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Abstract—In this paper, we investigate the effect of Rayleigh
fading on the connectivity of wireless ad hoc networks. We
consider static nodes that are equipped with omnidirectional
antennas and are randomly distributed in the network accord-
ing to a uniform distribution. We derive an analytical model
for evaluating the impact of Rayleigh fading on the network
local connectivity and present an accurate upper bound for 1-
connectivity. Furthermore, our numerical results show that the
presence of fading can result in an improvement in the overall
connectivity, although it reduces the local connectivity of the
network.

I. INTRODUCTION
Wireless ad hoc networks are a promising technology for the

next generation of wireless communication networks [1]. Due
to the lack of infrastructure in these networks, a connection
between two nodes is usually established via multiple direct
links between intermediate nodes. Due to their multi-hop
nature, connectivity is a crucial problem in ad hoc networks.
The connectivity of wireless ad hoc networks has been studied
assuming both omnidirectional antennas [2]–[10] and beam-
forming antennas [11]–[13] at each node.
Most studies on the connectivity of wireless ad hoc networks

assume a simplistic path loss channel model, which is also
referred to as the geometric disk model [2]–[4]. It is assumed
that the nodes can communicate with each other if and only if
the inter-node distance is smaller than a threshold value. The
problems of �nding a necessary and suf�cient transmission
range and the corresponding critical node density for an almost
surely connected network were investigated in [2] and [3],
respectively. The impact of interference on the connectivity of
large-scale ad hoc networks was studied in [4].
In the last few years, the effect of channel randomness has

been taken into account in connectivity analysis [5]–[9]. It
was shown in [5] that the geometric disk is the hardest shape
for high connectivity when compared with irregular shapes.
Considering a log-normal shadowing channel model, it was
found in [6] that the network local and overall connectivity are
higher than those in a path loss channel. Similar conclusions
were also reached in [8] and [9].
In the presence of scattering, the amplitude of a radio

signal experiences rapid �uctuation over a short period of time
or propagation distance. This effect is called small scale or
Rayleigh fading. In static networks, such as wireless sensor
networks, fading can be understood as channel randomness in
the spatial domain which results in randomness in the received

signal power for nodes at different locations [7]. The study
in [10] performed symbol error rate analysis taking fading
and inter-node interference into account. The analytical study
on the probability of node isolation in [7] concluded that the
presence of Rayleigh fading reduces the connectivity of the
network.
In this paper, we investigate the impact of Rayleigh fading

on the local and overall connectivity of wireless ad hoc
networks with omnidirectional antennas. That is we examine
the effect on (i) connectivity from the viewpoint of a single
node (probability of node isolation) and (ii) connectivity
from the viewpoint of the entire network (path probability
and 1-connectivity). Our approach is based on the notion
of the effective communication range of a node, which is
also adopted in [7], [8]. However, as acknowledged by the
authors themselves in [7], the derivation of the node isolation
probability in [8] is cumbersome.
The main contributions of this work are:
• In Section III, we present an analytical model for evalu-
ating the impact of Rayleigh fading on the connectivity
of static wireless ad hoc networks. In contrast to [7], [8],
we present a simpler, intuitive approach to calculating
the second order moment of the effective communication
range. Also, we provide additional insights into the the
effect of fading on both the local and overall connectivity
as well as its dependence on the path loss exponent.

• In Section IV, we show that in static ad hoc networks the
presence of Rayleigh fading can result in an improvement
in the overall connectivity, although it reduces the local
connectivity of the network. This important result on
overall network connectivity is not revealed from the
analysis in [7].

The rest of this paper is organized as follows. The system
model and network connectivity metrics used in this work are
described in Section II. The analytical model for evaluating
the impact of Rayleigh fading on the network connectivity is
presented in Section III. The numerical results are shown in
Section IV. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL

A. Node Distribution Model
We consider that the nodes in the network are randomly

distributed in a two dimensional space of area B according to
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a uniform distribution. The nodes are assumed to be static. The
node density is denoted as ρ, so the total number of nodes is
N0 = ρB. Also, the probability of a node located in a smaller
area A is given by p = A

B . Therefore, the number of nodes X
located in A has a binomial distribution with probability mass
function given by [14]

P (X = x) =
N0!

x!(N0 − x)!
px(1 − p)N0−x. (1)

Letting B → ∞ and keeping other parameter unchanged,
we can see that N0 → ∞ and p → 0 in such a way that
μ = N0p is constant. Therefore the binomial distribution is
approximately equal to a Poisson distribution with parameter
μ given by [14]

P (X = x) =
μx

x!
e−μ. (2)

In other words, the node deployment process can be seen
as a homogeneous Poisson process, which provides an ac-
curate model for a uniform distribution as the network area
approaches in�nity.

B. Channel Model
We model the wireless propagation channel using large scale

path loss and small scale fading effects. Assuming an isotropic
scattering environment, the fading process has a Rayleigh
distribution given by [15]

fR(r) =
2r

Ω
exp

(
−r2

Ω

)
, (3)

where Ω = E(r2) is a constant. Note that r2 has a Chi-
square distribution. Assuming each node is equipped with an
omnidirectional antenna, the received signal power at each
node can be modelled as [16]

PR = r2 1
dα

CPT , (4)

where d is the distance between the transmitting node and the
receiving node, α is the path loss exponent, C =

(
λ
4π

)2, λ
is the wavelength of the propagating signal, and PT is the
transmit power. Note that in typical wireless communication
scenarios the path loss exponent α is usually in the range 2−4,
while for some speci�c scenarios it can be as large as 6 [15].

C. Connectivity Metrics
The following connectivity metrics are used in the discus-

sion of the analytical and numerical results [3], [11]:-
• Probability of Node Isolation (P (iso)) is de�ned as the
probability that a randomly selected node in an ad hoc
network has no connected neighbours. It is a measure of
the network local connectivity.

• 1-connectivity (P (1-con)) is de�ned as the probability
that every node pair in the network has at least one path
connecting them. It is a measure of the overall network
connectivity.

• Path Probability (P (path)) is de�ned as the probability
that two randomly chosen nodes in an ad hoc network

are connected via a direct link or a multi-hop path. It is
a measure of the overall network connectivity.

Note that 1-connectivity is a stronger measure of the overall
network connectivity than path probability.

III. THEORETICAL ANALYSIS

In this section, we study the impact of Rayleigh fading on
the connectivity of wireless ad hoc networks. In contrast to [7],
[8], we present a simpler, intuitive approach to calculating the
second order moment of the effective communication range
and study the impact of Rayleigh fading on both the local and
overall network connectivity.
Without loss of generality, we can normalise (4) with respect

to constant C, so that the power attenuation is expressed as

β(d) =
PT

PR
=

dα

r2
. (5)

Assuming a low traf�c network with an ef�cient medium
access control (MAC) layer protocol, the inter-node interfer-
ence is negligible. We de�ne a threshold power attenuation,
βth, above which there is no direct connection between the
transmitting node and the receiving node. Therefore, the prob-
ability of having no direct connection with node separation d
is given by

P (β(d) ≥ βth) = P

(
dα

r2
≥ βth

)

= P ((βthr2)
1
α ≤ d). (6)

We de�ne a random variable R̂ as

R̂ = (βthr2)
1
α . (7)

Substituting (7) in (6), we have

P (β(d) ≥ βth) = P (R̂ ≤ d). (8)

Hence the random variable R̂ can be referred to as the
effective communication range. That is a node is able to com-
municate with all other nodes located within a distance of R̂.
The effective coverage area of a node can thus be considered
as a disk with radius R̂, centered at the node. Therefore, the
effective coverage area is given by πR̂2. Assuming the path
loss exponent is a constant, we have

E[R̂2] = E
[
(βthr2)

2
α

]

= (βth)
2
α E[r

4
α ], (9)

where E[·] denotes statistical expectation. We can see that the
effect of fading in (9) is characterized by E[r

4
α ].

To evaluate this expectation, we de�ne a random variable
Y = R

4
α . Since y = r

4
α is an increasing function of r,

the probability density function (PDF) fY (y) of the random
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variable Y can be expressed in terms of fR(r) as [14]

fY (y) = fR(y
α
4 )

d

dy
y

α
4 ,

=
2y

α
4

Ω
exp

(
− (y

α
4 )2

Ω

)
α

4
y

α
4 −1,

=
α

2Ω
y

α
2 −1 exp

(
−y

α
2

Ω

)
. (10)

Therefore, the expected value of Y can be calculated as

E[Y ] =
∫ ∞

0

yfY (y)dy

=
∫ ∞

0

α

2Ω
y

α
2 exp

(
−y

α
2

Ω

)
dy

=
∫ ∞

0

α

2
y

α
2

Ω
exp

(
−y

α
2

Ω

)
dy (11)

Let t = y
α
2

Ω , hence y = (Ωt)
2
α and dy

dt = 2
α (Ω)(

2
α )t(

2
α−1).

Substituting t for y into (11), we get

E[Y ] =
∫ ∞

0

α

2
t exp (−t)

2
α

(Ω)
2
α t(

2
α−1)dt

= (Ω)
2
α

∫ ∞

0

t(
2
α +1−1) exp (−t) dt

= (Ω)
2
α Γ

(
2
α

+ 1
)

(12)

where Γ(z) =
∫ ∞
0

tz−1 exp(−t)dt is the Gamma function.
Since fading creates �uctuation in the signal but does not

change the average power of the received signal determined
by path loss, we set Ω = E[r2] = 1. Therefore the effect of
fading on the effective coverage area in (12) reduces to

E[r
4
α ] = Γ

(
2
α

+ 1
)

(13)

Since α > 2 for any practical system, the argument in Γ(·)
always ranges between 1 and 2. Hence, E[r

4
α ] < 1, ∀α. Fig. 1

shows E[r
4
α ] for a practical range of α from α = 2 to α =

6 [15]. We see that E[r
4
α ] decreases from 1 at α = 2 until it

reaches a minimum value of 0.886 at α = 4.3, then it starts
to increase slowly towards unity as α increases further. This
result suggests that fading reduces the effective coverage area
and the maximum reduction happens at α = 4.3.

A. Local Connectivity

For a node deployment following a homogeneous Poisson
point process with density ρ, the node degree D which is
de�ned as the number of direct connections one node estab-
lishes has a Poisson distribution with parameter ρπE[R̂2] [7].
Therefore, the average node degree E[D] is given by

E[D] = ρπE[R̂2]. (14)
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Fig. 1. The effect of fading in (13) for a practical range of path loss exponent.

Using (9), (13) and (14), the probability of node isolation
is given by [6]

P (iso) = exp{−E[D]},
= exp{−ρπ(βth)

2
α E[r

4
α ]},

= exp
{
−ρπ(βth)

2
α Γ

(
2
α

+ 1
)}

. (15)

An equivalent expression for the probability of node iso-
lation is also obtained in [7]. Since E[r

4
α ] = Γ

(
2
α + 1

)
is

strictly less than 1 for α > 2, we can see from (15) that
fading always increases the probability of node isolation and
hence reduces the local network connectivity.
It must be noted that the reduction in the local connectivity

is not always detrimental. For example, the reduction in the
node degree may result in a reduction in the interference level,
if the inter-node interference needs to be considered, which
may improve the connectivity properties of the network.

B. Overall Connectivity
An upper bound for the network 1-connectivity is given

by [3]
P (1-con) < exp{−ρAP (iso)}, (16)

where A is the area of the network and P (iso) is given in
(15). Before we compare this analytical result with simulation
results, we make the following observations regarding the
effect of fading on the overall network connectivity:-
1) It is known from the theorems of geometric random
graphs [17] that a uniformly distributed network with a
path loss channel becomes fully connected at the same
moment as when there are no isolated nodes in the
network. As a result, the probability of no isolated nodes
in (16) provides an upper bound for 1-connectivity and
the bound is tight as the probability approaches unity [3].
When shadowing is present, the same result has been
found in [6]. Moreover, it has been shown in [6] that
the upper bound for a shadowing channel is tighter than
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Fig. 2. Probability of node isolation vs. node density with the following
system parameters: βth = 50 dB, α = 2.5, 3, 4 (lines = analytical results
from Eq. (15), markers = simulation results).

that for a path loss channel. Since both shadowing and
fading introduce randomness into the geometric graph,
we expect that (16) is also a relatively tight upper bound
for 1-connectivity in a fading channel.

2) In static networks, the fading process can be considered
as channel randomness in the spatial domain, which
results in randomness in the received signal power
for nodes at different locations. Another mechanism of
creating randomness in the signal strength is antenna
beamforming. It has been shown in [11], [12] that a
reduction in the local network connectivity may result
in an improvement in the path probability by the use
of beamforming. A beamforming node loses links to
closely located neighbours in some directions, while it
creates links to nodes that are further away in other
directions. It is the long links that improve the overall
network connectivity. As the effect of beamforming is
very similar to that of fading, we can intuitively expect
that the presence of fading may improve the overall
network connectivity in terms of path probability.

IV. NUMERICAL RESULTS

In this section, we validate our analytical results by com-
parison with simulation results and investigate the effect of
fading on both the network local connectivity and overall
connectivity. The simulations are carried out using Matlab. In
the simulations, nodes are randomly distributed according to
a uniform distribution on a square of area B m2. To eliminate
border effects, we use the sub-area simulation method [3], i.e.,
we only compute the connectivity measures for nodes located
on an inner square of area A m2, where A is suf�ciently
smaller than B. The results are then calculated by averaging
over 5000 Monte Carlo simulation trials.
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Fig. 3. 1-connectivity vs. node density with the following system parameters:
βth = 50 dB, α = 3, A = 4002 m2. The analytical upper bounds are
calculated from Eq. (16).

A. Probability of Isolation
Fig. 2 shows the probability of node isolation versus node

density for βth = 50 dB, and α = 2.5, 3, 4. The analytical
results (lines) are calculated from (15). We can see that the
simulation results (markers) are in excellent agreement with
the analytical results in all scenarios. Comparing the probabil-
ity of isolation between fading and non-fading channels, one
can see that fading results in an increase in node isolation.
This effect has also been observed in [7]. Furthermore, we
see that the increase in the probability of isolation becomes
more noticeable as α increases from 2.5 to 4. This agrees with
our earlier observation in the discussion of Fig. 1.

B. 1-Connectivity
Fig. 3 shows the 1-connectivity versus node density for

βth = 50 dB, α = 3 and A = 4002 m2. The analytical
upper bounds are calculated from (16). We see that the bound
for fading channel is much tighter than the bound for non-
fading channel, which agrees with our earlier observation
in Section III-B. We can also see that fading increase 1-
connectivity when the connectivity is below 0.6, while fading
is detrimental for network which is required to be almost
surely connected in terms of 1-connectivity (e.g. achieve 1-
connectivity = 0.99 which is a very strong condition).

C. Path Probability
Another measure of the overall network connectivity is path

probability, which is a moderate metric of overall network con-
nectivity when compared with 1-connectivity. An analytical
expression for the path probability is still an open research
problem [11]. Hence we use simulations to investigate the
effect of Rayleigh fading on path probability.
Fig. 4 shows the path probability versus node density for

βth = 50 dB, α = 3 and A = 4002 m2. Although we have
seen that fading reduces the network local connectivity, it
signi�cantly improves the path probability at the same time.
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Fig. 4. Path probability vs. node density with the following system
parameters: βth = 50 dB, α = 3, A = 4002 m2.

For example, the path probability for a fading channel is
0.85 at a node density of 6 × 10−4 m−2, whereas the path
probability for a non-fading channel is only 0.42 at the same
node density. That is in the particular case considered above,
the presence of fading results in a 100% improvement in the
overall network connectivity at that node density. This agrees
with our expectation in Section III-B.
One may also look at the high connectivity regime in

Fig. 4, where the network is required to be almost surely
connected in terms of path probability. For example, a path
probability of 0.99 can be achieved by having a node density
of approximately 8.5 × 10−4 m−2 for a fading channel and
10.5× 10−4 for a non-fading channel. Therefore, in this case,
the presence of fading saves about 19% of the number of
nodes to establish an almost surely connected network. These
important results on path probability cannot be revealed from
the local connectivity analysis in [7].

V. CONCLUSION
In this paper, we have investigated the impact of Rayleigh

fading on the local and overall connectivity of static wireless
ad hoc networks. In particular, we have analytically character-
ized the effect of fading on the probability of node isolation
and its dependence on the path loss exponent. The analytical
results have been veri�ed by comparison with simulation
results. Our results have shown that the presence of fading may
improve the overall network connectivity although it reduces
the local connectivity. In particular, the presence of fading
can signi�cantly improve the network connectivity in terms
of the path probability. Our future research will focus on the
modelling and connectivity analysis for the joint effects of
fading and beamforming in wireless ad hoc networks.
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