AUSTRALIAN NATIONAL UNIVERSITY Department of Engineering

ENGN 3227 Analogue Electronics Problem Set #06 Active Filters

Q1

Consider the circuit shown in Figure 1.

Assume $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $C_1 = 1 \mu\text{F}$.

(a) Find the s-domain transfer function of the circuit in standard form.

(b) Write the set of MATLAB commands (4 lines expected) to obtain the Bode plot.

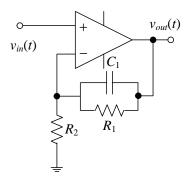


Figure 1: The circuit for Question 1.

Q2

Consider the circuit shown in Figure 2.

Assume $R_1 = 1 \text{ k}\Omega$, $C_1 = 1 \mu\text{F}$, $C_2 = 10 \mu\text{F}$.

(a) Find the s-domain transfer function of the circuit in standard form.

(b) Write the set of MATLAB commands (4 lines expected) to obtain the Bode plot.

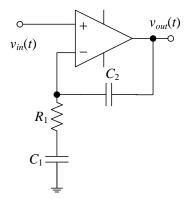


Figure 2: The circuit for Question 2.

ANU

Q3

Consider the Sallen-Key low-pass filter circuit shown in Figure 3. Find the s-domain transfer function of the circuit in standard form.

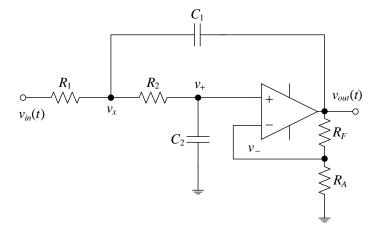


Figure 3: The circuit for Question 3.

Q4

Consider the Sallen-Key high-pass filter circuit shown in Figure 4. Find the s-domain transfer function of the circuit in standard form.

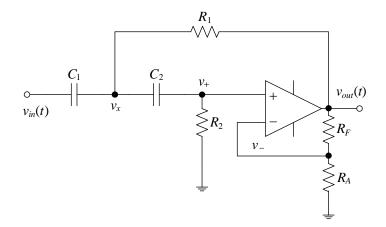


Figure 4: The circuit for Question 4.

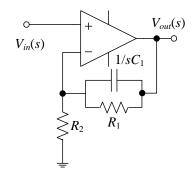
AUSTRALIAN NATIONAL UNIVERSITY Department of Engineering

ENGN 3227 Analogue Electronics Problem Set #06 Solution

Q1

Complete Solution

The given circuit data is $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, $C_1 = 1 \mu\text{F}$. Re-drawing the circuit in s-domain, we have



(a)

Applying KCL at -ve pin,

$$\frac{V_{-}(s) - 0}{R_2} + \frac{V_{-}(s) - V_{out}(s)}{R_1} + \frac{V_{-}(s) - V_{out}(s)}{\frac{1}{sC_1}} = 0$$

Solving

$$\frac{V_{out}(s)}{V_{-}(s)} = \frac{sC_1 + \frac{1}{R_1} + \frac{1}{R_2}}{sC_1 + \frac{1}{R_1}}$$

From circuit, $V_{in}(s) = V_+(s)$. Applying op-amp assumption, $V_+(s) = V_-(s)$. Hence

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{sC_1 + \frac{1}{R_1} + \frac{1}{R_2}}{sC_1 + \frac{1}{R_1}}$$

Converting to standard form

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{s + \frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2}\right)}{s + \frac{1}{R_1C_1}}$$

(a)

Substituting the values, the transfer function is

$$H(s) = \frac{s + 1500}{s + 1000}$$

ANU

The MATLAB commands are:

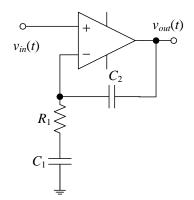
>> num=[1 1500];
>> den=[1 1000];
>> H=tf(num,den);
>> bode(H);

From the shape of the magnitude bode plot, the given circuit provides 3.5 dB gain to low frequencies and allows high frequencies to pass unchanged (0dB gain).

Q2

Partial Solution

The given circuit data is $R_1 = 1 \text{ k}\Omega$, $C_1 = 1 \mu\text{F}$, $C_2 = 10 \mu\text{F}$. The given circuit is



(a)

In standard form

$$H(s) = \frac{\frac{1}{R_1 C_2}}{s + \frac{1}{R_1 C_1}}$$

1

(b)

$$H(s) = \frac{100}{s + 1000}$$

The MATLAB commands are:

```
>> num=[100];
>> den=[1 1000];
>> H=tf(num,den);
>> bode(H);
```

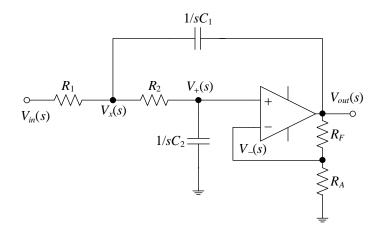
From the shape of the magnitude bode plot, the given circuit is a low-pass filter with roll-off -20 dB/decade.

ANU

Q3

Partial Solution

Re-drawing the circuit in s-domain, we have



Let

$$G = 1 + \frac{R_F}{R_A} = \frac{R_A + R_F}{R_A}$$

Step 1: Apply KCL at -ve pin

$$\frac{V_{-}(s) - V_{out}(s)}{R_F} + \frac{V_{-}(s) - 0}{R_A} = 0$$

Solving, we have

$$V_{-}(s) = \frac{R_A}{R_A + R_F} V_{out}(s)$$
$$= \frac{V_{out}(s)}{G}$$

Applying op-amp assumption, $V_+(s) = V_-(s)$. Hence

$$V_+(s) = \frac{V_{out}(s)}{G}$$

Step 2: Apply KCL at +ve pin

$$\frac{V_{+}(s) - V_{x}(s)}{R_{2}} + \frac{V_{+}(s) - 0}{\frac{1}{sC_{2}}} = 0$$

Substituting the value $V_+(s) = \frac{V_{out}(s)}{G}$ and solving, we get

$$V_x(s) = (sC_2R_2 + 1)\frac{V_{out}(s)}{G}$$

Step 3: Apply KCL at node *x*

$$\frac{V_x(s) - V_+(s)}{R_2} + \frac{V_x(s) - V_{out}(s)}{\frac{1}{sC_1}} + \frac{V_x(s) - V_{in}(s)}{R_1} = 0$$

$$\frac{V_x(s) - \frac{V_{out}(s)}{G}}{R_2} + \frac{V_x(s) - V_{out}(s)}{\frac{1}{sC_1}} + \frac{V_x(s) - V_{in}(s)}{R_1} = 0$$

ENGN 3227

Simplifying, we have

ANU

$$\left(sC_1 + \frac{1}{R_1} + \frac{1}{R_2} \right) V_x(s) = \frac{1}{R_1} V_{in}(s) + sC_1 V_{out}(s) + \frac{1}{GR_2} V_{out}(s)$$

$$(sC_1 R_1 R_2 + R_2 + R_1) V_x(s) = R_2 V_{in}(s) + sC_1 R_1 R_2 V_{out}(s) + \frac{R_1}{G} V_{out}(s)$$

$$(sC_1 R_1 R_2 + R_2 + R_1) (sC_2 R_2 + 1) \frac{V_{out}(s)}{G} = R_2 V_{in}(s) + sC_1 R_1 R_2 V_{out}(s) + \frac{R_1}{G} V_{out}(s)$$

$$(sC_1 R_1 R_2 + R_2 + R_1) (sC_2 R_2 + 1) V_{out}(s) = GR_2 V_{in}(s) + sGC_1 R_1 R_2 V_{out}(s) + R_1 V_{out}(s)$$

$$(sC_1R_1R_2 + R_2 + R_1)(sC_2R_2 + 1)V_{out}(s) - sGC_1R_1R_2V_{out}(s) - R_1V_{out}(s) = GR_2V_{in}(s) (sC_1C_2R_1R_2^2 + sC_1R_1R_2 + sC_2R_2^2 + R_2 + sC_2R_1R_2 + R_1)V_{out}(s) - sGC_1R_1R_2V_{out}(s) - R_1V_{out}(s) = GR_2V_{in}(s) (s^2C_1C_2R_1R_2^2 + sC_1R_1R_2(1 - G) + sC_2R_1R_2 + sC_2R_2^2 + R_2)V_{out}(s) = GR_2V_{in}(s) (s^2C_1C_2R_1R_2 + sC_1R_1(1 - G) + sC_2R_1 + sC_2R_2 + 1)V_{out}(s) = GV_{in}(s)$$

Hence

$$\begin{array}{lcl} \frac{V_{out}(s)}{V_{in}(s)} & = & \frac{G}{s^2 C_1 C_2 R_1 R_2 + s C_1 R_1 (1-G) + s C_2 R_1 + s C_2 R_2 + 1} \\ & = & \frac{G}{s^2 C_1 C_2 R_1 R_2 + [C_1 R_1 (1-G) + C_2 R_1 + C_2 R_2] s + 1} \end{array}$$

Step 4: Convert transfer function to standard form.

Dividing numerator and denominator by $C_1C_2R_1R_2$

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{G \frac{1}{C_1 C_2 R_1 R_2}}{s^2 + \left[\frac{1-G}{C_2 R_2} + \frac{1}{C_1 R_2} + \frac{1}{C_1 R_1}\right] s + \frac{1}{C_1 C_2 R_1 R_2}}$$

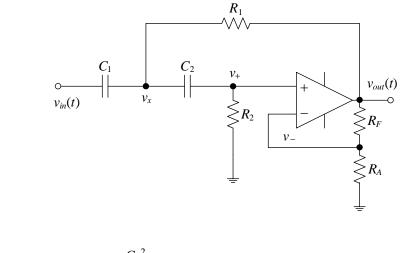
Hence

$$H(s) = \frac{G \frac{1}{C_1 C_2 R_1 R_2}}{s^2 + \left[\frac{1-G}{C_2 R_2} + \frac{1}{C_1 R_2} + \frac{1}{C_1 R_1}\right] s + \frac{1}{C_1 C_2 R_1 R_2}}$$

Q4

Solution

The given circuit is



$$H(s) = \frac{Gs^2}{s^2 + \left[\frac{1-G}{C_1R_1} + \frac{1}{C_1R_2} + \frac{1}{C_2R_2}\right]s + \frac{1}{C_1C_2R_1R_2}}$$