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Abstract—Energy harvesting (EH) provides a means of greatly
enhancing the lifetime of wireless sensor nodes. However, the ran-
domness inherent in the EH process may cause significant delay
for performing sensing operations and transmitting sensed infor-
mation to the sink. Unlike most existing studies on the delay
performance of EH sensor networks, where only the energy con-
sumption of transmission is considered, we consider the energy
costs of both sensing and transmission. Specifically, we consider
an EH sensor that monitors some status property and adopts a
harvest-then-use protocol to perform sensing and transmission.
To comprehensively study the delay performance, we consider
two complementary metrics and analytically derive their statistics:
1) update age—measuring the time taken from when informa-
tion is obtained by the sensor to when the sensed information is
successfully transmitted to the sink, i.e., how timely the updated
information at the sink is, and 2) update cycle—measuring the
time duration between two consecutive successful transmissions,
i.e., how frequently the information at the sink is updated. Our
results show that the consideration of sensing energy cost leads
to an important tradeoff between the two metrics: more frequent
updates result in less timely information available at the sink.

Index Terms—Energy harvesting, wirelessly powered communi-
cations, delay analysis, energy costs of sensing and transmission.

I. INTRODUCTION

ACKGROUND: Energy harvesting (EH) from energy
sources in the ambient environment is an attractive solu-
tion to power wireless sensor networks (WSNs). The feasibility
of powering WSNs by EH from solar, wind, vibration and
radio-frequency (RF) signals has been demonstrated in the
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literature [1]-[5]. If an EH source is periodically or contin-
uously available, a sensor node can in theory be powered
perpetually. However, the design of EH WSNs raises several
interesting and challenging issues.

Design Challenges: An important design consideration for
EH WSNs is the modeling of energy costs. There are three main
energy costs in wireless sensors [6]: (i) energy cost of RF trans-
mission and reception, including idle listening, (ii) energy cost
of information sensing and processing, and (iii) energy cost of
other basic processing while being active. Generally, the energy
cost of other basic processing is much smaller compared to the
energy cost of transmission [7]. Hence, the majority of the cur-
rent work on EH WSNs has considered only the energy cost of
transmission, while ignoring the energy cost of sensing [8], [9].
For some sensors, such as high-rate and high-resolution acous-
tic and seismic sensors, the energy cost of sensing can actually
be higher than the energy cost of transmission, e.g., see [10] and
references therein. Hence, it is important to accurately model
the energy cost of sensing in WSNs [11].

For WSNs powered by EH from the ambient environment,
the energy arrival process is inherently time-varying in nature.
These fluctuations in the energy arrival process can be slow
or fast and are characterised by its coherence time [12]. For
instance, for the case of EH from a solar panel on a clear day
with abundant sunshine, the coherence time is on the order
of minutes or hours. For the case of wireless energy trans-
fer via RF signals, the coherence time can be on the order of
milliseconds, which is comparable to the duration of a com-
munication time slot. The energy arrival process in the latter
case can be modeled as a random process where the amount
of harvested energy in each time slot follows some probabil-
ity distribution. For example, papers studying EH from RF
signals often assume an exponential distribution [13]-[15].
Another example, using the gamma distribution, can be found
in [16]. However, many energy arrival processes in practice
cannot be accurately modeled by using exponential or gamma
distributions. The consideration of a more general probability
distribution for modeling the amount of energy arrival is still
largely an open problem.

In many sensor network applications, the delay performance
is a key design challenge. The effects of randomness in both
arrivals of the multiple data packets and harvested energy on
the overall transmission completion time were considered in
[17]. In [13], a single data packet and randomness in the energy
arrival process and wireless channel, were considered in the
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analysis of transmission delay, i.e., the time duration between
the generation of a packet and its successful reception at the
sink. However, both [17] and [13] only considered the energy
cost of transmission. To the best of our knowledge, a compre-
hensive analysis of the delay performance of EH WSNs taking
into account a realistic model of sensor energy costs, has not
been investigated in the literature.

Paper Contributions: We consider a status monitoring sce-
nario, e.g., monitoring some property of a target environment,
with one sensor-sink pair. The sensor is solely powered by EH
from an ambient energy source. The sensor periodically moni-
tors and senses the current environment, i.e., it generates current
status information about one or more variables of interest, and
then transmits a status-information-containing packet to the
sink!. Once the packets are successfully transmitted to the sink,
which may occur after several failed retransmissions due to fad-
ing in the transmission channel, the status under monitoring is
updated at the sink.

We adopt two different metrics to assess the delay per-
formance: (i) update age®> which measures the time duration
between the time of generation of the current status information
at the sink and the time at which it is updated at the sink, and (ii)
update cycle which measures the time duration between one sta-
tus update at the sink to the next. The update age (or freshness)
and update cycle (or frequency) are complementary measures.
For instance, a smaller update age means the updated status
information at the sink is much more timely, but does not indi-
cate when the next update status information will be received.
A smaller update cycle means more frequent status updates at
the sink, but does not indicate when the current updated sta-
tus information was originally generated or how old it is. Thus,
the quality of a status monitoring system, i.e., the status update
freshness and frequency, is comprehensively captured by the
update age and update cycle, respectively.

We account for the fact that sensing and transmission opera-
tions both consume energy. Inspired from the harvest-then-use
and save-then-transmit communication protocols for EH nodes
in wireless networks [13], [14], [16], which are simple to imple-
ment in practice, we consider a harvest-then-use protocol for
the EH sensor. In our proposed protocol, the sensor performs
sensing and transmission as soon as it has harvested sufficient
energy. In order to limit the delay due to retransmissions, we
impose a time window for retransmissions. The delay perfor-
mance of the considered harvest-then-use protocol is analyzed.
The main contributions of this paper are as follows:

e We provide a comprehensive study on the delay perfor-
mance of EH sensor networks. Apart from the commonly
considered delay due to the information transmission
from the sensor to the sink, defined as the update age, we

Due to the fluctuation in the energy arrival process, strictly periodic sensing
and transmission is not possible. In this paper, ‘periodic’ is used to indicate
that the sensor alternates between sensing and transmission(s) in order to keep
status updating at the sink.

2The term update age is inspired by [18] and indicates the age or timeliness
of the transmitted information, since an outdated message may lose its value
in a communication system when the receiver has interest in fresh information
[19]. Note that this notion of the delay is in fact the same as the transmission
delay in [13].

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 7, JULY 2016

> ((*))
) Ttar\sm’\ss’\oﬁ 1ok

((e)
Sink

Energy harvesti"g/ Sensor wtion transmission

)—D( Transmitter

Energy flow
e

( Sensing module )—P( Data buffer )

Battery

Data flow

Fig. 1. Illustration of system model and sensor components.

also characterize the frequency of updating the informa-
tion held by the sink, defined as the update cycle.

e Considering a Rayleigh fading wireless channel, we ana-
Iytically derive the statistics of both the update cycle and
the update age. We consider both a deterministic energy
arrival model and a random energy arrival model with a
general distribution, so that our results can be applied to
model a wide range of EH processes.

e We take the energy costs of both sensing and trans-
mission into account when studying the delay perfor-
mance. Such a consideration brings up an interesting
question of whether to increase or reduce the number of
allowed retransmission attempts for each sensed infor-
mation, because both sensing and transmission consume
energy. This in turn results in a tradeoff between the
update cycle and the update age. The tradeoff empha-
sizes the importance of modeling the energy cost of
sensing.

Notations: E {-} and Pr{-} are expectation and probability
operators, respectively. Convolution operators for continuous
and discrete functions are denoted as x and =, respectively. [-]
and | -] are ceiling and floor operators, respectively. Y _ is the
summation operator, and if m > n, the result is zero. Pois (i, 1)
is the probability mass function (pmf) of a Poisson distribution
with parameter A.

II. SYSTEM MODEL

We consider the transmission scenario where a sensor peri-
odically transmits its sensed information to a sink, as illustrated
in Fig. 1. The sensor is an EH node which harvests energy
from the ambient environment such as solar, wind, vibration
or RF signals. The sensor has two main functions, i.e., sens-
ing and transmission, each having individual energy cost. We
assume half-duplex operation, i.e., sensing and transmission
cannot occur at the same time. In order to perform either sens-
ing or transmission, the sensor first needs to spend a certain
amount of time on EH. The harvested energy is stored in a bat-
tery. We assume that the battery cannot charge and discharge
at the same time [16]. In addition, the battery has sufficient
charge capacity such that the amount of energy stored in the
battery never reaches its maximum capacity. This assumption is
reasonable since battery capacity typically ranges from joules
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to thousands of joules [1], while the energy level in the bat-
tery in our system is only in the pJ range as shown in
Section V.

Following state-of-the-art EH sensor design practice [20], we
adopt a time-slotted or block-wise operation. We assume that
one sensing operation or one transmission is performed in one
time block of duration T seconds.® At the beginning of each
block, we assume that the sensor checks the battery energy state
and makes a decision to perform either sensing, transmission, or
energy harvesting. Thus, we define the following types of time
blocks with the associated amount of energy cost/harvesting:

e Sensing Block (SB): the sensor samples the status infor-
mation and then processes and packs sensed information
into a data packet. The energy cost in a SB is denoted by
EsB-

e Transmission Block (TB): the sensor transmits the newest
generated data packet (from the last sensing operation) to
the sink with energy cost ETp, i.e., the transmit power is
Prg = E1g/T. Then the sink sends a one-bit feedback
signal to the sensor to indicate successful packet recep-
tion. We assume that the time consumed for receiving the
feedback signal at the sensor is negligible as compared
to its packet transmission time. If the transmission is suc-
cessful, we have a successful transmission block (STB);
otherwise, we have a failed transmission block (FTB). We
assume that successes/failures of each TB are mutually
independent [13], [14]. The probability of a TB being a
FTB, i.e., transmission outage, is denoted by Poy; .

e Energy-harvesting block (EHB): the sensor harvests
energy from the ambient environment and stores the
energy in its battery.

A. Proposed Sensing and Transmission Protocol

Since the time-varying EH process results in randomness in
the delay for performing sensing and transmission, we propose
a harvest-then-use protocol with a time window for retransmis-
sions in order to improve the delay-related performance.

The protocol is motivated as follows. Firstly, considering
the energy cost of sensing, it is necessary to harvest sufficient
energy, Esp, before sensing can occur. However, it is unwise
to perform sensing as soon as the harvested energy reaches
Esp because there will be insufficient energy left for transmis-
sion after the sensing operation. The time spent on EH due
to insufficient energy for transmitting the sensed information
will result in unnecessary delay. To avoid such delay, we define
the condition for the sensing operation to be when the har-
vested energy in the battery exceeds Esp + Etp. In this way,
a transmission of sensed information occurs immediately after
the sensing operation (i.e., a SB is always followed by a TB).
Secondly, in the event that the transmission is not successful
due to the fading channel between the sensor and sink, we need
to allow for retransmissions, which are a common feature in

3In general a sensor may spend different amounts of time on one sensing
operation [10]. Thus, the assumed protocol and analysis can be generalized to
different sensing time durations other than 7', which is outside the scope of this
work.

4637

conventional (non-EH) WSNs [21]. In this paper, we impose
a time window for retransmissions to control the delay caused
by unsuccessful transmissions because it is unwise to spend an
indefinite amount of time trying to transmit outdated informa-
tion. We denote W as the maximum number of time blocks
after a SB, within which transmissions of the currently sensed
information can take place. Since the first transmission attempt
always happens immediately after the SB, the time window for
retransmissions is W — 1 time blocks.

Under the proposed protocol, the sensor operates as follows:

1) First, the sensor uses several EHBs to harvest enough
energy, Esg + €18, and then a SB and a TB occur.

2) If the transmission in the TB is successful, i.e., we have a
STB, the sensor harvests energy (taking several EHBs) for
the next sensing period until the battery energy exceeds
&sp + ETB-

3) If the transmission in the TB fails, i.e., we have a FTB,
the sensor goes back to harvesting energy (taking several
EHBs) and performs a retransmission when the battery
energy exceeds ETp.

4) Retransmission may occur several times until the sensed
information is successfully transmitted to the sink or the
time window for retransmissions W — 1 is reached. Then,
the data packet at the sensor is dropped and the sensor
goes back to harvesting the energy for a new sensing
operation.

Fig. 2 illustrates this protocol with W = 7. In the example
shown, the first block in Fig. 2 is a SB, followed by two FTBs
(and two EHBs in between). Since the third TB is a STB, the
sensed information in the first SB is successfully transmitted to
the sink. Then, the sensor uses three EHBs to harvest energy
to conduct sensing in the next SB. After the second SB, there
are three TBs during 7 time blocks, and all of them are FTBs.
Thus, the retransmission process is terminated after W = 7 is
reached. As a result, the sensed information in the second SB
is not transmitted to the sink. The time indices shown in Fig. 2
will be defined in the following section.

B. Proposed Models for Energy Arrival

In this paper, we consider that the harvested energy in each
EHB could either remain constant or change from block to
block. The former is referred to as deterministic energy arrival,
while the latter is referred to as random energy arrival.

Deterministic energy arrival is an appropriate model when
the coherence time of the EH process is much larger than
the duration of the entire communication session, such as EH
by solar panel on clear days [12], [22], [23]. In this paper,
we denote this as deterministic energy arrival process. For
tractability, we also assume that Egp and ETp represent integer
multiples of the harvested energy by one EHB, p.

For random energy arrivals, we consider independent and
identically distributed (i.i.d.) random energy arrival model*

4The i.i.d. energy arrival model is commonly considered in the literature
[16], [24], [25]. There are other energy arrival models captures the temporal
correlation of the energy arrival process, such as discrete-Markovian modeling
[81, [9], [26], which are beyond the scope of this work.
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Fig. 2. Illustration of update cycle and update age.

with a general probability distribution function for the amount
of energy harvested in each EHB. This energy arrival model
is referred to as general random energy arrival process. The
previously considered exponential and gamma distributions in
[13], [14], [16] become special cases of the general probabil-
ity distribution in this work. Since the exponential distribution
is commonly studied for wireless power transfer using RF sig-
nals, we will also provide results for this important special case
and referred to it as exponential energy arrival process.

III. DELAY-RELATED METRICS

As described in the previous section, both sensing and
(re)transmission requires a variable amount of EH time, which
may result in significant delays in obtaining the sensed infor-
mation at the sink. In this section, we consider two metrics to
measure the delay performance of the considered sensing and
transmission protocol.

For the convenience of describing the two metrics, as shown
in Fig. 2, we use fsTg,; to denote the block index for the
jth STB during the entire sensing and transmission operation.
Note that a successful transmission also induces an informa-
tion update at the sink. Also, it is important to associate each
transmission with its information content. To this end, we use
tsp,; to denote the block index for the SB in which the sensed
information is transmitted in the jth STB. In other words, sta-
tus information sensed at fsg,; is successfully transmitted to
the sink at fsTg, ;. Next, we define two delay-related metrics,
expressed in terms of the number of time blocks:

A. Update Age and Update Cycle

Definition 1 (Update age): For the jth STB, the update age is
given by the number of time blocks from fsg ; to fsTB, ; (Shown
in Fig. 2). The jth update age is

Tya,j =ftstB,j —IsB,j, J=1,2,3,.... (D

Remark 1: The update age measures the time elapsed from
the generation of a status-information-containing packet at the
sensor to the reception of the packet, i.e., status update, at the
sink. This metric is referred to as the status update age in [18]. A

larger update age implies that a more outdated status is received
by the sink. The update age, which captures the freshness of the
updated status information, however, does not reflect the update
frequency at the sink. Rather, the update frequency is captured
by the update cycle which is presented below:

Definition 2 (Update cycle): For the jth STB, the update
cycle is given by the number of time blocks from fsTp ;1 to
tsTB,j (shown in Fig. 2). The jth update cycle is

Tuc,j = tstB,j+1 — IstB,j» J =1,2,3,.... (2)

Remark 2: The update cycle measures the time elapsed from
one status update at the sink to the next. The update cycle, how-
ever, does not reflect the update freshness at the sink. Unlike
the update age, the update cycle takes into account the delay
due to dropped data packets. Therefore, update cycle comple-
ments update age, and they jointly capture the update frequency
and freshness, to provide comprehensive metrics on the delay
performance of a status monitoring system.

B. Modeling Delay-Related Metrics as i.i.d. Random Variables

To model each of the update age/update cycle as i.i.d.
random variables, we focus on the steady-state behavior as
characterized in Lemma 1.

Lemma 1: For a deterministic energy arrival process, the
energy level after each TB is zero. For a general random
energy arrival process with pdf containing at least one positive
right-continuous point, f(¢€), the steady-state distribution of the
energy level after each TB has pdf

1
g(€)=;(1—F(6)), 3

where p is the average harvested energy, and F(e) is the
cumulative distribution function (cdf) corresponding to f (¢).

Proof: For a deterministic energy arrival process,
Lemma 1 is straightforward. For a general random energy
arrival process, the proof is given in Appendix B. |

According to the sensing and transmission protocol defined
in the previous section, each SB is directly followed by a TB.
From Lemma 1, the steady-state distribution of available energy
after any TB is the same. Hence, the steady-state distribution of
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the available energy after fsTp,; is the same for all j. Because
the successes/failures of each TB are mutually independent, and
Tyc,; is determined by both the available energy after fsTg, ;
and the successes/failures of the following TBs, Tyc,; are i.i.d.
for all j. Similarly, it is also easy to show that Tya ; are i.i.d.
for all j. For convenience, we remove subscript j for Tyc and
Tua in (2) and (1), respectively.

IV. UPDATE AGE

In this section, considering the dynamics of an energy arrival
process and the probability of successful/failed transmission
in our proposed harvest-then-use protocol, the update age for
deterministic, general random and exponential energy arrival
processes are analyzed.

A. Deterministic Energy Arrival Process

Theorem 1: For a deterministic energy arrival process, the
update age pmf is given by
(1 - Pout) (Pout)n_1

Pr{Tua =k} = 2 ,
suc

k=1+(n—1)(€%+1), 4)

L W—1 i
n=12..0 Aa=1+| ——F— | Puc=1-(Pou)",
1+ =k

(%)

and Py is the probability of a TB being a FTB, defined in
Section II.

Proof: See Appendix D. |
From Theorem 1, the average update age, Tya for a deter-
ministic energy arrival process is straightforwardly obtained as
in Corollary 1.
Corollary 1: For a deterministic energy arrival process,
average update age is given by

d — n—1
TUA=Z<1+(I1— 1) (8%4—1)) a Pou}t)) (Pout) ’

n=1
(6)

where Py, is given in (5).

B. General Random Energy Arrival Process

Theorem 2: For a general random energy arrival process, the
update age pmf > is given by

ﬂ’ k=1,
PSuC
k
—n=la-r
PriTua=kl=1 L= Poud S p 1 (Grcs (1 DER)
PSuC n=2
—Gi—n((n —1)ErB)),2 <k < W,

(N

5 Although the general expression in Theorem 2 contains multiple integrals in
Eq. (9), for special cases, such as deterministic and exponential energy arrival
processeses, the results given in Theorems 1 and 3 are closed-form expressions.
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where
Wl
Pae = 1= Pou+ (1 = Poud) D Y (Poud)™™" x
1=2 n=2
(Gr—n—1((n — DEtB) — Gi—u((n — DETB)),  (8)
and

1, i=-—1,

Gix)=1 7 . 9)
/(g*f*f*---*f)(u)du, P> 0.
0

i convolutions

g(x) and f(x) are defined in Lemma 1.
Proof: See Appendix D. |
From Theorem 2, the average update age, Tya for a general
random energy arrival process is obtained straightforwardly as
in Corollary 2.
Corollary 2: For a general random energy arrival process,
average update age is given by

l

. 1- Py u _
Tua = P—‘<1+ZZZ(PM)” "(Grpo1((n—=1)ETp)

sue =2 n=2

—Gi_n((n — 1)8TB))> . (10)

where Py, is given in (8).

C. Exponential Energy Arrival Process

Theorem 3: For an exponential energy arrival process, the
update age pmf is given by

1—P
o =,
PSL]C
(1 — Pow) w
PriTua =k} = { ———= > (Pow)" " x
Psuc l‘l=2
g
Pois(k—n,(n— 1)ﬁ),25k5 W,
0
(11)
where
w1
Psuc =1- Pout + (1 - Pout) ZZ(Pout)n_l
[=2 n=2
e
Pois (l —n,(n— 1)ﬂ>, (12)
0

Proof: See Appendix D. |

From Theorem 3, the average update age, Tya for an expo-

nential energy arrival process is straightforwardly obtained as
in Corollary 3.
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Corollary 3: For an exponential energy arrival process, aver-
age update age is given by

(I = Pow)
Psuc

w 1
(1 + ZZZ (Pout)™ ™! Pois(

=2 n=2

Tua =

—n,(n— 1)8ﬁ>>,
P

(13)

where Py, is given in (12).

From Theorems 1-3 and Corollaries 1-3, we see that differ-
ent energy arrival processes induce different pmfs and average
values of update age. For benchmarking with the existing stud-
ies on delay without imposing a constraint on the time window
for retransmissions [13], we let W — oo, so that all sensed
information is eventually transmitted to the sink, the average
update age is the same under different energy arrival processes
as in Corollary 4.

Corollary 4: For a deterministic or general random energy
arrival process, Tua increases with W, and as W gets large, the
asymptotic upper bound of Ty is independent of energy arrival

distribution and is given by
Pout <8£ + 1)
I — Poyt P

Proof: See Appendix G. |

Remark 3: From the above analytical results, we have that:

i) From Theorems 1 to 3, Tya is independent of the energy
cost of sensing, Esp, because the delay is only affected
by the energy harvesting and retransmissions that happen
after the sensing operation. This might give the impres-
sion that energy cost of sensing does not affect delay.
However, update age is only one of the two delay met-
rics, and the energy cost of sensing has important impacts
on update cycle, which will be investigated in the next
section.

ii) Allowing a larger window for retransmissions increases
the average update age. This might suggest that retrans-
missions should be avoided, i.e., W = 1. However, the
update age does not take into account cases where sensed
information is not successfully transmitted to the sink.
In this regard, the update cycle implicitly captures such
cases.

lim Tya =1+ (14)
W—o0

V. UPDATE CYCLE

In this section, considering the dynamics of an energy arrival
process and the probability of successful/failed transmission in
our proposed harvest-then-use protocol, the update cycle for
deterministic, general random and exponential energy arrival
processes are analyzed.

A. Deterministic Energy Arrival Process

Theorem 4: For a deterministic energy arrival process, the
update cycle pmf is given by

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 7, JULY 2016

Pout) (Poy)" 111
(333 + AT
0

Pr{Tuc =k} =1 -
= (533 +néTp

>+n+1+m
P

+ (A + 1)),
(15)
wheren =1,2,...1,m =0,1,2,...,and 71 is given in (5).

Proof: See Appendix E. |

Corollary 5: For a deterministic energy arrival process,
average of update cycle is given by

_ Pou)” . Esp+né e
Toe = —Fou) ﬁ<1+n+ SB TB)_i_ﬂJrl
1 - (Pout) P P
g'TB - out _1
+(0+—)——= ) (Pow)"
P 1 - (Pout)n Z o
(16)
Proof: See Appendix F. |

B. General Random Energy Arrival Process

Theorem 5: For a general random energy arrival process, the
update cycle pmf is given by

m
Pr{Tuc =k} =Y | ¢(Esp + E1B) % (Esp) * -+ % L (Esp)
m=0 m convolutions
¥ k-xkOx | (k—m(1+W)—1),k=2,3,....
m convolutions
(17)

where m = U;,;JrzlJ and functions ¢(&,1), ¢(i) and 9 (i) are
given by
¢(&,1) = Gi—1(&) — Gi(E), (18a)
(i) = PaucPr{Tua =i}, (18b)

V(i) = Pout (Gw+i—2(E1B) — Gwi—1(ETB))
Wl

+ YD (Pow)" (Gron1((n = DEtB) — G_n((n — D)E1p))

=2 n=2

X (Gw4i—i—1(EB) — Gw+i—1(ETR)) .

Pr{Tya =i}, Py and G;(€) are given in (7), (8) and (9),
respectively.
Proof: See Appendix E. |

Corollary 6: For a general random energy arrival process,
average update cycle is given by

1 - Psuc <ESB
Pguc Y
Esp + €&

+ SB TB

(18c¢)

Tuc = +V+W+1>

+ Tua + 1, (19)
where Py, and Tya are respectively given in (8) and (10), and
V is given in (20) shown at the bottom of the next page.

Proof: See Appendix F. |



LIU et al.: ENERGY HARVESTING WIRELESS SENSOR NETWORKS

C. Exponential Energy Arrival Process
Theorem 6: For an exponential energy arrival process, the
update cycle pmf is given by

m

Pr{Tuc =k} =) (c«m + Désp + E1B)

m=0

*xk--xkOx | (k—m(1+W)—=1),k=273,....
—————

m convolutions

(2D
where m = LV’;;JEIJ, and functions ¢(&,1), ¢(i) and 9 (i) are
given by

C(E,i) =Pois (i, E/p), (22a)
(i) = PaucPr{Tya =i}, (22b)
(i) = PouPois (W +i —1,Erp/p)
w1
+ ) (Pou)" Pois (I — n, (n — D)Etg/p) X
=2 n=2
Pois (W +i — 1, E1/p), (22¢)

and Pr{Tya =i} and Py, are given in (11) and (12), respec-
tively.
Proof: See Appendix E. |
Corollary 7: For an exponential energy arrival process, aver-
age update cycle is given by

1— Psuc <(€SB

) Esp+E
7+V+W+l> TR R

+ Tua +1,
(23)
where Tya and Py are given in (13) and (12), and V is given
in (24) shown at the bottom of the page.
Proof: See Appendix F. |
Similar with the case of update age, different energy arrival
processes induces different pmfs and average values of update

Tuc =

suc
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cycle. However, for benchmarking with the existing studies on
delay without imposing a constraint on the maximum allowable
retransmission time, when we consider removing the constraint
of retransmission, i.e., W — oo, so that all sensed informa-
tion is eventually transmitted to the sink, the average update
cycle is the same under different energy arrival processes as in
Corollary 8.

Corollary 8: For a deterministic or general random energy
arrival process, Tyc decreases with W, and as W grows large,
the asymptotic lower bound of Tyc is independent with energy
arrival distribution and is given by

- g & P S
lim Ty =2+ SSBT OB out (ﬂ + 1) . (25)
W—o00 0 1—Pout \ p
Proof: See Appendix G. |

Remark 4: From the above analytical results, we have that:

i) From Theorems 4 to 6, we know that Tyc is affected
by the energy cost of sensing, Esg. A larger Egg means
more EHBs are required to harvest a sufficient amount of
energy to perform sensing operation(s) between adjacent
STBs.

ii) A larger window for retransmissions shorten the aver-
age update cycle, because allowing more retransmissions
increases the chance of having a successful transmission.
This might suggest that it is also better to increase W to
reduce the update cycle. But increasing W also increases
the update age as discussed earlier. Therefore, there is
clearly a tradeoff between the two metrics.

VI. NUMERICAL RESULTS

In this section, we present numerical results for the update
age and update cycle, using the results in Theorems 1-6 and
Corollaries 1-8. The typical outdoor range for a wireless sensor
is from 75 m to 100 m [27]. Hence, we set the distance between
the sensor and the sink as d = 90 m and the path loss exponent

w-2

i=0

1 w1
+ 15 22 2 (Pow)" (i1 (2 = 1)E8) = Gron(n = DETR))

1 - SllCl

=2 n=2

i=0

Py, e w-2
o <£ — Y i (Gi—1(E1B) — Gi(E1B)) — (W — 1) (1— > (Gioi(Ers) - G,-(STB»))

i=0

(20)

W—l—-1
Y i(Gi1(EB) — Gi(EtB)) — (W — 1) (1— > (Gioi(EtB) —G,-(STB»))

i=0

V=
i=0

LA " Et [ 1B
XZZ(P"“‘) Pois l—n,(n—l)T —_— =

=2 n=2 L

w=2 w=2
P € e g 1
_fout ﬁ—ZiPois(i,ﬁ)—(W—l) 1—2Pois<i,£> b—
1_Psuc :0 10 i=0 ,0 1_Psuc
W—I—-1

W—Il-1
e e
3 iPois (i, —TB)—(W—Z) ] — Pois <i, —TB>
i—0 p i=0 P
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for the sensor-sink transmission link as A = 3 [13]. The dura-
tion of a time block is 7 = 5 ms [22]. The noise power at the
sink is 02 = —100 dBm [14]. The average harvested power
is 10 mW [28], i.e., average harvested energy per time block,
p = 50 nJ. Unless otherwise stated, (i) we set the power con-
sumption in each TB, Pt = 40 mW, i.e., Etg = 200 uJ. Note
that this includes RF circuit consumption (main consumption)
and the actual RF transmit power Py = —5 dBm® and (ii) we
set the power consumption in each SB as Psgp = 50 mW [10],
i.e., Esp = 250 wJ. In the following calculations, power and
SNR related quantities use a linear scale. We assume that a
transmission outage from the sensor to the sink occurs when
the SNR at the sink y, is lower than SNR threshold yy = 40 dB
[15]. The outage probability is

Pou = Pr {V < VO} . (26)
The SNR at the sink is [29]
7> P
= , 27
Y = Tdio2 27
where & is the source-sink channel fading gain, I' = %, isa

path loss factor relative to reference distance dy of the gntenna
far field, and Pr(dp) is linear-scale path loss, which depends
on the propagation environment [13]. Following [13], [14], we
assume I' = 1, for simplicity.

For the numerical results, we assume that 4 is block-wise
Rayleigh fading. Using (27), the outage probability can be

written as
d*o?
Pout = 1 — exp (——7/0) . (28)

(thx

By applying (28) to the theorems and corollaries in Sections IV
and V, we compute the expressions of the pmfs of Tya and Tyc
as well as their average values Tya and Tyc.

Pmfs of update age and update cycle with different
energy arrival processes: First, we consider a deterministic
energy arrival process with harvested energy in each EHB,
p. Also we consider two special cases of the general random
energy arrival process: (i) exponential energy arrival processes
with average harvested energy in each EHB, p and (ii) ran-
dom energy arrival processes with gamma distribution [16],
Gamma(0.05, 1000). We term this as the gamma energy arrival
process, and it is easy to verify that this gamma energy arrival
process has the same average harvested energy in each EHB as
the deterministic and exponential energy arrival processes.

Figs. 3-5 plot the pmfs of update age, Tya, and update cycle,
Tyc, for the deterministic, gamma and exponential energy
arrival process, respectively. The analytical results are plotted
using Theorems 1-6, and we set W = 50, i.e., the time window
for retransmissions is W — 1 = 49 time blocks. In particular,
in Fig. 4 the analytical pmfs of Tya and Tyc for the general
random arrival process are obtained using Theorems 2 and 5.
The results in Figs. 4-5 also illustrate the importance of the

6The values we chose for Prp and Pix are typical for commercial sensor
platforms, such as MICAz [27].
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Fig. 3. pmfs for Tya and Tyc with deterministic energy arrival process.
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Fig. 5. pmfs for Tya and Tyc with exponential energy arrival process.

general random energy arrival process, which is used in this
work. This is because gamma and exponential energy arrival
processes, which have been used in the literature [13]-[16],
are special cases of the general random energy arrival process.
We see that different energy arrival processes result in different
pmfs of update age and update cycle. Hence, a statistical anal-
ysis of the two metrics will provide insight into the design of
future EH WSNs.

In the following figures (Figs. 6-9), we only present the
numerical results for the average values of the two delay
metrics, which have been presented in Corollaries 1-8.

Average update age and average update cycle with differ-
ent energy arrival processes: Figs. 6 and 7 show the average
update age, Tya, and the average update cycle, Tyc, for differ-
ent W, i.e., different time windows for retransmissions, W — 1,
and energy arrival processes. The results in Figs. 6 and 7 are
generated using Corollaries 1-4 and Corollaries 5-8, respec-
tively. We can see that the different energy arrival models
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Fig. 8. Tyc and Ty versus p with exponential energy arrival process.

result in almost the same values of the average update age
and especially the average update cycle. As the time win-
dow for retransmissions increases, the average update age
increases monotonically and approaches its analytical upper
bound given by Corollary 4, while the average update cycle
decreases monotonically and approaches its analytical lower
bound given by Corollary 8. Thus, with a smaller time window
for retransmissions, the updated status is more fresh, but the
update frequency is lower.

4643

180 T T T T

A A 1:}(;, Psp = 100 mW

160 o Tic, Pss =50 mW

v 1;1,(7, Psg =0 mW
Tua, independent of Psp | |

120 - 4

80 -

Tyc or Tya, time blocks
>

60y

<o)
<o)

40

20+ 1

0 50 100 150 200 250

Fig. 9. Tyc and Tya versus W for different sensing power, Psp.

Average update age and average update cycle with dif-
ferent average harvested power: Fig. 8 shows the average
update age, Tya, and the average update cycle, Tyc, for dif-
ferent average harvested power values, p, with an exponential
energy arrival process. The results are plotted using Corollaries
3 and 7. For the update age, we see that when the aver-
age harvested power is very low, i.e., less than —2 dBm, the
update age is one time block. This is expected since sufficiently
low average harvested power cannot enable any retransmission
during time window W — 1, i.e., a packet is either success-
fully transmitted in the first transmission block right after the
sensing block (an update age of one) or dropped due to no
chance of retransmission. With an increase of average har-
vested power, retransmissions are enabled, which makes the
update age increases beyond one. However, when the aver-
age harvested power is higher than 8 dBm, the average update
age monotonically decreases with an increase of the aver-
age harvested power. This is as expected: the sensor requires
fewer energy harvesting blocks to perform retransmissions, and
hence, the sink is likely to receive the packet in a more timely
manner (i.e., with a smaller update age). For the update cycle,
we see that the average update cycle monotonically decreases
with average harvested power. Again, this is expected since
a higher average harvested power enables more transmission
blocks within a certain time duration, and hence, more success-
ful block transmissions are likely to occur within a given time
duration, i.e., the update cycle decreases. Also we see that when
the average harvested power is very high, i.e., p > 30 dBm,
both update age and update cycle converge to constant values
which can be obtained by letting p — oo in Corollaries 3 and 7,
respectively. Thus, without changing the parameters of the com-
munication protocol, the improvement in delay performance is
limited when increasing the average harvested power.

Effect of energy cost of sensing on average update cycle:
We illustrate the effect of energy cost of sensing on average
update cycle with exponential energy arrival process as a spe-
cial case of the random energy arrival process. Fig. 9 shows the
average update age, Tya, and the average update cycle, Tyc,
as a function of W, with different energy cost of sensing, Psg.
The figure shows that the average update age increases as W
increases (consistent with Fig. 6 but it does not change with
the energy cost of sensing, i.e., the energy cost of sensing has
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Fig. 10. Tradeoff between Tyc and Tya.

no effect on the update age. This is in perfect agreement with
our earlier observations and explanations provided in Remark 3.
We can see that for a fixed value of W, the average update
cycle increases as the sensing power consumption increases
from 50 mW to 100 mW, i.e., the higher the energy cost of
sensing the lower update frequency. This is in perfect agree-
ment with our earlier observations and explanations provided in
Remark 4. To place these results in context with existing studies
in the literature that commonly ignore the energy cost of sens-
ing, we also include the result with zero energy cost of sensing.
When Psg = 0 mW, we can see that Tyc is almost constant
around the value of 50 and does not vary much with W.

Tradeoff between average update age and average update
cycle: Fig. 10 shows the tradeoff between average update age,
Tya, and average update cycle, Tyc with exponential energy
arrival process. The different points on the same curve are
achieved with different W. We can see that when the energy
cost of sensing is comparable to or larger than the energy cost
of transmission, e.g., Psp = 50 mW and Psg = 100 mW, the
reduction in Tya can result in a significant increase in Tyc, and
vice versa. For example, when Psg = 100 mW, decreasing Tya
from 15 to 5 time blocks, causes the Tic to increase from 75 to
95 time blocks. However, when the sensing is negligible, e.g.,
Psg = 0 mW, such a tradeoff is almost barely noticeable. For
example, decreasing Tya from 15 to 5 time blocks, results in
Tyc increasing by two time blocks, i.e., a 51gn1ﬁcant change in
Tua does not result in a noticeable change in Tuc. These trends
in Fig. 10 are in accordance with our earlier observations in
Remark 4. Thus, with the consideration of sensing energy cost,
an increase of update frequency is achieved at the expense of
update freshness, and vice versa.

Effect of transmit power consumption on average update
age and averge update cycle. Fig. 11 shows the impact of
power consumption on Tya and Tyc, for different values of
transmit power Prp and RF transmit power Py, with an expo-
nential energy arrival process. In reality, Pt and P do not
have a linear relationship. Three pairs of typical values found
in [25] are chosen. We see that both 7iya and Tyc decrease with
Prp or P. This is as expected: if the transmit power is small,
Pout 1s high, resulting in a large number of retransmissions until
the sensed information is successfully transmitted or W — 1
time blocks are reached. As a result, Tya and Tyc are large
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Fig. 11. Tyc and Ty versus W with different Pix and Prg.

when the transmit power is small. Thus, under these above
parameter choices, a higher transmit power results in better
delay performance.

VII. CONCLUSIONS

This paper has analysed the delay performance of an EH
sensor network, focusing on the operation of a single EH sen-
sor and its information transmission to a sink. The energy
costs of both sensing and transmission were taken into account.
Two metrics were proposed, namely the update age and update
cycle. In order to limit the delay due to retransmissions, a time
window for retransmissions was imposed. Using both a deter-
ministic and a general random energy arrival model, the exact
probability mass functions and the mean values of both met-
rics were derived. The results showed that the average update
age increases while the average update cycle decreases with
increasing retransmission window length. The average update
age is independent of the energy cost of sensing but the average
update cycle increases as the energy cost of sensing increases.
In addition, a tradeoff between update age and update cycle
was illustrated when the energy cost of sensing is comparable
to the energy cost of transmission. Future work can consider
the impact of non-deterministic time for receiving the feedback
signal at the sensor.

APPENDIX A
PROOF OF LEMMA Al

We first define the block-wise harvest-then-use process, and
then propose and prove Lemma Al.

Definition Al (Block-wise harvest-then-use process): A
harvest-then-use process consists of energy harvesting blocks
(EHBs) and energy consumption blocks (ECBs). It starts and
keeps on harvesting energy with EHBs. Once the available, i.e.,
accumulated, energy is no less than a threshold of Q Joules, an
ECB occurs, and consumes Q Joules of energy. If this condi-
tion for ECB is not satisfied, the process goes back to harvest
energy with EHBs.

During the harvest-then-use process, the harvested energy
in the ith EHB is represented by &;, i = 1,2, 3, ..., and the
available energy after the jth ECB is represented by & jeJ =
1,2,3,.... Due to the randomness of the energy arrival pro-
cess, i.e., & is a random variable, the available energy after
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each ECB, & j» 1s also a random variable which only depends
on &;. Furthermore, using the statistics of &;, and modeling = s
j=1,2,3,..., as a random process, an important feature of
the random process is revealed in Lemma Al.

Lemma Al: For block-wise harvest-then-use process with
energy threshold Q, where the harvested energy in each EHB,
&,i=1,2,3, ..., are independent and identically distributed,
each with pdf containing at least one positive right-continuous
point, f(x), the available energy after each ECB, & je =
1,2,3,...,, consists of a positive recurrent Harris chain, with
unique steady-state distribution which is given by

1
g(x) = - (I = F(x)), (A.T)

where F(x) and p are respectively, the cdf and the mean of &;.

Proof: The proof consists of two steps. In the first step, we
prove that the energy state after the jth ECB, & j» constitutes a
positive recurrent Harris chain (a collection of Markov chains
with uncountable state space). Thus, a unique steady-state dis-
tribution of & j exists [30]. In the second step, we prove that
(A.1) is the unique steady-state distribution.

Step 1: It is easy to see that the current state, ’S/ takes its
value from a continuous state space and only relies on the
previous energy state =;_j, thus E;, j =1,2,3,..., forms
a continuous-state Markov chain. Without loss of generality,
we assume that sup {£;} = B, thus sup { Ej} < B holds in this
harvest-then-use process.’ It is easy to see that the state space
of Markov chain Ej, 8, is a subset of [0, B), and because of
the harvest-then-use protocol, any current state which is higher
than Q, will access the interval [0, Q) in the following steps.
Thus, we only need to prove that any state s € [0, min {B, Q})
can hit any arbitrary small interval T = (r7,t") in § with
non-zero probability within finite steps. Actually, in the
following, we complete the proof with the assumption that
8 = [0, B), which also proves that the state space of Markov
chain &; is exactly [0, B).

In the following, using a constructive method, we show
that for Markov chain & j» given any current state s €
[0, min {B, Q}), there is at least a probability, ¢ x p, that any
arbitrary small interval T will be accessed with ] steps, where
P, q, f are defined below which only depends on the state s,
the interval length 7 and the pdf of the harvested energy in each
EHB.

Since pdf function f(x) has positive right-continuous points
on [0, B), there exists at least one interval [D~, D) that sat-
isfies [D™, D) C [0, B), D — D™ = 1/2, and f(x) is positive
right-continuous on [D~, D). We assume that D~ > 7+, and
the D™ < ™ case can be easily generated from the the fol-
lowing discussions, thus is omitted due to space limitation.
Now we define p 2 [ f(x)dx as the probability that har-
vested energy in one EHB lies in the interval [D ™, D). Also we
define f(x) = f(x) when x € [D™, D), otherwise f(x) =0,
and fl (x) is the i-fold convolution of function f (x).

Thus, it is easy to see that f;(x) is positive and con-
tinuous in the interval (iD~,iD), and fab f,-(x)dx is the

"Note that although we assume B is finite, the infinite case can be easily
generated from the discussions below, thus is omitted due to space limitation.
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probability that the harvested energy by i EHBs lies in
the interval [a,b), while the energy harvested by each
of the i EHBs lies in the interval [D™, D). Thus, letting
T2[4(Q+1)/t— 17 and 2 [((+ 1D —t+)/Q]. given
the current energy state s, after i EHBs, the accumulated
energy level lies in the interval A £ (s +iD~, s +1D) with
positive probability distribution. Also we see that interval
A2 (jO+1 —D7,jQ+ 1T — D) C A, thus, there is at
least (because we have only considered the scenario that har-
vested energy by each EHB lies in [D™, D)) a probability g £
inf [} fi(x), interval # C 8, length of ¥ = length of A = 7/2

that the accumulated energy level lies in A. Therefore, after
the next EHB with probability p that the harvested energy lies
in [D™, D), the accumulated energy level lies in the interval
[jO+17,j0Q+t"), which means that after the current
state &; = s, with 7 steps (each step consumes the amount of
energy, Q), there is at least a probability, g x p to make the
Markov chain hit the interval (z—, t™). Thus, Markov chain
o) j 18 a positive recurrent Harris chain [30].

Step 2: In the aforementioned Markov chain, we still assume
that the current state éj = 5. Thus, in the previous state, the
available energy could be higher than Q, ie., E j-1 =8+
Q, and Ej_l could also be smaller than Q, i.e., based on
energy level qu, there are i EHBs (i =1, 2, 3,...) to make
the energy level reach Q +s, which makes E; =s. Based
on the above and the Markovian property, the steady-state
distribution of the process, g(x), should satisfy the follow-
ing conditions: (1) fooo gix)y=1and 2) gx) =gx+ Q) +

o0

> foer gi—1(Q 4+ x — y)f(y)dy. where g;(x) represent the
i=1

pdf of energy level after i EHBs following a ECB, which is
given by

g(x),

gi(x) = (A.2)

gxfxfx...xf](x), i>0.
——

i convolutions

Because f(x) and gij(x) >0 for all x and i =0,1,2,...,
by using Tonelli’s theorem for sums and integrals [31], we
exchange the summation and integral operator in Condition 2,
thus we have

0+x , o
g0 =gx+ Q)+ / (Z gi(Q+x— y)) f(dy.
2 \i=0
(A.3)
Taking (A.1) into (A.2), we have
1
gi(x) =— Fxfxf...xf|(x)
P —
i—1 convolutions
x)],i>0. (A.4)

— | Fxfxf...xf
—_— —

i convolutions
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Since 0 < F(x) <1, f(x) > 0and [;° f(x) =1, when i —
00, we have [30]

Fxfxf...xf]x) —0. (A.5)
—_— ——

i convolutions

From (A.4) and (A.5), we have

> 1
Zgi(Q-i-x—y):;(l—F(Q‘FX—y))

i=0

1
+;(F(Qer—y)—(F*f)(Q—i—x—y))

1
+;((F*f)(Q+x—y)—(F*f*f)(Q+x—y))+--~

1 1
=—\|1—1lm | Fxfxf...xf|]x)]|=—.
0 [—00 —_—— 0
i convolutions
(A.6)
Taking (A.6) and (A.1) into the right side of (A.3), we have
O+x , o
gx+ Q)+ / <2g,-(Q +x— y)) f(ndy
< \i=0

O+x

1 1
_la-raton+ / = F(ydy
P S P

1 1
=;(1—F(X+Q))+;(F(Q+X)—(F(X))

1
=—(1—-F)). (A7)
P
Thus, g(x) in (A.2) satisfies Condition 2. Because of fooo(l —
F(x)) = E{£&} [30], Condition 1 is also satisfied, yielding the
desired result. |

APPENDIX B
PROOF OF LEMMA 1

For general random energy arrival processes, the proof is
based on Lemma Al given in Appendix A. First, we find an
arbitrarily small Q which is a constant such that Egg and
Etp are integer multiples of it. Then, from an energy per-
spective, we equivalently treat the proposed communication
protocol with energy harvesting, sensing and transmission as
a simple harvest-then-use process with EHBs and ECBs (each
consumes energy, Q) as discussed in Lemma Al. Thus, the
energy level after a TB, can be treated equivalently as that after
a corresponding ECB. Therefore, the steady-state distribution
of energy level after each TB is the same as that after each ECB,
which is given in Lemma A1, completing the proof.

APPENDIX C
EVENT AND RANDOM VARIABLE DEFINITIONS

To assist the proofs of the main results, we use UC to denote
the sequence of time blocks from an arbitrary STB to the next
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STB. Also we define two events (according to [30]) and several
discrete random variables (r.v.s)for convenience:

1) Event Agy: Given a SB, its generated information is suc-
cessfully transmitted to the sink, i.e., STB occurs during
the W blocks after the SB.

2) Event Apj: Given a SB, its generated information is not
successfully transmitted to the sink, i.e., STB does not
occur during the W blocks after the SB.

3) v. N, 1 < N < W: Given a SB, it is followed by N
TBs before the next SB. l.e., if Ag, occurs, the N TBs
includes N — 1 FTBs and one STB. While if Af,j occurs,
all the N TBs are FTBs.

4) rv. L, 1 < L < W: After a SB, the Lth block is the last
TB before the next SB. L.e., if Agc occurs, the Lth block
is a STB, thus L is the update age. While if Ag,j occurs,
the Lth block is the last FTB during the time window for
retransmissions, W.

5) rv. V, V. > —1: Given a SB, if Agc occurs, V = —1,
while if an Ay occurs, V is the number of the required
EHBs after the time window for retransmissions, W, in
order to harvest the amount of energy, E1g. Note that,
after a Ag,j1, the amount of energy Esg + Etp is required
to be reached in order to support the following SB and
TB. Without loss of generality, here we assume that the
energy harvesting process first meets the energy level
Et1B, and the TB consumes the energy, E1p, (V)irtually.
From Lemma 1 and its proof, the steady-state distribution
of the available energy level after the V EHBs is g(€).

6) r.v. V, V > 0. Given a SB and conditioned on a Agj
occurs, V is the number of the required EHBs after the
time window for retransmissions, W, in order to harvest
the amount of energy, Eg. From the definition of V and
V, itis easy to see that

Pr{V =v} =Pr{V = v|Api]
B Pr{V = v}

, v=0,1,....
Pr { Afait}

(C.1)

7) r.v. E(E), E(E) > 0: Given the distribution of initial
energy level, g(e), and the amount of target energy, &,
the required number of energy harvesting block is E(E).
For a deterministic energy arrival process, straightfor-
wardly we have

Pr{EE)=i}l=1, i=¢E&/p. (C2)

For a general random energy arrival process, from the

definition of £ (&), Lemma 1 and its proof, we have

Pr{E)=i}=G;_1(&) —G;(€),i=0,1,2,...
(C.3)
where

1, i=—1,
Gi(x) = (C4)

X
/gi(u)du, i >0,
0

and g; (x) is defined in (A.2).
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For exponential energy arrival process, we know that the
energy accumulation process during EHBs after a TB is a
Poisson process [30], thus, we have

Pr{E(€) =i} = G;—1(§) — Gi(&)
=Pois(i,E/p), i=0,1,... (C)5)

8) r.v. M, M > 0: Given a UC, Agyj occur M times and
followed by one Agy in it.
From the definitions of event, we know that Ag,c and Ay
are mutually exclusive events. Thus, we have

Psyc £ Pr{Asuc} and Pr{Agj} = 1 — Poyc, (C.6)

where Agyc and Agj depends on transmit outage probability
in each TB, and the available energy after the first TB fol-
lowing the SB. Because we have assumed that the success of
each transmission are independent of one another, and from
Lemma 1, the distribution of the available energy after each
TB is the same, each event Agyc/Afi is independent of one
another during the communication process. Therefore, r.v. M
follows the geometric distribution

PriM =m} = Pac (1 — Puo)”, m=0,1,2,.... (C.7)

APPENDIX D
PMF OF UPDATE AGE

From the definitions in Appendix C, the pdf of Tya can be
calculated as
Pr{Tys =k} = M, k=
Pr{Asuc}
Using the law of total probability and the r.v.s defined in
Appendix C, we have

L,2,....,wW. (D.)

k
Pr{L =k Asct=Y Pr{L =k N =n, Auc)
n=1
k
=Y Pr{N =n, E((n — D&r) =k — n, A}
n=1

k
=D PN =n Awcl E((n — Dérp) = k —n)
n=1

X Pr{E((n — 1)EtB) = k — n}
k
=Y (1= Pow) (Pouw)" " Pr{E((n — D&rp) =k —n}.

n=1

(D.2)
Again using the law of total probability and using (D.2), (C.6)
becomes
w
Poye = Pr{Agc} = ZPr (L =1, Asuc)
=1
w
=Pr{L =1 Awc}+ Y Pr{l =1 Aguc)
=2
Wl
=1—Pu+y_ Y Pr{L=10N=n, Auc
[=2 n=2
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w1
=1- Pout + Z Z
=2 n=2
Pr{E((n — 1)érp) =1 —n, N =n, Aguc}
w1
=1- Pout + Z Z
=2 n=2
Pr{N =n, Asuc|E((n — 1)é1p) = [ — n}
x Pr{E((n — 1)étg) =1 — n}
w1
= 1= Pour+Y_ Y (I = Pou) (Pou)"™"
[=2 n=2
Pr{E((n — &) =1 —n}. (D.3)

By taking (C.2), (C.3) and (C.5) into (D.2) and (D.3), and then
substituting (D.2) and (D.3) into (D.1), the pmfs of Tya for
deterministic, general random and exponential energy arrival
process are given in Theorems 1, 2 and 3, respectively.

APPENDIX E
PMF oF UPDATE CYCLE

First, assuming that Ag, occurs m times during a UC, we
definer.v.s Eg, Vi, E;,i = 1,2, ..., m,and L. Ey is the number
of EHBs at the beginning of the UC until the first SB occurs
which follows the same pmf with r.v. E(Esg + E1). V; is the
number of EHBs required to harvest the amount of energy, Etp,
outside the time window for retransmissions of the ith Agj. E;
is the number of EHBs required to harvest the amount of energy,
Esp, following V; EHBs after the ith Ag;. L is the number of
blocks after a SB to the last TB before the next SB, and the TB
is a STB. From the r.v. definitions in Appendix C, Eyp, V; and
E; follow the same distribution withr.v.s E(Esg + E1g), V and
E(Esp), respectively, and

Pr{l =1} =Pr{L =1, Aw}, [=12,....,W. (ED

From Lemma 1, Ey, V;, E;, i =1,2,...,m, and [ are mutu-

ally independent.
Then, the pmf of update cycle can be calculated as

Pr{Tyc =k} =Y Pr{Tuc =k. M = m)
m

:ZPr{Eo+E1+...+Em+\71+...—|—\7m +mx(1+W)

m

L+ 1=k Vi, Va,---, Vs =0}

m

=Y Pr{Eq+E+...+ En+Vi+...+Vu+L=
m=0

k—m x (1+W)—1, V|, Vo, -+, V,, >0}



4648

k=2
W1
discrete functions:

where m = L J . For simplicity, we define the following

CEDEPH{EE) =i}, i=0,1,2,...
() EPr{L =1} =Pr{L =1, Ag}, [=12,.... W

9 EPr{V=v},v=01,....
(E.3)
where ¢ (€, i) and (/) are obtained directly from (C.2), (C.3),
(C.5) and (D.2), respectively, and ¢ (v) will be derived later.
Therefore, pmf of Tyc in (E.2) can be calculated as

m

Pr{Tuc =k} = D | ¢(Esp + E1B) #L(Esp) * - x £ (Esp)

m=0

m convolutions
*0 kook Okt | (k—m(1+ W) —1).
——

m convolutions

(E.4)
Now we derive the expression for ¢ (i). From the definitions of
r.v. in Appendix C, we have

() =Pr{V =v} =Pr{Agq. V = v}
w
= ZPI‘{Afail, V= v, N = n}
n=1
w
= Pr{Afail, V=v, N=1}+ZPr{Afaﬂ, V=v, N:n}
n=2
=Pr{Api, V=v,N=1}

w1
~|—ZZPr{Afai], V= vwN =n,L =l}
[=2 n=2
=Pr{Api, N=1,E(EmB) =W+v—1}

w1
+ Y ) Pr{Agi, N =n, E((n — 1)Ep)

=2 n=2
=1l—n EEmR)=W+v-—1I}
=Pr{Api, N=1EEmR) =W+v—1}x
Pr{EETB)=W+v—1}

w1
+ ) > Pr{Agi, N =n|E((n — 1)E1p)
=2 n=2
=l—n, EEmB)=W+v—1I}
X Pr{E((n—1)Etg) =1 —n, E(ETg) = W +v —1[}
= PoulPr{E(&1B) =W +v -1}
w1
+ )Y (Pow)" Pr{E((n — )€p) =1 — n} x
=2 n=2
Pr{EETB) =W +v—1}.
(E.5)
By taking functions (E.5), ¢(&, i) and (/) in (E.3), into (E.4),
and letting (C.2) and (C.3) substitute Pr {E(€) = i}, the pmf of
Tyc for deterministic and general random energy arrival pro-
cess can be calculated, respectively, as given in Theorems 4 and
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5. While for the exponential energy arrival process, by using the
sum property of Poisson distribution, we have

Pr{EED1 + E(€2)2 =i} =Pr{E + &) =i}, (E6)

where E(€1); and E(&;)> are two independent random vari-
ables which have the same distribution with E(E) and E(&»)
defined in Appendix C, respectively. Therefore, letting (C.5)
substitute Pr {E (&) = i}, the pmf of Tyc for exponential energy
arrival process can be further simplified as given in Theorem 6.

APPENDIX F
AVERAGE UPDATE CYCLE

Based on Appendix E, average update cycle can be calculated
as

Tuc = E{E{Tuc|M}} = ) Pr{M = m}E{TycIM = m}

m=0
o
=ZPr{M=m}E{Eo+E1+-~+Em
m=0
+tVi+ Vot o+ Vit+mx (1+ W)+ 14 Tual

=Y Pr{M =m}E(Eo} +E{E1} + -+ E{Ep)

m=0
+m xV+mx (W+1)+Tya+1).
(E1)
From Appendix E, we have

Esp + & €
= DRI gy = SR im 12 m (B2)
P

After taking (E.5) and (C.6) into (C.1) and some simplifica-
tions, the expectation of V can be calculated as

00 w-=2
-~ 7(v) Pout ETB . .
V= = —_— Pr{E(E =
gvl_Psuc 1_Psuc < Zl r{ ( TB) l}

P i=0
w-2
-W-=D (1 — Y Pr{E(&m) = i}))
i=0
i 1 — Pgyc Z:HX; (Pow)" Pr{E((n — )érp) =1 —n}

e
x (%— > iPr{E(Er) =i} — (W —1])

i=0

W—I—1
(1 — Y Pr{EEm) = i})).

= (F.3)
By taking (F.2), (F.3) and (C.7) into (F.1), and further substi-
tuting Psye and Tya given in Corollaries 1, 2 and 3, average
update cycle for deterministic, general random and exponen-
tial energy arrival processes are given in Corollaries 5, 6 and 7,
respectively.
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APPENDIX G
ASYMPTOTIC LOWER/UPPER BOUNDS

From Corollaries 1 and 2, it is easy to see that Ty, increase
with W. While for Tyc, the monotonicity is not explicitly
observed from Corollary 6. Due to space limitations, a sketch of
the proof is given: When W increases, more TBs are allowed,
thus more STBs occurs during the communication process,
which also means shorter average update cycle.

When W — o0, the sensed information in each SB will be
successfully transmitted to the sink, i.e., Ay always occurs and
Pgyc — 1. Thus, UC contains the EHBs to harvest the amount
of energy, Esp + ETB, the SB, and the blocks in Tya. Based on
this explanation, for the average update age, we have

oo
Jim Tys =3 Pr{N =n}E{TuAlN = n}

n=1

=Y (1 = Pou) (Pou)"™"

n=1

(G.1)
E{n+ E((n — 1)Erp)}
= E1B
= Z(l - Pout) (Pout)n_1 <”l + (i’l — 1)—)
n=1 p
=1+ (&€1s/p + 1) Pour/(1 — Poup).
For the average update cycle, we have
o0
lim Tyc =Y Pr{N =n}E{Tyc|N =n}
W—o0 o
o0
=Y (1 = Pow) (Pouw)" "' E{E(Esp + ETp)
n=1
+1+n+ E((n—1)&Erp)}
o
_ Esp +né
= (1 = Pou) (Pow)" ™! (n +1+ SBT”TB)
n=1

=2+(E1e/p+1) Pou/(1 — Pou)+(Esp + ETB)/P-

(G.2)
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