and this explains the large y and z parameters in Table I for PH.

Only if the basis functions are sufficiently contracted (i.e. K is large
enough), does the work saved by the use of special axis systems outweigh the
effort which must be expended to perform the two rotations and it is interesting to
determine the value of K at which PH becomes cheaper than HGP. For a (pp|pp)
class, using the parameters in table I, one finds that PH is competitive with HGP
even when K is as small as 2.

Notwithstanding the impressive performance of PH on integral classes
involving contracted basis functions with low angular momentum, it founders
when applied to uncontracted classes with high angular momentum, for example
[dd|dd], because of the huge costs incurred in the two rotation steps [81]. For
such classes, new techniques had to be developed and we will discuss some of
these in the next few sections of this Review.

23

3 . 6 B r a s , K e t s an d Br a k e t s [6 1]

Before proceeding further, it is useful to introduce a simple but powerful
notation for integrals and their nth-derivatives. All of the modern integral
algorithms can be easily represented within this notation and, of course, uniform
descriptions greatly facilitate any algorithmic comparisons which we may make.

In (6) we defined a general two-electron integral over the two-electron
operator f. However, it has long been realized that such an equation defines an
inner product between two functions

ab(≡ φa (r1)φb(r1) (43)

cd) ≡ φc(r2)φd(r2) (44)

Thus, taking inspiration from the notation introduced by Dirac, we will refer to
(ab| and |cd) as a "bra" and "ket", respectively, and to (ab|cd) as a "braket".

For the purposes of defining bras and kets, it is useful to generalize (43)
and (44) substantially. Though the resulting definitions may appear complicated,
it should be borne in mind that, like (43) and (44), bras and kets are simply
functions of the positions of electrons 1 and 2, respectively.

We define a primitive bra

[a b

a b p

′ a ′ b ′ p | ≡
(2α) ′ a (2β) ′ b

(2ζ) ′ p ⋅
∂ a+ b

∂Ax
a x ∂Ay

a y ∂Az
az ∂Bx

bx ∂By
by ∂Bz

bz[0 0

a b p

0 0 0|
... (45)

where

[0 0

a b p

0 0 0| ≡

DADBe−α(r−A)2
e−β(r−B)2

(i − Ai)ai (i − Bi)bi ζpi /2Hpi ζ1/2(i − Pi)[]
i=x,y,z
∏

... (46)

24

and Hn is the nth Hermite polynomial. The other symbols in (45) and (46) have
been defined earlier in this Review. The Hermite polynomials are defined by
H0(x) ≡ 1, H1(x) ≡ 2x and

Hn+1(x) ≡ 2x Hn(x) − 2n Hn−1(x) (47)

and possess the useful property that dHn(x) / dx = 2n Hn-1(x).

Certain special cases of (45) arise sufficiently often that it is useful to
introduce more concise notations for them. In particular, a Hermite function on
center P is denoted by

p[≡[0 0

0 0 p

0 0 0| (48)

a product of Cartesian Gaussian primitives on A and B is

ab[≡[0 0

a b 0

0 0 0| (49)

and the product of Cartesian Gaussian primitives on A and B and a Hermite
function on P is

abp[≡ [0 0

a b p

0 0 0| (50)

A bra in which a = b = a = b = 0 will be termed a p-bra.
Having defined a primitive bra, we define a contracted bra by

25

(a b

a b p

′ a ′ b ′ p | ≡ [a b

a b p

′ a ′ b ′ p |kB =1

KB

∑
kA =1

KA

∑ (51)

and its various special cases by

′ a ′ b ′ p p(≡ (0 0

0 0 p

′ a ′ b ′ p | (52)

ab(≡ (0 0

a b 0

0 0 0| (53)

′ a ′ b ′ p abp(≡ (0 0

a b p

′ a ′ b ′ p | (54)

The definitions of primitive and contracted kets are entirely analogous to
(45)–(54). As previously discussed, a braket is then an inner product between a
bra and a ket

(a b

a b p

′ a ′ b ′ p |
c d

c d q

′ c ′ d ′ q
) ≡∫∫(a b

a b p

′ a ′ b ′ p |f r1 − r2()|c d

c d q

′ c ′ d ′ q
)dr1dr2

... (55)

and a pq-braket, which results from a p-bra and a q-ket, is an important special
case. It should be noted that the symbols which we use to represent bras, kets and
brakets, although "matrix-like" in appearance, have no connection whatever to
matrices. They are, we emphasize, nothing more than compact notations for very
general one-electron functions and their inner products.

3 . 7 T h e Mc M u r c h i e - D a v i d s o n Al g o r i t h m [5 2]

26

Whereas the principal concern expressed in the paper by Pople and Hehre
[50] was extremely high efficiency for a limited set of integral classes, the main
emphasis of McMurchie and Davidson was generality and extendability.
Not surprisingly, then, their respective algorithms are, to a large degree,
complementary.

The target (ab|cd) are made from bra-contracted (ab|cd] using

ab cd() = ab ckdl(]
l=1

KD

∑
k=1

KC

∑ (56)

MD used elementary properties of Hermite polynomials to derive a three-term RR

(c +1i)dq] = q i cd(q − 1i)] + (Qi − Ci) cdq] + (2 η)−1 cd(q + 1i)] (57)

by which the (ab|cd] can be formed from (ab|q]. (Note that the subscript i
represents a Cartesian direction (x, y or z) and 1i is the unit 3-vector in the ith
direction.) Since it has no effect on the bras, we describe this step as a "ket-
transformation".

The (ab|q] are formed from [ab|q] using

abq](= akb1 q[]
1=1

KB

∑
k=1

KA

∑ (58)

and, in the bra-transformation step, the [ab|q] are formed from [p|q] using the bra
version

(a +1i)bp[= pi ab(p − 1i)[+ (Pi − Ai) abp[+ (2ζ)−1 ab(p +1i)[(59)

of the RR (57).

To evaluate the [p|q], one can follow the procedure discussed in Section
3.2. This turns out to be straightforward because the Fourier Transform of a p-bra
is just a Cartesian Gaussian function and it is not difficult to show that

[p|q] = (−1)q[p + q] (60)

27

where, for repulsion integrals,

[r] = DADBDCDD GABGCD
2π5/2

ζ η(ζ + η)1/2

(ϑu)r H rx
(Rxϑu) Hry

(Ryϑu) Hrz
(Rzϑu)e−Tu

2
du

0

1

∫
(61)

which is a generalization of (33). By invoking the elementary RR for
differentiation of Hermite polynomials, MD showed that [r] ≡ [r](0) integrals can
be generated from [0](m) integrals using the two-term RR

[r](m) = Ri [r − 1i]
(m+1) − (r i −1)[r − 2i]

(m+1) (62)

where 2i denotes twice the unit vector in the ith direction,

[0](m) = DADBDCDD GABGCD
21/2 π5/2

(ζ η)3/2 (2ϑ2)m+1/2 Fm (T) (63)

and

Fm (T) = u2me−Tu2
du

0

1

∫ (64)

MD advocated the use of seven-term Taylor interpolation to evaluate (64)
for the largest value of m, followed by downward recursion using

Fm (T) =
1

2m +1
2T Fm+1(T) + e−T[] (65)

to compute (64) for smaller m values.

3 . 8 T h e O b a r a - S a i k a - S c h l e g e l Al g o r i t h m [5 3 , 5 4]

28

Four years before the appearance of the first paper by Obara and Saika,
Schlegel published an important article concerning the rapid computation of first
derivatives of two-electron integrals with respect to nuclear motion. However,
although his method was in widespread use for some years, it was apparently not
recognized that it is equivalent to a completely new algorithm for computing
integrals themselves: only after Obara and Saika independently discovered the
same algorithm did the penny drop.

The target (ab|cd) are generated from [ab|cd] according to

ab cd() = aib j ck dl[]
l=1

KD

∑
k=1

KC

∑
j=1

KB

∑
i=1

KA

∑ (66)

and [ab|cd] ≡ 〈ab|cd〉(0) are formed from 〈00|00〉(m) using the eight-term OS RR

(a + 1i)b cd (m) = (Pi − Ai) ab cd (m) +
η

ζ + η
Ri abcd (m+1)

+
ai

2ζ
(a − 1i)b cd

(m) −
η

ζ + η
(a − 1i)b cd

(m+1)

 


 

+ bi

2ζ
a(b −1i) cd (m) − η

ζ + η
a(b − 1i) cd (m+1)

 

 

+
ci

2(ζ + η)
ab (c − 1i)

(m+1)
+

d i

2(ζ + η)
abc(d − 1i)

(m+1)

 (67)

and its analogues which increment b, c and d. The 〈00|00〉(m), which are closely
related to the [0](m) in (63), are defined by

00 00
(m) = DADBDCDD GABGCD

2π5/2

ζη(ζ + η)1/2 Fm (T) (68)

When generating a class of integrals with non-trivial angular momentum,
there are usually very many sequences in which (67) can be applied and the task
of determining the most efficient sequence can be discussed as a tree-search
problem. OS did not provide a solution to this problem however and, as such, the
OS algorithm is not completely well-defined.

3 . 9 T h e H e a d - G o r d o n - P o p l e Al g o r i t h m [5 5]

29

Although no clear prescription was given by OS for the use of their RR, it
was clearly a significant advance and immediately received considerable
attention. The next major step forward was taken by HGP who not only
introduced a second RR but also gave a precise description of how the two RR's
can be used in tandem to good effect.

The target (ab|cd) are made from (ab|n0) using a two-term RR

c(d + 1i)) ≡ (c +1i)d) + (Ci − Di) cd) (69)

which HGP derived from the eight-term RR of OS and which they designated the
horizontal recurrence relation (HRR). In fact, the same RR (termed a transfer
relation) had been used for many years to transform the 2-dimensional integrals
which arise in the DRK method [51] but, until the HGP paper, it had apparently
not been applied to contracted integrals. This distinction is important, for it
implies that the computational expense incurred by the use of (69) is independent
of the contraction degree of the integrals, i.e. the work contributes only to the z
parameter in (42).

The (ab|n0) are made from (m0|n0), again using the HRR, i.e.

a(b +1i)(= (a + 1i)(b + (Ai − Bi) ab((70)

and, as before, (70) contributes only to the z parameter in (42).

The (m0|n0) are made by simple contraction of [m0|n0], i.e.

m0(n0) = mi0 j nk 0l[]
l=1

KD

∑
k=1

KC

∑
j=1

KB

∑
i=1

KA

∑ (71)

and the [m0|n0] ≡ 〈m0|n0〉(0) are generated using the OS RR. Because the second
and fourth indices in 〈m0|n0〉 are 0, the 5th, 6th, and 8th terms of the OS RR
always vanish and HGP called this five-term special case the vertical recurrence
relation (VRR). A simple method was given by HGP for deciding whether to
reduce at the first or at the third index when applying the VRR and this completes
the specification of their algorithm.

3 . 1 0 V a r i a t i o n s on t h e H G P Th e m e

30

Since the advent of HGP, there have been a number of attempts to
improve upon it without changing its essential structure, viz.

00 00
(m)

→ m0 n0[] → m0 n0() → ab cd() (72)

Initially, it was suggested [82] that, instead of using the VRR, a DRK
scheme (such as that of Saunders [65]) could be used to generate the [m0|n0],
after which the contraction and HRR steps could proceed as usual. This idea was
explored by Lindh, Ryu and Liu (LRL) in a fascinating paper [59a] which
convincingly argues that, for the construction of [m0|n0], the HGP and DRK
algorithms are essentially equivalent mathematically. This remarkable result was
also supported by Flop-cost determinations, using each method, for (pp|pp),
(dd|dd) and (ff | ff) classes.

A second, and somewhat more successful, attempt to render the VRR
obsolete was made independently by Hamilton and Schaefer (HS) [57] and
LRL [59a]. By combining the translational invariance condition for first
derivatives [83] with the HRR, HS discovered a six-term RR

ab (c + 1i)d[] =
ai

2η
(a − 1i)b cd[] +

bi

2η
a(b − 1i) cd[] +

ci

2η
ab (c − 1i)d[]

+
d i

2η
ab c(d −1i)[] −

2ζ
2η

(a +1i)b cd[] −
2β
2η

(Ai − Bi) +
2δ
2η

(C i − Di)

 


  ab cd[]

... (73)

which, if applied to integrals in which b = d = 0, becomes

m0 (n +1i)0[] =
mi

2η
(m − 1i)0 n0[] +

n i

2η
m0 (n − 1i)0[]

−
2ζ
2η

(m + 1i)0 n0[] −
2β
2η

(Ai − Bi) +
2δ
2η

(Ci − Di)

 


  m0 n0[]

... (74)

Both HS and LRL proposed that the OS RR be used only to generate
[m0|00] ≡ 〈m0|00〉(0) and that (74) then be used to form [m0|n0] from these. It

31

seems probable from the estimates made by both groups (they disagree
somewhat) of the Flop-cost of this new algorithm that it constitutes a marginal
improvement over the HGP algorithm.

In the same paper where they discuss an alternate derivation of (74), LRL
also present the Reduced Multiplication Rys (RMR) scheme for computing
[m0|n0] and compare it with the DRK, HGP and HS algorithms. RMR is found
to require noticeably fewer Flops than DRK and HGP (which, as mentioned
above, are equivalent). The major source of this improvement is the sophisticated
treatment of reusable intermediate data by RMR and the interested reader is
referred to [59a] for further details.

As a general rule, the construction of the [m0|n0] using the VRR is
considerably more expensive than the subsequent contraction and HRR steps.
However, if one is dealing with integral classes of high angular momentum and
low contraction or with derivatives of such classes with respect to nuclear motion,
the HRR step can become sufficiently expensive to warrant optimization and Ryu,
Lee and Lindh [59b] have recently studied this problem. Recognizing that
efficient application of the HRR involves a complicated tree-search problem, they
devised a heuristic solution which eliminates 13%, 25%, 38% and 44%,
respectively, of the Flops which previous HRR implementations had needed for
(ff|ff), (gg|gg), (hh|hh) and (ii|ii) classes.

Recently, however, Johnson et al. [63] have found that, if one wishes to
minimize the number of Mops (as opposed to Flops) in the transformation of
(m0|n0) to (ab|cd), it is often preferable to dispense with the HRR entirely and, in
lieu of it, employ RR's from a novel family which these authors term "nth-order
transfer relations". We will say more about these later in the context of the
PRISM algorithm.

4 . TH E P R I S M AL G O R I T H M [6 1]

32

In addition to stimulating a number of variations on the HGP theme, the
seminal paper by Head-Gordon and Pople [55] also served to catalyse the
development of a completely different approach to the Contraction Problem called
the PRISM algorithm.

We recall from our discussion of the Contraction Problem (Section 3.4)
that none of the algorithms hitherto suggested has proven optimal under all
circumstances: the Pople-Hehre method is highly efficient for highly contracted
classes but is very poor for weakly contracted ones; the Hamilton-Schaefer-
Lindh-Ryu-Liu method employing (74) is extremely effective for mildly
contracted classes but is otherwise grossly inferior to Pople-Hehre. However, we
observed that there is a simple connection between the behavior of an algorithm
and the point at which the primitive integrals are combined to yield contracted
integrals: early-contraction methods are best suited to highly contracted classes
and late-contraction methods are best suited to weakly contracted classes.

Ideally, we would like an algorithm to choose dynamically, on the basis of
the type of class being generated, the optimal point at which to perform the
contraction step. The crucial insight that leads to the PRISM algorithm is the
realization that some of the algorithms which we have already discussed can be
generalized into forms in which such dynamic flexibity is possible. We call the
generalizations of the MD and HGP methods the MD–PRISM and HGP–PRISM
algorithms, respectively.

The MD–PRISM [61] was discovered and implemented long before the
HGP–PRISM (which has not previously been discussed in the literature) but, for
the purposes of this Review, it is convenient to develop them together in order to
emphasize their similarities and differences.

We have already observed (Section 3.6) that any two-electron integral (6),
and any nth-derivative of that integral with respect to motion of the basis
functions, is an inner product between a function of the position of electron #1
(which we term a bra) and a function of the position of electron #2 (which we
term a ket). Henceforth, rather than explicitly considering integrals and/or their
nth-derivatives, we will examine the more general problem of computing
contracted brakets.

After developing the mathematical foundations of the PRISM algorithm,
we will discuss its implementation within the Gaussian 92 computer program
[84].

33

The MD–PRISM and HGP–PRISM algorithms are most easily understood
when presented in terms of diagrams which resemble rectangular prisms –
whence their names. To simplify the discussion, we will confine our attention to
the “front” face of each prism. The generalizations to the complete prisms are
neither difficult nor especially interesting: they are outlined in [61c].

The front face of the MD PRISM is shown below. As the arrows indicate,
the MD–PRISM algorithm consists of a set of highly interrelated pathways from
shell-pair data to the desired brakets.

′ a ′ b ′ p (r] ′ a ′ b ′ p (r) ′ c ′ d ′ q

′ a ′ b ′ p (0) ′ c ′ d ′ q
(m)

′ a ′ b ′ p (0](m)[0](m)

[bra|ket] (bra|ket] (bra|ket)

C1
MD C2

MD

C3
MD C4

MD

C5
MD C6

MD

C7
MD C8

MD

T8
MD T9

MDT7
MD

T6
MDT5

MDT4
MD

T1
MD T2

MD T3
MD

[r]

[bra|q] (bra|q] (bra|q)

Shell-Pair Data

T0

Figure 1. The front face of the MD PRISM.

34

The front face of the HGP PRISM is shown below. Like the MD–PRISM
algorithm, the HGP–PRISM algorithm consists of a set of highly interrelated
pathways from shell-pair data to the desired brakets.

′ a ′ b ′ p (0) ′ c ′ d ′ q
(m)

′ a ′ b ′ p (0](m)

[bra|n0] (bra|n0] (bra|n0)

(m0|n0)(m0|n0][m0|n0]

T9
HGPT8

HGP
T7

HGP

T6
HGPT5

HGP

T3
HGPT2

HGP

T4
HGP

T1
HGP

C8
HGPC7

HGP

C6
HGPC5

HGP

C4
HGPC3

HGP

C2
HGPC1

HGP

(bra|ket)(bra|ket][bra|ket]

[0](m)

T0

Shell-Pair Data

Figure 2. The front face of the HGP PRISM.

35

(0](m) (0)(m)

[0)(m)[0](m)

[r] [r)

(r] (r)

[bra|q] [bra|q)

(bra|q] (bra|q)

[bra|ket] [bra|ket)

(bra|ket] (bra|ket)

Figure 3. The Full MD PRISM.

36

(0](m) (0)(m)

[0)(m)[0](m)

[m0|n0] [m0|n0)

(m0|n0] (m0|n0)

[bra|n0] [bra|n0)

(bra|n0] (bra|n0)

[bra|ket] [bra|ket)

(bra|ket] (bra|ket)

Figure 4. The Full HGP PRISM

37

In the subsections which follow, we will examine various aspects of the
MD and HGP PRISMs but, before doing so, we may make some general
observations.

(1) The first step (T0), the generation of [0](m) integrals from shell-pair data, is
common to both the MD– and HGP–PRISM algorithms. We will discuss T0
in detail in Section 4.3.

(2) In either algorithm, the metamorphosis of [0](m) to brakets involves exactly
two Contraction steps (Ci, denoted by horizontal arrows and discussed in
Section 4.4) and three Transformation steps (Ti, denoted by vertical arrows
and discussed in Section 4.5) and, since these five steps can be performed in
any order, there are 10 paths from [0](m) to brakets in Figure 1 and a further
10 in Figure 2. We will use appropriate permutations of two “C”s and three
“T”s to label these paths. For example, one of the paths in Figure 1 is
MD–CCTTT and one of those in Figure 2 is HGP–TCCTT.

(3) By comparing Figures 1 and 2 with the descriptions in Sections 3.7 and 3.9,
it becomes immediately apparent that the classical McMurchie–Davidson
and Head–Gordon–Pople algorithms correspond to the MD–TTCTC and
HGP–TCCTT paths, respectively.

(4) As a result of the “perpendicular” separation of contraction and
transformation steps in Figures 1 and 2, the steps which contribute to the x,
y, and z cost-parameters of (42) are clearly delineated. Specifically, the T0,
T1, T4, T7, C1, C3, C5 and C7 steps contribute to x; the T2, T5, T8, C2, C4,
C6 and C8 steps contribute to y; and the T3, T6 and T9 steps contribute to z.
This observation permits a computer program to compute x, y, and z
parameters (for a given braket class) for each of the paths on each of the
prisms and, using (42), then very easily to determine the Flop- or Mop-
cheapest path.

38

4 . 1 S h e l l - P a i r Da t a

Inspection of (6) reveals that it describes the interaction of two charge
distributions, φa (r)φb (r) and φc(r)φd(r) , and our first task is to collect
information about all such charge distributions in the molecule. Because brakets
are formed in classes, rather than individually, it is convenient to compile data for
shell-pairs (rather than basis-function-pairs) and this shell-pair dataset is central to
any modern integral program. To generate all of the desired brakets, we will later
loop over all pairs of shell-pairs, that is, over all shell-quartets.

We begin by considering all pairs [85] of shells in the basis set,
categorizing each shell-pair as either significant or negligible. A shell-pair is
negligible if the shells involved are so far apart (relative to their diffuseness) that
their overlap is negligible: otherwise, it is significant. Because all of the basis
functions which we have discussed (Section 2) decay at least exponentially, most
of the shell-pairs in a large molecule are negligible. Indeed, the number of
significant pairs grows only linearly with increasing molecular size and it
therefore follows that the number of significant shell-quartets grows only
quadratically. This is a very important point for it is this, more than anything
else, which permits rigorous SCF calculations to be performed on very large
systems.

Each time that we discover a significant shell-pair, we generate a model
for that pair, i.e. a second shell-pair, with fewer primitives than the first , whose
potential is as close as possible (in a least-squares sense) to that of the first. Only
very recently has the theory necessary for such potential-fitting procedures been
developed [72] and our methodology may be contrasted with previous approaches
[86–92] in which many alternative modeling criteria have been employed. In
particular, we note that it is common in Kohn-Sham calculations to expand the
electronic density in an auxiliary basis set [89]. This is equivalent to modeling
each charge distribution φa (r)φb (r) by an expansion in the auxiliary basis. The
modeling scheme employed to obtain the results discussed later in this Review
was the simple one described by Head-Gordon and Pople [55]: all primitives with
amplitudes below 10-10 are discarded while all others are kept. More elaborate
modeling procedures are currently being developed [72b].

Once we have compiled a list of models for all of the significant shell-
pairs, they are sorted by "type", i.e. by the angular momenta of the component
shells and by the degree of contraction of the (modeled) shell-pair. Thus, all
uncontracted ss-pairs are stored consecutively, followed by all doubly-contracted

39

(K=2) ss-pairs, and so forth. For each shell-pair, the parent shells and (A – B)
vector are recorded; for each component primitive, we record (2α), (2β), 1/(2ζ), P
and

UP = DADB GAB (π ζ)3/2 1
2ζ






a+b

(75)

The last factor in (75), which scales it according to the angular momentum (a + b)
of the shell-pair, is termed the principal scaling and is included only if the
MD–PRISM is used. For reasons which will become clearer below, its presence
reduces the Flop- and Mop-costs of the algorithm.

We have recently developed [93] an upper-bound on (6)

ab cd() ≤ Min Iab
* Icd

* , Vab
* Scd

* , Sab
* Vcd

*{ } (76)

where

Iab
* = abab()1/2

(77)

Vab
* = Max

G
φa (r) φb(r) f(|r − G|) dr∫ (78)

Sab
* = φa (r) φb(r) dr∫ (79)

which is significantly stronger than the familiar [94–97] Schwarz bound (which is
the first of the three braced quantities in (76)). Our next task is to compute shell-
pair generalizations of (77)–(79) for each of the significant shell-pairs by
evaluating (77)–(79) for each of their constituent basis-function-pairs and taking
appropriate maxima [97].

The total computational effort involved in setting up the shell-pair data
increases linearly with the size N of the basis. For tasks such as large Direct SCF
calculations [44, 45], it is entirely negligible compared with the subsequent work;
for less computationally demanding tasks, such as finding potential-derived
atomic charges [98], it typically constitutes 10% of the job time.

40

4 . 2 S e l e c t i o n of S h e l l - Q u a r t e t s

Given a sorted list of significant shell-pairs, we can construct all
potentially important shell-quartets [99] by pairing the shell-pairs with one
another. For the sake of vectorization, we deal with batches of shell-quartets of
the same “type” and we utilize the memory which is available as effectively as
possible in order to maximize the sizes of such batches [100].

Not every pair of shell-pairs, however, is necessarily accepted as a
worthwhile shell-quartet. Although the shell-pair database has been carefully
screened and contains no negligible shell-pairs, there are several ways in which a
pair of significant shell-pairs may yield a shell-quartet which can be neglected...

(1) The quartet may be equivalent, by point group symmetry, to another quartet
which has already been treated.

(2) The largest braket associated with the quartet may be negligibly small. This
can be anticipated by the upper-bound formula (76) if the cutoff parameters
(77)–(79) have been precomputed as indicated in Section 4.1.

(3) The largest density matrix (or delta-density matrix) elements which will
multiply any of the brakets associated with the quartet may be negligibly
small [44,97]. This is particularly common in late SCF cycles when
incremental Fock matrix formation is being used.

Unfortunately, in general, it is not easy to vectorize the shell-quartet
selection process because of the conditional nature of quartet acceptance. In the
special case where one desires the electrostatic potential on a large grid, Johnson
et al. have circumvented this problem by the so-called “fixed shell-pair” scheme
[98] which is completely vectorizable. However, this approach is not directly
applicable to the general case.

41

4 . 3 G e n e r a t i o n of t h e [0] (m)

Given a batch of shell-quartets, the real computational work (denoted T0
in Figures 1 and 2) can begin. In the first stage of this, the seven basic shell-
quartet parameters

R = Q − P (80)

R2 = Rx
2 + Ry

2 + Rz
2 (81)

2ϑ2 = 1 1
2ζ + 1

2 η




 (82)

2T = 2ϑ2 R2 (83)

U = UP UQ (84)

are constructed. Given the shell-pair data which were generated earlier (Section
4.1), (80)–(84) can be computed in just 12 Flops and 17 Mops and this accounts
for a rather small fraction of the total CPU time in most Direct SCF calculations
(less than 4% in the pentacene run described in Section 4.7).

In the second stage, the [0](m) integrals (0 ≤ m ≤ L) are evaluated. If we
desire two-electron repulsion integrals, i.e. f(x) ≡ 1/x in (6), the relevant definition
(Section 3.2.2) is

[0](m) = U 2ϑ2()m+1/2
Gm (T) (85)

where

Gm (T) = 2 / π()1/2 t2m exp −Tt2() dt
0

1

∫ (86)

42

For other types of integrals, (85) and (86) must be appropriately modified but
retain the same general form.

If T (which measures the extent to which the bra and ket charge
distributions overlap) is less than a critical value Tcrit, GL(T) can be evaluated
using an interpolation procedure. We follow Shipman and Christoffersen [68] in
favoring Chebyshev interpolation as an effective means for computing such
functions but we have adopted the approach of Elbert and Davidson [69] who
prefer to employ approximations of lower degree. We have chosen cubic
interpolation as our standard and have discussed our methodology in detail in
[71]. Values of Gm(T) for 0 ≤ m < L can then be obtained, with numerical
stability, by downward recursion (see (65), for example). The function exp(–T) is
needed for this and, for speed, we also compute this by interpolation [71].

On the other hand, if T is greater than Tcrit, the distributions overlap
negligibly and (in the case of two-electron repulsion integrals) the [0](m) then
reduce [101] to classical multipole terms

[0](m) = U

R



 1

R2


 


3

R2


 


⋅ ⋅ ⋅ 2m −1

R2


 


 


 (87)

which can be computed recursively with great efficiency.

The subroutine in Gaussian 92 which is responsible for the evaluation of
the [0](m) in the context of Direct SCF is Calc0m. This routine accounts for a
noticeable fraction of the total CPU time (7% in the pentacene run described in
Section 4.7) and has been carefully optimized. It runs at roughly 160 MFlops on
a single-processor Cray Y-MP (whose theoretical peak speed is 333 MFlops).

In computations of the electrostatic potential on a grid, Gaussian 92 calls
the subroutine Calc0G to compute the [0](m) and this routine accounts for roughly
50% of the total CPU time. As a result of the use of the “fixed shell pair” scheme
[98] and very careful optimization, Calc0G runs at approximately 180 MFlops on
the Cray Y-MP.

Given a batch of [0](m) integrals, it “only” remains to traverse one of the
prisms in order to obtain the brakets which we seek. As mentioned earlier, this
involves some combination of two Contraction steps and three Transformation
steps and we now focus on these in detail.

43

4 . 4 C o n t r a c t i o n S t e p s

The horizontal arrows in Figures 1 and 2 correspond to contraction steps
and, in typical Direct SCF calculations using PRISM, these account for a
significant fraction of the total CPU time (15% in the pentacene run described in
Section 4.7). In electrostatic grid calculations, the fraction is even higher. It is
therefore very important that they be executed as efficiently as possible.

As was indicated in Section 3.6, contraction within the braket framework
involves the summation of primitive quantities which may, or may not, also need
to be scaled before being added together. In the case where scaling is required,
the contraction amounts to a dot product, i.e.

Ai = Sij Bij
j=1

K

∑ (88)

where i loops over the members of the batch and j loops over the length of the
contraction. In Gaussian 92, (88) is implemented with i as the innermost loop and
with the outer j loop unrolled sixfold. The resulting code, a representative kernel
of which is

DO 20 J=Jbeg,Jend,6

DO 10 I=1,N

A(I) = A(I) + S(I,J)*B(I,J) + S(I,J+1)*B(I,J+1)

$ + S(I,J+2)*B(I,J+2) + S(I,J+3)*B(I,J+3)

$ + S(I,J+4)*B(I,J+4) + S(I,J+5)*B(I,J+5)

10 CONTINUE

20 CONTINUE

has a Flop/Mop ratio which approaches unity, possesses a good balance between
adds and multiplies, is manifestly vectorizable and, not surprisingly, runs very fast
on most platforms.

We note, too, that things only improve under the “fixed shell-pair” scheme
which is used in electrostatic grid calculations because the scalings become loop-
invariants [98].

44

4 . 5 T r a n s f o r m a t i o n S t e p s

As we indicated in Section 3.3, modern integral algorithms invariably
employ recurrence relations to build complicated brakets from simple ones. Their
use permits algorithms to deal (in principle) with brakets of arbitrarily high
angular momentum and, additionally, to make good use of the intermediates that
are shared by fraternal brakets. In the next four subsections, we will discuss the
various recurrence relations which are used to move vertically on the prisms.

4 . 5 . 1 T w o - E l e c t r o n T r a n s f o r m a t i o n s o n t h e M D P R I S M

The T1
MD step in Figure 1 transforms [0](m) to [r] integrals and the T2

MD

and T3
MD steps are the half-contracted and contracted variants of this. We will

examine T1
MD in detail because, although it is the simplest transformation step on

either prism, it nonetheless shares many features with the more complicated
transformation steps and, therefore, has useful pedagogical value.

The recurrence relation on which T1
MD , T2

MD and T3
MD are based is the

one-center RR (62)

[r](m) ≡ R i [r − 1i]
(m+1) − (r i − 1) [r − 2 i]

(m+1) (89)

which McMurchie and Davidson derived originally using the elementary
properties of Hermite polynomials. It is easily shown that, if the total angular
momentum of the desired braket class is L, there are (L+1) [0](m) and
(L+3)!/L!/3! [r] integrals and that, in general, the efficient generation of the latter
from the former involves a complicated tree-search problem. Johnson et al. have
carefully analysed this and have constructed highly optimized solution-trees
[102]. In Gaussian 92, the subroutine MakMD1 employs these solutions in
forming a “driver” for the T1

MD step.

In Gaussian 92, a "driver" is an array of instructions (coded as integers) for
the formation of one set of integrals from another. Subroutine MakMD1 first
constructs a driver (the MD1 driver) to form the [r] from the [0](m) using (89).
Given this driver, a set of [0](m) and the corresponding set of R vectors (80),
subroutine DoMD1 then takes responsibility for the actual construction of the [r].
For the purposes of illustration, it is useful to work through a simple example,
such as L = 2.

45

The explicit L = 2 solution-tree for (89) is [102]

s[] (1) = 0[] (1)

pz[] (1) = Rz 0[] (2)

py[] (1) = Ry 0[] (2)

px[] (1) = Rx 0[] (2)

s[] = 0[] (0)

pz[] = Rz 0[] (1)

py[] = Ry 0[] (1)

px[] = Rx 0[] (1)

dzz[] = Rz pz[] (1) − s[] (1)

dyz[] = Ry pz[] (1)

dyy[] = Ry py[] (1) − s[] (1)

dxz[] = Rz px[] (1)

dxy[] = Rx py[] (1)

dxx[] = Rx px[] (1) − s[] (1)

































(90)

Thus, from 0, [0](1), [0](2), we form ten [r] integrals. We will assume
(correctly) that the former are stored in locations 1, 2 and 3, respectively.
Subroutines such as DoMD1 are very simple, containing only a handful of basic
DO-loops corresponding to all useful special cases of the RR (89). The driver is a
two-dimensional integer array, each row of which (an instruction) specifies the
DO-loop and the locations to use. The MD1 driver for L = 2 is shown in Table III
and DoMD1 is reproduced immediately below this.

46

Table III: The MD1 driver for L = 2

4 3 0 1 0
5 3 0 2 0
3 3 0 3 0
6 4 2 1 1
7 5 0 1 0
4 4 0 3 0
5 5 2 2 1
8 3 0 2 0
3 3 2 3 1
9 2 0 1 0
10 2 0 2 0
2 2 0 3 0

SUBROUTINE DoMD1(W,R,n,Driver,nDrive)
IMPLICIT INTEGER (a–z)
INTEGER Driver(5,nDrive)
REAL*8 W(N,*),R(n,3)
DO 40 knt = 1,nDrive

Z = Driver(1,knt)
P1 = Driver(2,knt)
P2 = Driver(3,knt)
Axis = Driver(4,knt)
j = Driver(5,knt)
IF (j.eq.0) THEN

DO 10 i = 1,n
W(i,Z) = R(i,Axis) * W(i,P1)

10 CONTINUE
ELSE IF (j.eq.1) THEN

DO 20 i = 1,n
W(i,Z) = R(i,Axis) * W(i,P1) - W(i,P2)

20 CONTINUE
ELSE

DO 30 i = 1,n
W(i,Z) = R(i,Axis) * W(i,P1) - W(i,P2) * j

30 CONTINUE
END IF

40 CONTINUE
RETURN
END

47

Each instruction in the driver is encoded by five integers:

(1) The location in which to store the result;

(2) The location of the first term in (89);

(3) The location of the second term in (89);

(4) The value of i in (89) (1 ⇒ x, 2 ⇒ y, 3 ⇒ z);

(5) The coefficient of the second term in (89).

For example, the first instruction (4, 3, 0, 1, 0) corresponds to the fourth equation
in (90) and the fourth instruction (6, 4, 2, 1, 1) corresponds to the last equation in
(90). We note the following:

(a) DoMD1 uses the coefficient of the second term in (89) to determine
which of the three special cases of (89) to use.

(b) Each instruction results in the appropriate RR being applied to an entire
column (n elements) of the W array, not just to a single element. That is,
DoMD1 actually forms n sets of [r], not just a single set. Of course, n is
the batch size described in Section 4.2 and this is the device by which
PRISM is vectorized.

(c) The driver is frugal in its use of locations: to the greatest extent possible,
it re-uses locations by overwriting intermediates when they are no longer
needed. For example, instruction #1 places [px](1) in location 4 but, after
this has been used in instruction #4 to generate [dxx], the [px](1) is
overwritten in instruction #6 by [dxz].

The other PRISM subroutines whose names begin with Do (see Section
4.6) operate very similarly to DoMD1. Each is handed the W array, a driver and,
if necessary, some auxiliary arrays such as R in DoMD1 and then proceeds to
generate columns of W by combining columns with one another and, possibly,
with the auxiliary arrays.

48

To complete this subsection, we must derive two further RRs. In order to
undertake the T2

MD or T3
MD steps, we require RRs involving half-contracted or

fully-contracted [r](m), respectively. These are easily derived [61c] by replacing
Ri in (89) by appropriate identities. Thus, if the easily verified identity

R i ≡
2α
2ζ

(Bi − Ai) + (Qi − Bi) (91)

is substituted into (89), we obtain the half-contracted RR

a'b' p' (r](m) = (Bi − Ai)(a'+1)b' (p'+1)(r − 1i]
(m+1)

+ (Qi − Bi)a' b' p' (r − 1i]
(m+1)

− (ri −1)a'b' p' (r − 2 i]
(m+1)

(92)

which is suitable for use in the T2
MD step. Likewise, if the identity

R i ≡
2α
2ζ

(Bi − Ai) +
2γ
2η

(Ci − Di) + (Di − Bi) (93)

is substituted into (89), we obtain the fully-contracted RR

a'b' p' (r)c'd' q'
(m) = (Bi − Ai)(a' +1)b' (p'+1) (r −1i)c'd' q'

(m+1)

+ (Ci − Di)a'b' p' (r − 1i)(c' +1)d' (q'+1)
(m+1)

+ (Di − Bi)a'b' p' (r − 1i)c'd' q'
(m+1)

− (ri −1)a'b' p' (r − 2 i)c'd' q'
(m+1)

(94)

which is suitable for use in the T3
MD step.

49

4 . 5 . 2 O n e - E l e c t r o n T r a n s f o r m a t i o n s o n t h e M D P R I S M

The T4
MD , T7

MD , and T8
MD steps in Figure 1 transform uncontracted

p-bras (or q-kets) to uncontracted bras (or kets). There is little to say about such
transformations except that they are accomplished by (57) and (59) and form the
backbone of the classical MD algorithm [52]. Their chief weakness is that,
because they are uncontracted transformations, they contribute to the x and y cost-
parameters in (42) and therefore become very expensive when applied to braket
classes of moderate or high degree of contraction. For such classes, it would
obviously be more efficient to contract before transforming: this is precisely what
the T5

MD , T6
MD and T9

MD steps achieve. But how can this be done?

It is only the second terms in (57) and (59) which prevent the application
of these RRs to contracted bras and kets because the prefactors (Pi-Ai) and (Qi-Ci)
vary from primitive to primitive. However, if we replace these by identities based
on the definitions (12) of P and Q, as was first suggested in [61a], a new RR,
which can be applied to contracted bras and kets, emerges. In bra notation, it can
be expressed [61b] as

(0 0

a + 1i b p

′ a ′ b ′ p | = pi(0 0

a b p − 1i

′ a ′ b ′ p |+ (Bi − Ai)(0 0

a b p

′ a ′ b +1 ′ p +1|
+ (0 0

a b p + 1i

′ a ′ b ′ p +1|
(95)

Eqn. (95) is the contracted analogue of (59) and is much more efficient for highly
contracted braket classes. The corresponding contracted analogue of (57) is
obvious.

Thus, by using (59), (89), (92), (94) and (95) in judicious combinations,
one can traverse any of the 10 paths in Figure 1 (and, indeed, with only trivial
extensions, any of the 20 paths in Figure 3). By choosing always to go by the
cheapest (in a Flops or Mops sense) path, one gains the full benefit of the PRISM
algorithm.

50

4 . 5 . 3 T w o - E l e c t r o n T r a n s f o r m a t i o n s o n t h e H G P P R I S M

The T1
HGP step in Figure 2 transforms [0](m) to [m0|n0] integrals and

the T2
HGP and T3

HGP steps are the half-contracted and contracted variants of this.
However, before we can even contemplate the HGP algorithm within a braket
framework, it is necessary to recast the OS RR (67), which involves 〈ab|cd〉(m)

integrals, into a new form involving [ab|cd](m) integrals. Although this is
straightforward to do, it has not previously appeared in the literature. Upon
substituting the connection formula

abcd[](m) ≡ 2ζη
ζ+η







m
abcd

(m)
(96)

which is easily derived by comparing (63) and (68), into (67) and simplifying, we
discover a new RR

(a +1i)bcd[](m) = (Bi − A i)
2β
2ζ





 abcd[](m) + R i

1
2ζ





 abcd[](m+1)

+ ai
1

2ζ




 (a − 1i)b cd[](m) − 1

2ζ






2
(a −1 i)bcd[](m+1)








+ bi
1

2ζ




 a(b − 1i)cd[](m) − 1

2ζ






2
a(b − 1i) cd[](m+1)








+ ci
1

2ζ






1
2η() ab (c − 1i)d[](m+1)

+ di
1

2ζ






1
2η() abc(d − 1i)[](m+1)

(97)

by which any [ab|cd] can be reduced to the [00|00](m) ≡ [0](m) discussed in
Section 4.3. Through this sleight of hand, we free ourselves of the necessity to
consider the OS 〈ab|cd〉(m) integrals any further and we greatly clarify the
relationship between the MD and HGP algorithms. We note too that, in additon
to being more aesthetically pleasing than (67), (97) is also computationally
superior to it because all of the four-center exponent factors in (67) are replaced
by two-center factors in (97). Thus, each of the terms in (97) is now clearly a
braket, i.e. of the form (55).

51

In the original HGP method (Section 3.9), a special case of the OS RR,
termed the VRR, is used to compute [m0|n0] from 〈00|00〉(m) integrals. If,
instead, we use the analogous special case of (97), we obtain a new RR

(a +1i)0c0[](m) = (Bi − Ai)
2β
2ζ





 a0 c0[](m) + Ri

1
2ζ





 a0 c0[](m+1)

+ ai
1

2ζ




 (a −1i)0 c0[](m) − 1

2ζ






2
(a − 1i)0 c0[](m+1)








+ ci
1
2ζ







1
2η() a0 (c − 1i)0[](m+1)

(98)

by which we can compute [m0|n0] from [00|00](m) ≡ [0](m). This, of course, is

precisely what is needed to perform the T1
HGP step in Figure 2.

Finally, just as we derived RRs for T2
MD and T3

MD from the RR for

T1
MD in Section 4.5.1, we can derive RRs for T2

HGP and T3
HGP from (98) by

replacing Ri by the identities (91) and (93). In this way, we eventually obtain

52

(0 0

a + 1i b 0

′ a ′ b ′ p |
0 0

c d 0

′ c ′ d ′ q
)(m)

=

(Bi − Ai)(0 0

a b 0

′ a ′ b +1 ′ p + 1|
0 0

c d 0

′ c ′ d ′ q
)(m)

+




 





(0 0

a b 0

′ a + 1 ′ b ′ p + 2|
0 0

c d 0

′ c ′ d ′ q
)(m+1)




 





+ (Ci − Di)(0 0

a b 0

′ a ′ b ′ p +1|
0 0

c d 0

′ c +1 ′ d ′ q +1
)(m+1)

+ (Di − Bi)(0 0

a b 0

′ a ′ b ′ p +1|
0 0

c d 0

′ c ′ d ′ q
)(m+1)

+ai (0 0

a −1i b 0

′ a ′ b ′ p + 1|
0 0

c d 0

′ c ′ d ′ q
)(m)

− (0 0

a −1i b 0

′ a ′ b ′ p + 2|
0 0

c d 0

′ c ′ d ′ q
)(m+1)




 








 





+ ci(0 0

a b 0

′ a ′ b ′ p +1|
0 0

c − 1i d 0

′ c ′ d ′ q +1
)(m+1)

(99)

for T3
HGP . The derivation of the (slightly simpler) T2

HGP recurrence relation is
left as an exercise for the reader...

53

4 . 5 . 4 O n e - E l e c t r o n T r a n s f o r m a t i o n s o n t h e H G P P R I S M

The T4
HGP , T5

HGP , T6
HGP , T7

HGP , T8
HGP and T9

HGP steps in Figure 2
correspond to the transformation of [m0| and (m0| to [bra| and (bra|, respectively,
and the analogous ket transformations. As Head-Gordon and Pople emphasized
[55], the RR (70) which achieves this for (bra| = (ab| in the uncontracted case is
also applicable in the contracted case. This represents an important difference
between the MD and HGP PRISMs because it is therefore always preferable to
contract fully before the last two transformations on the HGP PRISM whereas this
is not the case on the MD PRISM.

At first glance, there is not much more that can be said about this
transformation. The RR (70) is extremely simple and is easy to use and it might
appear that our analysis can probe no further. However, as Ryu, Lee and Lindh
have shown [59b], if one wishes to apply (70) in a way that minimizes the number
of Flops involved, a complicated tree-search problem must first be solved. These
authors were unable to solve the general problem but gave heuristic solutions
which clearly indicated that substantial savings were available. However, this is
not the approach which is followed in the HGP-PRISM algorithm...

As Johnson et al. have recently found [63], if one seeks a transformation
scheme which is Mop-optimal, rather than Flop-optimal, one is led to introduce an
entire new family of RRs, which these authors terms “nth-order transfer
relations”. The 1st-order transfer relation is simply (70); the 2nd-order transfer
relations are obtained by applying (70) to itself; and so on. The interested reader
is referred to the original literature for the explicit forms of the first few transfer
relations.

One is immediately led to ask why the Flop-optimal and Mop-optimal
solutions should be so different and the answer, surprisingly, lies in the extreme
simplicity of (70). Although it contains two Flops, it involves four Mops and this
is an unhealthy balance: in essence, not enough “real work” is done between
loading the right-hand-side and saving the left-hand-side. Instead, by the use of
comparatively long nth-order transfer relations, we reduce the amount of memory
traffic dramatically and, on many modern machines, the CPU cost falls. This is
particularly revealing because the Mop-optimal solutions frequently boast Flop
costs of disconcertingly large proportions.

54

4 . 6 L o o p S t r u c t u r e of P R I S M i n G a u s s i a n 92

Call ListS2 to form list of significant shell-pairs
Call SortS2 to sort shell-pair data by type
Call CutoS2 to compute cutoff parameters for each shell-pair
Loop over LTot values

Call TabGmT to set up appropriate interpolation tables
Call MakMD1 to make [0](m) → [r] driver
Loop over bra angular momentum types

Call several routines to form bra-transformation drivers
Loop over ket angular momentum types

Call several routines to form ket-transformation drivers
Call FillAv to decide which paths to make available
Call MkDrTp to make transposition drivers
Call MakVR1 to make [0](m) → [m0|n0] driver
Call MkDrPQ to make scatter drivers
Call several routines to make (0)(m) → (r) drivers
Call several routines to make contraction drivers
Call MkCost to compute PRISM step-costs in Flops and Mops
Loop over KBra values

Form petite list of bra shell-pairs of current type
Loop over KKet values

Call Choose to select the cheapest path
Call PthInf to determine info about the chosen path
Call CalcSF to compute bra- and ket-scalings
Compute maximum number of quartets per batch
Loop over batches of quartets of current type

Call PickS4 to select a batch of quartets
Call LoadS4 to form scaling and distance arrays
Call CalcS4 to compute R2, T, Theta and U values
Call Calc0m to compute [0](m) integrals
Call DoMD1 to transform [0](m) → [r]
Call DoCont to contract [r] → (r]
Call DoCont to contract (r] → (r)
Call DoShuf to scatter (r) → (p|q)
Call DoTran to transform (p|q) → (bra|q)
Call DoShuf to transpose (bra|q)
Call DoTran to transform (bra|q) → (bra|ket)

55

Call Gobbxx to digest (bra|ket)'s
Call Scatxx to scatter Fock contributions etc.

4 . 7 P e r f o r m a n c e of P R I S M i n G a u s s i a n 92

Notwithstanding the apparently strong theoretical arguments in support of
the utility of the PRISM philosophy, our efforts are in vain unless it can be
demonstrated that a real computer program, employing the algorithm, runs fast.
In their paper on the HGP algorithm [55], Head-Gordon and Pople presented CPU
timings on various computers which suggested that the HGP method was
significantly faster than any other method which existed at that time (1988), with
thepossible exception of the PH axis-switch technique (Section 3.5). On that
basis, we have systematically used the HGP method as a performance target while
developing the PRISM methods and have published results [61] which establish
clearly that the MD-PRISM algorithm is generally superior to the HGP algorithm.
However, it was noted in the conclusions of [61c] that the MD-PRISM “is
substantially inferior to HGP for weakly contracted classes of high angular
momentum” and that “a modified version of PRISM that does not suffer from this
defect needs to be developed”. We believe that, by incorporating paths on the
new HGP PRISM, we now have an algorithm which is uniformly and
significantly superior to all existing methods.

As an indication of the performance of our implementation [103] of
PRISM in Gaussian 92, we have measured the CPU time for a single Hartree-
Fock SCF iteration on a number of polyacenes. Our aim in making these
measurements is to establish some well-defined benchmarks against which other
programs in the future can be tested.

The precise specifications underlying our timings are:

(1) Computer: Dedicated IBM RS/6000 Model 320 (AIX)

(2) Procedure: Direct RHF-SCF (1st cycle only)

(3) Basis Set: 6–31G*

(4) Accuracy: 10-10

(5) Symmetry Used: D2

(6) Initial Guess: Projected INDO

(7) Geometry: C-C bond lengths = 1.4 Å

C-H bond lengths = 1.1 Å

56

All angles = 120 degrees.

Table IV: Timingsa for One Direct HF–SCF Cycle on Some Polyacenes

Molecule Nb Integralsc Fockd Totale

C6H6 102 38 (61) 13 52 (74)

C10H8 166 163 (269) 67 230 (336)

C14H10 230 403 (652) 191 594 (843)

C18H12 294 747 (1215) 371 1118 (1585)

C22H14 358 1192 (1956) 627 1819 (2583)

(a) In CPU seconds with HGP values in parentheses.
See text for detailed specifications.

(b) Number of basis functions.
(c) Time to construct all needed integrals.
(d) Time to digest integrals into an RHF Fock matrix.
(e) Sum of (c) and (d).

We may infer from the data in Table IV that the cutoff scheme used in
PRISM is working satisfactorily. Even though none of the molecules considered
could be considered large, the CPU times are already increasing much less rapidly
than N4: between C18H12 and C22H14 the functional dependence is close to
N2.5.

It is also interesting to note that the fraction of the Total time which is
associated with Fock matrix construction becomes larger in the larger systems.
Presumably, this is because (due to our modeling scheme) the average degree of
contraction is less in the larger molecules. This renders the integrals cheaper to
form but has no effect on the Fock construction time.

57

5 . P R O S P E C T S F O R TH E F U T U R E

The theory and practice of Molecular Integrals over Gaussian Basis
Functions have come a long way since Boys’ 1950 proposal. However,
notwithstanding the enormous progress that has been made, there is little
justification for the notion that we have reached the end of the road. Today, one
can undertake Quantum Chemical calculations which would have been
inconceivable only a decade ago and, without a doubt, computational chemists
will be making the same observation a decade from now.

Advances in computer hardware will continue to catalyse and fuel the
construction of novel software strategies. The advent of vector machines during
the 1980s revolutionized the way in which integral programs were constructed
and a second revolution is now underway in response to the possibilities afforded
by the new Massively Parallel Processing (MPP) machines. The problem of
effectively implementing PRISM within an MPP framework, which is presently
under investigation in a number of groups, is a difficult one and it may eventually
turn out that only radical departures from the conventional wisdom will yield
efficient codes on the teraflop computers of the future.

Another, equally important, avenue to future developments involves the
importation of ideas from other disciplines. This type of cross-fertilization – a
ubiquitous ingredient in the advance of science – is apparent in the papers of
Feibelman [104], Yang [105], Panas and Almlöf [106], Galli and Parrinello [107]
and others. Indeed, some of these workers provide tantalizing evidence that the
Holy Grail of Quantum Chemistry – a practical scheme for SCF calculations
whose expense increases asymptotically only linearly with the system size – may
be achieved in the rather near future.

Speculatively combining such hardware and software advances leads to
the conclusion that accurate ab initio calculations on molecular systems with
thousands of atoms may soon be routine and Quantum Chemistry will have come
of age.

58

6 . A C K N O W L E D G M E N T S

It is a pleasure to acknowledge the contributions which many others have
made to my research effort at Carnegie Mellon University.

For more than four years, John Pople has been friend and mentor to me.
Like others before me, I have been greatly influenced by the seasoned pragmatism
which underlies his approach to Quantum Chemistry.

In a similar vein, it was a number of conversations with Martin Head-
Gordon, shortly after his discovery of the algorithm which now bears his name,
that sparked my early interest in the theory of Molecular Integrals.

More recently, the careful work of Benny Johnson has been instrumental
in elucidating how best to apply PRISM in the context of the two- and three-
center problems. The extraordinary speed of the Electrostatic Potential program
in Gaussian 92 is compelling testimony to his successes in this endeavor.

The greater part of what I know about constructing effective computer
implementations of abstract algorithms I have learned from Mike Frisch and I am
indebted to him for his advice over the years.

The MD-PRISM was first presented at the Argonne National Laboratory’s
“Methodology of the Evaluation of Integrals in LCAO Calculations” workshop in
August 1990. The HGP-PRISM was first presented at the “PRISM” workshop in
Connecticut in August 1992. I am grateful to Argonne and to Lorentzian Inc.,
respectively, for invitations to speak at these meetings.

My work at Carnegie Mellon has been funded under various National
Science Foundation grants.

Finally, I thank my wife, Elizabeth, for her loving constancy, her
encouragement and her typing of this manuscript.

59

7 . R E F E R E N C E S

[1] E. Schrödinger, Ann. Physik 79 (1926) 361.
[2] (a) J.C. Slater, Phys. Rev. 34 (1929) 1293.

(b) J.C. Slater, Phys. Rev. 35 (1930) 509.
[3] (a) D.R. Hartree, Proc. Cam. Phil. Soc. 24 (1928) 89.

(b) D.R. Hartree, Proc. Cam. Phil. Soc. 24 (1928) 111.
(c) D.R. Hartree, Proc. Cam. Phil. Soc. 24 (1928) 426.

[4] V. Fock, Z. Physik 61 (1930) 126.
[5] P. Hohenberg and W. Kohn, Phys. Rev. B136 (1964) 864.
[6] W. Kohn and L.J. Sham, Phys. Rev. A140 (1965) 1133.
[7] L.H. Thomas, Proc. Cam. Phil. Soc. 23 (1927) 542.
[8] E. Fermi, Rend. Accad., Lincei 6 (1927) 602.
[9] P.A.M. Dirac, Proc. Cam. Phil. Soc. 26 (1930) 376.
[10] J.C. Slater, Phys. Rev. 81 (1951) 385.
[11] (a) R. Pariser and R.G. Parr, J. Chem. Phys. 21 (1953) 466.

(b) R. Pariser and R.G. Parr, J. Chem. Phys. 21 (1953) 767.
(c) J.A. Pople, Trans. Faraday Soc. 49 (1953) 1375.

[12] J.A. Pople and D.L. Beveridge, Approximate Molecular Orbital Theory
(McGraw-Hill, New York, 1970)

[13] R.C. Bingham, M.J.S. Dewar and D.H. Lo, J. Am. Chem. Soc. 97 (1975)
1285.

[14] M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899.
[15] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy and J.J.P. Stewart, J. Am. Chem.

Soc. 107 (1985) 3902.
[16] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 221.
[17] A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to

Advanced Quantum Chemistry (McGraw-Hill, New York, 1989).
[18] The Kohn-Sham equations would indeed be equivalent to the Schrödinger

equation if the universal exchange-correlation functional were known.
Since it has not yet been discovered, practical forms of Kohn-Sham theory
are (like Hartree-Fock theory) well-defined approximations to Schrödinger
theory.

[19] (a) P. Pulay, Adv. Chem. Phys. 69 (1987) 241.
(b) H.B. Schlegel, Adv. Chem. Phys. 67 (1987) 249.

60

(c) R. Fournier, J. Andzelm and D.R. Salahub, J. Chem. Phys. 90 (1989)
6371.

[20] (a) J.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J.
Quantum Chem., Symp. 13 (1979) 225.

(b) R. Fournier, J. Chem. Phys. 92 (1990) 5422.
[21] (a) S.M. Colwell, D. Jayatilaka, P.E. Maslen, R.D. Amos and N.C. Handy,

Int. J. Quantum. Chem. 40 (1991) 179.
(b) P.E. Maslen, D. Jayatilaka, S.M. Colwell, R.D. Amos and N.C. Handy,
J. Chem. Phys. 95 (1991) 7409.

(c) P.E. Maslen, N.C. Handy, R.D. Amos and D. Jayatilaka, J. Chem. Phys.
97 (1992) 4233.

[22] J.C. Slater, Phys. Rev. 36 (1930) 57.
[23] W.J. Hehre, R.F. Stewart and J.A. Pople, J. Chem. Phys. 51 (1969) 2657.
[24] H.J. Monkhorst and F.E. Harris, Chem. Phys. Letters 3 (1969) 537.
[25] S.F. Boys, Proc. Roy. Soc. (London) A200 (1950) 542.
[26] E.R. Davidson and D. Feller, Chem. Rev. 86 (1988) 681.
[27] E. Clementi, IBM J. Res. and Dev. 9 (1965) 2.
[28] (a) H. Preuss, Z. Naturforsch. 11a (1956) 823.

(b) J.L. Whitten, J. Chem. Phys. 39 (1963) 349.
(c) H. Sambe, J. Chem. Phys. 42 (1965) 1732.
(d) J.F. Harrison, J. Chem. Phys. 46 (1967) 1115.
(e) A.A. Frost, J. Chem. Phys. 47 (1967) 3707.

[29] (a) E.A. McCullough Jr., Chem. Phys. Letters 24 (1974) 55.
(b) E.A. McCullough Jr., J. Chem. Phys. 62 (1975) 3991.
(c) E.A. McCullough Jr., Comp. Phys. Rep. 4 (1986) 265.

[30] (a) L. Adamowicz and E.A. McCullough Jr., J. Chem. Phys 75 (1981)
 2475.
(b) L. Adamowicz, R.J. Bartlett and E.A. McCullough Jr., Phys. Rev. Lett.
54 (1985) 426.

[31] (a) A.D. Becke, J. Chem. Phys. 76 (1982) 6037.
(b) A.D. Becke, J. Chem. Phys. 78 (1983) 4787.
(c) A.D. Becke, Phys. Rev. A 33 (1986) 2786.

[32] (a) L. Laaksonen, D. Sundholm and P. Pyykkö, Int. J. Quantum Chem. 27
 (1985) 601.
(b) L. Laaksonen, P. Pyykkö and D. Sundholm, Comp. Phys. Rep. 4 (1986)
313.

[33] D. Heinemann, B. Fricke and D. Kolb, Chem. Phys. Letters 145 (1988) 125.

61

[34] M. Defranceschi, M. Suard and G. Berthier, Int. J. Quantum Chem. 25
(1984) 863.

[35] S.A. Alexander, R.L. Coldwell and H.J. Monkhorst, J. Comp. Phys. 76
(1988) 263.

[36] (a) A.D. Becke and R.M. Dickson, J. Chem. Phys. 89 (1988) 2993.
(b) A.D. Becke, Int. J. Quantum Chem., Symp. 23 (1989) 599.
(c) A.D. Becke, J. Chem. Phys. 92 (1990) 3610.
(d) A.D. Becke, J. Chem. Phys. 96 (1992) 2155.

[37] (a) V.I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 15 (1975) 48.
(b) V.I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz. 16 (1976) 293.
(c) V.I. Lebedev, Sibirsk. Mat. Zh. 18 (1977) 132.
(d) V.I. Lebedev, Proc. Conf. Novosibirsk (1978), ed. S.L. Sobolev (Nauka
Sibirsk. Otdel., Novosibirsk, 1980).

[38] A.D. Becke, J. Chem. Phys. 88 (1988) 2547.
[39] B. Delley, J. Chem. Phys. 92 (1990) 508.
[40] D.R. Salahub, in Density Functional Methods in Chemistry, eds. J.K.

Labanowski and J.W. Andzelm (Springer-Verlag, New York, 1991).
[41] C.W. Murray, N.C. Handy and G.J. Laming, Mol. Phys. in press.
[42] P.M.W. Gill, B.G. Johnson and J.A. Pople, Chem. Phys. Letters, submitted.
[43] Overlap, kinetic-energy, nuclear-attraction and two-electron-repulsion

integrals can all be written in this general form. The matrix elements of the
exchange-correlation contribution to the energy in Kohn-Sham theory
cannot, however. They are so awkward that a second basis set (usually of
the Gaussian or Delta type) must be introduced to permit the computation.
This, however, lies beyond the scope of our present Review.

[44] J. Almlöf, K. Faegri and K. Korsell, J. Comput. Chem. 3 (1982) 385.
[45] J. Andzelm, in Density Functional Methods in Chemistry,

eds. J.K Labanowski and J.W. Andzelm (Springer-Verlag, New York,
1991).

[46] I. Shavitt, in Methods in Computational Physics, Vol. 2, eds. B. Alder,
S. Fernback and M. Rotenberg (Academic Press, New York, 1963).

[47] H. Taketa, S. Huzinaga and K. O-ohata, J. Phys. Soc. Japan 21 (1966)
2313.

[48] E. Clementi and D.R. Davis, J. Comput. Phys. 1 (1967) 223.
[49] (a) E. Clementi, H. Clementi and D.R. Davis, J. Chem. Phys. 46 (1967)

 4725.
(b) E. Clementi, J. Chem. Phys. 46 (1967) 4731.
(c) E. Clementi, J. Chem. Phys. 46 (1967) 4737.

[50] (a) J.A. Pople and W.J. Hehre, J. Comp. Phys. 27 (1978) 161.

62

(b) W.J. Hehre, W.A. Lathan, M.D. Newton, R. Ditchfield and J.A. Pople,
 Gaussian 70, Program No. 136, QCPE, Indiana University,
 Bloomingtion, Indiana.

[51] (a) M. Dupuis, J. Rys and H.F. King, J. Chem. Phys. 65 (1976) 111.
(b) H.F. King and M. Dupuis, J. Comput. Phys. 21 (1976) 44.
(c) J. Rys, M. Dupuis and H.F. King, J. Comput. Chem. 4 (1983) 154.

[52] L.E. McMurchie and E.R. Davidson, J. Comput. Phys. 26 (1978) 218.
[53] (a) H.B. Schlegel, J. Chem. Phys. 77 (1982) 3676.

(b) H.B. Schlegel, J. Chem. Phys. 90 (1989) 5630.
[54] (a) S. Obara and A. Saika, J. Chem. Phys. 84 (1986) 3963.

(b) S. Obara and A. Saika, J. Chem. Phys. 89 (1988) 1540.
[55] M. Head-Gordon and J.A. Pople, J. Chem. Phys. 89 (1988) 5777.
[56] K. Ishida, J. Chem. Phys. 95 (1991) 5198.
[57] T.P. Hamilton and H.F. Schafer III, Chem. Phys. 150 (1991) 163.
[58] I. Panas, Chem. Phys. Letters 184 (1991) 86.
[59] (a) R. Lindh, U. Ryu and B. Liu, J. Chem. Phys. 95 (1991) 5889.

(b) U. Ryu, Y.S. Lee and R. Lindh, Chem. Phys. Letters 185 (1991) 562.
[60] T. Helgaker and P.R. Taylor, Theor. Chim. Acta 83 (1992) 177.
[61] (a) P.M.W. Gill, M. Head-Gordon and J.A. Pople, Int. J. Quantum Chem.,

Symp. 23 (1989) 269.
(b) P.M.W. Gill, M. Head-Gordon and J.A. Pople, J. Phys. Chem. 94
 (1990) 5564.
(c) P.M.W. Gill and J.A. Pople, Int. J. Quantum Chem. 40 (1991) 753.

[62] M.J. Frisch, B.G. Johnson, P.M.W. Gill, D.J. Fox and R.H. Nobes, Chem.
Phys. Letters, submitted.

[63] B.G. Johnson, P.M.W. Gill and J.A. Pople, Chem. Phys. Letters, submitted.
[64] V.R. Saunders, in Computational Techniques in Quantum Chemistry and

Molecular Physics, eds. G.H.F. Diercksen, B.T. Sutcliffe and A. Veillard
(Reidel, Dordrecht, 1975).

[65] V.R. Saunders, in Methods in Computational Physics, eds. G.H.F.
Diercksen, and S. Wilson (Reidel, Dordrecht, 1983).

[66] D. Hegarty and G. van der Velde, Int. J. Quantum Chem. 23 (1983) 1135.
[67] D. Hegarty, in Advanced Theories and Computational Approaches to the

Electronic Structure of Molecules, ed. C.E. Dykstra (Reidel, Dordrecht,
1984).

[68] L.L. Shipman and R.E. Christoffersen, Comp. Phys. Comm. 2 (1971) 201.
[69] S.T. Elbert and E.R. Davidson, J. Comp. Phys. 16 (1974) 391.
[70] F.E. Harris, Int. J. Quantum Chem. 23 (1983) 1469.

63

[71] P.M.W. Gill, B.G. Johnson and J.A. Pople, Int. J. Quantum Chem. 40
(1991) 745.

[72] (a) P.M.W. Gill, B.G. Johnson, J.A. Pople and S.W. Taylor, J. Chem. Phys.
96 (1992) 7178.

(b) P.M.W. Gill and J.A. Pople, in preparation.
[73] (a) W. Kutzelnigg, Theor. Chim. Acta 68 (1985) 445.

(b) W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94 (1991) 1985.
[74] A. Preiskorn and B. Zurawski, Int. J. Quantum Chem. 27 (1985) 641.
[75] M.J. Bearpart, N.C. Handy, R.D. Amos and P.E. Maslen, Theor. Chim.

Acta 79 (1991) 361.
[76] W. Klopper and R. Röhse, Theor. Chim. Acta 83 (1992) 441.
[77] J.S. Binkley, M.J. Frisch, D. J. Defrees, K. Raghavachari, R.A. Whiteside,

H.B. Schlegel, E.M. Fluder and J.A. Pople, Gaussian 82, Carnegie-Mellon
University, Pittsburgh (1984).

[78] M.J. Frisch, J.S. Binkley, H.B. Schlegel, K. Raghavachari, C.F. Melius,
R.L. Martin, J.J.P. Stewart, F.W. Bobrowicz, R.A. Whiteside, D.J. Fox,
E.M.Fleuder and J.A. Pople, Gaussian 86, Carnegie Mellon Quantum
Chemisty Publishing Unit, Pittsburgh, PA (1987).

[79] One axis coincides with AB another passes through Q, and the third is their
mutual perpendicular.

[80] One axis coincides with AB , another is mutually perpendicular to AB and
CD , and the third is their mutual perpendicular.

[81] P.C. Hariharan, PhD thesis, Carnegie Mellon University (1973).
[82] Hamilton and Schaefer [57] ascribe this idea to C. Murray.
[83] A. Komornicki, K. Ishida, M. Morokuma, R. Ditchfield and M. Conrad,

Chem. Phys. Letters 45 (1977) 595.
[84] Gaussian 92, M.J. Frisch, G.W. Trucks, M. Head-Gordon, P.M.W. Gill,

M.W. Wong, J.B. Foresman, B.G. Johnson, H.B. Schlegel, M.A. Robb,
E.S. Replogle, R. Gomperts, J.L. Andres, K. Raghavachari, J.S. Binkley,
C. Gonzalez, R.L. Martin, D.J. Fox, D.J. Defrees, J. Baker, J.J.P. Stewart
and J.A. Pople, Gaussian Inc., Pittsburgh PA, 1992.

[85] Pairs of shells are required for most PRISM calculations but, for example,
if overlap integrals are being calculated as outlined in Section 3.2.1, the
"shell-pairs" are constructed by pairing each shell with a "dummy" (β = 0)
shell.

[86] D.L. Wilhite and R.N. Euwema, J. Chem. Phys. 61 (1974) 375.
[87] J. Rys, H.F. King and P. Coppens, Chem. Phys. Letters 41 (1976) 383.

64

[88] M. Yanez, R.F. Stewart and J.A. Pople, Acta. Cryst. A 34 (1978) 641.

[89] (a) B.I. Dunlap, J.W.D. Connolly and J.R. Sabin, J. Chem. Phys. 71 (1979)
3396.

(b) B.I. Dunlap, J.W.D. Connolly and J.R. Sabin, J. Chem. Phys. 71 (1979)
4993.

[90] (a) G.G. Hall and D. Martin, Isr. J. Chem. 19 (1980) 255.
(b) G.G. Hall, Theor. Chim. Acta 63 (1983) 357.
(c) G.G. Hall and C.M. Smith, Int. J. Quantum Chem. 25 (1984) 881.
(d) C.M. Smith and G.G. Hall, Theor. Chim. Acta 69 (1986) 63.

[91] C. Van Alsenoy, J. Comput. Chem. 9 (1988) 620.
[92] (a) A. Fortunelli and O. Salvetti, J. Comput. Chem 12 (1991) 36.

(b) A. Fortunelli and O. Salvetti, Chem. Phys. Letters 186 (1991) 372.
[93] P.M.W. Gill, B.G. Johnson and J.A. Pople, Chem. Phys. Letters, submitted.
[94] J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon,

London, 1904).
[95] J.L. Whitten, J. Chem. Phys. 58 (1973) 4496.
[96] J. Power and R.M. Pitzer, Chem. Phys. Letters 24 (1974) 478.
[97] (a) R. Ahlrichs, Theor. Chim. Acta 33 (1974) 157.

(b) M. Haser and R. Ahlrichs, J. Comput. Chem. 10 (1989) 104.
(c) H. Horn, H. Weiβ, M. Haser, M. Ehrig and R. Ahlrichs, J. Comput.
Chem. 12 (1991) 1058.

[98] B.G. Johnson, P.M.W. Gill, J.A. Pople and D.J. Fox, Chem. Phys. Letters,
submitted.

[99] Pairs of shell-pairs are required for most PRISM calculations but, for
example, if nuclear-attraction integrals are being calculated as outlined in
Section 3.2.4, the "shell-quartets" are constructed by pairing the shell-pairs
with the infinite-exponent Gaussian at each of the nuclei.

[100] For example, we might begin by forming batches of (ss|ss) quartets with
Kbra = Kket = 1 and, once these have all been treated, we might proceed
with batches of (ss|ss) quartets with Kbra = 2 and Kket = 1, and so forth.
This approach, which is known as extrinsic vectorization, has been
discussed by a number of authors. Our version is described in detail in
[61b].

[101] Eq. (87) is readily derived from (86) by examining the asymptotic
expansion of the latter and it is the attractive simplicity of (87) which
motivates the definition (74).

65

[102] B.G. Johnson, P.M.W. Gill and J.A. Pople, Int. J. Quantum Chem. 40
(1991) 809.

[103] The following paths were made available in these calculations:
MD–CCTTT, MD–CTCTT, MD–TCCTT, MD–TCTCT, MD–TTTCC and
HGP–TCCTT.

[104] P.J. Feibelman, J. Chem. Phys. 81 (1984) 5864.
[105] W. Yang, Phys. Rev. Lett. 66 (1991) 1438.
[106] I. Panas and J. Almlöf, Int. J. Quantum Chem. 42 (1992) 1073.
[107] G. Galli and M. Parrinello, Phys. Rev. Lett. 69 (1992) 3547.

