Tutorial

Question 1

A depth-first forest classifies the edges of a graph into tree, back, forward, and
cross edges. A breadth-first tree can also be used to classify the edges reachable
from the source of the search into the same four categories. Prove that in a
breadth-first search of a directed graph, the following properties hold:

1. There are no forward edges.
2. For each tree edge (u,v), we have d[v] = d[u] + 1.
3. For each cross edge (u,v), we have d[v] < d[u] + 1.

4. For each back edge (u,v), we have 0 < d[v] < d[u].

Background: Breadth First Search

Breadth First Search starts at a source s. Each vertex, u, has a distance,
d[u], from s. Intuitively, d[s] = 0. If the graph is not a connected graph (there
is a path from each vertex to every other vertex), then vertices not reachable
from s will have an infinite distance from s. That is, d[u] = oo, where w is not
reachable from s.



Figure 1: Example BFS Tree. Bold directed edges indicate tree edges that point
from parent to child. Numbers indicate the distance from source s.

def bfs(V, adj, s):
for each u in V:
color[u] = WHITE
d[u] = INFINITY

plul = NIL
color[s] = GRAY
d[s] =0
Q = {s}

while Q is not empty:
u = head of Q
for each v in adj[ul:
if color([v] == WHITE:
color[v] = GRAY
dfv] = dfu] + 1
plvl = u
append v to end of Q
remove u from head of Q
color[u] = BLACK
return (d, p)

Background: Edge Classification

1. Tree Edge — A tree edge is an edge that is in the output tree of some graph
search algorithm, such as the breadth first search.

2. Forward Edge — An edge not in the output tree that connects a vertex to
a descendent in the output tree.

3. Back Edge — An edge of the original graph that connects a vertex to its
ancestor in the output tree.

4. Cross Edge — All other edges. Edges not in the output tree that is neither
a forward edge nor a back edge.

Answer



One or more nodes in the
path from u to v.

A forward edge that
was not included in
the BFS tree!

15

Figure 2: For a forward edge (u,v) to exist, the path from u to v in the BFS
tree must contain at least one intermediate node. Thus the following condition
must hold du] + 1 < d[v].

1. There are no forward edges.

For a forward edge (u,v) to exist, (u,v) must not be in the BFS tree and
u is an ancestor of v in the BFS tree. Thus, d[u] + 1 < d[v] must hold.
That is, there must be at least one vertex in the predecessor path from v
to u. Otherwise, it would imply that (u,v) was in the BFS tree and would
not be considered a forward edge.

Statement 1: When u is the head of the GRAY queue of discovered
vertices, then it is made the ancestor of all adjacent vertices that are
WHITE. Each is also made GRAY and added to the end of the queue of
discovered vertices. For (u,v) to exist in the graph but not be included in
the BFS tree, v could not have been WHITE when u was the head of the
queue. Which means that v was either BLACK or GRAY.

Statement 2: If v was BLACK, then v has been visited before u. Thus,
d[v] < d[u]. So u cannot be an ancestor of v.

Statement 3: If v was GRAY, then v has been discovered before u
became the head of the queue. In fact, v is in the queue behind u when
u was the head of the queue. Any new vertices discovered while u is the
head of the queue will have a distance of d[u] + 1. But since v was in the
queue before any of these newly discovered nodes, d[v] < d[u] + 1.

Thus, whether v was BLACK or GRAY when u was the head of the queue,
none of the conditions allow forward edges to exist. Proving that there
are no forward edges in a BFS tree.

2. For each tree edge (u,v), we have d[v] = d[u] + 1.
Following the BFS tree construction, if (u,v) is a tree edge, then d[v] =

d[u] + 1, because u is a parent of v in the BFS tree.

3. For each cross edge (u,v), we have d[v] < d[u] + 1.



From statement 3, any edge (u, v) excluded from the BFS tree must have
dv] < d[u] + 1.

4. For each back edge (u,v), we have 0 < d[v] < d[u].

If (u,v) is a back edge, then v must be an ancestor of u. So d[v] < d[u].
Since v may very well be the source s, 0 < d[v].

Question 2

There are two well-known algorithms for finding minimum spanning trees. Point
out the difference between Prim’s algorithm and Kruskal’s algorithm in terms
of the construction of the MST tree.

The construction of an MST using Prim’s algorithm begins from a single vertex.
From here, the tree is expanded until it covers all the vertices in the graph. In
other words, there is only one partial tree during the construction of the MST
from the very beginning to the end. However, Kruskal’s algorithm starts from a
forest of |V single vertex trees. At each step, it merges two trees in the forest,
continuing until there is only one tree left; the MST.

Question 3

Assume that the weight assigned to each edge in graph G = (V, E) is distinct.
Let e be a mazimum-weighted edge on a cycle of G = (V,E). Show that a
minimum spanning tree in G' = (V, E — {e}) is also a minimum spanning tree
n G.

Let 77 be a minimal spanning tree of G’. We claim that 7" is also a minimal
spanning tree of G. The only difference between G and G’ is that G has the
additional edge e. Thus, our claim will only be wrong if the minimal spanning
tree of G contains the edge e. Let T be such a tree. Removing e = (u,v)
from T disconnects the tree into two subtrees, one containing v and the other
containing v. If there exist an edge of lower weight than e that connects the
two subtrees, then T was not a MST!

Since e is part of a cycle, then by including e in T', at least one of the other
edges in the cycle must have been excluded from T (because there are no cycles
in trees). And we know that any edge of the cycle not used in T has a lower
weight than e (because the weights are distinct). In other words, there exist
an edge of lower weight than e that connects the two subtrees. Thus, any tree
containing e cannot be a MST of G. Removing e from consideration, gives us
G'. Hence, any MST of G’ is also a MST of G.

Question 4

Given a directed weighted graph G = (V,E) with source s, under what cir-
cumstances should the Bellman-Ford algorithm be used, instead of Dijkstra’s



Figure 3: Example Graph

algorithm, to solve the single-source shortest paths problem with source s.

When there exist a negative edge in G; because Dijkstra’s algorithm doesn’t
work for graphs with negative edges.

Question 5

Given a directed weighted graph G = (V, E), let d(v;,v;) be the distance in G
from v; to v; in terms of the minimum number of edges used in the path, v; € V
and v; € V. Define the diameter D of G as D = max,,ev,v;evid(vi,vj)}. What
is the time complexity for finding all pairs of shortest paths in G if the repeated
squaring approach is applied?
Background: Matrix Multiplication for Graphs

Using the graph depicted in Figure 3, let W be a weighted adjacency matrix
of the graph G. Let the matrix M *) contain the all pairs shortest paths of G
of at most k edges.

3
o0 Vi)
0 =M
3

SR LR

1
0
00
00

888

Multiplying MM x W will give us M. This is the shortest path between any
pair of vertices using at most two edges.

M@ =

g 838
880)—!
w o w
o Q¥ ow

Thus, in order to find all pairs of shortest paths in G, we need to find M (~1):
because that would give us all pairs shortest paths of G of at most n — 1 edges.
Hence, we calculate: MM M@ MG M= where M® = MG=1) x W,

With repeated squaring, we only need to calculate:



M(l) M(2) M(4) M(Q[IogQ(n,lﬂ)

where M) = M® x M®,
Each multiplication is O(n?®) time. Since the number of multiplication is

O(log, 1), the runtime of repeated squaring is O(n3log, n). If D is given, then
the runtime is O(n?log, D).



