
B-Trees

B-trees are balanced search trees designed to work well on magnetic disks or
direct-access secondary storage devices. B-trees differ significantly from red-
black trees in that B-tree nodes may have many children, from a handful to
thousands.

It often takes more time to access a page of information and read it from
a disk than it takes for the computer to examine all the information read. For
this reason, we look at the two principal components of the running time:

• the number of disk accesses, and

• the CPU time.

We model these disk operations in our pseudo-code as follows. Let x be
a pointer to an object. Disk-Read(x) to read object x into main memory;
Disk-Write(x) to write object x to the disk.

1 Definition

A B-tree is a rooted tree having the following properties.

1. Every node x has the following fields:

• n[x], the number of keys currently stored in node x

• the n[x] keys themselves, stored in nondecreasing order: key1[x] ≤
key2[x] ≤ . . . ≤ keyn[x][x], and

Figure 1: B-Tree where t = 2 and the sequence 9,0,8,1,7,2,6,3,5,4 inserted.

1



• leaf [x], a boolean value that is TRUE if x is a leaf and FALSE if x

is an internal node.

2. If x is an internal node, it also contains n[x]+1 pointers c1[x], c2[x], . . . , cn[x]+1[x]
to its children. Leaf nodes have no children, so their ci fields are undefined.

3. The keys keyi[x] separate the ranges of keys stored in each subtree: if ki

is any key stored in the subtree with root ci[x], then

k1 ≤ key1[x] ≤ k2 ≤ key2[x] ≤ . . . ≤ keyn[x][x] ≤ kn[x]+1.

4. Every leaf has the same depth, which is the tree’s height h.

5. There are lower and upper bounds on the number of keys a node can
contain. These bounds can be expressed in terms of a fixed integer t ≥ 2
called the minimum degree of the B-tree:

• Every node other than the root must have at least t− 1 keys. Every
internal node other than the root thus has at least t children. If the
tree is non-empty, the root must have at least one key.

• Every node can contain at most 2t − 1 keys. Therefore, an internal
node can have at most 2t children. We say that a node is full if it
contains exactly 2t− 1 keys.

THEOREM If n ≥ 1, then for any n-key B-tree T of height h and
minimum degree t ≥ 2, then

h ≤ logt

n + 1

2
.

2 Operations

The operations for B-trees include B-Tree-Search, B-Tree-Create, B-

Tree-Insert, B-Tree-Delete, etc. We assume that:

• the root of the B-tree is always in main memory.

• any nodes that are passed as parameters must already have had a Disk-

Read operation performed on them.

2



Figure 2: The arguments for the B-Tree-Split-Child algorithm.

2.1 Search

B-Tree-Search(x, k)
1 i ← 1
2 while i ≤ n[x] and k > key i[x]
3 do i ← i + 1
4 if i ≤ n[x] and k = key i[x]
5 then return (x, i)
6 if leaf [x]
7 then return NIL
8 else Disk-Read(ci[x])
9 return B-Tree-Search(ci[x], k)

2.2 Creation

B-Tree-Create(T )
1 x ← Allocate-Node()
2 leaf [x] ← TRUE
3 n[x] ← 0
4 Disk-Write(x)
5 root [T ] ← x

2.3 Insertion

A fundamental operation used during insertion is the splitting of a full node y

(having 2t− 1 keys) around its median key keyt[y] into two nodes having t− 1
keys each. The median key moves up into y’s parent, which must be nonfull
prior to the splitting of y.

3



Figure 3: The result of child splitting.

B-Tree-Split-Child(x, i, y)
1 z ← Allocate-Node()
2 leaf [z] ← leaf [y]
3 n[z] ← t− 1
4 for j ← 1 to t− 1
5 do keyj [z] ← keyj+t[y]
6 if not leaf [y]
7 then for j ← 1 to t

8 do cj [z] ← cj+t[y]
9 n[y] ← t− 1
10 for j ← n[x] + 1 downto i + 1
11 do cj+1[x] ← cj [x]
12 ci+1[x] ← z

13 for j ← n[x] downto i

14 do keyj+1[x] ← keyj [x]
15 key i[x] ← key t[y]
16 n[x] ← n[x] + 1
17 Disk-Write(y)
18 Disk-Write(z)
19 Disk-Write(x)

Inserting a key k into a B-tree T of height h is done in a single pass down
the tree, requiring O(h) disk accesses. The CPU time required is O(th) =
O(t logt n).

4



Figure 4: See Fig 18.6 (page 446) – create a new node for root if root is 2t− 1

B-Tree-Insert(T, k)
1 r ← root [T ]
2 if n[r] = 2t− 1
3 then s ← Allocate-Node()
4 root [T ] ← s

5 leaf [s] ← FALSE
6 n[s] ← 0
7 c1[s] ← r

8 B-Tree-Split-Child(s, 1, r)
9 B-Tree-Insert-Nonfull(s, k)
10 else B-Tree-Insert-Nonfull(r, k)

B-Tree-Insert-Nonfull(x, k)
1 i ← n[x]
2 if leaf [x]
3 then while i ≥ 1 and k < key i[x]
4 do key i+1[x] ← key i[x]
5 i ← i− 1
6 key i+1[x] ← k

7 n[x] ← n[x] + 1
8 Disk-Write(x)
9 else while i ≥ 1 and k < key i[x]
10 do i ← i− 1
11 i ← i + 1
12 Disk-Read(ci[x])
13 if n[ci[x]] = 2t− 1
14 then B-Tree-Split-Child(x, i, ci[x])
15 if k > key i[x]
16 then i ← i + 1
17 B-Tree-Insert-Nonfull(ci[x], k)

2.4 Deletion

1. If the key k is in node x and x is a leaf, delete the key k from x.

2. If the key k is in node x and x is an internal node , do the following:

• If the child y that precedes k in node x and x has at least t keys, then
find the predecessor k′ of k in the subtree rooted at y. Recursively
delete k′, and replace k by k′ in x.

5



Figure 5: Inserting the sequence 9,0,8,1,7,2,6,3,5,4 into a B-Tree.

6



• Symmetrically, if the child z that follows k in node x has at least
t keys, then find the successor k′ of k in the subtree rooted at z.
Recursively delete k′, and replace k by k′ in x.

• Otherwise, if both y and z have only t − 1 keys, merge k and all
of z into y, so that x loses both k and the pointer to z, and y now
contains 2t− 1 keys. Then free z and recursively delete k from y.

3. If the key k is not present in internal node x, determine the root ci[x] of
the appropriate subtree that must contain k, if k is in the tree at all. If
ci[x] has only t− 1 keys, execute step 3a or 3b as necessary to guarantee
that we descend to a node containing at least t keys. Then, finish by
recursing on the appropriate child of x.

(a) If ci[x] has only t − 1 keys but has a sibling with t keys, give ci[x]
an extra key by moving a key from x down into ci[x], moving a key
from ci[x]’s immediate left or right sibling up into x, and moving the
appropriate child from the sibling into ci[x].

(b) If ci[x] and both of ci[x]’s immediate siblings have t− 1 keys, merge
ci with one sibling., which involves moving a key from x down into
the new merged node to become the median key from that node.

7


