
Introduction to Algorithms

An algorithm is any well-defined computational procedure that takes some value
or set of values as input, and produces some value or set of values as output.

1 Why study algorithms?

As the speed of processors increase, performance is often said to be less impor-
tant than the other software quality characteristics (e.g. security, extensibility,
re-usability, etc.). However, large problem sizes are common place in the area of
computational science; which makes performance a very important factor. This
is because longer computation time, to name a few, mean slower results, less
through research, and higher cost of computation (if buying CPU hours from
an external party).

The study of algorithms, therefore, gives us a language to express perfor-
mance as a function of problem size. A similar approach can also be taken
to express resource requirements as a function of problem size. It is impor-
tant to keep resource requirements in check as it may easily result in poorer
performance.

2 Notation

The representation of the problem, the solution, and the algorithm to obtain
the solution are greatly influenced by the state of technology. In this day and
age, the basic model is the sequential processor with access to random access
memory. Simple problems in Mathematics such as “the minimum of a set of
integers” requires us to consider two points:

1. How is the set represented?

2. How to find the minimum (depends on how the set is represented)?

To keep things simple1, let’s assume that the integers are stored in a sequential
array; and that we know the number of integers to be n. Since any one of
the integers in the array may be the minimum, the solution is simply to take

1Readers who consistently require extracting the minimum/maximum value of a set should
take a look at the “heap” data structure covered in these notes.

1



a look at each one of them and report the minimum. The following algorithm
implements this strategy.

Find-Minimum(A, n)
1 if n = 0
2 then return NIL /* No minimum in an empty array. */
3 m ← A[1]
4 i ← 2
5 while i ≤ n
6 do if A[i] < m
7 then m ← A[i]
8 i ← i + 1
9 return m

The Find-Minimum algorithm reflects on the state of present day computer
technology:

• The computer executes one line at the time.

• There may be branches (if).

• There may be iterations (while, for, repeat/until).

• There may be assignments (m ← A[1]).

• There may be random memory accesses (Using A[i] to access the ith ele-
ment of A).

3 Analysis

The basic idea is that the more instructions a computer has to process, the longer
it will take to complete processing. Thus, the aim of analysing algorithms is
to describe how much work a computer has to do. Since the amount of work
usually depends on the problem size, we are mostly interested how an algorithm
scales with problem size.

For starters, let us examine the Find-Minimum algorithm introduced earlier.
Lines 1 to 4 can be completed in some constant amount of time c1. Due to the
while-loop at line 5, lines 5 to 8 take c2(n−1) time. Lastly, line 9 takes c3 time.
Total time taken is therefore the sum of all these:

c1 + c2(n− 1) + c3

= c1 + c2n− c2 + c3

Let c4 = c1 − c2 + c3

= c4 + c2n

Therefore, each element in the input array contributes c2 time to the total
runtime.

2



4 Order of growth

How an algorithm scales in relation to its input problem size is termed order of
growth. For example, say we have an algorithm that runs at n3 + n2 + n + 4.
The following table shows us the significance of each term:

Value of n n3 n2 n1 4
1 1 1 1 4

10 1000 100 10 4
100 1000000 10000 100 4

1000 1000000000 1000000 1000 4

As can be seen, as n approaches infinity, all the other terms fade in significance
next to n3. Therefore the order of growth of the algorithm is n3.

So applying this vocabulary to Find-Minimum, whose cost we found to be
c4 + c2n, we say that the order of growth is n.

5 Insertion-Sort Example

A sorting algorithm arranges the elements of a list into a certain order. A simple
example is the Insertion-Sort algorithm. The strategy is to divide the list
into a set of sorted elements and a set of unsorted elements. We then take
an element from the unsorted set and insert it into the correct position in the
sorted set until the unsorted set is empty.

Insertion-Sort(A) Cost Times
1 for j ← 2 to length[A] c1 n
2 do key ← A[j] c2 n− 1
3 i ← j − 1 c3 n− 1
4 while i > 0 and A[i] > key c4 Σn

j=2
tj

5 do A[i + 1] ← A[i] c5 Σn
j=2

(tj − 1)
6 i ← i− 1 c6 Σn

j=2
(tj − 1)

7 A[i + 1] ← key c7 n− 1

To compute the running time of this algorithm, we sum the products of the
cost and times columns. If the array is in reverse sorted order, the worst case
will apply, and so, noting that:

n
∑

j=2

j =
n(n + 1)

2
− 1

the worst case running time is

T (n) =
(c4

2
+

c5

2
+

c6

2

)

n2+
(

c1 + c2 + c3 +
c4

2
−

c5

2
−

c6

2
+ c7

)

n−(c2 + c3 + c4 + c7)

Hence the order of growth is n2.

3



6 Design of Algorithms

As with all areas of computing, there are many different approaches to designing
an algorithm to solve any given problem. Over the course of this unit, we will
look at a few of these approaches, and how to recognise which approach is best
for which problem.

Some of the popular approaches include:

• Divide-and-conquer

• Greedy approach

• Dynamic programming

• Linear programming

• Branch-and-bound

• α− β pruning

7 Divide-and-Conquer Algorithms

Divide-and-Conquer is a recursive approach, which involves the following steps:

1. Divide the problem into a number of subproblems.

2. Conquer the subproblems by solving them recursively. If however the
subproblems are small enough, simply solve them.

3. Combine the solutions of the subproblems into the solution for the orig-
inal problem.

Consider the sorting problem. The insertion sort uses an incremental ap-
proach, it sorts the first item, then the first two items, then first three items,
and so on, until it has sorted all n items of the array.

Another approach is merge sort. It uses the divide-and-conquer approach,
as follows:

1. Divide the n-element sequence into two subsequences of n/2 elements
each.

2. Conquer the two subsequences by recursively using the merge sort on
each of them.

3. Merge the two sorted subsequences into a sorted sequence. See Figure 1.

4



Figure 1: Merging an eight integer sequence.

8 Analysis of Merge Sort

The running time of an algorithm that makes a recursive call to itself is often
called a “recursion”. We can analyse the running time of merge sort by looking
at each of its three steps.

1. Divide – Dividing the array requires simply finding the mid-point of the
array, this takes constant time, thus D(n) = 1.

2. Conquer – Here the algorithm makes two calls to itself, each one with an
order of input of n/2. Thus C(n) = 2T (n/2).

3. Merge – The process of merging the two sorted arrays can be done in
M(n) = n time.

Combining the above, and remembering that an order of growth of 1 is
insignificant next to an order of growth of n, we get the following:

T (n) =

{

c if n = 1
2T
(

n
2

)

+ Θ(n) if n > 1

Using the above formula, we can build a tree (Figure 2) depicting how much
time is spent at each level of the recursion. The summation of all the costs of
each level shows that the running time of merge sort is n lg n.

5



Figure 2: The breakdown of the cost of a Merge Sort. Each level of the tree
represents a level of recursion in the algorithm; thus there are lg n levels. The
cost of each level is shown on the right of the tree. Intuitively, the cost of the
whole algorithm is the sum of all the level costs. In this case, it is n lg n.

6


