B-Trees

B-trees are balanced search trees designed to work well on magnetic disks or direct-access secondary storage devices. B-trees differ significantly from red-black trees in that B-tree nodes may have many children, from a handful to thousands.

It often takes more time to access a page of information and read it from a disk than it takes for the computer to examine all the information read. For this reason, we look at the two principal components of the running time:

- the number of disk accesses, and
- the CPU time.

We model these disk operations in our pseudo-code as follows. Let x be a pointer to an object. Disk-Read(x) to read object x into main memory; Disk-Write(x) to write object x to the disk.

1 Definition

A B-tree is a rooted tree having the following properties.

1. Every node x has the following fields:
 - $n[x]$, the number of keys currently stored in node x
 - the $n[x]$ keys themselves, stored in nondecreasing order: $key_{1}[x] \leq key_{2}[x] \leq \ldots \leq key_{n[x]}[x]$, and

![Figure 1: B-Tree where $t = 2$ and the sequence 9,0,8,1,7,2,6,3,5,4 inserted.](image-url)
• $leaf[x]$, a boolean value that is TRUE if x is a leaf and FALSE if x
is an internal node.

2. If x is an internal node, it also contains $n[x]+1$ pointers $c_1[x], c_2[x], \ldots, c_{n[x]+1}[x]$ to its children. Leaf nodes have no children, so their c_i fields are undefined.

3. The keys $key_i[x]$ separate the ranges of keys stored in each subtree: if k_i is any key stored in the subtree with root $c_i[x]$, then

$$k_1 \leq key_1[x] \leq k_2 \leq key_2[x] \leq \ldots \leq key_{n[x]}[x] \leq k_{n[x]+1}.$$

4. Every leaf has the same depth, which is the tree’s height h.

5. There are lower and upper bounds on the number of keys a node can contain. These bounds can be expressed in terms of a fixed integer $t \geq 2$ called the minimum degree of the B-tree:

• Every node other than the root must have at least $t-1$ keys. Every internal node other than the root thus has at least t children. If the tree is non-empty, the root must have at least one key.
• Every node can contain at most $2t-1$ keys. Therefore, an internal node can have at most $2t$ children. We say that a node is full if it contains exactly $2t-1$ keys.

THEOREM If $n \geq 1$, then for any n-key B-tree T of height h and minimum degree $t \geq 2$, then

$$h \leq \log_t \frac{n+1}{2}.$$

2 Operations

The operations for B-trees include B-Tree-Search, B-Tree-Create, B-Tree-Insert, B-Tree-Delete, etc. We assume that:

• the root of the B-tree is always in main memory.
• any nodes that are passed as parameters must already have had a Disk-Read operation performed on them.
2.1 Search

B-TREE-SEARCH(x, k)
1 $i \leftarrow 1$
2 while $i \leq n[x]$ and $k > \text{key}_i[x]$
3 do $i \leftarrow i + 1$
4 if $i \leq n[x]$ and $k = \text{key}_i[x]$
5 then return (x, i)
6 if leaf[x]
7 then return NIL
8 else Disk-Read($c_i[x]$)
9 return B-TREE-SEARCH($c_i[x], k$)

2.2 Creation

B-TREE-CREATE(T)
1 $x \leftarrow \text{Allocate-Node}()$
2 leaf[x] \leftarrow TRUE
3 $n[x] \leftarrow 0$
4 Disk-Write(x)
5 root[T] $\leftarrow x$

2.3 Insertion

A fundamental operation used during insertion is the splitting of a full node y (having $2t - 1$ keys) around its median key $\text{key}_i[y]$ into two nodes having $t - 1$ keys each. The median key moves up into y’s parent, which must be nonfull prior to the splitting of y.

Figure 2: The arguments for the B-TREE-SPLIT-CHILD algorithm.
Figure 3: The result of child splitting.

\[\text{B-TREE-SPLIT-CHILD}(x, i, y) \]
1 \[z \leftarrow \text{ALLOCATE-NODE}() \]
2 \[\text{leaf}[z] \leftarrow \text{leaf}[y] \]
3 \[n[z] \leftarrow t - 1 \]
4 \[\text{for } j \leftarrow 1 \text{ to } t - 1 \]
5 \[\text{do } \text{key}_{j}[z] \leftarrow \text{key}_{j+1}[y] \]
6 \[\text{if not } \text{leaf}[y] \]
7 \[\text{then for } j \leftarrow 1 \text{ to } t \]
8 \[\text{do } c_{j}[z] \leftarrow c_{j+1}[y] \]
9 \[n[y] \leftarrow t - 1 \]
10 \[\text{for } j \leftarrow n[x] + 1 \text{ downto } i + 1 \]
11 \[\text{do } c_{j+1}[x] \leftarrow c_{j}[x] \]
12 \[c_{i+1}[x] \leftarrow z \]
13 \[\text{for } j \leftarrow n[x] \text{ downto } i \]
14 \[\text{do } \text{key}_{j+1}[x] \leftarrow \text{key}_{j}[x] \]
15 \[\text{key}_{i}[x] \leftarrow \text{key}_{i}[y] \]
16 \[n[x] \leftarrow n[x] + 1 \]
17 \[\text{DISK-WRITE}(y) \]
18 \[\text{DISK-WRITE}(z) \]
19 \[\text{DISK-WRITE}(x) \]

Inserting a key \(k \) into a B-tree \(T \) of height \(h \) is done in a single pass down the tree, requiring \(O(h) \) disk accesses. The CPU time required is \(O(th) = O(t \log_t n) \).
B-Tree-Insert(T, k)
1 $r \leftarrow \text{root}[T]$
2 if $\text{n}[r] = 2t - 1$
3 then $s \leftarrow \text{ALLOCATE-NODE}()$
4 \hspace{1em} $\text{root}[T] \leftarrow s$
5 \hspace{1em} $\text{leaf}[s] \leftarrow \text{FALSE}$
6 \hspace{1em} $n[s] \leftarrow 0$
7 \hspace{1em} $c_1[s] \leftarrow r$
8 $\text{B-Tree-Split-Child}(s, 1, r)$
9 $\text{B-Tree-Insert-Nonfull}(s, k)$
10 else $\text{B-Tree-Insert-Nonfull}(r, k)$

B-Tree-Insert-Nonfull(x, k)
1 $i \leftarrow n[x]$
2 if $\text{leaf}[x]$
3 then while $i \geq 1$ and $k < \text{key}_i[x]$
4 \hspace{1em} $\text{key}_{i+1}[x] \leftarrow \text{key}_i[x]$
5 \hspace{1em} $i \leftarrow i - 1$
6 \hspace{1em} $\text{key}_{i+1}[x] \leftarrow k$
7 \hspace{1em} $n[x] \leftarrow n[x] + 1$
8 $\text{Disk-Write}(x)$
9 else while $i \geq 1$ and $k < \text{key}_i[x]$
10 \hspace{1em} $\text{Disk-Read}(c_i[x])$
11 \hspace{1em} $i \leftarrow i + 1$
12 $\text{Disk-Write}(x)$
13 if $n[c_i[x]] = 2t - 1$
14 \hspace{1em} $\text{B-Tree-Split-Child}(x, i, c_i[x])$
15 \hspace{1em} if $k > \text{key}_i[x]$
16 \hspace{2em} $i \leftarrow i + 1$
17 $\text{B-Tree-Insert-Nonfull}(c_i[x], k)$

2.4 Deletion

1. If the key k is in node x and x is a leaf, delete the key k from x.

2. If the key k is in node x and x is an internal node, do the following:

 • If the child y that precedes k in node x and x has at least t keys, then find the predecessor k' of k in the subtree rooted at y. Recursively delete k', and replace k by k' in x.

Figure 4: See Fig 18.6 (page 446) – create a new node for root if root is $2t - 1$
Figure 5: Inserting the sequence 9,0,8,1,7,2,6,3,5,4 into a B-Tree.
Symmetrically, if the child \(z \) that follows \(k \) in node \(x \) has at least \(t \) keys, then find the successor \(k' \) of \(k \) in the subtree rooted at \(z \). Recursively delete \(k' \), and replace \(k \) by \(k' \) in \(x \).

Otherwise, if both \(y \) and \(z \) have only \(t - 1 \) keys, merge \(k \) and all of \(z \) into \(y \), so that \(x \) loses both \(k \) and the pointer to \(z \), and \(y \) now contains \(2t - 1 \) keys. Then free \(z \) and recursively delete \(k \) from \(y \).

3. If the key \(k \) is not present in internal node \(x \), determine the root \(c_i[x] \) of the appropriate subtree that must contain \(k \), if \(k \) is in the tree at all. If \(c_i[x] \) has only \(t - 1 \) keys, execute step 3a or 3b as necessary to guarantee that we descend to a node containing at least \(t \) keys. Then, finish by recursing on the appropriate child of \(x \).

(a) If \(c_i[x] \) has only \(t - 1 \) keys but has a sibling with \(t \) keys, give \(c_i[x] \) an extra key by moving a key from \(x \) down into \(c_i[x] \), moving a key from \(c_i[x] \)'s immediate left or right sibling up into \(x \), and moving the appropriate child from the sibling into \(c_i[x] \).

(b) If \(c_i[x] \) and both of \(c_i[x] \)'s immediate siblings have \(t - 1 \) keys, merge \(c_i \) with one sibling., which involves moving a key from \(x \) down into the new merged node to become the median key from that node.