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Abstract-We study the design parameters of pilot-symbol­
assisted modulation (PSAM) schemes for spatially correlated
single-input multiple-output (SIMO) systems in time-varying
Gauss-Markov flat-fading channels. We use an information
capacity lower bound as our figure of merit. We investigate
the optimum design parameters, including the ratio of power
allocated to the pilots and the fraction of time occupied by the
pilots, for SIMO systems with different antenna sizes and with
spatial channel correlation. Our main finding is that by optimally
designing the training parameters for single-input single-output
(SISO) systems, the same parameters can be used to achieve near
optimum capacity in both spatially independent and correlated
SIMO systems for the same fading rate and signal-to-noise ratio
(SNR). In addition, we show that spatially independent channels
give the lowest capacity at sufficiently low SNR. These findings
provide insights into the design of practical PSAM systems.

I. INTRODUCTION

Channel estimation is crucial for reliable high data rate
transmission in wireless communications with coherent de­
tection. Pilot-symbol-assisted modulation (PSAM) has been
used in many practical communication systems, e.g. in Global
System for Mobile Communications (GSM) [1], to assist es­
timation of unknown channel parameters. In PSAM schemes,
training symbols are inserted into data blocks periodically to
acquire the channel state information (CSI) [2]. However, the
insertion of pilots also reduces the information capacity as less
transmission resource is allocated to data. Therefore, trade-off
analysis in PSAM parameter design is required on the resource
allocation to pilots and data. Furthermore, the parameters
of the wireless channel, such as the number of the channel
inputs/outputs, the fading rate and the spatial correlations, add
another level of complexity into the design problem.

Optimal PSAM designs for time-varying fading channels
with low-pass Doppler spectra were studied in [3,4], where
Wiener filtering was used for non-causal channel estimation.
In [3], the authors studied a lower bound on channel capacity
and concluded that optimal sampling frequency of the fading
process equals the Nyquist rate. On the other hand, the studies
on channel capacity with ideal interleaving via Monte Carlo
simulations in [4] showed that pilot symbols should be sent
more frequently than the Nyquist rate.

More recently, studies on optimal PSAM design in single­
input single-output (SISO) systems adopted a Gauss-Markov
channel model which is an alternative model for time-varying
fading channels [5-7]. With fixed ratio of pilot insertion,
the authors in [5] found that allocating only one pilot per
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transmission block minimized the channel estimation error
at the last data symbol in the block. From an information
theoretic viewpoint, the authors in [6] investigated the power
distribution among data symbols and showed that data symbols
closer to the pilot symbols should have more power than
those further away from the pilots. In [7], the authors assumed
uniform power distribution among data symbols, and jointly
optimized a channel capacity lower bound to find the optimum
pilot power allocation ratio and pilot spacing.

For multiple-input multiple-output (MIMO) systems, the
authors in [8] studied a lower bound on the information
capacity in PSAM schemes for block fading channels, and
derived the optimal pilot power allocation and optimal number
of pilot symbols per transmission block. For slow bandlimited
fading channels with maximum likelihood estimation, the
authors in [9] found that the optimal pilot spacing is nearly
independent of the number of receive antennas. However,
studies in [9] assumed spatially independent channels with
equal power allocation to pilot and data symbols.

The impact of channel spatial correlations on the capacity
has been studied mainly in non-PSAM schemes. With the
knowledge of the channel spatial covariance at the transmitter,
correlations among transmit antennas increase the channel
capacity when perfect CSI is present at the receiver [10]. On
the other hand, the authors in [11] showed that correlations
among the transmit/receive antennas always reduce capacity,
assuming perfect CSI is available only at the receiver.

In this paper, we consider the optimal PSAM design from
an information theoretic viewpoint for SIMO systems in time­
varying Gauss-Markov channels. We investigate the following
questions: Does channel spatial correlation at the receiver al­
ways reduce information capacity? Are optimal parameters for
SISO systems also optimal for SIMO systems with spatially
correlated channels? The main contributions of this paper are:

• In Section IV, we show that spatially independent SIMO
channels result in the highest channel estimation error,
and hence the lowest capacity at sufficiently low SNR.

• In Section V, we show that the optimum PSAM design
parameters for SISO systems are very close to optimal for
spatially independent SIMO systems for Gauss-Markov
channels with the same fading rate and operating SNR.

• In Section V, we show that the optimal design for
spatially independent channels are also near optimal for
correlated channels, which is an extension of [9]. Based
on the above results, we conclude that by optimally
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designing the training parameters for SISa systems, the
same parameters can be used to achieve near optimum
capacity in both spatially independent and correlated
SIMa systems.

Throughout the paper, the following notations will be used:
Boldface upper and lower cases denote matrices and column
vectors, respectively. The matrix IN is the N x N identity
matrix. [.] * denotes the complex conjugate operation, and [.] t
denotes the conjugate transpose operation. The notation E {.}
denotes the mathematical expectation. tr{·}, I . I and rank{.}
denote the matrix trace, determinant and rank, respectively.

II. SYSTEM MODEL

We consider a SIMa system with N r receive antennas in
time-varying flat-fading channels. After matched filtering, the
received symbols at time index Rare given by

We denote the average received symbol SNR by p = (1~EI(1~.

Using (3), the pilot and data symbol SNRs are given as

(]'~Ep , (]'~Ed 1 - ,
Pp = lT~ =;'P and Pd = lT~ = 1 -1]P' (4)

III. CHANNEL ESTIMATION

Due to the channel temporal correlation, we use the Kalman
filter as an iterative linear minimum mean square error
(LMMSE) estimator based on state space models. In particular,
(1) and (2) are the observation equation and the state update
equation, respectively. For channels with Gaussian statistics,
the LMMSE estimator is the MMSE estimator.

During pilot transmission, i.e. £ = 1, T + 1, ... , the Kalman
filter gain is given by [12]

K£ = (a2M£-l +Rw)x; ((a2M£-l +Rw)Ep+(]'~INr)-l, (5)

(1) and the channel estimate update equation is given by

(6)

where
T-I

Vi = L akw£_k.
k=O

Following the Kalman filter update equations in (5) and
(7), the covariance of channel estimation error between two
consecutive pilot transmissions can be written as

M, = ((a2TM,_r+(l--a2T)Rh) :1+IN
r
) -1 X

(a2TMl_r+(I--a2T)Rh) . (8)

When the Kalman filter reaches the steady-state, we denote
the steady-state error covariance matrix at pilot transmission
by Mss,l ~ M£ = M£-T. Rearranging the above equation,
we obtain the following quadratic matrix equation

2 1 - o2T [; 1 - a2T
M ss1 + £ (~Rh+INr)MsSl- £ Rh=O.

, a 2T ;;f (]'n ' a 2T ;;:f
n n

It can be observed that h£ is ZMCSCG. We denote the
estimation err~r ~r h, = h, - hi, and its covariance matrix
by M£ = E{h£h£}. The update equation of M£ is given by

M£ = (1 - K£x£)(a2M l- 1+ Rw). (7)

Without loss of generality, we initialize ho = 0 and M 0 =
Rh. The orthogonality property of LMMSE estimator states
that hi and h£ are uncorrelated, which implies the covariance
of h£ is given by R hl = R h - M£.

We are interested in the steady-state behaviour of the
Kalman filter. At the periodic steady-state, we have M l =
M l - T VR. In order to find a closed-form expression for the
steady-state error covariance matrix, we first focus on the pilot
transmission mode and express M£ in terms of M£-T.

From (2), the channel states between two consecutive pilot
transmissions are related as

(2)

where Wi is a ZMCSCG process noise with covariance matrix
R w = E{w£w£t} = (1 - (2)(1~INr. a is the temporal
correlation coefficient given by a = Jo(21r!DTs ), where Jo
is the zero-order Bessel function of the first kind, f D is the
Doppler frequency shift, and Ts is the transmitted symbol
period. Therefore, fDTs is the normalized fading rate. We
assume that a is known and is constant over a large number
of transmitted symbols.

A. Pilot Transmission Scheme

In PSAM schemes, the channel estimation is performed dur­
ing pilot transmission. During data transmission the channels
can be predicted based on the temporal correlation. From the
previous studies on the optimal design of pilot insertion [5, 8],
we know the optimal strategy for SIMa systems is to allocate
one pilot per transmission block. Therefore, we assume each
transmission block of T symbols consists of one pilot followed
by T - 1 data symbols. We denote the pilot spacing by
TJ = liT. The average power per symbol is denoted by E,
and the power of pilot and data symbols are denoted by Ep

and Ed, respectively. We assume a fraction of 1 of the total
power budget is allocated to pilots. Hence, we have

where Xi is the transmitted symbol, Yi is the Nr x 1 received
symbol vector, ni is the Nr x 1 noise vector with covariance
matrix R n = E{ntntt}. The noise at each receive antenna
is independent, identically distributed (i.i.d.) and zero-mean
circularly symmetric complex Gaussian (ZMCSCG), each with
variance (1~, Le. Rn = (1~INr. hi is the Nr x 1 channel vector
with ZMCSCG entries. The spatial correlation of the channels
is characterized by Rh = E{hih1}. In the case where the
channels are spatially i.i.d., R h = (]'~INr' where (]'~ denotes
the variance of each entry of hi.

The temporal correlation of the channels is modelled as a
Gauss-Markov process:

, and £d= (1-,)ET = 1-'E.
£p = I£T = ~£ T - 1 1 - 1]

(3)
It can be shown using result in [13] that the above quadratic
matrix equation satisfies the conditions for an explicit solution
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(9)

in the same form as in the scalar case. Therefore, the solution
is given as

1 1 (2 2 ) 1/2
Mss,l=-"2~Q+"2 ~ Q +4~Rh ,

where (A)1/2 denotes the matrix square root of A, and

£ 1- a 2T

Q = -fRh+INr' and K, = £.
a O,2T P

n 0:::

During data transmission, the channel prediction is given by

hi = ahi-1, (10)

and the error covariance update equation is given by

Mi=a2Mi-1+Rw. (11)

The steady-state error covariance matrix during data trans­
missions can be calculated iteratively using (11) as

Mss,i = Rh + O,
2(i-1) (Mss,l - Rh), (12)

where R= 2,3, ... , T.

IV. CHANNEL CAPACITY

In this section, we study the channel capacity when the
Kalman filter has reached the steady-state.

A. A Capacity Lower Bound

Without loss of generality, we normalize the variance of
the channel gains, i.e. a~ = 1. For systems with imperfect
CSI at the receiver, the exact capacity expression is still
unavailable. Alternatively, we consider a lower bound for the
instantaneous capacity, which has been used for information­
theoretic studies [14], given by

CLB,f=Ej"t{ IOg21 INr +Pd(PdMss,f+INJ-lhfh~ I}. (13)

For the case where entries of hi are i.i.d., M ss ,£ is a
diagonal matrix with the same diagonal entry denoted by
a; i' which is proven later in Lemma 1, and the entries of

hf' are i.i.d. with variance 1 - 0"; f' Let (f h;hf .
Note that (£ is a Gamma distributed random variable with
parameters (Nr , 1 - a; i)' From (10), one can show that
(i = 0,2(£-1)(1, Using (4) and the matrix determinant lemma
II+ABI = II+BA/, the instantaneous capacity lower bound
in (13) can be rewritten as

1=2 2(£-1)(

CLB,f = Eel { log2 (1 + 1;;;:0 2 1)}. (14)
1-11 pae,£ + 1

When entries of hi are correlated, hi has correlated entries
as well. In this case, Monte Carlo simulation will be used to
carry out the numerical analysis in Section V.

For both spatially i.i.d. and correlated channels, the capacity
lower bound per transmission block is given by

1 T

CLB = T L CLB,f' (15)
i=2

B. The Effect of Spatial Correlation on the Capacity

The authors in [11] showed that spatial correlation always
reduces capacity, assuming perfect CSI at the receiver. We
would like to ask whether it is still true when imperfect CSI
is available at the receiver. To answer this question, we first
look at the effect of channel spatial correlation on the channel
estimation MMSE. Our finding is summarized in the following
lemma with the proof given in Appendix A.

Lemma 1: Consider the system model given by (1) and
(2) with the assumption that the channel covariance matrix
Rh is full rank. Under the Kalman filter setup for channel
estimation, spatially i. i.d. channels result in the maximum
channel estimation MMSE, and the covariance matrix of the
estimation error is diagonal with the same entries on its main
diagonal.

At very high operating SNR, the channel estimation error is
negligible. Therefore, we expect the effect of channel spatial
correlation on the capacity to be the same as in the perfect
CSI case.

Here we focus on the effect of spatial correlation in suffi­
ciently low data symbol SNR (Pd) regime. In this regime, the
instantaneous capacity lower bound in (13) can be approxi­
mated as

CLB,f ~ Ej"t { IOg21INr + Pdhfh~I},

1:2 Ej"t tr{ In (INr + Pdhfh~)}, (16)

1 {" "t}~ In2 Eh£ tr Pdhihi , (17)

l:d
2

(Nr - tr{Mss,f}), (18)

where (16) is obtained using In I . / = tr{ln(·)}, and (17) is
obtained using Taylor's series expansion of In(·). It can be
seen that (18) is a decreasing function of tr{M ss,i}' From
Lemma 1, we know that spatially i.i.d. channels result in
maximum tr{M ss,i}' This implies that at sufficiently low SNR,
spatial correlation between channels are' desirable for higher
capacity. This finding signifies the effect of channel estimation
error on the capacity in contrast to the perfect CSI assumption
in [11].

V. NUMERICAL RESULTS

In this section, we perform numerical analysis on the
optimal values of the PSAM design parameters, i.e. the pilot
power ratio 'Y and the pilot spacing 'TJ (or equivalently the block
length T), which maximize the capacity lower bound in (15).

A. Spatially LLd. Channels

Fig. 1 shows a 3D plot of the capacity lower bound in (15)
for a 1 x 4 SIMO system. The average SNR budget is P =
10dB, and normalized fading rate is fnTs = 0.11 which gives
the Gauss-Markov parameter a = 0.884 in (2), i.e. moderately
fast time-varying channels. From Fig. 1, the optimal parameter
values are T'opt = 0.37 and 'TJopt = 0.25 (or Topt = 4). We
observe that CLB is more sensitive to the pilot spacing 'TJ (or
the block length T) than to the pilot power ratio 'Y. Particularly,
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Fig. 1. The capacity lower bound in (15) at SNR budget p = 10dB, and
normalized fading rate fDTs = 0.11 (i.e. a = 0.884), for a 1 x 4 system.

Fig. 3. The optimum block length for different numbers of receive antennas,
at both high and low SNR budgets and normalized fading rates.
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Fig. 2. The optimum block length T opt for a wide range of SNR budget and
normalized fading rates, for a 1 x 4 system. Topt is found by a numerical
search in (15) where different T and "y values are checked.

CLB is almost constant for, ranging from 0.2 to 0.55, with
less than 5% degradation from the optimal value. We also
studied the plots for Nr == 1, 2,8 (not shown in this paper),
and the trends are very similar to the one shown in Fig. 1.
Our observations indicate that the optimal design of the pilot
spacing is more important than that of the pilot power ratio.
Hence, we focus on the optimal pilot spacing in the following
capacity analysis.

Fig. 2 shows the optimal block length Topt == 1/1]opt for a
wide range of SNR and normalized fading rates, for a 1 x 4
SIMa system. We also produced the plots for N r == 1,2,8
(not shown in this paper), and the same trends are found in
all cases. Firstly, the optimum block length decreases as the
fading rate increases for a fixed SNR. This is expected as
more frequent training is needed when channel varies faster.
Secondly, for slow fading channels, e.g. fDTs == 0.01, the
optimum block length decreases dramatically as the SNR in­
creases, while for fast fading channels, e.g. fDTs == 0.11,0.15,
the optimum block length is almost constant as SNR increases.

Fig. 4. The capacity lower bound in (15) for a wide range of SNR budget for
different normalized fading rates and numbers of receive antennas. The solid
lines are capacity lower bound using optimum parameters for SIMO systems,
and the dashed lines are the capacity lower bound achieved using optimum
parameters SISO systems for the same antenna size and fading rate.

Fig. 3 shows the optimum block length for different num­
bers of receive antennas. We see that the optimal block length
generally increases with N r . Since more antennas produce
higher diversity, which improves the tolerance on the channel
estimation error, the system can allow a larger pilot spacing.
Furthermore, the increases in the optimum block length is
more sensitive to Nr in the slow fading channel (fDTs == 0.01)
than in the faster fading channel (fDTs == 0.11).

Fig. 4 shows the capacity lower bound for a wide range of
SNR budget for different normalized fading rates and number
of receive antennas. We plot both the capacity lower bound
achieved using optimum parameters for each SIMa case (solid
line) and that achieved using optimal parameter for the SISO
case (dashed line). We see that the difference between the two
is negligible, except for the case where fDTs == 0.11 and
Nr == 8, in which the maximum difference is approximately
3% at p == 8dB. Therefore, by optimizing parameters for SISO
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Fig. 6. The optimum block length vs. spatial correlation coefficient for a
1 x 2 system, at both high and low SNR budgets and normalized fading rates.
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lower bounds using optimum parameters for the correlated SIMO systems, and
the dashed lines are the capacity lower bounds using optimum parameters for
SISO systems.

that the parameters which optimize the capacity for spatially
i.i.d. channels may also achieve near optimum capacity for
correlated channels.

Fig. 7 shows the capacity lower bound in (15) for correlated
channels, fixing the inter-antenna distance to be a quarter of a
wavelength. We plot both the capacity lower bound achieved
using the optimum parameters for each correlated SIMO case
(solid line) and that achieved using the optimal parameter
for the SISO case (dashed line). We see that the difference
between the two is negligible, except for the case where
fDTs == 0.11 and Nr == 8, in which the maximum difference
is approximately 3% at p == 6dB. Together with the result
obtained for spatially LLd. channels, we conclude that by
optimizing parameters for SISO channel, the same parameters
achieve near optimum capacity for both spatially i.i.d. and
correlated SIMO system of practical antenna size (Nr S; 8).

channel, one can achieve near optimum capacity for spatially
i.i.d. SIMO channels ofpractical antenna sizes (Nr :::; 8).

B. Spatially Correlated Channels

We study the effect of channel spatial correlation on the
optimal design parameters. Without loss of generality, we
place the receive antennas on a uniform circular array and use
the standard Jake's model to calculate the spatial correlation
under isotropic scattering environment [15]. From the analysis
in Section IV, we expect that spatial correlation may increase
the capacity through reduction in channel estimation error at
sufficiently low SNR, while we argued that correlation reduces
the capacity at high SNR.

Fig. 5 shows the capacity lower bound in (15) using
optimum parameters for a 1 x 2 SIMO system varying from
spatially i.i.d. channels to identical channels (fully correlated).
At moderately high SNR, e.g. p == 10dB, spatially i.i.d.
channels result in the maximum capacity lower bound, and the
capacity lower bound decreases as the two channels become
more correlated. However, a different trend is found at low
SNR. At p == OdB, spatially i.i.d. channel still results in the
maximum capacity lower bound, but the minimum occurs at
correlation coefficient of 0.9 and not at identical channels. Fur­
thermore, at p == -5dB, the capacity lower bound has a 20%
increase from spatially i.i.d. channels to identical channels.
These observations confirm our earlier analysis in Section IV.
In addition, these numerical results confirm that spatially i.i.d.
channels give the maximum information capacity at practical
operating SNRs.

Fig. 6 shows the optimum block length verses the spatial
correlation coefficient between channels for a 1 x 2 SIMO
system. We also plotted for optimum pilot power ratio (not
shown in this paper) and observed the same trend. In general,
we see that the optimum parameters remain roughly constant
when channel correlation coefficient is less than 0.5, and have
some gradual changes for slow fading channels when corre­
lation coefficient increases above 0.5. Therefore, we can say
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VI. CONCLUSION

We studied the design parameters of PSAM schemes from
an information-theoretic viewpoint in time-varying flat-fading
SIMO channels with and without spatial correlation. The
design parameters to maximize the channel capacity were the
ratio of power allocated to pilot symbols and the fraction of
time allocated to pilot symbols. We studied a capacity lower
bound and showed that it is more sensitive to changes in the
pilot spacing than to the pilot power ratio. The optimum pilot
power ratio and pilot spacing remain relatively constant as
the channel spatial correlation increases. We showed that at
sufficiently low SNR, spatial correlation results in an increase
in the capacity compared with spatially i.i.d. channels. Most
importantly, our findings showed that by optimally designing
the training parameters for SISO systems, the same parameters
can be used to achieve near optimum capacity in both spatially
LLd. and correlated SIMO systems for the same SNR and
fading rate. We are currently extending this work to MIMO
systems.

ApPENDIX A

PROOF OF LEMMA 1

We use the mathematical induction approach by firstly
looking at the initial channel estimation, Le. M 1. From (5),
(7) and the given initializations of the Kalman filter, one can
show that

£.
M 1=Rh - Rh£p(Rh£p+(j~1N r ) -1 Rh=(Rhl +-f1N r ) -1,

an

where the second equality is obtained using the matrix inver­
sion lemma. Therefore,

N r £.
tr{M1 } = L(9;1 + -f)-I,

i=1 an

where 9i, i = 1, ... , N r are the eigenvalues of Rh. The
values of gi at which the maxima of tr{M I} occurs under the
constraint E~1 9i = tr{Rh} = O"~Nr form a Lagrange mul­
tiplier problem, and the solution is given by 9i,max = a~ 'Vi.
This implies that the channels are i.i.d with Rh = a~I N r • In
this case, M 1 is a diagonal matrix with diagonal entries taking
the same values. Now we have proven the claim in Lemma 1
for f = 1. The next step is to prove this holds for all f, given it
holds for f - 1. The proof for all data transmission time slots is
trivial. Here, we only show the proof for all pilot transmission
time slots, Le. f = 1, T + 1, 2T + 1, ....

Consider pilot transmission based on (8), we let M£ =
a 2TM £-T +(1- a 2T )Rh. We assume the claim in Lemma 1
is true for f - T or effectively for M £-T. Then, clearly M£ is
diagonal and E~1 mi achieves its maximum with the same
value for mi, where mi, i = 1, ... , N r are the eigenvalues of
M£. To complete the proof, we only need to show that the
properties of mi imply the claim in Lemma 1 is also true for
MR.

Using the matrix inversion lemma, (8) can be rewritten as

M l (&~ )-lIN
r

- (M/:~ + INJ- 1 ( &~ )-1,
an an an

Therefore,

£. £. N r £.
tr{M£} = N r (-f)-1 - (-f)-1 L(mi-f + 1)-1.

an an i=1 an

Let us impose an arbitrary constraint E~1 mi = 'l/J > O.
The values of mi at which the maxima of tr{M £} occurs
under this constraint form a Lagrange multiplier problem, and
the solution is given by mi max = i- 'Vi. The constrained
maximum value of tr{M R} is given byr

£. £. fll, [;
tr{M£} = Nr(-f)-1 - (-f )-1 Nr(Nlf/ -f + 1)-1.

an an ran

It is clear that tr{M £} is maximized when 'l/J takes its
maximum value. Together with the i.i.d. channels assumption,
it is easy to show that M £ is diagonal with the same diagonal
entries. And we have completed the proof.
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