
The Mathematica® Journal

Computing Exact Closed-
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We propose and implement an algorithm to compute the exact 
cumulative density function (CDF) of the distance from an 
arbitrary reference point to a randomly located node within an 
arbitrarily shaped (convex or concave) simple polygon. Using 
this result, we also obtain the closed-form probability density 
function (PDF) of the Euclidean distance between an arbitrary 
reference point and its ith neighbor node when N nodes are 
uniformly and independently distributed inside the arbitrarily 
shaped polygon. The implementation is based on the recursive 
approach proposed by Ahmadi and Pan [1] in order to obtain the 
distance distributions associated with arbitrary triangles. The 
algorithm in [1] is extended for arbitrarily shaped polygons by 
using a modified form of the shoelace formula. This modification 
allows tractable computation of the overlap area between a disk 
of radius r centered at the arbitrary reference point and the 
arbitrarily shaped polygon, which is a key part of the 
implementation. The obtained distance distributions can be used 
in the modeling of wireless networks, especially in the context of 
emerging ultra-dense small cell deployment scenarios, where 
network regions can be arbitrarily shaped. They can also be 
applied in other branches of science, such as forestry, 
mathematics, operations research, and material sciences.
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■ 1. Introduction
Wireless networks are generally modeled as a finite region in Euclidean space (this article
considers those regions that are simple polygons in two-dimensional Euclidean space ℝ2)
with  nodes  independently  and  uniformly  distributed  throughout  the  region.  The  random
distances  between  nodes  or  users,  therefore,  significantly  affect  the  modeling  of  the
wireless network, since the received signal power and interference depend critically on the
distances  between  the  transmitter  and  the  receiver  nodes  [2].  As  shown  recently  in  [3],
when  nodes  are  independently  and  uniformly  distributed  within  the  network,  the  im-
portant distance distribution is the cumulative density function (CDF) of the distance from
an arbitrary reference point to a randomly located node within the polygon (in this article,
we use the phrase distance distribution to denote this CDF distribution). It can be obtained
by finding the ratio of the overlap area between a disk of radius r centered at the arbitrary
reference point and the area of the polygon. This CDF can then be used to obtain the proba-
bility  density  function  (PDF)  of  the  Euclidean  distance  between  an  arbitrary  reference
point and its ith  neighbor node when N nodes are uniformly and independently distributed
inside the polygon. 
Recently, there has been increasing interest in wireless communications to model the dis-
tance  distributions  in  polygonal  regions.  In  traditional  cellular  networks,  the  network
region  is  often  modeled  as  an  equilateral  triangle,  a  square,  a  hexagon,  or  a  disk.  For
regular  n-sided  polygons,  the  distance  distributions  were  obtained  for  the  special  case
when the arbitrary reference point is located at the center of the polygon in [4] and for the
general case when the arbitrary reference point is located anywhere inside the polygon in
[3].  Note  that  a  Mathematica  implementation  of  the  algorithm in  [4]  is  available  [5].  In
emerging  wireless  network  paradigms,  such  as  ultra-dense  small  cell  deployments,  the
network regions can be arbitrarily shaped.  For arbitrarily shaped convex polygons,  when
the  arbitrary  reference  point  is  located  anywhere  inside  the  polygon,  an  algorithm  to
obtain the distance distributions was proposed in [6]. For triangular regions, when the arbi-
trary reference point is located anywhere, an algorithm to obtain the distance distributions
was proposed in [1]. The authors in [1] argued that since any polygon can be triangulated
(i.e.,  broken  up  into  non-overlapping  triangles),  their  approach  in  principle  could  be
applied to  determine the  distance distributions  for  the  general  case  of  arbitrary  reference
point location and arbitrarily shaped (convex or concave) polygons.
In  this  article,  we extend the  algorithm in  [1]  for  arbitrarily  shaped polygons  by  using  a
modified form of the shoelace formula. The shoelace formula, also known as Gauss’s area
formula, is a well-known mathematical method to determine the area of a polygon whose
vertices  are  described  by  ordered  pairs  in  ℝ2  [7].  Our  modification  of  the  shoelace  for-
mula allows tractable computation of the overlap area between a disk of radius r centered
at the arbitrary reference point and the arbitrarily shaped polygon, allowing the algorithm
in [1] to be generalized and implemented.
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This article is organized as follows. In the remainder of Section 1, we briefly summarize
the algorithm in [1] and define the commonly used notation. In Section 2, we discuss the
shoelace  formula  and  its  proposed  modification.  In  Section  3,  we  present  the  proposed
algorithm and its Mathematica implementation. The simulation results, which are used to
verify  the  analytical  results,  are  discussed  in  Section  4.  An  example  illustrating  the  pro-
posed  Mathematica  implementation  is  discussed  in  Section  5.  Finally,  conclusions  are
presented in Section 6.

□ 1.1 Overview of Algorithm in [1] for Triangle Regions

Calculating the distance distribution (i.e. the CDF) evaluated at r  is equivalent to finding
the  ratio  of  the  area  within  the  polygon  that  is  less  than  a  distance  r  from the  reference
point  to  the  area  of  the  polygon.  The  latter  area  is  readily  calculated  if  the  polygon
vertices are known. (Generally the polygon defining the network area has known coordi-
nates, so the area may be calculated.) Hence, the challenge is calculating the former area.
It is clear that the CDF has an obvious geometric interpretation; if we let P be a polygon
and Br(R) be the disc of radius r centered at some reference point R, then the CDF is the
area  of  P⋂ Br(R)  divided  by  the  area  of  the  polygon.  Ahmadi  and  Pan  [1]  perform this
calculation for  an arbitrary  triangle  and arbitrary  reference point  by first  establishing the
case for which the reference point is one of the triangle vertices, as illustrated in Figure 1.

▲ Figure 1. Depiction of the two characteristic cases considered by Ahmadi and Pan [1]. (a) shows 
the case that the altitude from R to the side BC  is inside the triangle. (b) shows the case that the al-
titude from R to the side BC is outside the triangle.
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They assume, without loss of generality, that the side length of RB is less than or equal to
the  side  length  of  RC.  The  possible  cases  are  then  characterized  by  whether  the  altitude
from R to the side BC is inside or outside the triangle, and considered separately (see Fig-
ure 1). For a disc centered at R, the area of intersection of the triangle △RBC and the disc
as a function of the radius r is derived for each case. The result for the former case is

(△RBC⋂ Br(R)) =
α
2 r2 0 ≤ r ≤ h

h r2 -− h2 +
α-−2 cos-−1 h

r 

2 r2 h ≤ r ≤ RB

h RB -−h2 + r2-−h2

2 + r2

2 α -− cos-−1 h
RB  -− cos-−1 h

r  RB ≤ r ≤ RC
△RBC RC ≤ r

(1)

and for the latter case the result is

(△RBC⋂ Br(R)) =

α
2 r2 0 ≤ r ≤ RB

h r2-−h2 -− RB -−h2

2 +
sin-−1 h

r -−γ

2 r2 RB ≤ r ≤ RC
△RBC RC ≤ r

(2)

All  the  symbols  in  (1)  and  (2)  are  defined  in  Figure  1.  The  equations  (1)  and  (2)  are
extended to an arbitrary triangle with an arbitrary reference point using triangle decompo-
sition and adding and subtracting the areas appropriately [1]. The three possible cases are
that the reference point is inside the triangle, the reference point is outside the triangle and
in the area formed by the extension of two edges from a vertex, or otherwise (see Figure
2). For these three cases, the area (△ABC⋂ Br(R)) is given by

(△ABC⋂ Br(R)) = (△RAB⋂ Br(R)) + (△RBC⋂ Br(R)) + (△RCA⋂ Br(R)),
(△ABC⋂ Br(R)) = (△RCA⋂ Br(R)) -− (△RAB⋂ Br(R)) + (△RBC⋂ Br(R)),
(△ABC⋂ Br(R)) = (△RCA⋂ Br(R)) + (△RBC⋂ Br(R)) -− (△RAB⋂ Br(R)),

respectively,  where  the  individual  intersection  areas  can  be  found  using  (1)  and  (2)
appropriately.

▲ Figure 2. Possible cases for triangle decompositions given an arbitrary triangle and reference 
point. (a) is the case of an interior reference point. (b) and (c) show the case for an exterior refer-
ence point. (c) is the case that the reference point is in the area formed by the extension of the 
edges from one vertex.
Using  this  result,  an  algorithm  to  compute  the  CDF  for  the  general  case  of  an  arbitrary
polygon and  arbitrary  reference  point  is  proposed  and  implemented.  This  is  achieved  by
first establishing a modification of the shoelace formula, which is described and proved in
Section 2.
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Using  this  result,  an  algorithm  to  compute  the  CDF  for  the  general  case  of  an  arbitrary
polygon and  arbitrary  reference  point  is  proposed  and  implemented.  This  is  achieved  by
first establishing a modification of the shoelace formula, which is described and proved in
Section 2.

□ 1.2 Definitions

In  this  subsection,  we  define  some  functions  and  notation  that  are  used  throughout  this
article.
Definition 1

The area of a region S ⊂ ℝ2  is denoted by (S). In the case of a triangle with vertices
T= {(x1, y1), (x2, y2), (x3, y3)}, the area can be calculated as in [8].

(T) =
1
2

abs det
x1 y1 1
x2 y2 1
x3 y3 1

. (3)

Definition 2

The  signed  area  of  a  triangle  T  with  vertices  T= {(x1, y1), (x2, y2), (x3, y3)}  is  de-
noted by (T)s, and is given by

(T)s =
1
2

det
x1 y1 1
x2 y2 1
x3 y3 1

. (4)

(The subscript s stands for “signed”.) We note that from the above definition, (T)s  has the
same magnitude as the area of the triangle, (T),  but is positive if the vertices are given in
counterclockwise order, and negative if the vertices are given in clockwise order.
Definition 3

The signed area of the region defined by the intersection of a triangle T and a region
S ⊂ ℝ2, that is, T⋂ S, is denoted (T⋂ S)s and is given by

(T⋂ S)s = sgn((T)s) (T⋂ S), (5)

where sgn(x) is the signum function.

Essentially, this says that (T⋂ S)s = ±(T⋂ S), where (T⋂ S)s  is positive if the signed area
of T is positive and negative if the signed area of T is negative.
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■ 2. Shoelace Formula and Its Modification
The shoelace formula is a useful formula for calculating the area of a polygon (see the il-
lustration in [6] for an explanation of the name). It is stated in the theorem below [9].
Theorem 1

The  shoelace  formula:  Let  P= {(x1, y1), (x2, y2), …, (xn, yn)}  be  an  ordered  set  of
vertices in the plane that define an n-sided polygon. Define the triangles T1, T2, …, Tn  as
the triangles formed from two adjacent points from P and the origin. That is,

T1 = {(0, 0), (x1, y1), (x2, y2)},
T2 = {(0, 0), (x2, y2), (x3, y3)},
…
Tn = {(0, 0), (xn, yn), (x1, y1)}.

Then the area of the polygon is given by

(P) =
1
2

abs 
j=1

n
xj yj+1 -− xj+1 yj , (6)

where for simplicity we let xn+1 = x1 and yn+1 = y1.

The shoelace formula holds if instead of using the origin to define each Tj, we used an ar-
bitrary point in ℝ2.
Notice that

(Tj)s =
1
2

det
0 0 1
xj yj 1

xj+1 yj+1 1
=

1
2

0 det
yj 1

yj+1 1 -− 0 det
xj 1

xj+1 1 + 1 det
xj yj

xj+1 yj+1
=

1
2
(xj yj+1 -− xj+1 yj).

Hence, the shoelace formula can alternatively be stated as

(P) =
1
2

abs 
j=1

n
(Tj)s . (7)

A visual illustration of (7) is shown in Figure 3. The triangles with positively signed area
are  shaded  in  green  and  shown  in  (a),  and  the  triangles  with  negatively  signed  area  are
shaded in orange and shown in (b). In both cases, the darker regions indicate where trian-
gles overlap. We can thus think of the shoelace formula as stating that if we add the green
regions  and  subtract  the  orange  regions,  we  obtain  the  region  defined  by  the  polygon
(shown  in  (c)).  In  the  given  example  in  Figure  3  we  can  see  this  visually  because  the
green regions outside the polygon “cancel”  with  the orange regions outside the polygon,
and the dark green regions inside the polygon are “canceled” by orange regions inside the
polygon.
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▲ Figure 3. Visual illustration of the shoelace formula for calculating the area of a polygon.

We now build upon the shoelace formula in (7) to obtain a useful modification.

Theorem 2

The modified shoelace formula: Let P= {p1, p2, …, pn} be an ordered set of vertices
in  the  plane  that  define  an  n-sided  polygon.  Let  Br(R) ⊂ ℝ2  be  a  disc  of  radius  r≥ 0
centered  at  the  point  R.  Define  the  triangles  T1, T2, …, Tn  as  the  triangles  formed  from
two adjacent points from P and the reference point R. That is,

T1 = {R, p1, p2},
T2 = {R, p2, p3},
…
Tn = {R, pn, p1}.

Then

(Br(R) ⋂ P) = abs 
j=1

n
(Br(R) ⋂ Tj)s . (8)

Thus,  just  as  the  area  of  the  polygon  was  equal  to  the  sum  of  the  signed  areas  of  the
triangles  T1, T2, …, Tn  in  the  original  shoelace  formula,  we  have  that  the  area  of  inter-
section of the polygon and a disc is given by the sum of the signed areas of intersection of
each T1, T2, …, Tn  and the disc in the modified shoelace formula. A visual illustration of
this modified formula is shown in Figure 4. If we consider the same example as in Figure
3 but  with the addition of  a  disc,  as  depicted in  Figure 4,  then the orange regions (areas
with  negative  signed  area,  shown in  (b))  “cancel”  the  green  regions  (areas  with  positive
signed  area,  shown  in  (a))  that  are  outside  the  polygon  and  “cancel”  the  darker  regions
inside  the  polygon,  giving  the  desired  area  of  intersection,  shown  in  (c).  We  prove
theorem 2 using induction.
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▲ Figure 4. Visual illustration of the modified shoelace formula for calculating overlap areas.

Proof of Theorem 2

We use  strong induction  on  n  (the  number  of  sides  of  the  polygon).  The  base  case
n = 3 is immediate, as Ahmadi and Pan [1] show exhaustively in their paper. We now as-
sume that the result is true for all n ≤ k for some k ≥ 3, and let Pk+1 be an arbitrary (k+ 1)-
sided  polygon.  We  may  choose  two  vertices  v1,  v2  of  the  polygon  Pk+1  such  that  the
straight line joining v1 and v2 is contained within the polygon Pk+1 (for a proof of this fact,
see [10]).

To  complete  the  induction  step,  let  Pk+1 = {p1, p2, …, pk+1}  and  pick  any  diagonal
pa pb  contained  within  Pk+1,  where  pa  appears  before  pb  in  the  list.  Then  let
Pk+1 = S1 ⋃ S2, where S1 and S2 are the two polygons formed by adding the diagonal. We
can  thus  write  S1 = {p1, p2, …, pa-−1, pa, pb, pb+1, …, pk+1}  and  S2 = {pa, pa+1, …,
pb-−1, pb}.  These  two  polygons  correspond  to  (a)  and  (b),  respectively,  in  the  example
given in Figure 5.

▲ Figure 5. Example polygon decomposition given the diagonal pa pb. The arrows denote the order 
of the vertices.

Since both S1  and S2  have at most k sides (say p and q sides, respectively), then for
any R and any r ≥ 0, we know that for the disc of radius r centered on R (denoted Br(R)),
we have

(Br(R) ⋂ S1) = abs 
j=1

p
Br(R) ⋂ Tj

(1)s ,

,
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(Br(R) ⋂ S2) = abs 
j=1

q
Br(R) ⋂ Tj

(2)s ,

where T1
(1), …, Tp

(1) and T1
(2), …, Tq

(2) are the triangles defined in the same way as in the
statement of the theorem for the polygons S1 and S2, respectively. From their construction,
the vertices in S1 and S2 are either both in clockwise order, or both in counterclockwise or-
der. So (Br(R) ⋂ S1) and (Br(R) ⋂ S2) are either both positive or both negative. Hence

abs 
j=1

p
Br(R) ⋂ Tj

(1)s + abs 
j=1

q
Br(R) ⋂ Tj

(2)s =

abs 
j=1

p
Br(R) ⋂ Tj

(1)s +
j=1

q
Br(R) ⋂ Tj

(2)s .

(9)

Using (7) we deduce that

(Br(R) ⋂ Pk+1) =

(Br(R) ⋂ S1) + (Br(R) ⋂ S2) = abs 
j=1

p
Br(R) ⋂ Tj

(1)s +
j=1

q
Br(R) ⋂ Tj

(2)s .

But  all  of  the  triangles  Ti
(1), Tj

(2)  are  precisely  the  analogous  triangles
T1, T2, …, Tk+1 for the polygon Pk+1, and also include the triangles added by the diagonal,
namely △ R pa pb and △ R pb pa. Thus 

(Br(R) ⋂ Pk+1) = abs 
j=1

p
Br(R) ⋂ Tj

(1)s +
j=1

q
Br(R) ⋂ Tj

(2)s =

abs 
j=1

k+1
(Br(R) ⋂ Tj)s + (Br(R) ⋂ △R pa pb)s + (Br(R) ⋂ △R pb pa)s .

But  △ R pa pb  and  △ R pb pa  have  opposite  orientation,  so
(Br(R) ⋂ △ R pa pb)s + (Br(R) ⋂ △ R pb pa)s = 0, so that

(Br(R) ⋂ Pk+1) = abs 
j=1

k+1
(Br(R) ⋂ Tj)s ,

as required. □
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■ 3. Proposed Algorithm and Implementation
In this section, we extend the algorithm in [1] for arbitrarily shaped polygons by using the
modified  form of  the  shoelace  formula  in  theorem 2.  Since  any  polygon can  be  triangu-
lated, the area of intersection of a disc of radius r centered at a reference point R and the
polygon can be found by summing the areas of the intersections of the disc and each trian-
gle of the triangulation. Since the latter areas can be found using theorem 2, the generaliza-
tion follows. 

□ 3.1 Algorithm

We know that given a polygon P and a reference point R, the CDF F (r) is

F(r) =
(P⋂ Br(R))

(P)
. (10)

Using the modified shoelace formula, we may write (10) as

F(r) =
1
(P)

abs 
j=1

n
(Tj ⋂ Br(R))s , (11)

where P = {p1, p2, …, pn} and

T1 = {R, p1, p2},
T2 = {R, p2, p3},
…
Tn = {R, pn, p1}.

In (11), we can calculate (P) using the shoelace formula in theorem 1. The method to calcu-
late each (Tj ⋂ Br(R))s  was given in [1] and is summarized in Section 1.1. Once the CDF
F (r) is found, the corresponding PDF f(r) can be found by differentiation.

□ 3.2 Implementation

In this section, we describe the implementation of the algorithm. The functions in (1) and
(2)  are  implemented  as  the  functions  InsideAltitudeArea  and  Outside!
AltitudeArea, respectively. These functions return the piecewise functions (1) and (2)
as a function of the argument r. Each function returns a list of sublists; here each sublist is
of  the  form  {g(r), a, b},  where  g(r)  is  the  piece  of  the  function  that  corresponds  to  the
range  a ≤ r ≤ b.  The  function  (1)  has  four  pieces  and  so  InsideAltitudeArea  re-
turns a 4× 3 array. Similarly, OutsideAltitudeArea returns a 3× 3 array, as it corre-
sponds to (2), which has three pieces.
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InsideAltitudeArea[R_, B_, C_, r_] := Module

{RB, BC, RC, s, tRBC, h, α},
RB = Norm[R -− B];
BC = Norm[B -− C];
RC = Norm[R -− C];

If

R ⩵ B || R ⩵ C || B ⩵ C,
{{0, 0, ∞}},
(*⋆ else *⋆)

s =
RB + BC + RC

2
;

tRBC = s (s -− RB) (s -− BC) (s -− RC) ;

h =
2 tRBC

BC
;

α = Norm[VectorAngle[B -− R, C -− R]];




α

2
r2, 0, h,

h r2 -− h2 +
α

2
-− ArcCos

h

r
 r2, h, RB,


h

2
RB2 -− h2 + r2 -− h2 +

r2

2
α -− ArcCos

h

RB
 + ArcCos

h

r
 , RB, RC,

{tRBC, RC, ∞}






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OutsideAltitudeArea[R_, B_, C_, r_] := Module

{RB, BC, RC, s, tRBC, h},

IfR ⩵ B || R ⩵ C || B ⩵ C,

{{0, 0, ∞}},
(*⋆ else *⋆)
RB = Norm[R -− B];
BC = Norm[B -− C];
RC = Norm[R -− C];

s =
RB + BC + RC

2
;

tRBC = s (s -− RB) (s -− BC) (s -− RC) ;

h =
2 tRBC

BC
;




r2

2
Norm[VectorAngle[B -− R, C -− R]], 0, RB,


h

2
r2 -− h2 -− RB2 -− h2 +

r2

2
ArcSin

h

r
 -− Norm[VectorAngle[R -− C, B -− C]] ,

RB, RC,

{tRBC, RC, ∞}







The function PolygonArea, given the vertices, calculates the area of a polygon with the
shoelace formula.

PolygonArea[P_] :=
1 /∕ 2 Total[Det /∕@ Partition[Append[P, First@P], 2, 1]]

CombinePieces is responsible for simplifying a “pseudo-piecewise” function by deter-
mining the distinct ranges of the equivalent piecewise function, sorting these ranges, and
finding  the  corresponding  function  for  each  range.  This  piecewise  function  is  then  con-
verted  to  either  the  CDF  or  the  PDF,  depending  on  the  argument  case.  The  function
takes  four  arguments:  f  is  a  “pseudo-piecewise”  function of  the  form that  is  returned by
InsideAltitudeArea  and  OutsideAltitudeArea,  namely,  a  list  of  sublists,
where each sublist is of the form {g(r), a, b} where g(r) is the piece of the function that cor-
responds  to  the  range  a ≤ r ≤ b.  The  argument  area  is  set  equal  to  the  area  of  the
polygon.  The returned CDF is  a  function of  the  argument  r.  Finally,  case  is  a  Boolean
argument that determines whether the CDF or PDF is returned; when it is true the function
returns the CDF, and when it is false the function returns the PDF.
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CombinePieces[f_, area_, r_, case_] := Module

{t, indices, Additions, Subtractions, cFunction},
(*⋆Identify the different ranges for the piecewise
function*⋆)

indices = Partition[
Sort[DeleteDuplicates[Flatten[{#[[2]], #[[3]]} & /∕@ f]],
Less],

2, 1
];

(*⋆
Take the function bounds from the list t.
Remove the duplicate elements.
Sort the elements in ascending order.
Make ranges from adjacent elements.

*⋆)

(*⋆ Create the list describing when to add to the
cumulative function, cFunction. *⋆)

Additions = {#[[1]], #[[2]]} & /∕@
Sort[f, #1[[2]] < #2[[2]] &];

(*⋆
Sort the list according to the range lower bound.
Remove the range upper bound from each element.

*⋆)

(*⋆ Create the list describing when to subtract
from the cumulative function, cFunction. *⋆)

Subtractions = {-−#[[1]], #[[3]]} & /∕@
Sort[f, #1[[3]] < #2[[3]] &];

(*⋆
Sort the list according to the range upper bound.
Remove the range lower bound from each element

and make the function negative.
*⋆)

(*⋆ Construct the cumulative function, cFunction. *⋆)
cFunction =
Accumulate[
Total /∕@
Map[
#[[1]] &,
GatherBy[
Sort[
Join[Additions, Subtractions],
#1[[2]] < #2[[2]] &

],
#[[2]] &

],
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],
{2}

]
];

(*⋆
Collect all of the addition and subtraction

information.
Sort the elements in ascending order by the

value at which they are added/∕subtracted.
Group the functions by the value at which they

are added/∕subtracted.
Find the sum of all previous functions at each

range boundary.
Delete the FoldList artifact.

*⋆)

(*⋆ Convert to CDF in Mathematica Piecewise form. *⋆)

Piecewise

DeleteCases

If[
case,
{#[[1]], #[[2, 1]] ≤ r ≤ #[[2, 2]]},
{D[#[[1]], r], #[[2, 1]] ≤ r ≤ #[[2, 2]]}

] & /∕@ Partition

RiffleFullSimplify
cFunction

area
, indices,

2,

x_ /∕; x[[2, 1]] ⩵ x[[2, 3]]





(*⋆
Convert the area function to the CDF.
Gather the functions and their valid ranges.
Group the functions with the value at which they

become active.
Convert to Mathematica Piecewise form.
Manually delete pieces with zero range that

GatherBy misses.
*⋆)


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This gives the sign of a triangle’s area.

SignTriangleArea[{R_, A_, B_}] :=
Sign@Det[{Flatten[{1, R}], Flatten[{1, A}],

Flatten[{1, B}]}]

AltitudeInsideQ  returns  True  if  the  altitude  of  the  triangle  intersects  the  opposite
edge inside the triangle.

AltitudeInsideQ[R_, A_, B_] := Module[{AB = B -− A},
(*⋆ Test if the altitude lies inside the triangle
by checking that the component of the side vectors
from R in the direction of AB are both less than
the length of AB. *⋆)

Norm[Dot[A -− R, AB]] < Dot[AB, AB] &&
Norm[Dot[B -− R, AB]] < Dot[AB, AB]

]

PolygonCDF is the main function used to compute the CDF; it uses the method outlined
in Subsection 3.1.

PolygonCDF[P_, R_, r_, case_] := Module[{Q, f, i, A, B},
(*⋆ Make P cyclic. *⋆)
Q = Append[P, First[P]];
(*⋆ Initialize f. *⋆)
f = {};
(*⋆ Loop over each triangle formed by the reference
point and adjacent vertices of the polygon,

obtaining the area function for each. *⋆)
For[i = 1, i ≤ Length[P], i++,
(*⋆ Create triangle and side vectors. *⋆)
{A, B} = Q[[{i, i + 1}]];
(*⋆ Calculate the appropriate area function given
the characteristics of the triangle. *⋆)

f = Join[f, Map[
If[
SignTriangleArea[{R, A, B}] ⩵ 1,
Identity,
(*⋆ The sign of the area of the triangle is
positive. *⋆)

{-−1, 1, 1} # &
(*⋆

The sign of the area of the triangle is
negative.
Multiply the function but not the ranges by -−1.

*⋆)
],
Apply[
If[AltitudeInsideQ[R, A, B], InsideAltitudeArea,
OutsideAltitudeArea],
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OutsideAltitudeArea],
If[Norm[A -− R] > Norm[B -− R], {R, B, A, r}, {R, A, B, r}]

]
]]

];
(*⋆Convert the area functions for Piecewise. *⋆)
CombinePieces[FullSimplify[f], PolygonArea[P], r, case]

]

■ 4. Simulation Aspects
This section discusses how to generate the simulation results, which are used to verify the
analytical  results.  In  general,  we  need  uniformly  distributed  points  inside  arbitrarily
shaped polygons.
Generating uniformly distributed points inside a triangle is straightforward and can be ac-
complished in a number of ways [11,  12].  The method used here selects two numbers at
random from (0, 1) to measure off lengths on two sides of the triangle to use as weights on
the vertices. RandomPointsTriangle has two arguments: T is a list of three vertices
describing a triangle and n is the number of points to generate.

RandomPointsTriangle[{a_, b_, c_}, n_] := Module[{u, v},
{u, v} = Transpose[Sort /∕@ RandomReal[1, {n, 2}]];
Map[# a &, u] + Map[# b &, (v -− u)] + Map[# c &, (1 -− v)]]

The method for triangles is extended to arbitrary polygons by triangulating the polygon P,
uniformly picking a triangle, and then generating a point in that triangle. Uniformly pick-
ing a triangle means choosing each triangle with probability such that the points generated
are uniform for the whole polygon; this means that the probability of picking a triangle Tj

must be proportional to its area. Precisely, the probability is Tj /∕ P . This is done effi-
ciently using TriangulateMesh.

RandomPointsPolygon[P_, n_] := Module

{p, s, t},
p = N[P];
(*⋆ Numerically approximate vertices for faster
computation. *⋆)

s =
First /∕@
MeshPrimitives[
TriangulateMesh[
DiscretizeGraphics@Graphics[Polygon@p],
MaxCellMeasure → Infinity],

2];

t = Accumulate
PolygonArea[#]

PolygonArea[p]
& /∕@ s;
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(*⋆
Triangulate the polygon.
Calculate the area of the polygon.
Associate each triangle with its fraction of area

of the polygon.
Associate each triangle with a range calculated

as the sum of all previous
area fractions. This allows a triangle to be
picked from a random variable
generated between 0 and 1.

*⋆)
Select[
Map[
Function[
x,
Flatten@RandomPointsTriangle[

s[[First@FirstPosition[x < # & /∕@ t, True]]], 1]
],
RandomReal[1, n]

],
# ≠ {} &]

(*⋆
Random points:
Generate n random numbers between 0 and 1.
For each random number,

pick the corresponding triangle and generate a
point in it.

*⋆)


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■ 5. Examples
For convenience, here is a list of the different special examples that have been considered
in the literature that can be verified using our implementation. The polygon vertices must
be specified in clockwise order.
1. Example 1 in [1]: equilateral triangle with interior reference point

P1 = {0, 0}, {1, 0}, 
1

2
,

3

2
;

R1 = {0, 0};

2. Example 2 in [1]: equilateral triangle with exterior reference point.

P2 = {0, 0}, {1, 0}, 
1

2
,

3

2
;

R2 = 
1

2
,

-− 3

2
;

3. Section 2.5.1, p. 263 in [13]: triangle with reference point at a vertex.

P3 = {0, 0}, {1, 0}, 
1

3
,
1

2
;

R3 = {0, 0};

4. Example in [3]: square with reference point on the boundary.

P4 = {{1, 0}, {0, 1}, {-−1, 0}, {0, -−1}};

R4 = 
1

2
,

-−1

2
;

5. Example in [4]: hexagon with reference point at the center.

P5 = {1, 0}, 
1

2
,

3

2
, -−

1

2
,

3

2
, {-−1, 0}, -−

1

2
, -−

3

2
,


1

2
, -−

3

2
;

R5 = {0, 0};

6. Example in [6], [14], and [15]: arbitrarily shaped convex polygon.

P6 = {0, 0},  3 , 0,  3 -−
3

2
,

3

2
, {0, 1};

R6 =  3 , 0;
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7. Example in [18]: arbitrarily shaped convex polygon.

P7 = {
0.7 {Cos[50 Pi /∕ 180], Sin[50 Pi /∕ 180]},
1.0 {Cos[80 Pi /∕ 180], Sin[80 Pi /∕ 180]},
0.2 {Cos[230 Pi /∕ 180], Sin[230 Pi /∕ 180]},
0.65 {Cos[320 Pi /∕ 180], Sin[320 Pi /∕ 180]},
0.6 {Cos[340 Pi /∕ 180], Sin[340 Pi /∕ 180]}

};
R7 = {0, 0};

8. Example in this report: arbitrarily shaped polygon shaped like the letter N.

P8 = {{0, 0}, {0.2, 0}, {0.2, 0.7}, {0.8, 0}, {1, 0},
{1, 1}, {0.8, 1}, {0.8, 0.3}, {0.2, 1}, {0, 1}};

R8 = {0.2, 1.5};

9.  Example  in  this  report:  star-shaped  (concave)  polygon  region  with  reference  point  at
the center.

P9 = Witha =
5

8
-−

5

8
, b =

1

4
-−1 -− 5 ,

c =
1

4
-−1 + 5 -−

2 5 5 + 5 

5 -− 5 + 5 + 5

, d =
1

2

1

2
5 -− 5  ,

e =
1

2

1

2
5 + 5  , f =

5

8
+

5

8
, g =

1

4
-−1 + 5 ,

{{-−a, b}, {0, c}, {a, b}, {-− e c, g c}, {f, g},

{-− d c, b c}, {0, 1}, { d c, b c}, {-−f, g}, { e c, g c}};

R9 = {0, 0};

10.  Example  in  this  report:  arbitrarily  shaped  concave  polygon  with  exterior  reference
point.

P10 = -−
1

2
, 0, 0,

1

2
, 

1

2
, 0, 

1

2
, 1, -−

1

2
, 1;

R10 = {0, 0};
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We illustrate using Example 10.

Poly = P10;
ReferencePoint = R10;

Graphics[{EdgeForm[Thick], Lighter[Gray, 0.6],
Polygon[Poly],
Blue, PointSize[Large], Point[ReferencePoint]},

Frame → True]

-−0.4 -−0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0
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The simulation data is calculated. The code checks to see if the polygon is convex. If it is,
the  points  are  simulated  using  RandomPointsConcave,  which  is  faster  than
RandomPointsPolygon. Otherwise, the code uses RandomPointsPolygon.

n = 50000;
data = RandomPointsPolygon[Poly, n];

This shows the simulated uniformly distributed points for the given polygon.

Show[ListPlot[data, AspectRatio → Automatic],
ListPlot[{ReferencePoint},
PlotStyle → {Red, PointSize[0.025]}], Frame → True]

-−0.4 -−0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0
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A function that converts the simulated points to the CDF is defined. The number of simula-
tion trials is n.

DataCDF[data_, R_] :=

Rest@FoldList#2, #1[[2]] +
1

Length[data]
 &, {0, 0},

Sort[Norm[# -− R] & /∕@ data, Less]

(*⋆
Convert the points to vectors from the reference point.
Find the lengths of the vectors.
Sort the lengths in ascending order.
Construct pairs

{length, position in the list scaled between 0 and 1.
Delete Foldlist artifact.

*⋆)

The closed form of the CDF is displayed as calculated by the algorithm.

(*⋆ Output the CDF after forcing the evaluation of
expressions of the form Root[] to tidy up the output. *⋆)

FR[r_, P_, R_] :=
Quiet@
ChopPolygonCDF[P, R, r, True] /∕.

x_ :> N[x] /∕; Head[x] ⩵ Root, 10-−5

FREx[r_] = FR[r, Poly, ReferencePoint]

0 0 ≤ r ≤ 1

2 2
1
3
-− -−1 + 8 r2 + 8 r2 ArcSec2 2 r 1

2 2
≤ r ≤ 1

2

1
3
-−1 + -−1 + 4 r2 + 2 r2

ArcCos 3
5
 -− 2 ArcCos 2

5
 + 2 ArcCsc[2 r]

1
2
≤ r ≤ 1

1
3
-−1 + 4 -−1 + r2 + -−1 + 4 r2 +

2 r2 ArcCos 3
5
 -− 2 ArcCos 2

5
 +

2 ArcCsc[2 r] -− 2 ArcSec[r]

1 ≤ r ≤ 5
2

1 5
2

≤ r ≤ ∞

0 True
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Also find the corresponding closed form of the PDF, which is needed for the ith  neighbor
PDF.

fR[r_, P_, R_] :=
Quiet@
ChopPolygonCDF[P, R, r, False] /∕.

x_ :> N[x] /∕; Head[x] ⩵ Root, 10-−5

fREx[r_] = fR[r, Poly, ReferencePoint]

0 0 ≤ r ≤ 1

2 2

1
3

2 2

1-− 1

8 r2

-− 8 r

-−1+8 r2
+ 16 r ArcSec2 2 r 1

2 2
≤ r ≤ 1

2

1
3

-− 2

1-− 1

4 r2

+ 4 r

-−1+4 r2
+

4 r ArcCos 3
5
 -− 2 ArcCos 2

5
 + 2 ArcCsc[2 r]

1
2
≤ r ≤ 1

1
3

2 -− 2

1-− 1

r2
r2

-− 1

1-− 1

4 r2
r2

r2 + 4 r

-−1+r2
+

4 r

-−1+4 r2
+ 4 r ArcCos 3

5
 -− 2 ArcCos 2

5
 +

2 ArcCsc[2 r] -− 2 ArcSec[r]

1 ≤ r ≤ 5
2

0 True
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The analytical result for the CDF (red) is compared with the result obtained from simula-
tions (blue).

minEx = If[
FREx[r][[1, 1, 1]] === 0,
FREx[r][[1, 1, 2, 3]],
FREx[r][[1, 1, 2, 1]]

];
maxEx = FREx[r][[1, -−1, 2, 1]];

Show[
Plot[FREx[r], {r, minEx, maxEx}, PlotStyle → Red],
ListPlot[DataCDF[data, ReferencePoint],
PlotStyle → {PointSize[0.0001], AspectRatio → Automatic,

Frame → True, FrameLabel → {r, "CDF"}}]
]

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.2

0.4

0.6

0.8

1.0

Plot[fREx[r], {r, minEx, maxEx}, PlotStyle → Red]

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.5

1.0

1.5

2.0
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Using  the  CDF,  the  PDF of  the  Euclidean  distance  between  an  arbitrary  reference  point
and its ith neighbor node can be found.

Define the ith neighbor PDF: equation (12) in [4].

fi[m_, i_, r_, F_, f_] :=
(1 -− F[r])m-−i F[r]i-−1

Beta[m -− i + 1, i]
f[r]

The result can be plotted as follows.

With[{m = 5 (*⋆ the number of nodes *⋆)},
Plot[Evaluate@Table[fi[m, i, r, FREx, fREx],

{i , Range[1, m]}], {r, minEx, maxEx}, PlotRange → Full,
Frame → True,
FrameLabel → {Row[{"distance ", Style["r", Italic]}], PDF}]

]

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0

1

2

3

4

5

distance r

PD
F

■ 6. Conclusion
In this article, we have reported on the use of Mathematica for distance distribution model-
ing  in  wireless  networks.  We  have  proposed  and  implemented  an  algorithm  to  compute
the  exact  cumulative  density  function  (CDF)  of  the  distance  from  an  arbitrary  reference
point  to  a  randomly located node within an arbitrarily  shaped (convex or  concave)  poly-
gon. Examples of how the obtained distance distributions can be used in the modeling of
finite-area wireless networks are provided in [6], [15–19]. The distance distribution results
can also be applied in other branches of science, such as forestry, mathematics, operations
research, and material sciences [13], [20].
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