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Abstract—In this letter, we consider multiple-input single-
output (MISO) systems with two-way training based transmis-
sion. We focus on the long-term system performance and study
the optimal power allocation between reverse training, forward
training and data transmission. We derive closed-form solutions
for the optimal power allocation using high signal-to-noise ratio
(SNR) approximations, and show that they achieve near optimal
performance in terms of symbol error rate (SER) for different
modulation schemes over a wide range of SNR values.

Index Terms—Two-way training, channel estimation, power
allocation, symbol error rate.

I. INTRODUCTION

THE use of multiple antennas significantly increases the
data throughput in wireless communication systems, es-

pecially when the channel state information (CSI) is known
at both the receiver and the transmitter [1]. The transmit-
ter CSI can usually be obtained using various feedback
transmission schemes [2]. Recently, a multi-stage training
method was proposed to allow the transmitter to estimate its
outgoing channel gains using pilot transmissions from both
the transmitter and the receiver without using feedback [3].
This method is designed for asymmetric channels where the
outgoing and incoming channels have different characteristics.
When the channels are symmetric, such as in time-division
duplex (TDD) systems, a simpler training method named two-
way training was proposed in [4] for block-fading single-
input multiple-output (SIMO) systems. In this scheme, the
transmitter acquires the outgoing CSI using the pilots sent
from the receiver (i.e., reverse training) and performs block-
wise power adaptation. After that, the receiver estimates the
effective channel gains using the pilots sent from the transmit-
ter (i.e., forward training). The two-way training scheme was
also considered in multi-user transmissions in [5].

For multiple-input single-output (MISO) systems, the major
benefit of two-way training is the reduction in the overhead of
acquiring CSI at both the transmitter and the receiver. To fur-
ther improve the performance in resource-constrained systems,
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it is crucial to optimize the power allocation between pilot
and data transmission. While solutions to this optimization
problem have been found for systems with traditional one-way
training [6, 7], no such solution exists for systems with two-
way training. This issue is addressed in this letter. We study
block-fading MISO TDD communications systems with two-
way training. We derive the linear minimum mean square error
(LMMSE) estimator for the forward training. We study the
optimal power allocation between the reverse training, forward
training, as well as the data transmission under various power
constraints. The main contributions of this work are:

∙ We propose a lower bound on an average received signal-
to-noise ratio (SNR) as an objective function for power
optimization. The proposed objective function is easy
to optimize numerically and yields solutions that are
independent of the number of transmit antennas.

∙ Using the average received SNR lower bound, we derive
closed-form solutions at high SNR for optimal power
allocation with two-way training under three different
power constraint scenarios. These solutions are shown
to achieve near optimum symbol error rate (SER) over a
wide range of SNR values, especially when moderate to
high-order modulations are used.

∙ We also consider systems with reverse training only and
obtain an analytical solution for optimal power allocation.
We find that two-way training provides no or marginal
performance gain over reverse training only, at low SNR
or when low-order modulations are used.

Notations: Boldface letters denote vectors. [⋅]∗ and [⋅]†
denotes the complex conjugate and conjugate transpose opera-
tion, respectively. 𝐸{⋅} denotes the mathematical expectation.

II. SYSTEM MODEL

We consider a flat-fading wireless communication system
with 𝑁𝑡 transmit antennas and a single receive antenna. For
simplicity, we refer to the transmitter as the base station (BS)
and the receiver as the user terminal (UT). The received signal
at the UT is given by 𝑦 = 𝒉𝒙 + 𝑛, where 𝒙 is the 𝑁𝑡 × 1
transmitted symbol vector from the BS, 𝒉 is the 1×𝑁𝑡 channel
gain vector and 𝑛 is the noise at the UT. We assume that
both 𝑛 and the elements of 𝒉 are independent and identically
distributed (i.i.d.) zero-mean circularly symmetric complex
Gaussian (ZMCSCG) with unit variance. We also assume that
the forward and reverse channels are symmetric, i.e., channel
reciprocity holds. The symmetric channel assumption can be
justified for TDD channels in which the forward and reverse
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transmissions share a common frequency band, e.g., IEEE
802.11 standards [4].

A. Two-way Training Based Transmission

Similar to [5], we consider a four-stage TDD transmission
scheme, in which the total duration for transmission of 𝐿
symbols is less than the channel coherence time. Hence we
assume that the channel gains remain constant over 𝐿 symbol
periods. In Stage 1 (reverse training), the UT sends one
pilot with power 𝒫𝑟 and the BS estimates the channel using
LMMSE estimator. Using channel reciprocity, the BS obtains
the estimates of its outgoing channel gains. We denote the
channel estimates and the estimation errors by 𝒉̂ and 𝒉̃,
respectively, and 𝒉 = 𝒉̂+ 𝒉̃. The variance of each element in
𝒉̃ is given by 𝜎2

𝑒 = 1
𝒫𝑟+1 . In Stage 2 (precoder design), the

BS treats 𝒉̂ as the true channel and designs the beamforming
vector 𝒘 as 𝒘 = 𝒉̂

†

∥𝒉̂∥ = 𝒉̂
†√

𝒉̂𝒉̂
† to maximize the SNR at the

UT. For simplicity, we assume that the duration of the second
stage is negligible. In Stage 3 (forward training), the BS sends
one pilot denoted by 𝑝 with power ∣𝑝∣2 = 𝑝𝑝∗ = 𝒫𝑓 via
the beamforming vector 𝒘 and the UT estimates the effective
channel using LMMSE estimator. This will be discussed in
detail in the next section. During Stage 4 (data transmission),
the BS transmits QPSK or M-QAM modulated information
symbols 𝑠𝑖, 𝑖 = 1, 2, ..., 𝐿 − 2 with power 𝐸{𝑠𝑖𝑠𝑖∗} = 𝒫𝑑

via the beamforming vector 𝒘. Since the noise and channel
variances are normalized to unity, we will also refer to 𝒫𝑟,
𝒫𝑓 and 𝒫𝑑 as the reverse training SNR, forward training SNR
and data SNR, respectively.

III. FORWARD CHANNEL ESTIMATION

During the forward training stage, the received signal at the
UT is given by

𝑦 = 𝒉𝒘𝑝+ 𝑛 = (∥𝒉̂∥+ 𝒉̃𝒘)𝑝+ 𝑛 = 𝑓𝑝+ 𝑛, (1)

where 𝑓 = ∥𝒉̂∥ + 𝒉̃𝒘 denotes the effective channel for
the forward transmission. Unlike the reverse training where
the Gaussian channel makes the LMMSE estimator equiva-
lent to the MMSE estimator, the complicated non-Gaussian
distribution of 𝑓 makes MMSE estimator in the forward
training mathematically intractable. Therefore, we consider
the widely-used LMMSE channel estimation for the forward
training. Denoting the first and second order statistics of 𝑓
by 𝜇1 = 𝐸{𝑓} and 𝜇2 = 𝐸{∣𝑓 ∣2}, the LMMSE channel
estimation is given by [8]

𝑓 = 𝜇1 +
𝜎2
𝑓𝑦

𝜎2
𝑦𝑦

(𝑦 − 𝜇1𝑝), (2)

where 𝜎2
𝑓𝑦 = 𝐸{𝑓𝑦∗} − 𝜇2

1𝑝
∗ = (𝜇2 − 𝜇2

1)𝑝
∗ and 𝜎2

𝑦𝑦 =
𝐸{𝑦𝑦∗}−𝜇2

1𝒫𝑓 = (𝜇2 −𝜇2
1)𝒫𝑓 +1. To find the values of 𝜇2

and 𝜇1, we proceed as follows. Since the elements of 𝒉 are
i.i.d. Gaussian random variables, its LMMSE estimate 𝒉̂ also
has i.i.d. Gaussian elements, and hence ∥𝒉̂∥2 has a Gamma
distribution with parameters (𝑁𝑡, 1− 𝜎2

𝑒 ). Therefore, we have

𝜇2 = 𝐸{∥𝒉̂∥2}+ 𝐸{𝒉̃𝒘𝒘†𝒉̃
†}

= 𝑁𝑡(1− 𝜎2
𝑒) + 𝜎2

𝑒 = 𝑁𝑡
𝒫𝑟

𝒫𝑟 + 1
+

1

𝒫𝑟 + 1
. (3)

Furthermore, 𝜇1 can be calculated using the probability den-
sity function of 𝑔 = ∥𝒉̂∥2 as

𝜇1 =𝐸{𝑔1/2}=
∫ ∞

0

𝑔1/2𝑔𝑁𝑡−1 𝑒−𝑔/(1−𝜎2
𝑒)

(1 − 𝜎2
𝑒)

𝑁𝑡Γ(𝑁𝑡)
d𝑔

=
1√

(1 − 𝜎2
𝑒)Γ(𝑁𝑡)

∫ ∞

0

( 𝑔

1−𝜎2
𝑒

)𝑁𝑡−1/2

𝑒−𝑔/(1−𝜎2
𝑒)d𝑔, (4)

where Γ(𝑧) =
∫∞
0 𝑡−1+𝑧𝑒−𝑡d𝑡 is the Gamma function. Letting

𝑡 = 𝑔/(1− 𝜎2
𝑒), (4) reduces to

𝜇1 =

√
(1 − 𝜎2

𝑒)

Γ(𝑁𝑡)

∫ ∞

0

𝑡𝑁𝑡−1/2𝑒−𝑡d𝑡

=

√ 𝒫𝑟

𝒫𝑟 + 1

Γ(𝑁𝑡 + 1/2)

Γ(𝑁𝑡)
. (5)

Denoting the variance of 𝑓 as 𝜎2
𝑓 = 𝜇2 − 𝜇2

1, the variance
of the channel estimation error 𝑓 = 𝑓 − 𝑓 is given by

𝜎2
𝑓
= 𝐸{∣𝑓 ∣2} =

𝜎2
𝑓

𝜎2
𝑓𝒫𝑓 + 1

, (6)

where 𝜎2
𝑓 =

𝑘𝒫𝑟 + 1

𝒫𝑟 + 1
and 𝑘 = 𝑁𝑡 −

(
Γ(𝑁𝑡 + 1/2)

Γ(𝑁𝑡)

)2

.

We see that 𝑘 characterizes the effect of 𝑁𝑡 on 𝜎2
𝑓
. By

evaluating 𝑘 for different 𝑁𝑡, we see that 0.232 < 𝑘 < 0.250
for 1 < 𝑁𝑡 < 100. Therefore, the value of 𝑁𝑡 has little impact
on 𝜎2

𝑓
, which implies that adding extra antennas at the BS does

not change the forward channel estimation error.

IV. OPTIMAL POWER ALLOCATION WITH TWO-WAY

TRAINING

In this section, we study the optimal power allocation
for two-way training based transmission. The problem of
optimizing power allocation can be formulated in different
ways according to the given power constraints and the degrees
of freedom in the system design. We provide a comprehensive
study by solving the power optimization problem in three
different scenarios.

The received signal at the UT during data transmission is
given as 𝑦 = 𝑓𝑠+ 𝑓𝑠+ 𝑛, and hence the received SNR for a
particular channel realization is given by

𝜌 =
𝒫𝑑∣𝑓 ∣2

1 + 𝒫𝑑∣𝑓 ∣2
.

Due to the complicated nature of the distribution of 𝜌, closed-
form expressions for long-term system performance measures,
such as information capacity and SER, are generally very diffi-
cult to obtain, which makes the problem of power optimization
mathematically intractable. Instead of directly dealing with 𝜌,
we define a measure of the average received SNR as

𝜌ave =
𝒫𝑑𝐸{∣𝑓 ∣2}

1 + 𝒫𝑑𝐸{∣𝑓 ∣2} .

Using 𝐸{∣𝑓 ∣2} > 𝐸{𝑓}𝐸{𝑓∗}, we obtain a lower bound on
𝜌ave as

𝜌LB
ave =

𝒫𝑑𝜇
2
1

1 + 𝒫𝑑𝜎2
𝑓

= 𝜈
𝒫𝑑𝒫𝑟[(𝑘𝒫𝑟 + 1)𝒫𝑓 + 𝒫𝑟 + 1]

(𝒫𝑟 + 1)[(𝑘𝒫𝑟 + 1)(𝒫𝑓 + 𝒫𝑑) + 𝒫𝑟 + 1]
, (7)
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which is obtained using (5) and (6), and 𝜈 =
[
Γ(𝑁𝑡+1/2)

Γ(𝑁𝑡)

]2
.

We simply refer to 𝜌LB
ave in (7) as the average SNR lower

bound and propose to use it as the objective function to obtain
solutions for power optimization. We are interested in how
optimal these solutions are for the SER performance.

A. Optimizing Reverse and Forward Training

In the first scenario, we study the optimal power allocation
between reverse and forward training for a given total training
power. The data transmission is assumed to have a fixed SNR,
i.e.,𝒫𝑑 is fixed. This study allows us to investigate the relative
importance of reverse training and forward training. Note that
the power optimization does not depend on the block length
𝐿. We denote the average training SNR as 𝒫𝑟𝑓 and the ratio
of power allocated to forward training as 𝛼. Then, the power
constraint can be written as

2𝒫𝑟𝑓 = 𝒫𝑟 + 𝒫𝑓 .

Therefore, we have the following relationships.

𝒫𝑓 = 𝛼2𝒫𝑟𝑓 , 𝒫𝑟 = (1 − 𝛼)2𝒫𝑟𝑓 . (8)

In the high SNR regime for training, we assume that
𝒫𝑟 ≫ 1 and 𝒫𝑓 ≫ 1 (which implies 𝑘𝒫𝑟𝒫𝑓 ≫ 𝒫𝑟). We
also assume that 𝑘𝒫𝑟𝒫𝑓 ≫ 𝒫𝑑 which is valid when either 𝒫𝑟

or 𝒫𝑓 is much higher than 𝒫𝑑. Therefore, the average SNR
lower bound 𝜌LB

ave in (7) can be approximated as

𝜌LB
ave ≈ 𝜈𝒫𝑑

𝒫𝑟

𝒫𝑟 + 1

𝒫𝑓

𝒫𝑓 + 𝒫𝑑

≈ 2𝜈𝒫𝑑𝒫𝑟𝑓𝛼(1 − 𝛼)

2𝛼(1− 𝛼)𝒫𝑟𝑓 + (1− 𝛼)𝒫𝑑 + 𝛼
. (9)

Letting the first derivative of 𝜌LB
ave in (9) w.r.t.𝛼 be zero, one

can solve for the optimal 𝛼 as

𝛼 =

{
1
2 , for 𝒫𝑑 = 1
𝒫𝑑−

√𝒫𝑑

𝒫𝑑−1 , for 𝒫𝑑 ∕= 1
(10)

Numerical Results: In the numerical results in this and sub-
sequent subsections, we carry out Monte-Carlo simulation
of a two-way training based communication according to
Section II-A with a simulation length of 5 × 106 symbols.
The receiver performs minimum distance detection on each
received symbol. The SER is then computed as the ratio
of the number of incorrectly detected symbols and the total
number of transmitted symbols. The optimal ratios of power
allocation, e.g.,𝛼, which minimize the SER are found from a
linear search between 0 and 1 with a step size of 0.01. We will
mainly use 16-QAM modulation which is a widely-considered
constellation.

Fig. 1 shows the optimal power ratio to forward training
𝛼 versus average training SNR 𝒫𝑟𝑓 for different data SNR
𝒫𝑑. We see that the values of 𝛼 which minimize the SER for
16-QAM modulation follow the same trend as the values of
𝛼 which maximize 𝜌LB

ave in (7), and the mismatch increases as
𝒫𝑑 increases. This mismatch is mainly due to the fact that
maximizing 𝜌LB

ave does not necessarily result in the optimal
distribution of 𝜌 which minimizes the SER, e.g., it does
not minimize the probability of 𝜌 taking very small values.
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Fig. 1. Optimal power ratio to forward training 𝛼 vs. average training SNR
𝒫𝑟𝑓 for systems with 𝑁𝑡 = 4 transmit antennas and different values of data
SNR 𝒫𝑑. Lines indicate the values of 𝛼 that maximize the average SNR lower
bound 𝜌LB

ave in (7) and the markers indicate the values of 𝛼 that minimize the
SER for 16-QAM modulation found via Monte-Carlo simulations. We see
that the optimal values of 𝛼 which maximize 𝜌LB

ave are reasonably close to
those which minimize the SER, especially at low data SNR.
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Fig. 2. SER for 16-QAM modulation vs. average training SNR 𝒫𝑟𝑓 for
systems with 𝑁𝑡 = 4 transmit antennas and different values of the data
SNR 𝒫𝑑. The values of 𝛼 used are found from Monte-Carlo simulations by
minimizing the SER, maximizing the average SNR lower bound 𝜌LB

ave in (7),
as well as the closed-form solution given in (10). We see that the closed-form
solution for 𝛼 can be used to achieve near optimum SER at moderate to high
training SNR.

Furthermore, we see that more power should be allocated
to reverse (forward) training when 𝒫𝑟𝑓 is low (high). In
particular, we see that forward training should not be used
when 𝒫𝑟𝑓 is sufficiently low, e.g.,𝒫𝑟𝑓 < 0 dB. As 𝒫𝑟𝑓

increases the optimal 𝛼 is reasonably close to the value given
in (10) for low to moderate 𝒫𝑑, e.g.,𝛼 = 0.50 and 0.76 for
𝒫𝑑 = 0 dB and 10 dB, respectively.

Fig. 2 shows the SER for 16-QAM modulation versus
average training SNR 𝒫𝑟𝑓 . For comparison, we use the values
of 𝛼 found by minimizing the SER, maximizing 𝜌LB

ave given in
(7), as well as the closed-form solution given in (10). We
see that the values of 𝛼 that maximize 𝜌LB

ave also achieves
the near optimum SER performance. Furthermore, the closed-
form solution for 𝛼 derived from the high SNR approximation
can be used to achieve near optimum SER at moderate to high
training SNR, e.g., when 𝒫𝑟𝑓 > 10 dB for 𝒫𝑑 = 10 dB and

Authorized licensed use limited to: Australian National University. Downloaded on February 11, 2010 at 20:03 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 2010 567

−5 0 5 10 15 20 25

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Forward average SNR, P
fd

O
pt

im
al

 p
ow

er
 r

at
io

 to
 d

at
a 

tr
an

sm
is

si
on

, β

 

 
P

r
 = 20 dB, L = 50, β maximizes (7)

P
r
 = 20 dB, L = 50, β minimizes SER

P
r
 = 0 dB, L = 50, β maximizes (7)

P
r
 = 0 dB, L = 50, β minimizes SER

P
r
 = 20 dB, L = 10, β maximizes (7)

P
r
 = 20 dB, L = 10, β minimizes SER

P
r
 = 0 dB, L = 10, β maximizes (7)

P
r
 = 0 dB, L = 10, β minimizes SER

L = 50

L = 10

Fig. 3. Optimal power ratio to data transmission 𝛽 vs. forward average SNR
𝒫𝑓𝑑 for systems with 𝑁𝑡 = 4 transmit antennas and different values of the
reverse training SNR 𝒫𝑟 and block length 𝐿. Lines indicate the values of
𝛽 that maximize the average SNR lower bound 𝜌LB

ave in (7) and the markers
indicate the values of 𝛽 that minimize the SER for 16-QAM modulation
found via Monte-Carlo simulations. We see that the optimal values of 𝛽
which maximize 𝜌LB

ave are reasonably close to those which minimize the SER.

𝒫𝑟𝑓 > 20 dB for 𝒫𝑑 = 20 dB. We have also investigated
the SER performance with other modulations. For example,
the SER achieved by using the closed-form solution for 𝛼 is
within 0.5 dB, 1 dB and 1.4 dB from the optimum SER for 32-
QAM, 16-QAM and 8-QAM, respectively, when 𝒫𝑟𝑓 > 20 dB
for 𝒫𝑑 = 20 dB. This suggests that the closed-form solution
is more accurate for higher order modulations.

B. Optimizing Forward Transmission

In the second scenario, the BS tries to optimize the power
allocation between forward training and data transmission for
a given total forward transmit power budget. The reverse
training is assumed to have a fixed SNR, i.e.,𝒫𝑟 is fixed. We
denote the average SNR for the forward link as 𝒫𝑓𝑑 and the
ratio of power allocated to data transmission as 𝛽. Then, the
power constraint can be written as

𝒫𝑓𝑑(𝐿− 1) = 𝒫𝑓 + 𝒫𝑑(𝐿− 2).

Therefore, we have the following relationships.

𝒫𝑑 = 𝛽𝒫𝑓𝑑(𝐿− 1)/(𝐿− 2), 𝒫𝑓 = (1 − 𝛽)𝒫𝑓𝑑(𝐿− 1). (11)

In the high SNR regime for forward transmission, we
assume that 𝒫𝑑 ≫ 1 and 𝒫𝑓 ≫ 1. Therefore, the average
SNR lower bound 𝜌LB

ave in (7) can be approximated as

𝜌LB
ave ≈ 𝜈𝒫𝑟

𝒫𝑟 + 1

𝒫𝑑𝒫𝑓

𝒫𝑑 + 𝒫𝑓

=
𝜈𝒫𝑟𝒫𝑓𝑑

𝒫𝑟 + 1

(𝐿 − 1)𝛽(1− 𝛽)

𝛽 + (𝐿 − 2)(1− 𝛽)
. (12)

Letting the first derivative of 𝜌LB
ave in (12) w.r.t.𝛽 be zero, one

can solve for the optimal 𝛽 as

𝛽 = 𝜙−
√
𝜙(𝜙 − 1), where 𝜙 =

𝐿− 2

𝐿− 3
. (13)

It is clear that the optimal forward power allocation at high
SNR given in (13) is independent of the reverse training SNR.
This result implies that the power optimization in the forward
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Fig. 4. SER vs. forward average SNR 𝒫𝑓𝑑 for systems with 𝑁𝑡 = 4
transmit antennas, reverse training SNR of 𝒫𝑟 = 0, 20 dB, and block length
of 𝐿 = 50. The values of 𝛽 used are found from Monte-Carlo simulations by
minimizing the SER, as well as the closed-form solution given in (13). The
SER with fixed power transmission, i.e.,𝒫𝑓 = 𝒫𝑑 = 𝒫𝑓𝑑, is also included
for comparison. We see that the closed-form solution for 𝛽 can be used to
achieve near optimum SER over a wide range of SNR. We have also observed
the same results for 𝐿 = 10, hence they are not shown for brevity.

link is independent of the reverse link conditions, which is an
important message for system designers.

Numerical Results: Fig. 3 shows the optimal power ratio to
data transmission 𝛽 versus the forward average SNR 𝒫𝑓𝑑 for
different reverse training SNR 𝒫𝑟 and block lengths 𝐿. We
see that the values of 𝛽 which minimize the SER for 16-QAM
modulation follow the same trend as the values of 𝛽 which
maximize 𝜌LB

ave in (7), and the mismatch occurs when 𝒫𝑓𝑑 is
low to moderate. This mismatch is mainly due to the fact
that maximizing 𝜌LB

ave does not necessarily result in the optimal
distribution of 𝜌 which minimizes the SER. Similar to the first
scenario, we see that forward training should not be used when
𝒫𝑓𝑑 is sufficiently low. As 𝒫𝑓𝑑 increases the optimal value
of 𝛽 converges to the value given in (13), e.g.,𝛽 = 0.739
and 0.874 for 𝐿 = 10 and 50, respectively, and the value is
independent of the reverse training SNR 𝒫𝑟.

Fig. 4 shows the SER versus forward average SNR 𝒫𝑓𝑑. For
comparison, we use the values of 𝛽 found by minimizing the
SER as well as the closed-form solution given in (13). We see
that the closed-form solution for 𝛽 can be used to achieve near
optimum SER over a wide range of SNR. We also include the
SER using fixed power transmission, i.e.,𝒫𝑓 = 𝒫𝑑 = 𝒫𝑓𝑑.
We observe that power optimization only provides around
0.7 dB gain over fixed power transmission for 16-QAM
modulation. Therefore, the use of fixed power transmission
achieves reasonably good SER performance. On the other
hand, the SNR gain by using power optimization is around
1.8 dB for QPSK modulation for 𝒫𝑟 = 0 dB, while this gain
reduces to around 0.8 dB for 𝒫𝑟 = 20 dB.

C. Optimizing Overall Transmission

In the third scenario, the system designer has the most
degrees of freedom and tries to optimize the power allocation
between reverse training, forward training and data transmis-
sion under a total transmit power constraint. We denote the
average SNR for overall (reverse and forward) transmission
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Fig. 5. Optimal power ratio to forward transmission 𝛾 vs. average SNR 𝒫
for systems with 𝑁𝑡 = 4 transmit antennas and block length of 𝐿 = 10 and
𝐿 = 50. The values of 𝛾 which minimize the SER for 16-QAM modulation
found via Monte-Carlo simulations as well as those maximize the average
SNR lower bound 𝜌LB

ave in (7) are shown. The closed-form solutions for the
optimal 𝛾 derived from high SNR approximation in (16) are also included.
We see that the optimal values of 𝛾 given by the closed-form solution in (16)
are reasonably close to those which minimize the SER.

as 𝒫 , and the ratio of power allocated to forward transmission
as 𝛾. We also use 𝛽 as defined in the second scenario. The
power constraint can be written as

𝒫𝐿 = 𝒫𝑟 + 𝒫𝑓 + 𝒫𝑑(𝐿 − 2).

Therefore, we have the following relationships.

𝒫𝑟 = (1 − 𝛾)𝒫𝐿,

𝒫𝑑 = 𝛽𝛾𝒫𝐿/(𝐿− 2), (14)

𝒫𝑓 = (1 − 𝛽)𝛾𝒫𝐿.

In the high SNR regime, we apply all the assumptions stated
in the previous two scenarios, and hence the optimal power
allocation satisfies the relationships given in (10) and (13).
Using (8) and (10), we have1 𝒫𝑟 =

𝒫𝑓√𝒫𝑑
. And using (11), we

have 𝒫𝑓 = 1−𝛽
𝛽 𝒫𝑑(𝐿 − 2). Therefore, we obtain

𝒫𝐿 = 𝒫𝑟 + 𝒫𝑓 + 𝒫𝑑(𝐿 − 2)

=
1− 𝛽

𝛽

√
𝒫𝑑(𝐿 − 2) +

1

𝛽
𝒫𝑑(𝐿− 2), (15)

from which one can easily solve for 𝒫𝑑. Then using the
relationship between 𝒫𝑑 and 𝛾 in (14), the optimal power
allocation strategies at high SNR can be obtained as

𝛾=
𝐿−2

2𝒫𝐿𝛽

[
(1−𝛽)2+

2𝒫𝐿𝛽

𝐿−2
−(1−𝛽)

√
(1−𝛽)2+

4𝒫𝐿𝛽

𝐿−2

]
,

(16)

where 𝛽 is given in (13). Similar to the previous two scenarios,
the optimal power allocation at high SNR given in (16) is
independent of the number of transmit antennas.

1Here we omit the result for the special case of 𝒫𝑑 = 1 for brevity.
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Fig. 6. SER vs. average SNR 𝒫 for systems with 𝑁𝑡 = 4 transmit antennas
and block length of 𝐿 = 50. The values of 𝛽 and 𝛾 used are found from
Monte-Carlo simulations by minimizing the SER as well as the closed-form
solutions given in (13) and (16). The SER with only reverse training (RT)
is also included for comparison. We see that the closed-form solutions for
𝛽 and 𝛾 can be used to achieve near optimum SER over a wide range of
SNR when moderate to high-order modulation is used, e.g., 8-QAM and 16-
QAM. When low-order modulation is used, e.g., QPSK, the systems with RT
achieves almost the same SER as those with two-way training. We have also
observed the same results for 𝐿 = 10, hence they are not shown for brevity.

Numerical Results: Fig. 5 shows the optimal power ratio to
forward transmission 𝛾 versus the average SNR 𝒫 for different
block lengths 𝐿.2 The general trend is that a larger ratio of
power should be allocated to the forward transmission as 𝒫
increases. Similar to the previous two scenarios, we see that
the values of 𝛾 which maximize 𝜌LB

ave in (7) are close to the
values of 𝛾 that minimize the SER for 16-QAM modulation.
We also see that the closed-form solution of 𝛾 given in (16)
is reasonably accurate over a wide range of SNR, and the
mismatch increases as 𝒫 increases. This mismatch is mainly
due to the fact that maximizing 𝜌LB

ave does not necessarily result
in the optimal distribution of 𝜌 which minimizes the SER,
e.g., it does not minimize the probability of 𝜌 taking very small
values.

Fig. 6 shows the SER versus the average SNR 𝒫 . The values
of 𝛽 and 𝛾 used in this plot are found both from minimizing
the SER and from the closed-form solutions in (13) and (16).
We see that the closed-form solutions for 𝛽 and 𝛾 can be
used to achieve near optimum SER over a wide range of SNR
for 8-QAM and 16-QAM modulation. For QPSK modulation,
the closed-form solutions result in a slight SER degradation
of around 0.6 dB. In fact, we will see in the next section
that the system without forward training, i.e.,𝒫𝑓 = 0, can
achieve near optimal SER performance for QPSK modulation.
With 𝒫𝑓 = 0, the high SNR assumptions used in deriving the
closed-form solutions for 𝛽 and 𝛾 are no longer valid, which
results in the observed SER degradation for QPSK modulation.

V. OPTIMAL POWER ALLOCATION WITH REVERSE

TRAINING ONLY

The systems with only reverse training can be regarded as
a special case of two-way training based systems. In this

2For brevity, we omit the results on the optimal values of 𝛽 as they are
very similar to those shown in Fig. 3.
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section, we provide an analytical solution for the optimal
power allocation between the reverse training and the data
transmission under a total transmit power budget. Since for-
ward training is not used, the duration of data transmission
becomes 𝐿−1. Similar to Section IV-C, we denote the average
SNR for both links as 𝒫 and the ratio of power allocated to
the forward (data) transmission as 𝛾. Therefore, we have the
follow relationships

𝒫𝑑 = 𝛾𝒫𝐿/(𝐿− 1), 𝒫𝑟 = (1− 𝛾)𝒫𝐿. (17)

With reverse training only, the UT does not know the
effective channel. However, the UT can accurately obtain the
mean value of the effective channel 𝜇1, since it is a long-term
statistic which changes much more slowly than the channel
gain [9, 10]. Therefore, the average received SNR at the UT
is given by

𝜌ave =
𝒫𝑑𝜇

2
1

1 + 𝒫𝑑𝜎2
𝑓

=
𝜈𝒫𝑑𝒫𝑟

𝑘𝒫𝑑𝒫𝑟 + 𝒫𝑑 + 𝒫𝑟 + 1
(18)

=
𝜈𝒫2𝐿2𝛾(1−𝛾)

𝑘𝒫2𝐿2𝛾(1−𝛾)+𝒫𝐿𝛾+𝒫𝐿(𝐿−1)(1−𝛾)+𝐿−1
,(19)

where (18) is obtained using (5) and (6), and (19) is obtained
using (17). Letting the first derivative of 𝜌ave in (19) w.r.t. 𝛾
be zero, one can solve for the optimal 𝛾 as

𝛾 = 𝜃 −
√
𝜃(𝜃 − 1), where 𝜃 =

(𝒫𝐿+ 1)(𝐿− 1)

𝒫𝐿(𝐿− 2)
. (20)

It is clear that the optimal power allocation given in (20) is
independent of the number of transmit antennas, which is an
important message for system designers.

Numerical Results: For comparison with two-way training
based transmission, Fig. 6 also includes the SER performance
for systems using only reverse training. We see that the closed-
form solution for 𝛾 given in (20) achieves near optimum SER
over a wide range of SNR. When moderate to high-order
modulation is used, e.g., 8-QAM and 16-QAM, the use of two-
way training achieves a significant SER reduction over reverse
training at moderate to high SNR. However, when low-order
modulation is used, e.g., QPSK, it is clear that the systems
with two-way training achieve no or marginal performance
gain over those with only reverse training. This result suggests
that reverse training is sufficient at low operating SNR or when
low-order modulations are used.

VI. CONCLUSION

We studied MISO systems with two-way training based
transmission. We derived the LMMSE channel estimation
for the forward training. We investigated the optimal power
allocation which optimizes the SER performance. An average
SNR lower bound was used to obtain closed-form solutions
to the optimal power allocation at high SNR. These solutions
were shown to achieve near optimum SER performance over a
wide range of SNR values. In addition, we found the optimal
power allocation for systems with reverse training only. We
numerically showed that two-way training provides no or
marginal performance gain over reverse training only, at low
SNR or when low-order modulations are used. Future work
can extend this analysis to a multi-user setup. The results

in this work directly apply in scenarios where single-user
beamforming is used, while similar analysis based on signal to
interference plus noise ratio is suggested for other precoding
schemes.
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