B-Trees

B-trees are balanced search trees designed to work well on magnetic disks or
direct-access secondary storage devices. B-trees differ significantly from red-
black trees in that B-tree nodes may have many children, from a handful to
thousands.

It often takes more time to access a page of information and read it from
a disk than it takes for the computer to examine all the information read. For
this reason, we look at the two principal components of the running time:

e the number of disk accesses, and

e the CPU time.

We model these disk operations in our pseudo-code as follows. Let x be
a pointer to an object. DISK-READ(x) to read object z into main memory;
Disk-WRITE(z) to write object z to the disk.

1 Definition

A B-tree is a rooted tree having the following properties.
1. Every node x has the following fields:

e n[z], the number of keys currently stored in node x

e the n[z] keys themselves, stored in nondecreasing order: key;[z] <
keyo[z] < ... < keyp[g[z], and

Figure 1: B-Tree where t = 2 and the sequence 9,0,8,1,7,2,6,3,5,4 inserted.

e leaf[z], a boolean value that is TRUE if z is a leaf and FALSE if =
is an internal node.

2. If z is an internal node, it also contains n[x]+1 pointers ¢ [z], ca[z], . . . , Cp[z)41[7]

to its children. Leaf nodes have no children, so their ¢; fields are undefined.

3. The keys key;[x] separate the ranges of keys stored in each subtree: if k;
is any key stored in the subtree with root ¢;[x], then

k1 < keyi[z] < ko < keya[z] < ... < keypm[2] < Enfo)+1-

4. Every leaf has the same depth, which is the tree’s height h.

5. There are lower and upper bounds on the number of keys a node can
contain. These bounds can be expressed in terms of a fixed integer ¢ > 2
called the minimum degree of the B-tree:

e Every node other than the root must have at least ¢ — 1 keys. Every
internal node other than the root thus has at least ¢ children. If the
tree is non-empty, the root must have at least one key.

e Every node can contain at most 2¢ — 1 keys. Therefore, an internal
node can have at most 2¢ children. We say that a node is full if it
contains exactly 2t — 1 keys.

THEOREM If n > 1, then for any n-key B-tree T of height h and
minimum degree t > 2, then

n+1

h <log,

2 Operations

The operations for B-trees include B-TREE-SEARCH, B-TREE-CREATE, B-
TREE-INSERT, B-TREE-DELETE, etc. We assume that:

e the root of the B-tree is always in main memory.

e any nodes that are passed as parameters must already have had a DISK-
READ operation performed on them.

Figure 2: The arguments for the B-TREE-SPLIT-CHILD algorithm.

2.1 Search

B-TREE-SEARCH(z, k)
11
while i < nlx] and k > key,[z]
doi—1i+1

if i < nfz] and k = key,[]

then return (z,1)
if leaf[x]

then return NIL

else Disk-READ(c¢;[z])

return B-TREE-SEARCH(¢;[x], k)

© 00 O Uk W

2.2 Creation
B-TREE-CREATE(T)

2« ALLOCATE-NODE()
leaf|z] < TRUE

nfz] < 0
Disk-WRITE(z)

root[T] «— x

T W N

2.3 Insertion

A fundamental operation used during insertion is the splitting of a full node y
(having 2t — 1 keys) around its median key key;[y] into two nodes having t — 1
keys each. The median key moves up into y’s parent, which must be nonfull
prior to the splitting of y.

Figure 3: The result of child splitting.

B-TREE-SPLIT-CHILD(, 7, y)

0 O Ui Wi

Ne

10
11
12
13
14
15
16
17
18
19

z « ALLOCATE-NODE()
leaf[2] — leafy)
nlz] —t—1
for j —1tot—1

do key;[z] — key;4[y]
if not leaf [y]

then for j — 1 to ¢

do ¢;[z] < ¢jt¢[y]

nly] —t—1
for j «— n[z] + 1 downto i + 1
do ¢;y1[z] — ¢lz]

Cit1]z] — 2
for j — n[z] downto i

do key, 4[] « key;[z]
key;la] — key,[y]
nlz] — n[z] +1
D1sk-WRITE(y)
D1SK-WRITE(z)
Disk-WRITE(x)

Inserting a key k into a B-tree T of height h is done in a single pass down

the tree,

requiring O(h) disk accesses. The CPU time required is O(th) =

O(tlog, n).

Figure 4: See Fig 18.6 (page 446) — create a new node for root if root is 2t — 1

B-TREE-INSERT(T, k)
1 7« root[T]

2 ifnlrj=2t-1

3 then s «— ALLOCATE-NODE()

4 root[T] «— s

5 leaf [s] «— FALSE

6 nfs] < 0

7 c1ls] «—r

8 B-TREE-SPLIT-CHILD(S, 1,7)

9 B-TREE-INSERT-NONFULL(s, k)
10 else B-TREE-INSERT-NONFULL(r, k)

B-TREE-INSERT-NONFULL(z, k)

1 i« nfz]

2 if leaf[x]

3 then while i > 1 and k < key,[z]

4 do key; (x| — key;x]

5 i—i—1

6 keyipala] — k

7 nlz] — n[z] +1

8 Disk-WRITE(x)

9 else while i > 1 and k < key,[z]

10 doi«+—i—1

11 1—1+1

12 Disk-READ(¢;[z])

13 if nfe;x]] =2t —1

14 then B-TREE-SPLIT-CHILD(z, i, ¢;[x])
15 if k> key,[z]

16 theni —1+1

17 B-TREE-INSERT-NONFULL(¢; (2], k)

2.4 Deletion
1. If the key k is in node x and x is a leaf, delete the key k from .

2. If the key k is in node x and x is an internal node , do the following:

e If the child y that precedes k in node x and x has at least t keys, then
find the predecessor k' of k in the subtree rooted at y. Recursively
delete k’, and replace k by k’ in z.

(a) Insert 9, 0, 8 -
o N N

IIITE 2

(c) Insert 7 m

(d) Insert 2

| 0 |27||9

(e) Insert 6

0 ||267|| 9
)
(f) Insert 3 m e
2 9 0 || 23 || 7 9
(g) Insert 5 n)@\
|||l|'> |/1 | |I8
yd f \
0| RN I Ars oo
(h) Insert 4 n n
ITITE 2
N N
o J[2 J[es [7 J[s |

Figure 5: Inserting the sequence 9,0,8,1,7,2,6,3,5,4 into a B-Tree.

[=p}

e Symmetrically, if the child z that follows k£ in node x has at least
t keys, then find the successor k' of k in the subtree rooted at z.
Recursively delete &', and replace k by &’ in .

e Otherwise, if both y and z have only t — 1 keys, merge k& and all
of z into y, so that = loses both k& and the pointer to z, and y now
contains 2t — 1 keys. Then free z and recursively delete k from y.

3. If the key k is not present in internal node z, determine the root ¢;[z] of
the appropriate subtree that must contain k, if k is in the tree at all. If
¢i[z] has only t — 1 keys, execute step 3a or 3b as necessary to guarantee
that we descend to a node containing at least ¢ keys. Then, finish by
recursing on the appropriate child of .

(a) If ¢;[x] has only t — 1 keys but has a sibling with ¢ keys, give ¢;[z]
an extra key by moving a key from = down into ¢;[z], moving a key
from ¢;[z]’s immediate left or right sibling up into x, and moving the
appropriate child from the sibling into ¢;[z].

(b) If ¢;[x] and both of ¢;[z]’s immediate siblings have ¢ — 1 keys, merge
¢; with one sibling., which involves moving a key from z down into
the new merged node to become the median key from that node.

