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Abstract- Random beamforming, where each node selects a
main beam direction without any coordination with other nodes,
has been proposed as a simple technique to improve connectivity
in wireless ad hoc networks. This paper presents an analytical
model for evaluating the impact of random beamforming on the
connectivity of wireless ad hoc networks in the presence of path
loss and shadowing effects. We investigate the connectivity with
random beamforming from the view points of a single node and
the entire network. The correctness of our analytical approach
is validated by comparing the analytical results with simulations.
We show that for a path loss exponent of a < 3, irrespective of
shadowing effects, random beamforming improves both the local
and overall connectivity compared to omnidirectional antennas.

I. INTRODUCTION

One of the fundamental issues in wireless ad hoc networks
is the requirement that all nodes maintain connectivity with
all other nodes in the network [1]. There is generally no
centralized coordination in wireless ad hoc networks and a
connection between any two nodes is usually established via
multiple direct links between intermediate nodes. Due to the
multi-hop, dynamic nature of such networks, maintenance of
connectivity is a crucial issue.

Most studies on connectivity (e.g. probability of achieving a
fully connected network) of wireless ad hoc networks assume
omnidirectional antennas [2]-[8]. In [2], a probability density
function of the distance between two nodes in a rectangular or
hexagonal region is analytically derived using a space decom­
position method and is used to calculate the average number of
neighbours of a node (i.e. node degree) with a simple path loss
model. A semi-analytical procedure for determination of the
critical node density for an almost surely connected network
for the case of path loss channels is considered in [3]. The
results are extended to a shadowing environment in [4] and it
is shown that the channel randomness caused by shadowing
can improve network connectivity by reducing the number
of isolated nodes. An alternative analytical method, based on
the concept of effective coverage area, is proposed in [5] to
analyse the effect of path loss and shadowing on connectivity
of wireless ad hoc networks. The connectivity metrics in [2]­
[6] assume an efficient medium access control protocol so
that inter-node interference is negligible. Some recent papers
have also used Signal to Interference plus Noise Ratio [7] and
Symbol Error Rate [8] to study network connectivity.

Recently different beamforming schemes have been pro­
posed in literature to improve the connectivity of wireless
ad hoc networks [9]-[13]. It must be noted that there is an
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inherent trade-off in the use of beamforming in wireless ad
hoc networks, i.e. hardware complexity versus performance
improvements offered by the beamforming schemes. A very
simple strategy called random beamforming is proposed in [9].
In this scheme, each node in the network randomly selects
a main beam direction without any coordination with other
nodes. Using simulations, it is shown that while random
beamforming may decrease the number of neighbours of a
node, it leads to overall improvement in the network con­
nectivity [9]. Similar conclusion are drawn in [11] where
performance of random beamforming is compared to centre
directed beamforming via simulations. In [12], an analytical
study is used to show that random beamforming can both
increase or decrease the number of isolated nodes and network
connectivity, but no insight is given into when (i.e. under
what channel conditions) this occurs. In [13], an analytical
approach is used to analyse the probability of node isolation
with random beamforming for path loss model.

In this paper, we extend our previous work in [13] to include
both path loss and shadowing. We investigate both the local
and overall connectivities with random beamforming, i.e., (i)
connectivity from the viewpoint of a single node (probability
of node isolation and average node degree, respectively) and
(ii) connectivity from the viewpoint of the entire network
(probability of connectivity). Our work is a combination and
extension of the approaches in [5] and [4] to include the effect
of random beamforming. The contributions of this paper are
as follows:-

• In Section III, we present an analytical model for evalu­
ating the impact of random beamforming on the connec­
tivity of wireless ad hoc networks in the presence of path
loss and shadowing effects.

• In Section N, we show that for a path loss exponent of
Q < 3, irrespective of the presence of shadowing, random
beamforming improves the connectivity compared to the
use of omni-directional antennas. In addition, for a given
path loss exponent and a given number of antennas, an
increase in shadowing effect helps to improve connectiv­
ity. Our results provide analytical insights that confirm
and explain the simulation results in [9], [11].

The antenna and network connectivity definitions used in
this work are described in Section II.

Authorized licensed use limited to: Australian National University. Downloaded on January 4, 2009 at 22:35 from IEEE Xplore.  Restrictions apply.



(1)

II. SYSTEM MODEL

We consider N nodes uniformly distributed over a two­
dimensional square region with area Lx L rrr'. We assume that
the node density p is a homogenous Poisson point process [3].
A homogeneous Poisson process can be regarded as the
limiting case of a uniform distribution of N nodes on an area
L2

, as the area of the network approaches 00 while keeping
p constant.

A. Antenna Model

Without loss of generality, we assume that each node in
the network is equipped with a uniform circular array (DCA)
of M omni-directional antenna elements, placed evenly on
a circle in the xy-plane with neighbouring antenna elements
separated by half a wavelength. Beamforming is achieved by
phase shifting the response of each antenna in the array such
that the array main beam points towards the desired direction.
The gain of the array antenna can be expressed as [14]

G= IE(O,¢) 1

2

1 r 27f r7f '
47f .ro Jo I E(0, ¢) 1

2 sin(O) dO dd:

where ¢ E [0, 21r) is the angle from the x-axis in the xy-plane
and 0 E [0, 1r) is the angle from the z-axis. For a DCA, the
electric field can be expressed as [15]

M

E(O,¢) = E Eoexp[jkasin(O)cos(¢-¢m)+jamJ, (2)
m=l

where Eo = 1 is the electric field pattern of the omnidirec­
tional antennas (i.e., a constant), a is the radius of the circular
array, k = 2;, ¢m = 2ltm , and Om is the phase shift of the
mth antenna. For conventional co-phasal excitation, [15]

am = -kasin(80 ) cos(<1>o - ¢m), (3)

where 8 0 = 1r /2 (i.e., the xy plane) and <1>0 are the angles of
the desired main beam.

Substituting (2) and (3) into (1), we can calculate the
antenna gain for any azimuthal angle ¢. Note that the resulting
antenna gain G from (1) is a function of ¢, <1>0 and M. Thus,
we denote it as G(¢, <1>0, M).

B. Connectivity Metrics

The following connectivity metrics are used in the discus­
sion of the analytical and simulation results [3], [9]:

• Probability of Node Isolation (P(iso) is defined as the
probability that a randomly selected node in an ad hoc
network has no connected neighbours.

• Average Node Degree is defined as the average number
of direct links any given node has to other nodes.

• Probability of Connectivity (P(con) is defined as the
probability that every node pair in the network has at
least one path connecting them.

• Critical Node Density (Pc) is defined as the density of
nodes that is needed to achieve, with high probability,
a connected network (following [3], we use P(con)
0.99).

• Path Probability (P(path) is defined as the probability
that two randomly chosen nodes in an ad hoc network
are connected via a direct link or a multi-hop path. It is
known that P(path) ~ P(con) [3].

III. ANALYTICAL MODEL

We assume that each node transmits a signal with power
PT. We consider a wireless channel with path loss and log­
normal shadowing effects. The received signal power PR is
given by [16]

w 1
PR = 10m do C GT GR PT , (4)

where d is the distance between the transmitting and receiving
nodes, C = (A/(41r))2 is a constant, GT and GR are
the antenna gains of the transmitting and receiving nodes,
respectively, w is a Gaussian random variable with zero mean
and standard deviation a (hence 10m is normal in dB) and
a is the path loss exponent. Note that in typical wireless
communication scenarios a/a> 1 [17].

Without loss of generality, we can normalise (4) with respect
to constant C, so that the power attenuation is expressed as

PT dO
(3(d) = -P = W G G . (5)

R 10lD T R

Assuming identical node hardware and negligible inter-node
interference, two nodes at a distance d are connected if (3(d) <
(3th, where (3th is the threshold signal power attenuation. From
(5), the probability of having no direct connection between
two nodes at a distance d is given by

P((3 :2: (3th) = P (lOTIr~TGR :2: (3th) ,

= P(({3th10mGTGR)* ::; d). (6)

We define a random variable R as

R = ({3th10mGTGR)i-. (7)

Substituting in (6), we get P({3 ~ 13th) = P(R < d). Hence
the random variable R can be referred to as the effective
communication range, Le., the node is able to communicate
with all nodes lying within a distance of R m. The effective
coverage area of a node can thus be considered as a disk
with radius R, centered at the node. Therefore, the effective
coverage area is given by 1r R 2 • Assuming shadowing and
beamforming are independent, we have

(8)

where E[·] denotes statistical expectation. The expectation
involving log-normal shadowing can be calculated as follows.
We denote the expectation involving log-normal shadowing by
E[X] = E[10~]. To calculate E[X], we first take the natural
logarithm of X, given by

W In 10
InX = In 10~ = ~w. (9)
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From the property of log-normal distributed random vari­
ables [18], we get E[X] = e(~u)2/2. Hence we get,

w ((7ln 10) 2
E [lor;oJ = e ~

B. Probability of Isolation

The probability of node isolation is given by [4]

P(iso) = exp{ -E[D]}. (14)

Substituting from (8) and (12) into (14), we can determine
the probability of isolation with random beamforming from

{

2 ((7 In 10) 2 [ 2 ] }P(iso) = exp -P1r(f3th)7;e ~ E (GTGR)a .

(15)

Substituting from (15) into (16), we can calculate the upper
bound for the probability of connectivity with random beam­
forming. Note that in (16), P(iso) is also a function of p as
given in (15).

(16)P(con) = exp{ _pL2 P(iso)}.

A. Model Validation: Average Node Degree

We compare our analytical results for normalised average
node degree E{D}/N with:-

1) our simulation results which exclude border effects and
2) simulation results presented in [9] which include border

effects.

The system parameters used are: (3th = 40, 50 dB, L =
500, 1000 m, M = 1, 4, 6, Q = 2,3 and (J" = 0 (Le.,
no shadowing). The analytical results are calculated from
Eq. (13). The results are shown in Table II. We can see
that the analytical results are in excellent agreement with our
simulation results. This confirms the validity of our analytical
approach. The analytical results also match well with the trend
of the simulation results in [9]. This is in keeping with the
general observation that simulation results with border effects
tend to underestimate node degree.

From Table II, we can see that random beamforming slightly
decreases the average node degree compared to omnidirec­
tional antennas for Q = 3 and significantly increases the
average node degree for a = 2. This can be explained using

C. Probability of Connectivity

It has been shown that the probability of no isolated nodes
provides a tight upper bound for the probability of connectivity
at high probabilities [4]. Hence an upper bound for the
probability of connectivity is given by [4]

IV. RESULTS

In this section, we compare our analytical results with simu­
lation results and investigate the effect of random beamforming
on (i) average node degree, (ii) probability of isolation, (iii)
probability of connectivity and (iv) path probability. The
simulations are carried out using Matlab. In the simulations,
nodes are uniformly distributed on a square of area A x A m2

•

To eliminate border effects, we use the sub-area simulation
method [3], Le., we only compute the connectivity measures
for nodes located on an inner square of smaller area L2

(L2 « A2). The results are then calculated by averaging over
5000 Monte Carlo simulation trials.

(12)

Number of antenna elements M 4 6 8 10
Path loss exponent a = 2 1.48 1.51 1.60 1.84
Path loss exponent a = 2.5 1.12 1.12 1.14 1.24
Path loss exponent a = 3 0.95 0.96 0.96 1.01
Path loss exponent a = 3.5 0.87 0.89 0.87 0.90
Path loss exponent a = 4 0.82 0.85 0.82 0.85

TABLE I

EFFECTIVE BEAMFORMING GAIN FOR RANDOM BEAMFORMING

The expectation involving the beamforming gains can be
calculated using the procedure outlined in our previous work
in [13]. The detailed derivation steps are omitted here for
brevity. The expectation can be expressed as [13]

E [(GTGR)~] = (11)

1 _rrr: 2
(21rl10 10 10 (G(¢,if>T,M)G(1r+¢,if>R,M))-odif>Rdif>Td¢,

where M is the number of antennas, ¢ is the relative angle
of the receiver node from the transmitter node with respect to
the x-axis, <PT is the main beam direction of the transmitter
node, <P R is the main beam direction of the receiver node
and G(¢, <PT, M) and G(1r+¢, <PT, M) are the antenna gains
which can be determined from (1).

We refer to E [( GTGR)~l as the effective beamforming
gain. It can be seen that t e effective beamforming gain
depends on the transmit and receive antenna gains, as well as
the path loss exponent Q. As there is no closed-form solution
to (11), we evaluate it numerically. Table I summarizes the
results for different Q and M. Note that for omnidirectional
antennas, the effective beamforming gain is unity.

Substituting from (8), the normalised average node degree
E[D]/N with random beamforming is given by

E[D] 1r 2 ((7ln 10) 2 2

l\l = L2 ((3th)7;e ~ E[(GTGR )7; ], (13)

where N is the number of nodes, and L 2 is the area of the
square region.

A. Average Node Degree

For a node deployment following a homogeneous Poisson
point process with density p, the node degree D has a
Poisson distribution with parameter pttE[R2 ] [5]. Therefore,
the average node degree E[D] is given by

Substituting the values from Table I and (10) in (8), we
can find the expected value of the effective coverage area, Le.,
1rE[R2 ] . This can then be used to analyse the connectivity
properties with random beamforming, as discussed below.
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TABLE II

AVERAGE NODE DEGREE

a {3th L Antenna M E{D}/N E{D}/N E{D}/N
(dB) (m) Simulations [9] Simulations Analytical results

(with border effects) (without border effects) with Eq. (13)
3 50 500 omnidirectional 1 0.0250 0.0271 0.0271
3 50 500 DCA 4 0.0227 0.0256 0.0258
3 50 500 DCA 6 0.0230 0.0261 0.0261
3 40 500 omnidirectional 1 0.00561 0.0059 0.0058
3 40 500 DCA 4 0.00522 0.0056 0.0056
2 40 1000 omnidirectional 1 0.028 0.0312 0.0314
2 40 1000 DCA 4 0.0375 0.0467 0.0466
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Fig. 1. Probability of node isolation vs. node density with system parameters: (3th = 50 dB, M = 4, ex = 2.5,3,4 and (a) a = 4 and (b) a = 8 (lines =
analytical results from Eq. (15), markers =simulation results).

our analytical model as follows. We see from Table I that the
effective beamforming gain for random beamforming is less
than or equal to 1 for a 2:: 3 and greater than 1 for a < 3.
From Eq. (13), we can see that this increases the average node
degree for a < 3. We also see from Table I that increasing the
number of antennas from M == 4 to M = 6 or 8 provides no or
marginal improvement in the effective beamforming gain.

B. Probability of Isolation

Fig. 1 shows the probability of isolation versus node density
for {3th == 50dB, M == 4, a == 2.5,3,4 and (a) a == 4 and (b)
a == 8. In the figures, the analytical results are indicated with
lines while the simulation results are indicated with markers.
The analytical results are calculated from Eq. (15). The results
for omnidirectional antennas are provided as a reference. It can
be seen that the simulation results are in excellent agreement
with the analytical results in all cases. The use of random
beamforming results in a lower probability of isolation when
a < 3 (e.g., up to around 17% for a == 2.5) and a higher
probability of isolation when a > 3. Comparing the plots for
(a) a == 4 and (b) a == 8, we can see that a higher a results
in lower probability of isolation for both omnidirectional and
random beamforming antennas. This trend is in agreement
with the findings reported in [4], [5] concerning the effect
of shadowing with omnidirectional antennas.

C. Probability of Connectivity

Fig. 2 shows the changes in the probability of connectivity
with node density for (3th == 50dB, L == 400 m, a == 3,
a == 0, 4 and (a) M == 4 and (b) M == 8. The analytical
bounds are calculated from Eq. (16). The results show that the
agreement between the analytical results and simulation results
is generally good, improving as a increases. Comparing the
plots for (a) M == 4 and (b) M == 8, we observe that the
analytical bounds get tighter as M increases. We can also
see that when the network is almost surely connected, i.e.,
P(con) == 0.99, the analytical results provide a very tight
bound for the simulation results. We carried out simulations
for different sets of parameters and confirmed that both
connectivity curves converge for higher probabilities. We can
thus use the analytical results to investigate the critical node
densities. This approach is also used in [3] for studying critical
node densities with omnidirectional antennas.

Our results show that random beamforming reduces the
critical node density for a < 3, e.g., for {3th == 50dB, 0'. == 2.5,
a == 4, a node density of Pc == 0.1951 is required with
omnidirectional antennas, while a node density of Pc == 0.1719
is required for random beamforming with M == 4 antenna
elements. The relative improvement for a < 3 decreases with
higher a.
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Fig. 2. Probability of connectivity vs. node density for random beamforming with following system parameters: .Bth = 50 dB, L = 400 m, a = 3, a = 0, 4
and (a) M = 4 and (b) M = 8. (lines = analytical results from Eq. (16), dashed line with markers = simulation results).

D. Path Probability

An analytical expression for the path probability with
random beamforming is still an open problem [9]. Hence
simulation based studies have been used to show that random
beamforming improves the path probability for a < 3 [9].
This effect of a lower a leading to higher node degree is
explained intuitively in [9] with the argument that for low a
the longest links in the beamforming scenario are much longer
than the links for the case of omnidirectional antenna. However
for higher Q the longest links are only slightly longer [9]. The
results in Table I provide an analytical justification for the
above argument. We can see that the effective beamforming
gain for random beamforming is greater than 1 for a < 3.
Hence this improves the path probability for random beam­
forming for a < 3 compared to the case of omnidirectional
antennas.

v. CONCLUSION

In this paper, we have proposed an analytical approach to
investigate the effect of random beamforming on the connec­
tivity of wireless ad hoc networks. We calculated the effective
coverage area of the node taking into account path loss,
shadowing and random beamforming. The effect of random
beamforming is characterised by the effective beamforming
gain. The correctness of the analytical approach is verified by
comparison with simulation results. It has been shown that
for relatively few antennas (M == 4) and path loss a < 3,
both local and overall connectivity improvements can be made
by utilising random beamforming, irrespective of shadowing
effects. Our future research will be focused on the extension
of our analytical results for path probability with random
beamforming.
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