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Introduction

This book contains selected, extended papers presented (with three exceptions) in
the thematic ECCOMAS conference on Composites with Micro- and Nano-
Structure (CMNS) – Computational Modelling and Experiments held in
Liptovský Mikuláš, Slovakia, in May 28–31, 2007 and sponsored by the Slovak
Ministry of Education.

Composite materials play important role in all mechanical, civil as well as in
electrical engineering structures especially in the last two decades in connection
with the nano-materials and nano-technologies. Of course the chemical engineering
is a connecting element for all these applications.

Computational methods and experiments are a basis for the Simulation-Based
Engineering Science (SBES). SBES can play a remarkable role in promoting the
developments vital to health, security and technological competitiveness of nations.

Recent experimental and computational results demonstrate that materials rein-
forced with stiff particles and fibres can obtain substantial improvements in stiffness,
thermal conductivity and electro-magnetic properties. Materials reinforced with fi-
bres can have very different properties in different directions. The material can have
very good conductivity in one direction and can be isolator in other directions. Most
important reinforcing materials discovered less than 20 years ago, which are in the
centre of interest in many universities and research institutions are the carbon nano-
tubes.

With these new materials also importance of computational simulations and ex-
perimental verifications increases.

The book contains 16 papers:
The first paper, by Leung et al., employs an atomic-scale finite element method

to study torsion buckling of single-walled carbon nano-tubes (SWNTs). The depen-
dence of critical torsion angle on the length is discussed and compared with conven-
tional shell theory. Strain energy and morphologies of the SWNT are discussed.

In the second paper, the authors study the structure and mechanical strength prop-
erties of Cu nano particulate aggregates. The inter-particle interaction models have

vii



viii Introduction

been considered to account the long-range forces: electrostatic, van der Waals and
coupled Johnson, Kendall and Roberts (JKR) and Brownian force models. The as-
semblies considered have poly-size distribution of particles.

In the third paper the interaction of matrix with fibres and fibre with other fibres
in the fibre-reinforced composites (FRC) is numerically simulated using 1D contin-
uous source functions along the fibre axis and 2D source functions inside the ends
of fibres. Numerical examples show that the interaction of the end parts of fibres
is crucial for evaluation of the mutual interaction of fibres in the composite. Cor-
rect simulation of all parts is important for evaluation of stiffness and strength of
the FRC.

In the fourth paper the effective dynamic material properties for materials with
microstructure are assumed. Micro-scale inertia are taken into account and numer-
ical homogenization is performed. The frequency dependent macroscopic material
parameters are found for frequency range from 0 up to 1 MHz.

The fifth paper describes modelling of diffusive and massive phase transforma-
tion of a multi-component system based on the principle of maximum dissipation
rate by Onsager; the finite thickness of the interface between both phases can be res-
pected. The mathematical analysis results in an initial-value problem for a system
of partial differential equations of evolution with certain non-local integral term; the
unknowns are the mole fractions of particular components.

Paper number six deals with numerical implementation of local integral equation
formulation of 2D linear elastic media with continuous variable Young’s modulus.
Two meshless presentations of the formulation are described and accuracy, conver-
gence and numerical stability are investigated.

The seventh paper presents methods for the modelling of the processes that ac-
company obtaining and use of powder nano-composites. For this purpose, a number
of physical-mathematical models, including the models of obtaining of nano-sized
powders at “up down” processes, the models of the main steps of powder nano-
composites compaction and the models of deformation of powder nano-composites
under the ambient action were developed.

The eighth paper presents the basis of the nano-impact test and the idea of predic-
tion of fracture occurrence, especially fatigue behaviour of nano-impacted materials.
Finite element (FE) model is applied to identification of the material model of hard
nano-coating in the multilayer system. In the second part of the chapter a new ap-
proach to analysis of fracture phenomena is introduced as the fatigue criteria, which
are used in simulation of nano-impact test. Results of simulations with the fatigue
criteria implemented into the FE code for the analysed problem are discussed.

The ninth paper contains a description of a continuum micromechanics model
development and experimental validation of strand-based engineering wood prod-
ucts aimed to improve the mechanical properties of wood products. The model al-
lows considering of the relevant (micro-) characteristics of the wood on the mechan-
ical properties of panels.

The tenth paper focuses on experimental investigations and numerical modelling
of micromechanical behaviour of cement paste taken as a fundamental represen-
tative of building materials with heterogeneous microstructure. The experimental
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nano-indention and its implications to evaluation of material properties are focused.
Better descriptions of indentation based on analytical visco-elastic solution and
finite element model with general visco-elasto-plastic constitutive relation are pro-
posed. These models are used for simulation of indentation and for estimation of
material parameters at micrometer scale.

Paper number eleven studies the prediction of the crack growth of the ductile
fracture of forgets steel 42CrMo4. Crack extension is simulated in sense of element
extinction algorithm based on the damage model Gurson-Tvergard-Needleman and
on the cohesive zone model. Determination of micro-mechanical parameters is
based on the combination of static tests, microscopic observation and numerical
calibration procedures by FEM.

In the twelfth paper a longitudinal polynomial continuous variation of the stiff-
ness properties is considered in the stiffness matrix of the beam element and pre-
sented for the analysis of the electric, thermal and structural field. The transversal
and longitudinal variation of the material properties is considered.

In the thirteenth paper a novel computational modal and solution procedure
are proposed for inhomogeneous materials with the eigenstrain formulation of the
boundary integral equations. Each inhomogeneity embedded in the matrix with vari-
ous shapes and material properties described via the Eshelby tensors can be obtained
through either analytical or numerical means. As the unknowns appear only on the
boundary of the solution domain, the solution scale of the inhomogeneity problem
with the present model is greatly reduced. To enhance further the computational
efficiency, the overall elastic properties using the present model with eigenstrain
formulation are solved using the newly developed boundary point method for parti-
cle reinforced inhomogeneous materials over a representative volume element.

The fourteenth paper deals with reliability of porous ceramics based on exper-
imentation and analysis. Damage prior to rupture and aging because of corrosive
activity in porous materials is discussed. Fracturing processes in the material that
result to rupture under pore pressure are studied on the micro-scale by the numeri-
cal simulation model.

Finally, in the last paper a computational framework for extracting effective dif-
fusivities from micro-tomographic images is presented. Effective diffusivity of a
cement paste whose microstructure has been digitized is derived, consistent homog-
enization and statistical testing and interpretation of results are highlighted.

I would like to thank my colleague Dr. Štiavnický for his help in preparation of
the book.

Vlado Kompiš



Chapter 3
Method of Continuous Source Functions
for Modelling of Matrix Reinforced
by Finite Fibres

Vladimı́r Kompiš, Mário Štiavnický, Marián Kompiš, Zuzana Murčinková,
and Qing-Hua Qin

Abstract Fibres are the most effective reinforcing material. Simulation of the inter-
action of matrix with fibres and fibre with other fibres is a most important problem
for understanding the behaviour of fibre-reinforced composites (FRC). Large gra-
dients in all displacement, stress and strain fields and their correct simulation for
near and far field action are essential for effective computational modelling. Be-
cause of the large aspect ratios in fibre type reinforcing particles, methods using
volume discretization are not efficient. Source functions (forces, dipoles, disloca-
tions) describe correctly both near and far field activities and thus help to simulate
all interactions very precisely. The method of continuous source functions allows us
to satisfy the continuity of fields between very stiff fibres and much more flexible
matrix by 1D continuous functions along the fibre axis and local 2D functions in the
end parts of a fibre with only few parameters. Two types of examples with rows of
non-overlapping sheets of fibre and with overlapping fibres show that the interac-
tion of the end parts of fibres is crucial for evaluation of the mutual interaction of
fibres in the composite. Correct simulation of all parts is important for evaluation of
stiffness and strength of the FRC.
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3.1 Introduction

Composites of the future will offer many advances over those in use today. Com-
posite materials reinforced by fibres are important materials possessing excellent
mechanical and also thermal and electro-magnetic properties. The outstanding prop-
erties of mechanical strength of carbon nano-tubes (CNT) are well known. This
allows them to be used as possible reinforcing materials [1]. Reinforcement with
nano-tubes facilitates the production of very strong and light materials. These prop-
erties of CNTs have attracted the attention of scientists all over the world. Under-
standing the behaviour of such composite materials is essential for structural design.
Computational simulations play an important role in this process [25].

In computational simulations, boundary-type solution methodologies are now
well established as alternatives to prevailing domain-type methods such as FEM
[3, 33], because of the computational advantages they offer by way of reduction of
dimensionality, good accuracy for the whole domain, and simplicity of data prepa-
ration for the model. The BEM [2, 5] is the most popular and efficient boundary
solution procedure, formulated in terms of boundary integral equations (BIEs). In
BEM the integral identities are applied over elements discretizing the boundary of
the domain.

However, the use of elements in the BEM, with evaluation of weakly singular,
strongly singular, hyper-singular and quasi-singular integrals, is a cumbersome and
non-trivial task. The integration of elements containing singularity requires special
integration models. If a singularity is close to the element (i.e. the element with
quasi-singularity), then the integrals with large gradients in points closest to the
singularity must be computed by high order quadratures, or by another special tech-
nique in order to obtain good accuracy.

The boundary contour method (BCM) [20, 22] represents an effort to improve
efficiency by transferring the surface integrals into line integrals by application of
Stokes’ theorem for 3D problems.

The boundary node method (BNM) [21, 32] is a combination of the moving least
squares (MLS) approximation scheme and the standard BIE method. This method
divorces the traditional coupling between spatial discretization (meshing) and in-
terpolation as commonly practised in the FEM or in the BEM. Instead, a “diffuse”
approximation, based on MLS approximants, is used to represent the unknown func-
tions and surface cells, with a very flexible structure used for integration. Thus, the
BNM belongs with boundary meshless methods.

Using the virtual boundary method and radial basis functions (RBF), the bound-
ary point collocation method has been proposed to construct a boundary meshless
formulation [29, 31], in which the boundary conditions and body forces are enforced
and coupled with the analogue equation method to construct a boundary-type mesh-
less method for analysing nonlinear problems [30].

Hybrid-Trefftz methods [8, 12, 15, 27] are also boundary-type methods. They
use a set of trial functions, singular or non-singular, which a priori satisfy the cor-
responding linear part of the governing differential equation inside the (sub)domain
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(the large element). Other independent functions maintain the continuity between
the subdomains (in a weak and strong sense).

The method of fundamental solutions (MFS) [9, 14] is a boundary meshless
method which does not need any mesh. In linear problems, only nodes (colloca-
tion points) on the domain boundaries and a set of source functions (fundamental
solutions) in points outside the domain are necessary to satisfy the boundary condi-
tions. MFS has certain advantages over the BEM, as it completely avoids the need
for any integral evaluation and it leads to very simple formulations in some prob-
lems. However, large numbers of both collocation points and source functions are
necessary if the shape of the domain is complex and moreover, the resulting system
of equations is bad conditioned in some problems. The source functions serve as the
trial functions and must be placed outside the domain. The location of the source
functions is vital to both the accuracy and the numerical stability of the solution.
The MFS can be also included among Trefftz-type methods.

A novel boundary-type meshless method – the boundary point method (BPM)
was developed in [18]. The BPM is based on the direct formulation of conventional
and hypersingular BIEs employing favourable features of both the MFS and BEM.
It is well known that for the integration of kernel functions over boundary elements,
the shorter the distance between the source and field points, the more difficult it is to
evaluate them accurately because of the properties of the fundamental solutions. In
the formulation, “moving elements” are introduced by organizing relevant adjacent
nodes in order to describe the local features of a boundary such as position, curvature
and direction, over which the treatment of singularity and integration can be carried
out, a benefit not only for the evaluation of integrals in the case of coincidence
points, but also for the versatility afforded by using unequally spaced nodes along
the boundary.

In special problems like composite materials reinforced with short micro-/
nanofibres, all the methods mentioned above require very many elements or bound-
ary points to obtain a sufficiently accurate solution. In such problems the materi-
als of the matrix and fibres have very different electro-magneto-thermo-mechanical
properties and very large gradients are present in all fields in matrix and in fibres
as well. Domain formulations also require billions of equations after numerical dis-
cretization to simulate the decaying effects with increasing distance from the fibre
and the gradients along the boundaries. Boundary formulations can simulate the de-
caying effect well, but they also require a large number of equations to simulate
the large gradients on the inter-domain boundaries. Both near and far field effects
are important. Near field effects are important for evaluation of the strength of the
composite and far fields are important for correct evaluation of the stiffening effect.

The fast multi-pole method (FMM) [11] was developed to increase the efficiency
of numerical models. A FMM based on the Taylor expansion of kernel functions (the
fast multipole boundary integral equation method (FMBIEM)) [7, 10, 19, 23, 24, 26]
was developed to solve the problem of composite materials reinforced by many
small particles, considerably accelerating BEM solutions. However, near field inte-
grals still have to be solved by classical BEM and the boundaries are also discretized
by elements.
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In this paper, a novel method of continuous source functions (MCSF) for the
modelling of problems such as composites reinforced with short fibres is presented.
The source functions (forces and dipoles [4]) are continuously distributed along
the fibre axis (i.e. outside of the domain) and their intensity is modelled by 1D
quadratic elements along the axis. Moreover, 2D distribution of the source functions
are used to satisfy the continuity in the end part of the fibre. The method can be
included among BPMs, as inter-domain continuity is satisfied in the discrete points
of the inter-domain boundary in the least squares (LS) sense. The model presents
a significant reduction (even by several orders) in the resulting system of equations
compared to FEM, BEM, and other known mesh reducing methods. The MCFS
requires integration over 1D and 2D elements. Analytic integration using symbolic
manipulation is used for evaluation of the quasi-singular integrals occurring in the
models, and it is a very efficient tool for the evaluation of such integrals. Numerical
integration is used for 2D elements because of complex form of the integrands.
Recently a procedure of improved efficiency for such problems was also developed
[18]. If the source domain and the field point (e.g. the collocation point) are far
from each other, the source values can be replaced by their resulting value and the
computation is again considerably reduced. The effect is similar to that used in
the FMBIEM but the algebraic manipulation is simpler, based on the principles of
mechanics in this case instead of the Taylor expansion used in FMBIEM.

The model is applied to simulation of the interaction of matrix-fibre-fibre for reg-
ularly distributed straight fibres in a patch inside the matrix. Two different problems
are studied: (1) fibres distributed in rows without overlap of the fibres and (2) with
overlap of the fibres.

3.2 Modelling of Composite Material Reinforced
with Short Fibers

Let us consider a linear elastic material reinforced by regularly distributed “short”
straight fibres. Let the cross sectional dimensions of a fibre be much smaller than
its length, the tensional (axial) stiffness of the fibre is much higher than the stiffness
of the matrix and ideal cohesion between the matrix and the fibres is assumed in
the present model. Then a continuity condition between the matrix and a fibre can
be introduced by zero strains (rigid fibre) in the longitudinal direction along the
fibre boundary and by zero difference of the displacements in each pair of points on
opposite fibre boundaries in the perpendicular direction to the fibre axis.

If the fibres are straight then an alternative continuity condition can be expressed
by the difference between displacements of a point on the fibre surface and a point
in the middle cross-section along the fibre axis.

All displacement, strain and stress fields are split into a homogeneous part cor-
responding to constant stress and strain acting in the matrix without the fibres and
local fields corresponding to the stiffening effect. For simplicity, isotropic material
properties are assumed in this paper.
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fibre

distributed forces and dipoles

x3

Fig. 3.1 Fibre-matrix interaction simulated by source functions placed inside the fibre (the num-
bers indicate 1D elements)

The interaction of the matrix and a fibre is simulated by source functions placed
inside the fibre along its axis. The source functions are continuous forces and dipoles
(Fig. 3.1) acting outside the domain (matrix).

The field of displacements in an elastic continuum caused by a unit force acting
in the direction of the axis xp is given by the Kelvin solution as it is known from
BEM [2, 5, 6]

U (F)
pi =

1
16πG(1−ν)

1
r

[(3−4ν)δip + r,ir,p] (3.1)

where i denotes the xi coordinate of the displacement, G and ν are shear modulus
and Poisson’s ratio of the material of the matrix. δij is the Kronecker’s delta and r is
the distance between the source point s, where the force is acting and a field point t,
where the displacement is expressed, i.e.

r =
√

riri, ri = xi (t)− xi (s) (3.2)

with the summation convention over repeated indices and

r,i = ∂ r
/

∂xi (t) = ri
/

r (3.3)

is its directional derivative.
The gradients of the displacement fields are the corresponding derivatives of the

field (3.1) at the point t

U (F)
pi, j = − 1

16πG(1−ν)
1
r2 [(3−4ν)δpir, j − δp jr,i − δi jr,p + 3r,ir, jr,p] (3.4)

The second derivative of nth power of the radius vector is defined as

(
rn
,k

)
, j

= rn
,k j =

n
r

(
rn−1
,k δ jk − r, jr

n
,k

)
(3.5)
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The strains are

E(F)
pi j =

1
2

(
U (F)

pi, j +U (F)
p j,i

)
= − 1

16πG(1−ν)
1
r2

[(1−2ν) (δpir, j + δp jr,i)− δi jr,p + 3r,ir, jr,p] (3.6)

and the stress components ij of this field are

S(F)
pi j = 2GE(F)

pi j +
2Gν

1−2ν
δi jE

(F)
pkk =

1
8π (1−ν)

1
r2

[(1−2ν) (δi jr,p − δ jpr,i − δipr, j)−3r,ir, jr,p] (3.7)

The displacement field of a dipole can be obtained from the displacement field
of a force by differentiating it in the direction of the acting force, i.e.

U (D)
pi = U (F)

pi,p = − 1
16πG(1−ν)

1
r2

[
3r,ir

2
,p − r,i + 2(1−ν)r,pδip

]
(3.8)

The summation convention does not apply over the repeated indices p here or
in the following relations. Recall that the derivatives in the direction perpendicular
(see, Eq. (3.4)) to the force define a force couple [4, 13], which can be also used
in some problems. These derivatives have the physical meaning of corresponding
couples of forces acting at a point.

The gradients of a dipole displacement field (3.8) are

U (D)
pi, j = − 1

16πG(1−ν)
1
r3

[−15r,ir, jr
2
,p + 3r,ir, j

+2(1−2ν)δip (δ jp −3r, jr,p)+ 6r,ir,pδ jp + δi j
(
3r2

,p −1
)]

(3.9)

and corresponding strain and stress fields are

E(D)
pi j =

1
2

(
U (D)

pi, j +U (D)
p j,i

)
= − 1

16πG(1−ν)
1
r3 [−15r,ir, jr,p + 3r,ir, j

+2(1−2ν)δipδ jp + 6ν (δipr, jr,p + δ jpr,ir,p)

+ δi j
(
3r2

,p −1
)

] (3.10)

S(D)
pi j = 2GE(D)

pi j +
2Gν

1−2ν
δi jE

(D)
pkk = − 1

8π (1−ν)
1
r3

[
(1−2ν)

(
2δipδ jp +3r2

,pδi j −δi j
)

+6νr,p (r,iδ jp + r, jδip)+3
(
1−5r2

,p

)
r,ir, j ] (3.11)

If unit forces acting at source points (i.e. the fundamental solution satisfying
the homogeneous equilibrium equations in the whole domain with the exception of
the source point alone) are located in discrete points outside the solution domain
for computational models, and also the collocation points (i.e. the points at which
the boundary conditions have to be satisfied) are chosen at some discrete points



3 Method of Continuous Source Functions 33

of the domain boundary, then the method of solution is known as the method of
fundamental solutions (MFS) [9, 14]. This method is very simple. It does not need
any elements or any integration and thus is a fully meshless method. These functions
are Trefftz functions and they serve as interpolators in the whole domain. Note that
any other Trefftz functions can be used for this purpose [15].

On the other hand, dipoles are very effective tools for the modelling of compos-
ites reinforced by spherical or ellipsoidal particles [16, 28], and if the density of
particles is small a single triple dipole can very effectively simulate a particle. The
efficiency of the model is higher than that using the FMBIEM [7, 10, 19, 23, 24, 26]
as integration is not necessary. Note that a dipole located inside a particle, i.e. out-
side of the domain represented by the matrix, gives both zero resulting force and mo-
ment along the particle boundary and thus the global equilibrium is not destroyed
by local errors, as it can be when using MFS [15]. However, the location of the
source points is vital for the best simulation of continuity and equilibrium along
interdomain boundaries.

However, if the fibres are thin then satisfaction of continuity of displacements,
strains and tractions on the surface between the matrix and fibres and correspond-
ing displacements and strains along the fibre would require a very large number of
source points to simulate the interaction. Moreover, in the end parts of a fibre the
fields have very large gradients [17], which increases the difficulties with accuracy
and numerical stability of the solution.

In our models, continuous distribution of source points is used for simulation of
the interaction. This method is here called the method of continuous source func-
tions (MCSF). It is possible to use both distributed forces and distributed dipoles
along the fibre axis (1D distribution) and oriented in the axis direction in the model.
Their role is mainly to satisfy continuity in the fibre axis direction. Continuity in
directions perpendicular to the fibre axis is served mainly by the continuous dipoles
along the fibre axis, but directed perpendicularly to the fibre axis. Recall that con-
tinuously distributed dipoles are derivatives of continuously distributed forces.

The ends of a fibre can be in the form of half spheres or cylinders. It is impor-
tant to satisfy the boundary conditions (b. c.) in these parts also. Without taking
these b. c. into account, the source functions located along the fibre axis can give
incorrect results in evaluation of the stiffening effect. Special b. c. have to be speci-
fied for tube-type particles such as carbon nanotubes. Instead of displacements, zero
tractions must be prescribed in such cases.

The distribution is approximated by piecewise quadratic functions with C0 con-
tinuity between the elements. The following integrals need to be evaluated

b∫
a

xn
s

(
xs − x f

)p(
y2 + xs− x2

f

)m
2 +r

dxs = f
(
x f
)

(3.12)

where x is the coordinate along the fiber axis, the subscripts s and f denote the
source and field point and exponents n, m, p and r are integer numbers. y is the
distance of the field point from the axis. The integral (3.12) is transformed for better
manipulation to
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b+x f∫
a+x f

(
x + x f

)n
xp

(y2 + x2)
m
2 +r

dx = f
(
x f
)

(3.13)

The integrands are quasi-singular with very large local gradients and they are
evaluated analytically by symbolic manipulation in MATLAB.

Quadratic elements were chosen as the best way of approximation by polynomial
functions. It was found that they can better approximate the b. c., as the end parts of
fibres transmit the largest forces from the matrix and it was preferable to use large
gradients in these parts of fibres when small elements were used for the parts with
large gradients than to use larger elements of high order polynomials. Although the
integrals give large gradients at the ends of fibres, i.e. if x f → a, or x f → b, the C0

continuity of elements permits a smooth solution to be obtained.

3.3 Numerical Results and Discussion

Two different problems were simulated in order to study the interaction of fibres
with matrix and also the interaction of fibres: (1) a patch of non-overlapping rows
of fibres as shown in Fig. 3.2, and (2) a patch of overlapping rows of fibres according
to the Fig. 3.3. In the examples the modulus of elasticity of the matrix was E = 1,000
and the Poisson ratio ν = 0.3. The matrix was reinforced by a patch of straight rigid
cylindrical fibres. The length of fibres was L = 100 and L = 1,000 and the radius

Fig. 3.2 Patch of
non-overlapping rows
of fibres

fibre of
interest

x1

x3

D3

L 

D1

fibre of
interest  

B A        B 

B A        B 

Fig. 3.3 Patch of overlapping rows of fibres



3 Method of Continuous Source Functions 35

R = 1. The distance between fibres was ∆1 = ∆2 = ∆3 = 16 and for longer fibres
also ∆3 = 200 in the fibre direction. The fibres in the patch contained approximately
1% of the volume of the composite material.

The patches of fibres consisted of 5×5×7 fibres in the presented examples and
the “fibre of interest” (FOI) was chosen in the centre to study the interaction of the
fibre with matrix and with the other fibres as well. The domain is assumed to be
loaded by far field stress σ33∞ = 10 in the direction (x3), which is also parallel to
fibres’ axes. The model of the fibre used in these examples contained fewer than 100
unknown parameters (intensities of the source functions) and about 200 collocation
points. The problem is solved by the least squares (LS) method.

In order to reduce the number of unknown parameters it was assumed that the
intensities of source functions are identical in all fibres. That is of course not correct,
as the fibres at the patch boundaries will transmit larger loads than those in the
middle. An iterative procedure can be used to correct the simulation. But for the
purpose of quantitative evaluation of the influence of fibre reinforcement the models
give sufficient information.

Some results are presented in the next figures. All displacement, strain and stress
fields given in the figures are the local components of corresponding fields. Recall
that the far fields have to be added in to obtain the total quantities.

Figures 3.4–3.10 show the local fields in the vicinity of the fibre of interest (the
coordinates’ origin is in the middle of the fibre) for L = 1,000 R with overlay and the
distance ∆3 = 200R. Displacement differences of the points on the fibre boundary
were linear along the fibre (Fig. 3.4). As the LS method was used in the procedure,
the errors were examined as shown in Figs. 3.4 and 3.5. The circles denote nodal
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Fig. 3.4 Local displacements along a fibre (L = 1,000R)
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Fig. 3.5 Errors in local displacements along fibre (L = 1,000R)
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Fig. 3.6 Displacement field parallel to fibre axis (L = 1,000R)

points in distributed source functions (fictive forces of the Kelvin functions and
dipoles) along the fibre axis. Two different models were used: one with disconti-
nuities (A – red) near the ends of neighbouring fibres where the fields have large
gradients, and one with continuous distribution of source functions (B – blue) along
whole fibre axis.
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Fig. 3.7 Shear stress parallel to fibre axis (L = 1,000R)
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Fig. 3.8 Stress in fibre direction parallel to fibre axis (L = 1,000R)

Displacements, shear stresses and stresses in the fibre direction along the fibre
(dashed line) and in the middle between the fibre of interest and the neighbouring
fibre are shown in Figs. 3.6–3.8, respectively. Figures 3.9 and 3.10 contain the distri-
bution of intensities of fictive forces along the fibre and the forces in the fibre cross
section given by the integral of forces. The discontinuous model contains large local



38 V. Kompiš et al.
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Fig. 3.9 Intensity of fictive forces along fibre (L = 1,000R)
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Fig. 3.10 Forces in fibre cross section (L = 1,000R)

forces in the vicinity of the discontinuities. The maximal forces in the middle of the
fibre are important for evaluation of the strength of the fibre. Both continuous and
discontinuous models give similar results and the difference in maximal values is
less than 3%.
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Figure 3.11 shows the influence of both the gap between the fibres and the over-
lap for longer fibres. As could be expected, the configuration with overlap gives a
much larger reinforcing effect. The fictive forces are concentrated at the end parts of
fibres only in the case without overlap of fibres (Fig. 3.12). A configuration without
overlap can occur when long fibres are broken by large forces.
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Fig. 3.11 Forces in fibre cross section with overlap ∆3 = 200 R (red), ∆3 = 16R (black); without
overlap ∆3 = 200 R (cyan), ∆3 = 16 R (blue) by (L = 1,000 R)
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Fig. 3.12 Intensity of fictive forces along fibre in without overlap (L = 1,000R)
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Different transmission of load between matrix and fibres in the cases with and
without overlap can be observed in shorter fibres (L = 100R), as can be seen from
Figs. 3.12–3.19. The forces in the fibres with overlap are greater than without over-
lap, but the difference is not as great as occurs with longer fibres.

Two aspects are important for accurate simulation in computational models:
(1) how accurately the compatibility conditions in the inter-domain (matrix-fibre)
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Fig. 3.13 Local displacements along a fibre (L = 100R)
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Fig. 3.14 Errors in local displacements along fibre (L = 100R)
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Fig. 3.15 Displacement field parallel to fibre axis (L = 100R) with and without overlap
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Fig. 3.16 Shear stress parallel to fibre axis (L = 100R) with and without overlap

boundary are satisfied, and (2) the numerical stability of the fictive source functions.
Instability of the source functions can be observed in the end parts of fibres and bet-
ween the discontinuous parts of source functions (Fig. 3.9). The instability in the
end parts can result in inaccurate estimation of forces in fibre cross-section. The in-
stability shown in the Fig. 3.9 does not influence the results greatly. It was observed
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Fig. 3.17 Strain in fibre direction parallel to fibre axis (L = 100R) with and without overlap
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Fig. 3.18 Intensity of fictive forces along fibre (L = 100R) with and without overlap

that too fine 1D elements in the parts of fibres with large gradients can lead to insta-
bility of the source functions whereas too course elements decrease the accuracy of
the primary variables. Both these features can destroy the accuracy of estimation of
secondary fields (stresses, strains, forces in fibre cross section). No general rule has
yet been found for choosing the nodal points for 1D source distribution.
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Fig. 3.19 Forces in fibre cross section (L = 100R) with and without overlap

Extreme shear forces between the fibre and the matrix can lead to de-bonding of
the fibre or to de-cohesion and re-cohesion at the ends and also in the middle of a
fibre close to another fibre in materials reinforced with nanotubes, which are typical
and very efficient novel reinforcing materials. This middle part of the fibre will carry
the largest forces, which can lead to fracture of the fibre. The forces in the fibre can
exceed the largest stresses in the matrix and the bonding stresses on the matrix-fibre
interface by several orders.

3.4 Conclusions

The MCSF enables us to simulate the interactions both of matrix with stiff reinforc-
ing fibres and of fibre with other fibres very effectively. Computational experiments
have shown that very large gradients in all fields occur not only in the end parts of
fibres, but also in points close to the ends of neighbouring fibres, more precisely
in points on the line perpendicular to the axis of the neighbouring fibre. The large
gradients in the end parts of fibres also influence numerical models. If polynomial
interpolation of source functions is chosen in the models then finer division of the
continuous function needs to be defined in these parts.

Numerical models used for simulation of all matrix-fibre and fibre-fibre interac-
tions must maintain the gradients in order to correctly estimate the interactions. Be-
cause methods using volume discretization such as FEM and finite volume method
(FVM) can smooth out the gradients, very fine meshes would be necessary for nu-
merical models.
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The extreme shear forces between fibre and matrix can lead to de-bonding or to
de-cohesion in the end parts and also in the middle of a fibre close to another fibre
in materials reinforced with fibres or nanotubes, which are typical and very efficient
novel reinforcing materials. This middle part of the fibre will be subjected to the
largest forces, which can lead to its fracture.

The forces in the fibre can result in stresses which can be larger by several orders
than the largest stresses in the matrix, or in the bonding on the matrix-fibre interface.
The optimal aspect ratio of fibres can be found for specific working stress/strain
conditions in each part of a structure according to the strength of all fibre, matrix
and bond between fibre and matrix. This is another attractive property of this kind
of composite material.

Two types of problems simulated in our experiments show, as expected, that over-
lapping fibres reinforce the matrix more effectively. Fibres distributed without over-
lap can suffer breakage when subjected to high tension.

In the present model we have considered straight fibres, rigid in the axial direc-
tion. It is not complicated to consider some more general cases, using this model
as the first step in the iteration process. However, more effort will be necessary to
include features like boundary conditions for more complex shaped regions, curved
fibres, nonlinear effects in matrix, and bonding properties.
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