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ABSTRACT 

The Newton method for estimating a critical point of a real function is formulated 
in a coordinate free manner on an arbitrary Lie group. Convergence proofs for the 
numerical method are given. An application of the general approach to computing the 
eigenvalues of a symmetric matrix is given, and the resultant algorithm is compared 
with the classical shifted QR algorithm. Properties of the method described suggest 
that it is of interest for certain computations in online and adaptive environments. 

1. INTRODUCTION 

The classical approach 
optimization problem (with 

_ . 

to solving an equality constrained nonlinear 
n states and 1 < m < n constraints) involves 

minimizing a suitable Lagrangian function over n states and m Lagrange 
multipliers. In contrast, if the constraints define an (n - mklimensional 
submanifold of Iw”, then at least locally the constrained optimization problem 
can be rephrased as an unconstrained optimization problem in n - m 
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variables (local coordinates). The class of problems which can be tackled 
using a local-coordinate formulation is restricted to those for which the 
constraint set is easily expressed as a submanifold of Iw”. An important class 
of such problems are those where the constraint set is a Lie group or 
homogeneous space. 

Optimization problems on Lie groups and homogeneous spaces have been 
studied recently in the context of using continuous-time differential equations 
for solving problems in numerical linear algebra. For example, Brockett 
(1988, 1991) [see also independent work by Chu and Driessel (1990)] 
considered the following problem: 

Maximize tr(U*H,UD), D = diag(l,..., N), H, = HT E RNxN 

subject to UTU = ZN , 

where D E RNX N is the diagonal matrix with diagonal entries 1,2,. . . , N, 
H, is a fmed symmetric matrix, and U lies in the set of orthogonal matrices, 
UEO(N)={UE RNXN 1 UTU = IN}, with ZN the N X N identity matrix. 

Brockett showed that the maximum U, E O(N) occurs when U,TH,U, is a 
diagonal matrix with diagonal entries (eigenvalues of H,) in ascending order. 
Thus, solving the nonlinear optimization problem is equivalent to solving the 
numerical linear-algebra problem of computing the eigenvalues and eigen- 
vectors (columns of U, ) of the matrix H,. 

The symmetric eigenvalue problem is by no means the only linear-algebra 
problem that has been formulated as an optimization problem on a Lie group 
or homogeneous space. Following Brockett’s work, independent work by 
Helmke and Moore (1990) and Smith (1991) proposed and solved optimiza- 
tion problems for the singular-value decomposition of an arbitrary matrix. 
Applications in systems theory are proposed in Perkins, Helmke, and Moore 
(1990) for computing balanced realizations and in Helmke and Moore (1994, 
Section 5.3) for pole placement of general linear systems. One of the 
advantages of the optimization approach is its ability to incorporate the 
analytic structure inherent in the problem considered, as for example in the 
discussion of pole-placement algorithms for symmetric systems (Mahony, 
Helmke, and Moore, 1993; Mahony and Helmke, 1995). Similar techniques 
are also applicable to a wider class of optimization problems such as linear 
programming (Bayer and Lagarias, 1989; Faybusovich, 1991). In each of the 
problems mentioned above the fundamental computation is a nonlinear 
optimization problem on a constraint set which is either a homogeneous 
space or a Lie group directly. 

A distinct advantage in using optimization based techniques for solving 
numerical linear-algebraic problems over classical approaches is the associ- 
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ated computational robustness of the algorithms. Whereas linear-algebraic 
factorization methods require decomposition of the entire matrix to obtain a 
solution, iterative optimization techniques act step by step to decrease a cost 
criterion which usually has direct bearing on the computational accuracy of 
the result. This consideration is particularly interesting when one considers 
online computations (in adaptive engineering applications) where minor 
corrections to present estimates need to be regularly performed. Thus, 
though optimization based solutions of numerical linear-algebra problems 
may not be of interest for a single computation, they appear to be very 
important for online and adaptive applications. 

There has been little work on investigating numerical optimization algo- 
rithms for the problems described above. In Yan et al. (1994) a number of 
recursive algorithms based on gradient methods for L2 sensitivity optimiza- 
tion as well as Euclidean-norm balancing are discussed. More recently some 
work has been done on developing a generic understanding of numerical 
gradient ascent algorithms for many of the above problems (Mahony et al., 
1993; Brockett, 1993; Moore, Mahony, and Helmke, 1994). A general discus- 
sion of algorithms along with applications is given in the Ph.D. thesis by 
Mahony (1994). Quadratically convergent Newton algorithms on homoge- 
neous manifolds have been used in general path following and constrained 
interior-point methods [for example in recent work by Shub and Smale 
(1993)] and semi definite programming methods (Nesterov and Nemirovskii, 
1994, $6.4). These methods, however, rely on the constraint set being 
embedded in a linear space whose affine structure is exploited for the 
computation of each Newton iterate. A more general development on 
Riemannian manifolds is presented by Smith (1993). In particular, Smith 
studies the Euler method, the conjugate-gradient method, and a version of 
the Newton method motivated by consideration of parallelism generated by 
the Levi-Civita connection. 

In this paper I develop a version of the Newton iteration on an arbitrary 
Lie group. The algorithm is motivated by interpolation and approximation of 
the cost function using one-parameter subgroups of the Lie group. In this 
manner the algorithm presented is independent of affine connections on the 
Lie group and differs from Steven Smiths approach (1993, p. 57). The 
algorithm is presented first with respect to an arbitrary set of canonical 
coordinates and later in a coordinate free form. The algorithm is not 
equivalent to performing repeated Newton iterations in a given local coordi- 
nate chart. It is shown that the Lie-group Newton method is quadratically 
convergent to critical points in the constraint set. To provide an example I 
consider the optimization problem (discussed above) for computing the 
eigenvalues of a symmetric matrix. An explicit algebraic form for the Newton 
method applied to the symmetric eigenvalue problem is given. It is shown 
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that the necessary computations for the Lie-group Newton iteration are 
realized by solving a set of linear matrix equations and computing a matrix 
exponential at each step of the algorithm. A numerical study is done, and 
comparisons are made between the Lie-group Newton method and the 
shifted QR algorithm. 

The paper is divided into four sections. Section 2 develops the general 
form of the Newton method on a Lie group and proves quadratic conver- 
gence of the algorithm in a neighborhood of a given critical point. Section 3 
provides a coordinate free formulation of the Newton method. The theory is 
applied to the symmetric eigenvalue problem in Section 4, and a comparison 
is made with the performance of the QR algorithm. 

2. NEWTON METHOD ON LIE GROUPS 

In this section a general formulation of the Newton method is proposed 
which evolves explicitly on a Lie group. The iteration can be expressed in 
terms of Lie derivatives and the exponential map. In practice, one still has to 
solve a linear system of equations to determine the regression vector. The 
reader is referred to Helgason (1978) and Warner (1983) for technical details 
on differential geometry, Lie groups, and homogeneous spaces. 

The Newton method is a classical (quadratically convergent) optimization 
technique for determining the critical points of a smooth function (Minoux, 
1986, p. 94). Given a twice differentiable function f: Iw” + Iw, let 
grad f(x) := (af/Jr’(r), . . . , df/~?x”(r))~ be the gradient vector field on 
[w” associated with f. The Hessian matrix &f E aB”‘” at a point x is 
defined as 

(%f>ij = dx”xj x * azf() 
Then the Newton method is given by 

ALGORITHM 2.1 (Newton method on rWn). 
Given qk E Iw”, compute grad f(qk). 
Compute the Hessian matrix Z&f. 
Set h = -@,f>-’ grad f(qk). 
Set qk+ I = qk + h. 
Set k + k + 1 and repeat. 
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The convergence properties of the Newton method are given by the 
following proposition (Minoux, 1986, p. 105). 

PROPOSITION 2.2. Let f: R” -+ R be a smooth function on R”, and 
p E R” be a nondegenerate critical point off, that is, grad f( p) = 0 and 
ZP f is a full-rank positive definite matrix. Then there is a neighborhood U of p 
and a constant C such that the Newton method (Algorithm 2.1) converges to 
p for any initial estimate q,, E U and the error decreases quadratically: 

114 k+l - pll G cllqk - pl?. 

Given a Lie group G, let 4: G + [w be a smooth function on G. Denote 
the identity element of G by e, and associate the tangent space T,G with the 
Lie algebra Q of G in the canonical manner. Given X E T,G, define a right 
invariant vector field X: G + TG by X := dr, X for i = 1,. . . , n, where 

r7( IL) := t.~r and dr, denotes the differential of 1; (Helgason, 1978, p. 102). 
Recall that the map t c* exp(tX> [ w h ere the exponential is the unique Lie 

group homomorphism associated with the Lie-algebra homomorphism 
A(d/dt) H AX; cf. Warner (1983, p. 102)] is an integral curve of X passing 
through e at time zero. Given ~7 E G arbitrary, the map t - exp(tX)o is an 
integral curve of the right invariant vector field X passing through the point 
(T E G at time zero. It follows directly that 

where X$ is the Lie derivative of C$ with respect to X. Indeed, there is a 
natural extension of this idea which generalizes to higher-order derivatives. 
These derivatives can be combined into a Taylor expansion for analytic real 
functions on a Lie group, though for the purposes of this paper it is only 
necessary to explicitly know the first two terms in the Taylor expansion. 
The following proposition follows directly from the full Taylor expansion 
(Varadarajan, 1984, p. 96). 

PROPOSITION 2.3. Given a Lie group G and a smooth function 4: G + R 
in a neighborhood of a point u E G, let X,, . . . , X, E T,G be a basis for the 
identity tangent space of G. Define the associated right invariant vector fields 
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_$ =dr,Xi fori = l,...,n. Then 

4(exp(tlXl + a** +tnXn)U) = 4(U) + 2 tj(Xj+)(U) + o(lltl12)~ 
j=l 

(2) 

where t = (tl, . . . . t,) and 0(lltl12> indicates that the remainder term 
&creases like ((t112 as t + 0. 

Taking the derivative of (2) with respect to the vector fields Xi and 
discarding the higher-order terms, one obtains the approximation 

Zic)(exp(tlXl + **f +t,X,)u) = ail + 5 (fizj+)(a)tj. (3) 
j=l 

Define the Hessian matrix of 4 to be the n X n matrix with 0, j)th element 

(K+)ij = ($$j4)C"), (4 

which is dependent on the choice of basis Xi, . . . , ;Jsn for T,G. Define the 
twocolumnvectorst=(t,,...,t,)randA~(~+)=(X1~((+),...,~~~(cr))r. 

Recalling the classical derivation of the Newton method on [w” (Minoux, 
1986, p. 94), it is natural to consider the following iteration. (Assume that an 
initial point rrO E G and a choice of n basis elements (Xi, . . . , X,} for T,G 
are known.) 

ALGORITHM 2.4 (Newton method on a Lie group G). 
Given ak E G, compute A4( ok). 
Compute the Hessian matrix w&4). 
Set t = -c&-,,4>-’ A+(ok). 

Set uk+l = eq(tlXl + '-' +t,x,,)uk. 

Set k + k + 1 and repeat. 

It is desirable to prove a similar result to Proposition 2.2 for the Newton 
method on a Lie group. To compute the rate of convergence one needs to 
define a measure of distance in a neighborhood of the critical point consid- 
ered. Let p E G be a critical point of a smooth function 4: G -+ [w, and let 

{Xi,. *. , X,) be a basis for T,G as above. There exists an open neighborhood 
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of 0, u c R”, and an open neighborhood of I_L, W c G, such that the 
canonical coordinates of the first kind on G centered at p, 0,: U + 
w, e,ct’, . . .) t”) := exp(t’X, + ... + t “X,,)p, are a local diffeomorphism of 
U onto W (Helgason, 1978, p. 104). One defines distance within W by the 
distance induced on canonical coordinates centered at F by the Euclidean 
norm in R”, 

( I 
I/2 

llexp( t’x, + ... +tyJplI = i (tif . 
I=1 

LEMMA 2.5. Given a smooth function 4: G + R on a Lie group G, let 
p E G be a nondegenerate critical point of 4, that is, V+(p) = 0 for any 
vector field V and the Hessian ZPc$ is a full-rank positive definite matrix. Let 

X,, . . . , X, E T,G be a basis for the identity tangent space of G. Then there 
exists a neighborhood W c G of p and a constant C > 0 such that the 
Newton method on G (Algorithm 2.4 with respect to the choice of basis 
elements X,, . . . , X,) converges to p for any initial estimate uCo E W and the 
error, measured with respect to distance induced by canonical c0ordinate.r of 
the first kind, decreases quadratically: 

Proof. The set W is constructed by taking the image (via canonical 
coordinates on G) of the intersection of several open neighborhoods of zero 
in R”. The open neighborhoods are constructed to ensure that the various 
approximation arguments necessary for the proof are valid. 

Let U, c R” be an open neighborhood of 0 such that the canonical 
coordinates of the first kind, $: U,, + G, I~,<.Y> := exp(x’X, + .-. + 
x”X,~)P, are a diffeomorphism. 

A standard result concerning the exponential of the sum of any two 
elements X and Y of an arbitrary Lie algebra is (Helgason, 1978, p. 106) 

exp(X)exp(Y) =exp((X+ Y) +O(llXIIllYll)), 

for X and Y sufficiently small. Given the choice of basis elements X,, . . . , X,,, 
there is a isomorphism x: - r’X, + ... +xnXrl from R” to 9, the Lie 

algebra of G. Setting X = Cy= r x’X, and Y = Cy=, yiX, it follows that there 

exists an open neighborhood U, c R” of zero and C, > 0 such that for any 



R. E. MAHONY 

x, y E U, there exists x E Iw” with 

\i=l 

Since 4 is smooth, the Hessian matrix <4 is a smooth function of 
r E G. For T = 6~( x), then, by continuity there exists an open neighborhood 
Us c Iw” of zero and a constant C, such that 

where )I * 112 is the matrix 2-norm. 
Similarly, 

A4(r) = A4( f&( x)): [w” + [w” 

is a smooth vector field on IL!“, and one can obtain the Taylor expansion 

A+( fj.G>) = A4( P) + k xi wp (4) a,: + O(ll~ll”). 
i=l z=o 

It is easily verified that A +( CL) = 0 (since p is a critical point) and 

Fixing qk E ua, let ok := 8,(qk) and consider the regression vector for the 
next Newton iteration, 

(5) 

One has 
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and consequently 

-&“& (t + 9k) + (&“,4 -&# = O(ll9J”). 

Thus, there exists an open neighborhood Us 5 R” of zero and a constant C, 
such that for qk E Us 

II&“,@ (t + 9Jl G lLq4 -qylz lkll + c, ll9kll” 

G c, ll9J lltll + c, IlqJ”, 

where the second inequality follows when 9k E UZ. 

Let A,,, be the smallest eigenvalue of XP+. Then 

Amin IIt + 9J =z II&“,& (t + 9,)ll. 

Simple manipulations yield 

Iltll( A,,, - c, ll9kll) G ‘min ll9kll + c, l19kl12. 

Now, to ensure that lItI\ is bounded, choose llqkll < A,,J2C,. Thus, 

lltll G 2 IlqJl + 
2c,3 l19J2 

. A 
In,” 

(6) 

Letting U, c R” be the intersection 

then (since 11911 < i and thus llqkll” < llqkll”) one has that for qk E C\ 

Ilt + 9kll G c, ll9J’ (7 

where C, = (2C, + C,)/A,,, + 2C,C,/ALi,. 

Since U, is an open neighborhood of 0 there exists 6 > 0 such that 
{x E R” I 1) XII < S} c U,. Let Us 5 R” be the open neighborhood of 0 such 
that 

In particular, it follows from (6) that when 9, E Us then t E U,. 
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The proof proceeds by induction. Let 

where C is the constant 

ClC, 
c = c, + 2c, + - 

'min ’ 

and let W = 0,<U> c G. Given qk E U and ok = OF(qk), let ok + i = 

exp(tiXi)ak [where t is given by (511 be the next iteration of the Newton 
method on G. One has 

and thus (since qk E U and consequently t E U,) there exists qk + 1 E R” 
such that ok+ 1 = exp(qL+,Xi)/” and 

bk+l - (t + q,)ll < clllqkll Iltll. 

Using (7) and (61, one obtains 

where the second line follows from llqk/l Q i. Now llqkll < I/2C and thus 
qk+ i < $llqkll, which ensures that the sequence qk converges to zero. It 
follows that for o0 E W the Newton iteration uk = Op(qk) converges to I_L on 
G and satisfies the quadratic error bound 

ll”k+ 1 - /Al < c llUk - /.#. n 

REMARK 2.6. The complexity of this proof follows from the fact that the 
Newton method on a Lie group is not equivalent to a Euclidean Newton 
method applied multiply in a fured coordinate chart on G. It is interesting to 
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know, however, that each separate step of the Newton method on a Lie 
group is related to an iteration of the Euclidean Newton method via canoni- 
cal coordinates centered at the present iterate on G (Mahony, 1994, p. 16-5). 

REMARK 2.7. The requirement that 4 be smooth can be relaxed to 4 
twice differentiable with the Hessian q+ at least Lipschitz continuous. The 
proof remains as given. 

3. COORDINATE FREE FORMULATION OF THE NEWTON 
METHOD 

The method presented in the previous section for computing a Newton 
iteration on a Lie group G depends on the construction of the Hessian matrix 
ZW 4 [cf. (411, which is explicitly d f e me m d t erms of an arbitrary choice of R 
basis vectors {X,, . . . , X,} E T,G. In this section the Newton method on an 
arbitrary Lie group equipped with a right invariant Riemannian metric is 
formulated as a coordinate free iteration. 

Let G be a Lie group with an inner product gy(., . ) defined on T,,G. 
Denote the right invariant group metric’ that g, generates on G by g. 
Choose a basis {X,, . . . , X,] for T,G which is orthonormal with respect to the 
inner product g,(*, . ), [i.e., g,(&, X,> = atj, where aij is the Kronecker 
delta function, Sij = 0 unless i = j, in which case alj = 11. Define the right 
invariant vector fields 

associated with the basis vectors {X,, . . . , X,,}. Since the basis 1 X,, . . . , X,} 
was chosen to be orthonormal, it follows that the decomposition of an 
arbitrary smooth vector field V: G -+ TG, V(a) E ‘i”,G, can be written 

’ Let IJ, .$ E T,G; th en the right invariant group metric generated by an inner product g, 
on TOG is 

where r,(7) := T(T is right multiplication by (r. 
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In particular, let 4: G -+ [w be a smooth map on G, and grad 4 be defined 
with respect to the metric g (Helmke and Moore, 1994, p. 356): 

grad+= jcrg(S;grad+)Xj = 5 (Xj4)Xj. (8) 
j=l 

Let t =&,..., t,) E [w”, and define the vector field x’: G + TG by x’ = 
Cy= 1 tj Xj, which is the right invariant vector field associated with the unique 

element X = Cj’,, tjXj E T,G. Observe that Cy=i tj(_fj4Xa) = (ifc$Xa>, 

and consequently, post multiplying (3) by Xi and summing over i = 1,. . . , n, 
one obtains the approximation 

2 Q(exp( X)U)Zi = 2 [ Xic$( u)] Jti + 5 ifi 5 tjfj4( 0) ii 
i=l i=l i=l i j=l 1 

= grad +(a) + grad( X4)( cr). 

Now assuming that exp( X) u is a critical point of 4, then the left-hand side 
of this relation is zero. Thus, computing the regression vector for the Newton 
method is equivalent to solving the coordinate free equation 

o = grad 4(a) + grad( -f4)< a>, (9) 

for the vector field X (or equivalently the tangent vector X E T,G that 

uniquely defines x’>. In Algorithm 2.4 the choice of {Xi, . . . , X,,} was 

arbitrary, and solving directly for X using (9) is equivalent to setting X = 

t,X, + ... +t,x,, where t = (t,, . . . , t,) is the error estimate t = 

-_(sQ#d A4Ca). G’ iven an initial point a, E G, the Newton method on a 
Lie group G can be written in a coordinate free form as: 

ALGORITHM 3.1 (Coordinate free Newton method). 
Find Xk E T,G such that Xk(r) := dr, Xk solves 

0 = grad 4( ok) + grad( x’“4)( Uk). 

Set oic+l = eq(xk)uk. 
Set k + k + 1 and repeat. 
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REMARK 3.2. It is worth noting that the solution X of (9) is not generally 
a solution of 

O=gradcP+V,-grad+, 

where V is the Levi-Civita connection.’ This follows because in general 
Vz grad 4 z grad(X4) (Mahony, 1994, p. 171). In fact, Vi grad 4 does 

degenerate to the Hessian at a critical point CL, grad +( CL) = 0, and as a 
consequence the two-form V grad 4 is positive definite and symmetric in a 
neighborhood of p. It is not surprising then that solving the above equation 
for the regression direction X in Algorithm 3.1 will also yield a quadratically 
convergent method. This is indeed the case, as shown by Smith (1993. 
pp. 57-59). 

4. SYMMETRIC EIGENVALUE PROBLEM 

In this section the general structure developed in the previous two 
sections is used to derive a coordinate free Newton method for the symmetric 
eigenvalue problem. A comparison is made with the shifted QR algorithm, 
which provides an indication of the potential of the algorithm. I stress, 
however, that the method is not proposed as competition for state-of-the-art 
numerical linear-algebra methods for solving the classical symmetric eigen- 
value problem. Rather, the focus is still on adaptive and online applications 
where the iterative and robust nature of the algorithm are of greatest benefit. 

4.1. Gradient Ascent Algorithm for Symmetric Eigenvalue Problem 
To overcome the numerical difficulty associated with the lack of global 

convergence for the Newton method, I have combined it with a gradient 
ascent method derived in earlier work (Moore, Mahony and Helmke, 1992, 
1994). In this subsection I briefly review the Lie geometry of the set of 
orthogonal matrices and the gradient ascent method. 

The orthogonal group O(N) = {U E (WNxN I UTU = IA,) has the 
following properties 

1. The identity tangent space of O(N) is the set of skew symmetric 
matrices (Warner, 1983, p. 107) 

TINo(N) = Sk(N) = {Ln E [wNx” I Cl= -W-}. 

2 The Levi-Civita connection is the unique symmetric affine connection induced by a 

Riemannian structure on G. 



80 R. E. MAHONY 

2. The tangent space at a point U E O(N) is given by the image of 
TrNO(N) via the linearization of ru: O(N) -+ O(N), r,(W) := WU (right 
translation by U), 

T,O(N) = {QU E IWNXN I R E Sk(N)}. (IO) 

3. By inclusion Sk(N) c RNXN is a Lie subalgebra of the Lie algebra of 
GL( N, FQ. In particular, Sk(N) is closed under the matrix Lie-bracket 
operation [X, Y 1 = XY - YX, [X, Y ] E Sk(N) if X and Y are skew 
symmetric. 

4. The scaled Euclidean inner product on Sk(N), 

(ai, a,> = 2tr(flyfl,), 

generates a right invariant group metric on O( N ), 

Observe that 

g(Q,U, .R,U) = 2tr(fZTCI,). (II) 

(fZ,U, fi,U) = 2tr(UrflTR,U) = 2tr(fiTCInz) = g(CI,U, ,R,U), 

since UrU = IN. Thus the right invariant group metric on O(N) is the scaled 
Euclidean inner product restricted to each individual tangent space. 

Let D E RNXN be the diagonal matrix with diagonal entries 1,2,. . . , N, 
and let H, = H: be some symmetric matrix whose eigenvalues are desired. 
Define a cost function 4: O(N) + Iw, 4(U) := tr(UH,UrD). Then the 
optimization problem outlined in the introduction becomes 

Maximize c$( U) 

subject to U E O(N). 

To apply the theory cant_tined in the previous sections one must compute 
both grad + and grad(X+) f or an arbitrary right invariant vector field 
X: O(N) + TO(N). The results of these computations are expressed in the 
explicit forms provided above for the tangent space of O( N ). - 

LEMMA 4. 1. Let H, = H,?‘ be a symmetric matrix, D = diag( 
and define 

+:0(N) + [w, 

4(U) := tr( DUH,Ur). 

1 ,..., N), 



SYMMETRIC EIGENVALUE PROBLEMS 81 

Then: 

(a) The gradient of 4 on O( N > (with respect to the right invariant group 
metric (11)) is 

grad 4 = [ UH,U~, D] U. 

(b)Let X E Sk(N) be arbitrary, and set _f = XU = dr,X, the right 

invariant vectorfield on O(N) g eneruted by X. The gradient off+ on O(N) 
is 

grad(-f+) = -[[x,D],uH@]u. 

Proof. The Fr&het derivative of 4 in a direction LRU E T, 0( N) is 

04 I L7 (au) = tr( DQUH,UT) + tr( DUH,( RU)T) 

tr( [ D, UH,UTITfl) = g([ D, UH,UT]U, flu). 

Observing that [II, UH,UT]U E T,,O(N), th en it follows that grad c$(U) := 
[II, UH,U*]U (Helmke and Moore, 1994, p. 356). 

For part (b) observe that 

= tr( - [ X, D]UH,U’). 

Taking a second derivative of this in an arbitrary direction nU, one obtains 

Dtr(-[X,D]UHOUT)J”(~ZU) =tr(-[UH,Ur,[X,D]]Cl) 

=g(-[[X_D],UH,,UT]U,.U). 

and thus grad(g+) = -[[X, D], UH,,UT]U. n 

The gradient ascent algorithm for C$ on O( N > is given by (Moore et al., 
1994) 
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where ok is the step size. This algorithm is similar to a Euclidean gradient 
ascent algorithm except that the linear interpolation U,, I = U, + 

(YJ D, U, HOUkT]Uk is replaced by a geodesic interpolation on O(N). Details 
of gradient ascent methods on Lie groups and homogeneous spaces are 
contained in Mahony (1994). Choosing the step size ok to ensure that the 
gradient ascent algorithm converges to a maximum of 4 is discussed in 
Moore et al. (1994). A suitable choice is 

1 II[ H, > D]ll” 
CY - 

k - 211[ Hk > Dill log IIHollIl[Q[&D]]ll +’ 

where H, = Uk HOUkT and the norm is the matrix Frobenius norm (JX(l’ = 
tr(XTX). The algorithm generated by (12) is globally convergent to an 
orthogonal matrix U, such that U, HOU,T is a diagonal matrix with diagonal 
entries in ascending order (Moore et al., 1994). 

4.2. Newton Method for the Symmetric Eigenvalue Problem 
Recall the equation for the coordinate free Newton method (9). Rewriting 

this in terms of the expression derived in Lemma 4.1 gives the algebraic 
equation 

0 = -[UH,UT, D]U + [[X, D],UH,UT]U, (13) 

which one wishes to solve for X E Sk(N). Thus, as expected, computing the 
regression vector for the Newton method is equivalent to solving a linear 
matrix equation. 

REMARK 4.2. To see that a solution skew symmetric to this equation 
exists, observe that given a general solution X E [w NX N of (13) (which always 
exists, since the equation is a linear system of N 2 equations in N 2 un- 
knowns), then 

[[(-XT),D],UH,UT] = -[[D,X]T,UHoUT] 

= -[[X, D], UH,UTIT 

= - [UH,UT, DIT = [UH,UT, D]. 

Thus, -XT is also a solution, and by linearity so is (X - XT)/2. The 
question of uniqueness for a skew symmetric solution X E Sk(N) obtained is 
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unclear. In the case where UH,U’ = A is diagonal with distinct eigenvalues 
it can be shown that [[X, D], A] = 0 j [X, D] = 0 =j X = 0 and the solu- 
tion is unique. It follows that genericity of the eigenvalues of H, is a 
sufficient condition for the uniqueness of the solution X. I expect that this 
condition is in fact both necessary and sufficient; however, I have no proof of 
this at the present time. 

Given an initial matrix H, = HT and choosing U, = I,, the Newton- 
method solution to the symmetric eigenvalue problem is: 

ALGORITHM 4.3 (Newton method for spectral decomposition). 
Find X, E Sk(N) such that 

Set U,,, = exkUk, where exk is the 
Set k +- k + 1 and repeat. 

REMARK 4.4. To solve (14) I used 
(141, giving 

= [u,H,,U;> D]. (14) 

matrix exponential of X,. 

the vet operation3 on both sides of 

k DUH,CTr)r @ I, - (UHaU“) @ D - D Q (UH,,U’) 

+I, 8 (UH,UTD)]vec(Xk) = vec([UH,Ur, D]), 

where Q denotes the Kronecker product of two matrices (Helmke and 
Moore, 1994, p. 314). Since it is known that a skew symmetric solution to (14) 
exists, the linearly independent iN(N - 1) X iN( N - 1) submatrix of the 
N 2 x N 2 Kronecker product can be extracted and the resulting system of 
equations solved directly for the free variables Xii, i > j. 

4.3. Simulations and Comparisons 
Two examples of the Newton method applied to the symmetric eigen- 

value problem are outlined below. The second example also provides a direct 
comparison with the shifted QR algorithm. 

In the following simulations it is useful to express the results in graphical 
form. The best measure of cost for a graphical expression of the results is a 

3 v&A) is the vector generated by taking the cohlmns of the matrix A one on top of the 
other. 
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least-squares measure based on the Frobenius norm, 

IIUH,Ur - Oil2 = llH,((2 + llD112 - 2tr(UH,UrD). 

Indeed, minimizing IIUH,,U* - Dll 2 is equivalent to maximizing +(U> := 
tr(UH, U rD). Moreover, the Frobenius norm measures the least-squares 
difference between the elements of UH,UT and D. It is not surprising that 

this distance is minimized when UH,UT is diagonal (has the same structure 
as D). 

The first simulation (Figure 1) is an example of combining the gradient 
ascent algorithm (12) with the Newton method (Algorithm 4.3). The aim of 
the simulation is to compare the linear convergence rate displayed by the 
gradient ascent algorithm with the quadratic convergence of the Newton 
method. The initial condition used was generated via a random orthogonal 
congruency transformation of the matrix D = diag(l,2,3), 

( 

2.1974 - 0.8465 - 0.2401 
H, = - 0.8465 2.0890 -0.4016 . 

- 0.2401 - 0.4016 1.7136 i 

Thus, the eigenvalues of H, are 1, 2, and 3, and the minimum distance 
between D and UH,UT [U E O(N)] is zero. In Figure 1 the distance 

1 2 3 4 5 6 7 a 9 

Iteration 

FIG. 1. Plot of I( Hk - Dll where Hk = U, H,,UkT and U, is a solution to first (12) 
and then Algorithm 4.3. The eigenvalues of H, are chosen to be (1,2,3), the 
eigenvalues of D, though H, is not diagonal. Thus, the minimum Euclidean distance 
between H, = U, HOUkT and D is zero. By plotting the Euclidean-norm distance 
11 Hk - D(I on a logarithmic scale the quadratic convergence characteristics of 
Algorithm 4.3 are displayed. 
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11 H, - Dll is plotted for H, = U, HOUz, and U, is a solution to first (12) and 
then Algorithm 4.3. In this example the modified gradient ascent method (12) 
was used for the first five iterations and the Newton method was used for the 
remaining three iterations. The distance 11 H, - D(J is expressed on a log scale 
to best display the linear and quadratic convergence behavior. 

To provide a comparison of the coordinate free Newton method with a 
classical algorithm, the second simulation was undertaken for both the 
Newton method and the shifted QR algorithm (Golub and Van Loan, 1989, 
Section 8.2). The example chosen is taken from pg. 424 of Golub and Van 
Loan (1989) and rather than simulate the symmetric QR algorithm again, 
the results used are taken directly from the example given in the book. The 
initial condition considered is the tridiagonal matrix 

(15) 

To display the convergence properties of the QR algorithm Golub and 
Van Loan (1989) gi ve a table in which they list the values of the lower off- 
diagonal elements of each iterate generated for the example considered. 
This table is included as Table 1. Each element (H,)ij is said to have 

converged when it has norm of order lo-” or smaller. The initial condition 
H,* is tridiagonal, and the QR algorithm preserves tridiagonal structure; 
consequently the elements ( HkjzL, ( Hkj4,, and ( Hkjd2 remain zero for all 

TABLE 1 

THE EVOLUTIONOFTHELOWEKOFF-DIAGONALENTRIESOFTHESHIFTED 
QR METHODa 

Iteration (H&i (Nk)sl (Hk)41 (H,),, (Hk)42 C&)40 

2 

1.6817 

1.6142 
1.6245 

1.6245 

1.5117 
1.1195 

0.7071 

Converg. 

Zero Zero 4 

3.2344 

2.5755 
1.6965 

0.0150 

lo-” 
Converg. 

Zero 6 

0.8648 

0.0006 
1o-1” 

Converg. 

a Golub and Van Loan (1989, Algorithm 8.2.3, p. 423). The initial condi- 

tion used is H,* given by (15). 
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- lo-‘. gradient ascent 

X 

1 2 5 6 7 9 

FIG. 2. A comparison of IIH, - diag(Hk)ll where Hk is a solution to the 
symmetric QR algorithm (dashed line) and H, = U, HoUkT for U, a solution to both 
(12) and Algorithm 4.3 (solid line). The initial condition is H,* (15). 

iterates. The convergence behavior of the symmetric QR algorithm is cubic 
in successive off-diagonal entries. Thus, (Hkj4s converges cubically to zero, 

then ( Hkjs2 converges cubically, and so on (Wilkinson, 1968). The algorithm 
as a whole, however, does not converge cubically, since each off-diagonal 
entry must converge in turn. 

It is interesting to display these results in a graphical format (Figure 2). 
Here the norm 

11% - Aag( Hk)ll 

= [(H&l + (H&l + (H&l + (H& + (H&2 + (HI,):s]~‘~ 

is plotted verses iteration. This would seem to be an important quantity which 
indicates robustness and stability margins of the numerical methods consid- 
ered when the values of H, are uncertain or subject to noise. The dashed line 
shows the behavior of the QR algorithm. The plot displays the property of the 
QR algorithm that it must be run to completion to obtain an accurate solution 
with respect to this cost measure. 

Results from the same calculation undertaken using the Newton method 
(combined with the gradient ascent method) are given in Table 2. In this case 
the tridiagonal structure of the initial condition is not preserved, and each 
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TABLE 2 
THE EVOLUTION OF THE LOWER OFF-DIAGONAL ENTRIES OF H, = UK HoUKT 

WHERE U, IS A SOLUTION TO ALGORITHM 4.3” 

Iteration ( Hkjzl (Hia (HA1 (HA2 (H&z (HA3 
0 2 0 0 4 0 6 

2.5709 - 0.0117 
3.7163 - 0.2994 
4.7566 - 0.7252 
1.1572 - 0.2222 

- 0.0690 - 0.0362 
0.0011 1oF 

Converg. 10-g 
Converg. 

- 0.0233 4.9252 
0.2498 4.3369 

- 0.1088 2.5257 
- 0.8584 1.1514 

0.0199 -0.1112 
10-s 10-s 

lo- lo 10-l” 
Converg. Converg. 

- 0.4733 4.0717 
- 0.2838 1.4798 
- 0.0176 0.8643 
-0.1216 0.2822 

0.0649 0.0075 
10-6 0.0011 
1o-g lo-” 

Converg. Converg. 

’ The initial condition is H,* given by (15). 

off-diagonal element converges simultaneously to zero. Since the aim of this 
simulation is to show the potential of Newton method, the parameters were 
optimized to provide good convergence properties. The step size for (12) was 
chosen as a constant q = 0.1, which is somewhat larger than the variable 
step size used in the first simulation. This ensures slightly faster convergence 
in this example, although in general there are initial conditions H, for which 
the modified gradient ascent algorithm is unstable with step-size selection 
fured at 0.1. The point at which the modified gradient ascent algorithm was 
halted and the Newton method was begun was also chosen by experiment. 
The modified gradient ascent algorithm (12) was used for the first three 
iterations and then the Newton method for the remaining five iterations. The 
comparison with the QR algorithm is best made using Figure 2. Note that the 
Newton method acts directly to decrease the cost 11 H, - diag( Hk)II, at least 
in a neighborhood of the critical point. It is this aspect of the algorithm that 
makes it suitable for online or adaptive applications where only a single 
iteration need be made to correct for small noise deviations. 

REMARK 4.5. It is interesting to note that in this example the combina- 
tion of the modified gradient ascent algorithm (12) and the Newton method 
(Algorithm 4.3) converges in the same number of iterations as the QR 
algorithm. 

I would like to thank Leonid Faybusovich for his helpful suggestions 
during his visit to Canberra, EM. 
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