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A model simulating a coupledjuid-structure impact buckling phenomenon is constructed in this paper. 
Based on the experiment’,’ the model is designed as an impact system in which a small imperfection 
elastoplastic column is attached by its upper end to a large mass and by its lower end to aflatplate; it then 
perpendicularly impacts a viscous water free surface from a certain drop height or in a certain falling 
velocity. A one-dimensional compressible inviscid air layer is assumed to exist between the plate and the 
water free surface. A coupled transversely jlexural vibration is induced in the column when the 
hydrodynamic slamming between the plate and the water occurs during the impact. A mathematical 
description is given for the model with three sets of coupled dynamic equations: a nonlinearfinite element 
and the Prandtl-Reuss plastic theory are applied to the structure, the one-dimensional continuity and 
momentum equations of a compressible inviscidfluid are applied to the air, and the two-dimensional 
Navier-Stokes equations of an incompressible viscous fluid are applied to the water. In numerical 
analysis, the three sets of coupled equations are first decomposed by a staggered iteration method and 
then solved by an extended Wilson-O time integration scheme and a finite difference method. To veriJj, the 
suitability of the model, two numerical examples are calculated in the paper: one is a calculation of the 
relationship between the column’s slenderness and the hydrodynamic slamming duration, and the other 
is a calculation of the column’s critical impact values. The numerical results are compared with the 
corresponding experimental ones. The comparison demonstrates that the present model is capable of 
simulating a coupled dynamic buckling phenomenon that can occur in fluid-structure impact engineer- 
ing. 
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Introduction 

In some water-structure impact engineering (such as 
ship structure-water slamming and impacting of a fly- 
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ing slender body against water), one may encounter a 
new dynamic buckling phenomenon distinct from that 
of vibration buckling,3 pulse buckling,4 and dynamic 
snap-through buckling.5 Recently, one of the authors of 
this paper studied this new buckling phenomenon.‘,2 
The experiments involved a series of impact buckling 
tests for columns, columns with elastic supports, and 
plates. In these tests, the structural members are axially 
loaded by a special test rig in which they are attached by 
their upper end to a large mass and by their lower end to 
a flat plate; then they perpendicularly impact the free 
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surface of a water field from different drop heights. The 
buckling phenomenon is simulated during the impact 
when the hydrodynamic slamming between the plate 
and the water takes place. The term coupled fluid- 

a 5 M 

0 

structure impact buckling was used by the authors 
because of the relationship between the structural re- 
sponse and the water impact. i% 

3 
elastic-plastic column 

Fluid-structure impact buckling has two basic char- 
acteristics as revealed by the experimental study: (a) 
the structures may experience three critical states of 
buckling, postbuckling, and plastic collapse in one im- 
pact, each of the states corresponding to a particular 
transition in the structural dynamic response; (b) there 
exists a coupling between the structural buckling and 
the hydrodynamic slamming. For the coupling, when 
the structures produce large deformation during the 
postbuckling and plastic collapse, a distortion phenom- 
enon can be observed in the slamming pulse shape. The 
two characteristics distinguish fluid-structure impact 
buckling from known buckling phenomena in two re- 
spects: (a) the new phenomenon has three critical states 
and each state has a particular definition which differs 
from those of the known phenomena’s critical states; 
(b) the fluid-structure impact buckling can not be 
treated as a buckling problem with prescribed axial 
loading due to the coupling between the structural de- 
formation and the deformation of the water free surface. 
With special emphasis on the differences from other 
buckling phenomena, definitions for fluid-structure 
impact buckling have been suggested by the experimen- 
tal study. I.’ 

To provide a general understanding of the new buck- 
ling phenomenon, the present work proposes a theoreti- 
cal model that describes the two basic characteristics. 
On the basis of the experiments,“’ the model is con- 
structed as an impact system in which a small imperfec- 
tion elastoplastic column is attached by its upper end to 
a large mass and by its lower end to a flat plate; it then 
perpendicularly impacts a free surface of an incom- 
pressible viscous water field from a certain drop height 
or in a certain falling velocity. To verify the suitability of 
the model, two numerical examples are considered: 
One is a calculation of the relationship between the 
column’s slenderness and the hydrodynamic slamming 
duration; the other is a calculation of the column’s 
critical impact values. The numerical results are com- 
pared with the corresponding experimental ones. The 
comparison demonstrates that the proposed model is an 
acceptable one for describing the new buckling phe- 
nomenon. 

Model and mathematical description 

As described in the introduction, the model simulating 
the fluid-structure impact buckling phenomenon is 
shown in Figure 1. Between the plate and the water free 

Figure 1. A model simulating fluid-structure impact buckling. 

surface, a one-dimensional inviscid compressed air 
layer is assumed to exist during the impact. The column 
has two possible boundary conditions at its two ends: 
simply supported and clamped. The clamped boundary 
condition is indicated in the figure. 

In what follows, the mathematical description of the 
model is given with three sets of coupled motion equa- 
tions for the air, water, and structure. 

The structural motion equation 

Assume no initial deformation and stress exist in the 
column before the water-plate slamming takes place; 
thus the buckling of the column is caused only by the 
hydrodynamic slamming pressure. By denoting the 
compression, deflection, stress, membrane force, and 
bending moment at the location 5 and time r in the 
column with u’(&), I@, (+ ({,t), N’([,t), and N%$,t), 
respectively, the buckling equation that governs the 
motion of the mass-column-plate unit can be expressed 
in terms of the virtual work principle as follows: 
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and 
P(O,t) = U;(l) u”(l,t) = u;(t) 

Where {U} = 

cu> = 

&I = 

@I = 

{MI = 

NC = 

[ u&uf]T, ug = lP(O,t), u; = uC(l,?) 

[p,*(g - &NWl=, & = N’(W) 
I- N&WtJT 

c+dA, Nb = - TadA 

A A 

Other symbols in the expressions are given in the no- 
menclature. 

To treat the plasticity spreading along the column’s 
length and over the cross-section thickness, it is conve- 
nient to divide the spatial domain in equation (1) by a 
finite element method. By using the C(0) Lagrange and 
C( 1) Hermitan beam elements for the discretization of 
uc and ub, respectively, {U} and cu> in (1) can be ex- 
pressed in a finite element form as6,’ 

{dU} = [ N]{dS}‘and [m = [‘:I ,;b]] c2) 

{dx) = [ E]{dS)‘and [B] = ‘7’ ‘,?<I] (3) 
L 

where [ Nm] and [ Nb] are the membrane and bending 
shape function matrices of the beam element, respec- 
tively; [ BT], [ Bg], and [ B;L] are the linear membrane 
strain matrix, linear bending strain matrix, and nonlin- 
ear strain matrix, respectively; (6)’ is the nodal point 
displacement vector in an element. 

By substituting equations (2) and (3) into equation 
(I), (1) can be expressed in the form of a finite element as 

[M@I + {F) = {RI (4) 

where {8} is the nodal point acceleration vector of 
the finite element assemblage; [Mj is the mass matrix 
of the assemblage, including the contributions of 

; {F} is the nodal 

point internal force vector of the finite element assem- 
blage, including the contributions of Jb[ BIT{N}d& 
Jb[ mT{E}d[and {y}; {R} is the nodal point external load 
vector of the finite element assemblage, and {R} = [0, 0, 
0, . * . 0, 2a.@‘, (x,t)dxlT. 

Because no initial deformation and stress exist in the 
column before the slamming pressure is built, the initial 
boundary conditions of the column are given by 

U’(&O) = 0 P((,O) = 0 

Ub(S70) = w<n Cb(5,0) = W(T) 
Pa) 

aub(o,t) 
Ub(O,f) = ~ = ub(l,t) = - = au%t) o 

at a4 
(5b) 

where w(t) and E([) are the initial transverse displace- 
ment and velocity disturbances, respectively. 

The air and water motion equations 
The plate-water impact in the model is an important 

hydrodynamic phenomenon. A problem similar to this 
phenomenon has been investigated by Chuang,*T9 
Verhagen,” and Koehler,” among others. By referring 
to Figure 2 and Koehler’s work, below we give the air 
and water motion equations separately. 

The air motion equation 

i(P, U,h,) + $(p,,h,) = 0 

au, au, i aP, 
;+L&;=--- Osxsb 

p. ax 

& = k _ ‘al, 

P, P atm 

; h, (x,t) = - V(t) - u,(x,t) 

u,cM = 
h, (b4 . u, (b,t) 

xrb 

h,(b,r) + (x - b)tg f 

with initial condition: 

(64 

(6b) 

(6~) 

(6d 1 

(64 

P, (x,0) = Patm, u, (x,0) = - -5-- .dh,(x,O) 
h,(x,O) at 

(60 

I 

. 

I 
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1 
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Figure 2. Compressible air region detail. 
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and boundary condition: 

u,(W) = O,P,(b,t) = p,,, (6g) 

where u,, P,, and Pa are the air velocity in the x-di- 
rection, pressure (absolute), and density, respectively; 
V(t) and u, (x,t) are the falling plate velocity and the free- 
surface water velocity in the x-direction, respectively; 
h, is the air layer thickness. Other symbols are referred 

In the above expressions, u and u are the water 
velocities in x and y directions, respectively; P and p are 
the water pressure (absolute) and density, respectively; 
u, and v, are the free-surface water velocities in x and y 
directions, respectively. Other symbols are referred to 
in the nomenclature. 

to in the nomenclature. 
The water motion equation” 

du dv 

clx+-=O dY 

au au 
p --$+uan+v- 

( 

au 
=-CC 

dY > ax 

a2P a2P 
2+2=-Q 

P=P[(32+2(?3(3+(32] 

with initial condition: 

P(X,Y,O) = pm, u(x,y,O) = 0, G,Y,O) = 0 

and boundary condition: 

on CG 

= 0 apcby, 0 a4xw) 
ax 

= 0, u(O,y,t) = o,- 
x=0 ax x=0 

(7f) 

(74 

U’b) 

(7c) 

(7d) 

(7e) 

on CD 

P(x,h,t) = P,,u(x,h,t) = u,, u(x,h,t) = v, (Q) 

on DE 

W&f) = Pa,,,,, u(x,h,t) = us, u(x,h,t) = us (7h) 

on GF 

afw,o 
ay 

= -pg, u(x,O,t) = 0, v(x,O,t) = 0 
y=o 

(79 

on EF 

Peak impact and treatment after peak impact 

It has been indicated’,= that the hydrodynamic slam- 
ming pulse is essentially a semi-sine wave before the 
column’s postbuckling and plastic collapse take place. 
A typical record for the slamming pulse from the experi- 
ment is shown in Figure 3 where E,, tp, and to are the 
slamming peak value, peak slamming time, and slam- 
ming duration, respectively. The experiment demon- 
strates that E, rises with increasing slamming height and 
r. varies with column slenderness: the smaller the 
slenderness, the shorter the to. For a prescribed 
slenderness, however, to is basically unchanged pro- 
vided that the column does not display postbuckling and 
plastic collapse in one impact. 

For a theoretical study, however, when does the 
peak impact occur and how can it be determined? The 
answer to this question may lead to a simplified treat- 
ment for the present model analysis. From the studies 
by Chuang,’ Verhagen,” and Koehler,” the peak im- 
pact is considered to occur at the instant the deformed 
water free surface makes contact with the edge of the 
plate. According to this peak impact condition, ?,, in 
Figure 3 coincides with the time the plate’s edge 
touches the deformed water free surface. On the other 
hand, equations (6a)-(7k) are valid until the deformed 
water free surface makes contact with the plate’s edge. 
Thus, (6a)-(7k) constitute the mathematical descrip- 
tion of the air and water motion in the phase of 0 5 t 5 tp. 

To obtain the decay phase of the slamming pulse, the 
mathematical description of the air and water motion 
after the peak impact is needed. However, this descrip- 
tion is not always necessary. It is known from the exper- 
iment that there is no distortion phenomenon in the 
slamming pulse shape before the column’s postbuckling 
and plastic collapse take place. Therefore, if only the 
buckling criterion is required rather than all the criteria 

w.w) = ww) -~ 
ax x=L ay x=L Vj) 

wx,y,o 
= 0 

ax x=L 

Moreover, on the air-water interface, the free-sur- 
face water velocity u, is related to the air velocity u,. 
This relationship is 

u, = 0.198, ujl.20p~.533p,on.133$L333x0.20]/p0.667 

(7k) Figure 3. A typical fluid-structure slamming pulse. 
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including the postbuckling and plastic collapse, a sim- 
plified treatment for the mode1 analysis is possible since 
the decay phase of the slamming pulse can be estimated 
in this case from the rise phase. The simplification 
procedure is (a) to divide the motion of the mode1 into 
two phases: 0 5 t 5 tp and t > tp; (b) for 0 5 t 5 t,,, to 
describe the motion with equations (l)-(7k); (c) fort > 
tp, to define the motion of the column remaining with the 
description in the section outlining the structural mo- 
tion equation except the initial condition, but the slam- 
ming pressure in this phase is treated as a prescribed 
load and estimated from the preceding phase (i.e., the 
rise portion of the pulse). In this simplification, the 
motion description of the air and water in t > t,, is 
omitted, and the column’s motion is considered to be 
independent of the air and water behavior. 

In this paper, we restrict our attention to the buckling 
criterion and the relationship between the peak impact 
time and the column slenderness. Therefore, we use the 
simplification procedure in this analysis. 

Solution of mathematical equations 

It is obvious from the mathematical description given 
previously that the column, air, and water motion equa- 
tions are three sets of coupled ones. It is seen that 
equation (4) contains an unknown pressure p,, which is 
related to the water-plate hydrodynamic slamming. On 
the other hand, the air equation (6d) involves an un- 
known quantity V, the falling velocity of the plate. 
Between the air and water, their behaviors are coupled 
through the air equation (6d), which includes the free- 
surface water velocity u, and the water equation (7g), 
which contains the air pressure p, and air velocity u,. 

Because of the coupling among the three sets of 
motion equations, they are difficult to solve directly. In 
what follows, we first introduce a decomposition proce- 
dure for these equations. Once these equations are de- 
composed by the procedure, their solutions can be ob- 
tained by some appropriate numerical methods. 

Decomposition of the coupled equations 
Before the decomposition ofthe coupled equations is 

started, it is useful to review the coupling characteris- 
tics. It is found from the air description that except (6d ), 
which gives a relationship between h,, V, and u,, the 
remaining equations have no explicit connection with 
the water and structural equations. Thus if h, can be 
predetermined independently of the other quantities, 
the air description will be separated from the water and 
structural equations. Moreover, since there is no direct 
connection between the structural and water equations, 
these two sets of equations can be treated separately 
after the air description is decomposed. 

The above discussion suggests a possible decompo- 
sition procedure for the coupled equations. The key 
point of the procedure is to give an appropriate esti- 
mation for the air thickness h, in advance. Usually this 
is difficult. However, when the coupling characteristics 
are combined with a special iteration technique, the 
difficulty can be surmounted. 

Below, we start the decomposition procedure. We 
first divide the time domain 0 % t 5 tp by the discrete 
timepointstj= tj_, + At(j= 1,2,. . .J),whereAt = 
t,lJ is the time step length from tj_, to tj and J is a 
prescribed number for the total time steps. Then we 
assume that the quantities at the time tj_ ,, such as 
h,(x,tj_,), V(ti-,), and q(x,t,_,), are known. Our 
goal is to decompose the coupled equations defined at 
the time tj. The decomposition procedure consists of the 
following steps: 

Step 1. 

Step 2. 

Step3. 

Step 4. 

Step5. 

Step 6. 

Step 7. 

Step 8. 

Estimate an appropriate value for h, (x,tj) from 
equation (6d) and h,(x,ti_ ,), V(t,_ ,), and 
u,(x,tj-,I. This value is used as hz, the first 
approximation of h, (x,tj). 
Substitute hO, into the remaining air equations 
and separate them from the water and structural 
ones. 
Solve the separated air equations for UH and e, 
which are the first approximations for u,(x,tj) 
and p, (x,t,), respectively. 
Substitute hz, uz, and P”, into the water and 
structural equations respectively; thus these 
two sets of equations are decomposed. 
Solve the decomposed structural equations for 
OllC, ‘L&‘, “N“, ‘Nb, and V”, which are the first 
approximations of u’([,t,), uh([,tj), N”([,t,), 
Nb(<,tj), and V(t,), respectively. 
Solve the decomposed water equations for u”, 
IJ’, uf, and P”, which are the first approximation 
of u(x,tj), u(x,tj), and p(x,tj), respectively. 
From (6d) and the current values of hO,, P, and 
uz, calculate the updated air thickness h:. 
Identify whether or not the inequality (hi - h:( 
< y holds true, where y is a positive value less 
than unity. If the inequality is true, add next 
time step to fj, then repeat steps l-7. Otherwise 
replace hO, with h:, then continue steps 2-7 until 
the inequality operates. 

The above decomposition procedure is shown in 
Figure 4. It is seen from the figure that the procedure is 
in fact a staggered iteration technique. 

Solution of the decomposed equations 
We now treat the three sets of decomposed equa- 

tions. From the decomposed equations (6a) and (6b), it 
is found that if they are expressed in a proper finite 
difference form, an explicit solution scheme for I(, and 
pO can be obtained. This is also true for the decomposed 
equations (7a) and (7b). Moreover, once u and u are 
calculated from their explicit solution schemes, the 
source term Q in (7~) can be estimated independently of 
the pressure p(x,y,tj), and the pressure equation be- 
comes a linear one. Thus, the solution of the pressure 
equation also becomes quite easy. 

Based on the above discussion, a finite difference 
method is used in this paper to solve the decomposed air 
and water equations. The present method is identical to 
that used by Koehler” in his analysis of the plate-water 
hydrodynamic impact; therefore, its details are omitted 
here. 
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Figure 4. A staggered decomposition procedure for 
fluid-structure impact buckling. 

For the solution of the decomposed equation (4), a 
tangential stiffness method with the Wilson-8 time inte- 
gration schemer2~i3 is utilized in this paper. This method 
has been adopted by one of the present authors to treat a 
dynamically loaded stiffened plate subjected to both 

geometric and material nonlinearities.7 When the 
method is used in the present problem, the center is to 
calculate the tangential stiffness matrix [k]. According 
to Ref. 7, the tangential stiffness matrix [ k] in this case 
is defined as 

{AF} = [Z?,l{A8},{AF} = {F)t+eAr 

- {F)‘,{Aa} = {@‘+eAt - (6)’ (8) 

Where [ k] is the tangential stiffness matrix at the time t; 
{As} and {AF} are the nodal point displacement and 
internal force increments, respectively, from the time t 
to t + OA t, 8 and At being the Wilson’s parameter and 
the time step length in the time integration scheme. 

By substituting the expression of {F} in equation (4) 
into equation (8) and using the following definitions 

[K% = [~Lml*=o, rKal = uGJ*=o, 
N% = ml,=, (9) 

(11) 

the tangential stiffness matrix is derived in this case as 

a1 = m + Kl + [&I (124 

where 
(a) [R,] = {e * {E}, {F’} being the global structural 

vect_r of the finite element assemblage by {Fp = 
J,JNl’ * L-p,* . &, 017 d5 and {c} being equal to 

{F) = 11 Kyo . [&I), [ qil, * [ BmNL1l.l 
+ [ &$‘I0 * [B;],, 0, 0, * . . 01 (12b) 

(b) [ kJ = {i;> * {c}, {p} being equal to 

{~}=[-1,o,o,~~~o,p,,o,o,~~~o]~ (13) 

(c) [K,] = C, [K,]‘, e being the total finite element 
number and [K,]’ being calculated by 

[ KT1’ = 
[ KZ’I [ f%‘l 

[ K%l [K:l + [Ki,l + U&,1 + [&,r,l + [ K:,,IT 1 (14) 

in which the submatrices are defined as 

(15) 

In these expressions, [ DG], [ D$], and [ DT;“] are the 
column’s membrane, bending, and membrane-bending 
elastioplastic matrices, respectively. These matrices 
have been defined in Ref. 7. 

Once [&,I is determined from equations (ll)-(19), 
the response of the decomposed nonlinear equation (4) 
is easily obtained by the solution of its linearized form as 

[ M]{~y+““’ + [k,]‘{A6} = {Z?),+eAr - {F)’ (20) 
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where {R)‘+eAr is the nodal point external force at the 
time t + 8A t. 

Impact criteria and numerical examples 

In this section, we will analyze two numerical examples 
with the present theoretical model. One of the examples 
is a calculation of the relationship between the peak 
impact time r,, and the column’s slenderness ratio A; the 
other is a calculation of the column’s critical values. The 
common parameters used in the two examples are given 
below 

L = 3.Om,h, = 3.0m,a = 0.4m,b = OAm 

p = 999.6kg/m3, p = 1.19 x 10p9Ns/m3 

P afm = 101.36 K Pa, pat,,, = 1.20 kg/m3 

pair = 1.77 x 10p5Ns/m2 

M = 1000.0 kg, m = 80.0 kg, g = 9.80m/s2 

pS = 7.8 x lo3 kg/m3, CQ = 2.6264 x 108N/m2 

E = 2059.96 x lo8 N/m’, H’ = 0.0 

Example 1. Calculation on the tp vs. A curve 
Four columns with a clamped boundary condition 

and a rectangular cross-section are calculated in this 
example. The geometry of the columns is b, x h, x 1, 
where 1 = 0.3 m, 0.4 m, 0.5 m, and 0.6 m is the length 
of the columns, b, = 14 x lop3 m and h, = 8.0 x 
10e3 m are the cross-section width and thickness, re- 
spectively. The three columns with the lengths of 
0.4 m, 0.5 m, and 0.6 m are the same as those used in 
the experimental study, namely the specimens s 11, s2 1, 
and s3 1 in Refs. 1 and 2. The initial condition of the col- 
umns is assumed to be 

U’([,O) = S&O) = tiQ,O) = 0 (21) 

L&&O) = 16w, . ; . (l-2:+;) (22) 

Where w0 is the initial transverse displacement distur- 
bance at the center, its value is taken as 1 .O x lop3 m. 
This value is close to those of sl 1, s2 1, and s3 1. 

The initial air thickness is chosen in this example as 
h,(x,O) = 0.2 m. 

For each of the considered columns, the peak impact 
time tp is calculated from the present model. The results 
are plotted in Figure 5 against the slenderness ratio A. 
From this figure, it is observed that tp is approximately 
directly proportional to A. This conclusion is in agree- 
ment with that of the experimental curve, which is also 
presented in the figure. 

Example 2. Calculation of the critical impact values 
Three impact criteria defining the structural elastic 

and inelastic behavior in fluid-structure impact buck- 
ling have been suggested in Refs. 1 and 2. The three 
criteria are buckling, plasticity, and plastic collapse. 
These criteria will be used in the numerical analysis. For 

I 
Peory 

30 
...‘..expe&ent cw 

0’ 
L76 40 60 80 /uu I20 440 

slenderness ratio ,J (;I = fi/ / h, ) 

Figure 5. Relationship between peak impact time and 
slenderness ratio. 

convenience, they are restated as follows: 

buckling criterion-for a column with a prescribed 
slenderness, the fluid-structure impact buckling is 
identified as occurring in one impact if the peak axial 
compressive strain E, reaches a critical value E,,,,~ at 
which the maximum bending strain IE&,~~ grows to a 
value equal to the axial loading magnitude. E,,,,~ is 
called critical buckling impact strain. 
plasticity criterion-for a column with a prescribed 
slenderness, the fluid-structure impact plasticity is 
identified as occurring in one impact if E, reaches 
(does not exceed) a critical value E,,,~ at which the 
maximum compressive-bending resultant strain 
JEW,,, grows to a value equal to the yield strain of the 
material. E,,,~ is called critical plasticity impact 
strain. 
collapse criterion-for a column with a prescribed 
slenderness, the fluid-structure impact plastic col- 
lapse is identified as occurring in one impact if E, 
reaches a critical value E,.,~ beyond which fur- 
ther increases in drop height result in decreases in 
the peak axial loading strain rather than in in- 
creases. E,,,~~ is called critical plastic collapse im- 
pact strain. 

Below, we will use the buckling and plasticity criteria 
for calculating the numerical results of the critical 
buckling and plasticity impact strains. The model can- 
not describe the column’s plastic collapse; therefore 
the critical impact strain E,,,~~ cannot be calculated 
in this numerical analysis. 

The columns used in this example are also those of 
sl 1, s21 and s31 in Refs. 1 and 2. The geometrical sizes 
of these columns are given in the previous example. The 
initial geometrical disturbance also takes the form of 
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Table 1. Numerical results for critical imDact values. 

Specimen 

sll 
s21 
s31 

Critical buckling impact value Critical plasticity impact value 
E,,,& strain) Q,,&CL strain) 

Theory Experiment’s* Theory Experiment’** 

610.0 470.0 750.0 580.0 
700.0 540.0 840.0 600.0 

1100.0 820.0 1000.0 750.0 

(22), except that w,, is given by the real imperfections 
measured in the experiment. 

To obtain the critical impact values, each of the 
columns considered is calculated under different im- 
pacts that correspond to different drop heights. The 
calculation for each impact gives a maximum compres- 
sive-bending resultant strain IE\~~~, maximum bending 
strain IGL~, and maximum compressive strain 1~~1. For 
different impacts, these results are drawn with two 
curves: l&ax vs. I4 and hImax vs. 1q.l. From these two 
curves and the buckling and plasticity criteria, the nu- 
merical results of E,,,,~ and E,,,~ are determined. The 
numerical values of the three columns are presented in 
Table 1 in which the experimental values are also listed 
for comparison. It is seen from the table that the dis- 
crepancies between the two sets of results range from 
29% to 40%. This agreement is acceptable, even quite 
good, since in the present model we treat the air motion 
with the one-dimensional theory whereas in the experi- 
ment the motion of the air is two-dimensional flow. 

Conclusion 

This paper presents a theoretical model for a coupled 
fluid-structure impact buckling phenomenon. The 
model is an impact system consisting of a small imper- 
fection elastoplastic column with its upper end attached 
to a large mass and its lower end to a flat plate, an 
incompressible viscous water field, and a one-dimen- 
sional inviscid air layer lying between the plate and the 
water free surface. When the mass-column-plate unit in 
the system perpendicularly impacts the water free sur- 
face from a certain drop height or in a certain falling 
velocity, the column will produce a transversely flex- 
ural vibration due to the axial compression induced by 
the hydrodynamic slamming between the plate and the 
water. The flexural vibration simulates a coupled buck- 
ling phenomenon occurring in some fluid-structure im- 
pact environments where structural buckling is caused 
by fluid-structure impact and strongly depends on the 
hydrodynamic behavior of the fluid. 

The paper provides a mathematical description for 
the model motion. In the description, the motion is 
divided into two phases. The first phase corresponds to 
0 5 t 5 tp and the second phase to tp 5 t 5 to where tp is 
the peak impact time. For 0 5 t 5 tp, the motion is 
treated as a coupling problem between the structural 
buckling and the hydrodynamic slamming. In this 
phase, the virtual work principle and the Prandtl-Reuss 
plastic theory are applied to the structural buckling, the 
one-dimensional continuity and momentum equations 
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of a compressible inviscid fluid are applied to the air 
motion, and the two-dimensional Navier-Stokes equa- 
tions of an incompressible viscous fluid are applied to 
the water motion. This phase ends when the deformed 
water free surface makes contact with the edge of the 
plate. In the second phase, the motion is treated as a 
decoupled structural buckling problem where the col- 
umn is assumed to be loaded by a prescribed axial 
compression. 

In numerical analysis for the first phase, the three 
sets of coupled equations are first decomposed by a 
staggered iteration method. The decoupled structural 
equation is then solved by a nonlinear finite element 
method with the Wilson-8 time integration scheme; the 
decoupled air and water equations are solved by a finite 
difference method. The paper calculates two numerical 
examples. One example is a calculation of the relation- 
ship between the column’s slenderness and the slam- 
ming duration; the other is a calculation of the column’s 
critical impact values. The numerical results are com- 
pared with the experimental ones and the agreement is 
found to be quite good. 

Nomenclature 

column’s membrane and bending displace- 
ments 

column’s generalized membrane and bend- 
ing strains 

column’s membrane force and bending 
moment 

column’s stress and yield stress 
column’s length and thickness coordinates 
column’s length and length in a finite ele- 

ment 
column’s slenderness and cross-section 

area 
column’s elastic modulus and strain-hard- 

ening parameter 
column’s bulk and length densities, p,* = 

-A 
po$t mass and mass of flat plate in Fig. 1 
& = mlM, pz = l/M 
half length and width of flat plate in Fig. 1 
velocity of flat plate and gravity accelera- 

tion 
rectangular coordinates in air and water 

regions 
air velocity and pressure (absolute) 
atmospheric pressure and density 

PCltWZ 
under 
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h,,h air layer thickness and height of deformed 4 
water region 

u,u water velocities in x and y-directions 
free-surface water velocities in x and y-di- 

5 
US 7 us 

rections 6 

P,P water pressure (absolute) and density 

:;:LL 
water dynamic and kinematic viscosities 
reference height and half width of water 

7 

region 
W, impact duration and peak impact time 8 

9 
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