
Red-Black Trees

A binary search tree becomes less efficient when the tree becomes unbalanced.
For instance, if we store a set of numbers in increasing order, we get a tree as
shown in Figure 1 that is virtually a linked list. To overcome this weakness of
binary search trees, we can use red-black trees. A red-black tree is a binary
search tree with one extra bit of storage per node: its color, which can be either
RED or BLACK. Each node therefore contains at least the fields color, key, left,
right, and parent pointer p.

1 Properties of Red-black Trees

To avoid the situation illustrated in Figure 1, red-black trees adhere to the
following properties in addition to properties of a binary search tree.

• Every node is either RED or BLACK.

• Every leaf is NIL and is BLACK.

• If a node is RED, then both its children are BLACK.

• Every simple path from a node to one of its descendant leaf nodes contains
the same number of BLACK nodes.

Maintaining these properties, a red-black tree with n internal nodes ensures
that its height is at most 2 log(n+1). Thus, a red-black tree may be unbalanced
but will avoid becoming a linked-list that is longer than 2 log(n + 1) + 1.

Figure 1: A binary search tree that is no better than a linked-list!

1



Figure 2: Example Red Black Tree.

Definition: The black-height of a node x refers to the number of
BLACK nodes on any path from, but not including x, to a leaf. The
black-height of the tree is the black-height of the root node.

2 Insertion and Deletion

As red-black trees are essentially binary search trees, querying algorithms such
as Tree-Search and Tree-Minimum can be used on red-black trees. How-
ever, due to the red-black tree properties, insertion and deletion are different
from Tree-Insert and Tree-Delete. Now we may have to change the colours
of some nodes in the tree as well as pointer structures. Changing pointer struc-
tures is the most important as this allows us to avoid the “excessive linked-list”
situation.

2.1 Rotation

We change the pointer structure through rotation, which is a local operation in
a search tree that perserves the binary search tree properties. The algorithm
for left rotation is shown below along with an illustration in Figure 3. Right
rotation is the mirror reflection of left rotation.

2



Figure 3: RBTree-Left-Rotate in action. The rotation results in: (1) y

takes x’s original position, (2) x becomes y’s left child, and (3) y’s original left
child becomes x’s right child.

RBTree-Left-Rotate(T, x)
1 y ← right [x]
2 right [x] ← left [y]
3 p[left [y]] ← x

4 p[y] ← p[x]
5 if p[x] = NIL
6 then root [T ] ← y

7 else if x = left [p[x]]
8 then left [p[x]] ← y

9 else right [p[x]] ← y

10 left [y] ← x

11 p[x] ← y

2.2 Insert

We use the Tree-Insert procedure to insert a node x into T as if it were an
ordinary binary search tree, and then color x RED. If x is the new root node,
then we bypass the while-loop and colour it BLACK. Otherwise, if x’s parent is
BLACK, then there is nothing to do as adding a RED node does not violate any of
the red-black tree properties. However, if x’s parent is RED, then the property

3



that a RED node has two BLACK nodes is violated (because x is RED). In this case,
we enter the while-loop.

RBTree-Insert(T, x)
1 Tree-Insert(T, x) /* See Binary Search Trees */
2 color [x] ← RED
3 while x 6= root [T ] and color [p[x]] =RED
4 do if p[x] = left [p[p[x]]] /* Is the parent of x a left

child? */
5 then y ← right [p[p[x]]]
6 if color [y] =RED
7 then color [p[x]] ← BLACK
8 color [y] ← BLACK
9 color [p[p[x]]] ← RED
10 x ← p[p[x]]
11 else if x = right [p[x]]
12 then x ← p[x]
13 RBTree-Left-Rotate(T, x)
14 color [p[x]] ← BLACK
15 color [p[p[x]]] ← RED
16 RBTree-Right-Rotate(T, p[p[x]])
17 else Mirror opposite of “then” clause
18 color [root [T ]] ← BLACK

4



2.3 Delete

RBTree-Delete(T, z)
1 if left [z] = NIL or right [z] = NIL
2 then y ← z

3 else y ← Tree-Successor(z)
4 if left [y] 6= NIL
5 then x ← left [y]
6 else x ← right [y]
7 p[x] ← p[y]
8 if p[y] = NIL
9 then root [t] ← x

10 else if y = left [p[y]]
11 then left [p[y]] ← x

12 else right [p[y]] ← x

13 if y 6= z

14 then key [z] ← key [y]
15 if color [y] =BLACK
16 then RBTree-Delete-Fixup(T, x)
17 return y

RBTree-Delete-Fixup(T, x)
1 while x 6= root [T ] and color [x] =BLACK
2 do if x = left [p[x]]
3 then w ← right [p[x]]
4 if color [w] =RED
5 then color [w] ← BLACK
6 color [p[x]] ← RED
7 RBTree-Left-Rotate(T, p[x])
8 w ← right [p[x]]
9 if color [left [w]] =BLACK and color [right [w]] =BLACK
10 then color [w] ← RED
11 x ← p[x]
12 else if color [right [w]] =BLACK
13 then color [left [w]] ← BLACK
14 color [w] ← RED
15 RBTree-Right-Rotate(T,w)
16 w ← right [p[x]]
17 color [w] ← color [p[x]]
18 color [p[x]] ← BLACK
19 color [right [w]] ← BLACK
20 RBTree-Left-Rotate(T, p[x])
21 x ← root [T ]
22 else Mirror opposite of “then” clause
23 color [x] ← BLACK

5


