AUSTRALIAN NATIONAL UNIVERSITY Department of Engineering

ENGN 2211 Electronic Circuits and Devices
 Problem Set \#8 BJT CE Amplifier Circuits

Q1

Consider the common-emitter BJT amplifier circuit shown in Figure 1.
Assume $V_{C C}=15 \mathrm{~V}, \beta=150, V_{B E}=0.7 \mathrm{~V}$,
$\underline{R_{E}}=1 \mathrm{k} \Omega, R_{C}=4.7 \mathrm{k} \Omega, R_{1}=47 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{L}=47 \mathrm{k} \Omega, R_{s}=100 \Omega$.

Figure 1: The circuit for Question 1.
(a) Determine the Q-point.
(b) Sketch the DC load-line. What is the maximum (peak to peak) output voltage swing available in this amplifier.
(c) Draw the AC equivalent circuit and determine the AC model parameters.
(d) Derive expressions for $R_{\text {in }}, R_{\text {out }}, A_{v o c}, A_{v}, A_{i}, G$.
(e) Find $R_{\text {in }}, R_{\text {out }}, A_{\text {voc }}, A_{v}, A_{i}, G$.
(f) Find the output voltage waveform if $v_{s}=10 \times 10^{-3} \sin (2 \pi 5000 t)$. Sketch the source and output voltage waveforms.
(g) Determine whether clipping will take place if $v_{s}=25 \times 10^{-3} \sin (2 \pi 5000 t)$.

Q2
Consider the common-emitter BJT amplifier circuit shown in Figure 2.
Assume $V_{C C}=15 \mathrm{~V}, \beta=150, V_{B E}=0.7 \mathrm{~V}$,
$\underline{R_{E}=2.7 \mathrm{k} \Omega}, R_{C}=4.7 \mathrm{k} \Omega, R_{1}=47 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{L}=47 \mathrm{k} \Omega, R_{s}=100 \Omega$.

Figure 2: The circuit for Question 2.
(a) Determine the Q-point.
(b) Sketch the DC load-line. What is the maximum (peak to peak) output voltage swing available in this amplifier.
(c) Draw the AC equivalent circuit and determine the AC model parameters.
(d) Derive expressions for $R_{i n}, R_{\text {out }}, A_{v o c}, A_{v}, A_{i}, G$.
(e) Find $R_{\text {in }}, R_{\text {out }}, A_{v o c}, A_{v}, A_{i}, G$.
(f) Find the output voltage waveform if $v_{s}=10 \times 10^{-3} \sin (2 \pi 5000 t)$. Sketch the source and output voltage waveforms.

AUSTRALIAN NATIONAL UNIVERSITY Department of Engineering

ENGN 2211 Electronic Circuits and Devices
Problem Set \#8 Solution

Q1

Complete Solution

Given that $V_{C C}=15 \mathrm{~V}, \beta=150, V_{B E}=0.7 \mathrm{~V}$,
$R_{E}=1 \mathrm{k} \Omega, R_{C}=4.7 \mathrm{k} \Omega, R_{1}=47 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{L}=47 \mathrm{k} \Omega, R_{s}=100 \Omega$.

(a)

Analyzing the DC Voltage-divider bias circuit, we have

$$
\begin{aligned}
V_{T H} & =\frac{R_{2}}{R_{1}+R_{2}} V_{C C} \\
& =\frac{10 \mathrm{k}}{10 \mathrm{k}+47 \mathrm{k}}(15)=2.63 \mathrm{~V} \\
R_{T H} & =\frac{R_{2} R_{1}}{R_{1}+R_{2}} \\
& =\frac{(10 \mathrm{k})(47 \mathrm{k})}{10 \mathrm{k}+47 \mathrm{k}}=8.2456 \mathrm{k} \Omega \\
I_{B} & =\frac{V_{T H}-V_{B E}}{R_{T H}+(\beta+1) R_{E}} \\
& =\frac{2.63-0.7}{8.2456 \mathrm{k}+(151)(1 \mathrm{k})}=12.12 \mu \mathrm{~A} \\
I_{C} & =\beta I_{B} \\
& =(150)(12.12 \mu)=1.8179 \mathrm{~mA} \\
I_{E} & =(\beta+1) I_{B} \\
& =(151)(12.12 \mu)=1.83 \mathrm{~mA} \\
V_{E} & =I_{E} R_{E} \\
& =(1.83 \mathrm{~m})(1 \mathrm{k})=1.83 \mathrm{~V} \\
V_{C} & =V_{C C}-I_{C} R_{C} \\
& =15-(1.8179 \mathrm{~m})(4.7 \mathrm{k})=6.456 \mathrm{~V} \\
V_{C E} & =V_{C C}-I_{C} R_{C}-I_{E} R_{E} \\
& =15-(1.8179 \mathrm{~m})(4.7 \mathrm{k})-(1.83 \mathrm{~m})(1 \mathrm{k})=4.626 \mathrm{~V}
\end{aligned}
$$

As $I_{B}>0$ and $V_{C E}>0.2 \mathrm{~V}$, the transistor is in active region of operation.
The Q-point lies at

$$
\begin{aligned}
I_{C Q} & =1.8179 \mathrm{~mA} \\
V_{C E Q} & =4.626 \mathrm{~V}
\end{aligned}
$$

(b)

For ideal cut-off

$$
V_{C E(o f f)}=V_{C C}=15 \mathrm{~V}
$$

For ideal saturation

$$
I_{C(\text { sat })}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{15}{5.7 \mathrm{k}}=2.63 \mathrm{~mA}
$$

The plot of DC load line is shown in figure below

We see that the Q-point lies closer to saturation $\left(V_{C E}=0.2 \mathrm{~V}\right)$ than cut-off ($V_{C E}=15 \mathrm{~V}$).
Hence the maximum available peak to peak output voltage swing $=2\left(V_{C E Q}-0.2\right)=8.852 \mathrm{~V}$.
(c)

Replacing the capacitors by short circuits and $V_{C C}$ by virtual AC ground, the AC equivalent circuit is

Replacing the transistor by the small-signal AC equivalent circuit, we have

The AC Model parameters are

$$
\begin{aligned}
r_{e} & =\frac{26 \mathrm{mV}}{I_{E Q}} \\
& =\frac{26}{1.83}=14.207 \Omega \\
r_{\pi} & =(\beta+1) r_{e} \\
& =(151)(14.207)=2.1453 \mathrm{k} \Omega \\
R_{B} & =R_{1} \| R_{2} \\
& =8.2456 \mathrm{k} \Omega \\
R_{L}^{\prime} & =R_{L} \| R_{C} \\
& =(47 \mathrm{k}) \|(4.7 \mathrm{k})=4.27 \mathrm{k} \Omega
\end{aligned}
$$

(d)

For derivations, please see Lecture 13.
(e)

The BJT CE amplifier parameters are

$$
\begin{aligned}
R_{i n} & =R_{B} \| r_{\pi} \\
& =(8.2456 \mathrm{k}) \|(2.1453 \mathrm{k})=1.7024 \mathrm{k} \Omega \\
R_{o} & =R_{C} \\
& =4.7 \mathrm{k} \Omega \\
A_{v o c} & =-\frac{R_{C} \beta}{r_{\pi}} \\
& =\frac{(4.7 \mathrm{k})(150)}{2.1453 \mathrm{k}}=-328.62 \\
A_{v} & =-\frac{R_{L}^{\prime} \beta}{r_{\pi}} \\
& =\frac{(4.27 \mathrm{k})(150)}{2.1453 \mathrm{k}}=-298.56 \\
A_{i} & =A_{v} \frac{R_{i n}}{R_{L}} \\
& =(-298.56) \frac{1.7024 \mathrm{k}}{47 \mathrm{k}}=-10.81 \\
G & =A_{i} A_{v} \\
& =(-10.81)(-298.56)=3228.69
\end{aligned}
$$

(f)

Finding the equation for output voltage with load, we have

$$
\begin{aligned}
v_{s} & =10 \times 10^{-3} \sin (2 \pi 5000 t) \\
v_{i n} & =\frac{R_{\text {in }}}{R_{s}+R_{i n}} v_{s} \\
& =\frac{1.7024 \mathrm{k}}{100+1.7024 \mathrm{k}} v_{s} \\
& =0.9445 v_{s} \\
v_{o} & =A_{v} v_{\text {in }} \\
& =(-298.56)\left(0.9445 v_{s}\right) \\
& =(-298.56)(0.9445)\left(10 \times 10^{-3} \sin (2 \pi 5000 t)\right) \\
& =-2.82 \sin (2 \pi 5000 t)
\end{aligned}
$$

The required peak to peak output voltage swing $=2(2.82)=5.64 \mathrm{~V}$.
The maximum available peak to peak output voltage swing $=8.852 \mathrm{~V}>5.64 \mathrm{~V}$.
Hence no clipping will take place.
The -ve sign indicates that output voltage is 180° out of phase with input voltage (inverting amplifier).
The time period is $T=\frac{1}{5000}=0.2 \mathrm{~ms}$.
The sketch of input and output voltages is shown in figures below:- (Note y-axis has different units in the two figures)

Figure 3: Source voltage $v_{s}(t)$.

Figure 4: Output voltage $v_{o}(t)$.

(g)

For $v_{s}=25 \times 10^{-3} \sin (2 \pi 5000 t)$, we have

$$
\begin{aligned}
v_{o} & =A_{v} v_{i n} \\
& =(-298.56)\left(0.9445 v_{s}\right) \\
& =(-298.56)(0.9445)\left(25 \times 10^{-3} \sin (2 \pi 5000 t)\right) \\
& =-7.05 \sin (2 \pi 5000 t)
\end{aligned}
$$

The required peak to peak output voltage swing $=2(7.05)=14.1 \mathrm{~V}$.
However the maximum available peak to peak output voltage swing $=8.852 \mathrm{~V}<14.1 \mathrm{~V}$.
Hence clipping will take place.
See ProbSet08_Q1.sch.

Q2

Solution

Given that $V_{C C}=15 \mathrm{~V}, \beta=150, V_{B E}=0.7 \mathrm{~V}$,
$R_{E}=2.7 \mathrm{k} \Omega, R_{C}=4.7 \mathrm{k} \Omega, R_{1}=47 \mathrm{k} \Omega, R_{2}=10 \mathrm{k} \Omega, R_{L}=47 \mathrm{k} \Omega, R_{s}=100 \Omega$.

(a)

Analyzing the DC Voltage-divider bias circuit, we have

$$
\begin{aligned}
V_{T H} & =2.63 \mathrm{~V} \\
R_{T H} & =8.2456 \mathrm{k} \Omega \\
I_{B} & =4.64 \mu \mathrm{~A} \\
I_{C} & =0.696 \mathrm{~mA} \\
I_{E} & =0.7006 \mathrm{~mA} \\
V_{C} & =11.72 \mathrm{~V} \\
V_{E} & =1.89 \mathrm{~V} \\
V_{C E} & =9.837 \mathrm{~V}
\end{aligned}
$$

As $I_{B}>0$ and $V_{C E}>0.2 \mathrm{~V}$, the transistor is in active region of operation.
The Q-point lies at

$$
\begin{aligned}
I_{C Q} & =0.696 \mathrm{~mA} \\
V_{C E Q} & =9.837 \mathrm{~V}
\end{aligned}
$$

(b)

For ideal saturation and cut-off

$$
\begin{aligned}
V_{C E(o f f)} & =15 \mathrm{~V} \\
I_{C(s a t)} & =2.027 \mathrm{~mA}
\end{aligned}
$$

The plot of DC load line is shown in figure below

We see that the Q-point lies closer to cut-off $\left(V_{C E}=15 \mathrm{~V}\right)$ than saturation $\left(V_{C E}=0.2 \mathrm{~V}\right)$.
Hence the maximum available peak to peak output voltage swing $=2\left(V_{C C}-V_{C E Q}\right)=10.34 \mathrm{~V}$.
(c)

The AC Model parameters are

$$
\begin{aligned}
r_{e} & =37.11 \Omega \\
r_{\pi} & =5.6037 \mathrm{k} \Omega \\
R_{B} & =8.2456 \mathrm{k} \Omega \\
R_{L}^{\prime} & =4.27 \mathrm{k} \Omega
\end{aligned}
$$

(d)

For derivations, please see Lecture 13.
(e)

The BJT CE amplifier parameters are

$$
\begin{aligned}
R_{\text {in }} & =3.336 \mathrm{k} \Omega \\
R_{o} & =4.7 \mathrm{k} \Omega \\
A_{\text {voc }} & =-125.81 \\
A_{v} & =-114.3 \\
A_{i} & =-8.11 \\
G & =926.97
\end{aligned}
$$

(f)

$$
\begin{aligned}
v_{s} & =10 \times 10^{-3} \sin (2 \pi 5000 t) \\
v_{i n} & =0.97089 v_{s} \\
v_{o} & =-1.11 \sin (2 \pi 5000 t)
\end{aligned}
$$

The required peak to peak output voltage swing $=2(1.11)=2.2 \mathrm{~V}$.
The maximum available peak to peak output voltage swing $=10.34 \mathrm{~V}>2.2 \mathrm{~V}$.
Hence no clipping will take place.
The sketch of input and output voltages is shown in figures below:- (Note y-axis has different units in the two figures)

Figure 5: Source voltage $v_{s}(t)$.

Figure 6: Output voltage $v_{o}(t)$.

See ProbSet08_Q2.sch.

