# Distance Distributions and Boundary Effects in Finite Uniformly Random Networks 

## Salman Durrani

Senior Lecturer<br>Applied Signal Processing (ASP) Research Group<br>Research School of Engineering, College of Engineering \& Computer Science<br>The Australian National University, Canberra, Australia<br>http://users.cecs.anu.edu.au/~Salman.Durrani/

Jan. 2013


Australian
National
University

## Outline

$\diamond$ Motivation and Background

- Spatial Point Processes
- Distance Distributions
$\diamond$ Prior Work
- Poisson Point Process (PPP)
- Binomial Point Process (BPP)
$\diamond$ Problem Formulation
- Modelling of Boundary Effects
- Proposed Algorithm
$\diamond$ Results
$\diamond$ Conclusions


## Background

$\diamond$ Spatial point processes are used to model the locations of objects or events in a wide variety of scientific disciplines*.

- Forestry/Seismology/Geography/Astronomy
- Locations of trees/earthquake epicenters/cities/galaxies
- Medicine and Biology
- Home locations of infected patients.
- Spikes of neurons.
- Microcalcifications in mammogram images.
- Material Science
- Positions of defects in industrial materials.

[^0]
## Background

$\diamond$ Spatial point processes are used to model the locations of objects or events in a wide variety of scientific disciplines*.

- Forestry/Seismology/Geography/Astronomy
- Locations of trees/earthquake epicenters/cities/galaxies
- Medicine and Biology
- Home locations of infected patients.
- Spikes of neurons.
- Microcalcifications in mammogram images.
- Material Science
- Positions of defects in industrial materials.
- Wireless Communications
- A wireless network can be viewed as a collection of nodes, where the location of nodes are seen as realizations of some spatial point process.

[^1]
## Background - PPP

$\diamond$ Popular model: infinite homogenous Poisson point process (PPP).

- Rationale: Homogeneous PPP can be regarded as the limiting case of a uniform distribution of $N$ nodes on an area of size $A$, as $N$ and $A$ tend to infinity but their ratio $\rho=N / A$ remains constant.


## Background - PPP

$\diamond$ Popular model: infinite homogenous Poisson point process (PPP).

- Rationale: Homogeneous PPP can be regarded as the limiting case of a uniform distribution of $N$ nodes on an area of size $A$, as $N$ and $A$ tend to infinity but their ratio $\rho=N / A$ remains constant.
- Advantage: Mathematical tractability - provides a model for 'completely random' distribution of points.
- Main shortcoming: The number of nodes in disjoint areas is independent.


## Background - BPP

$\diamond$ More realistic model: Finite number of nodes independently and uniformly distributed over a finite area (Binomial point process (BPP)).

- Cellular networks: cells are hexagons.
- Ad hoc and sensor networks: finite square region.


## Background - BPP

$\diamond$ More realistic model: Finite number of nodes independently and uniformly distributed over a finite area (Binomial point process (BPP)).

- Cellular networks: cells are hexagons.
- Ad hoc and sensor networks: finite square region.
$\diamond$ Advantage: The number of nodes in disjoint areas is no longer independent: the more nodes in one sub-area, the fewer can fall in another.


## Background - PPP \& BPP

$\diamond$ Illustration: Nodes distributed in $1 \times 1 \mathrm{~m}^{2}$ area according to (a) PPP, 100 nodes $/ \mathrm{m}^{2 \dagger}$ and (b) BPP, $N=100$.

PPP in 2D can be realized as a 1D PPP enriched by attaching to each one-dimensional point an independent Uniform random variable to provide the second coordinate.


PPP,N=118


PPP,N=102


[^2]
## Background - Spatial Point Processes

## $\diamond$ Useful point processes for wireless network modeling ${ }^{\ddagger}$ :

| Point Process | Key Properties | Practical Example |
| :--- | :--- | :--- |
| Poisson (PPP) | Mutual independence between (transmitting) <br> node locations. | Ad hoc networks with pure random channel <br> access. |
| Binomial | Similar to PPP as far as i.i.d. node locations, but <br> with a fixed number of nodes in a given area. | A known number of relays or mobile users <br> deployed at random in a cell of known size |
| Poisson cluster <br> (PCP) | Clustering of nodes, with independence between <br> cluster locations. | Sensor networks, military platoons, an urban <br> network with dense hotspots. |
| Poisson plus <br> Poisson Cluster | Independence between the PCP and the PPP. <br> Attraction between nodes. | PPP represents the mobile users in a macrocell <br> and the PCP represents femtocells or hotspots. |
| Matern hard <br> core | Minimum distance between nodes. | Carrier sensing wireless networks with colli- <br> sion avoidance, e.g. WiFi. |
| Determinantal | Repulsion between nodes, e.g. Ginibre Process. | CSMA networks, networks with soft minimum <br> distance. |

[^3]
## Distance Distributions

$\diamond$ The performance of wireless networks depends critically on the distances between the transmitters and receivers.

## Distance Distributions

$\diamond$ The performance of wireless networks depends critically on the distances between the transmitters and receivers.
$\diamond$ Euclidean distance to $n$-th neighbor from an arbitrarily chosen reference point.

- $n=1$ corresponds to nearest neighbour.
- $n=2$ corresponds to second nearest neighbour.
- $n=N$ corresponds to farthest neighbour.



## $n$-th Neighbour PDF - PPP

$\diamond$ PDF of Euclidean distance to $n$-th nearest neighbor in a homogeneous m-dimensional PPP: generalized Gamma distribution ${ }^{\S}$

$$
f_{R_{n}}(r)=\frac{m\left(\rho c_{m} r^{m}\right)^{n}}{r \Gamma(n)} e^{-\rho c_{m} r^{m}}
$$

where coefficients $c_{m}$ are given by

$$
c_{m}= \begin{cases}\frac{\pi^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!} & \text { for even } m \\ \frac{\pi^{\frac{m-1}{2}}\left(\frac{m-1}{2}\right)!}{m!} & \text { for odd } m\end{cases}
$$

(e.g., $c_{1}=2, c_{2}=\pi, c_{3}=\frac{4 \pi}{3}$ )

[^4]
## $n$-th Neighbour PDF - PPP

$\diamond$ PDF of Euclidean distance to $n$-th nearest neighbor in a homogeneous m-dimensional PPP: generalized Gamma distribution ${ }^{\S}$

$$
f_{R_{n}}(r)=\frac{m\left(\rho c_{m} r^{m}\right)^{n}}{r \Gamma(n)} e^{-\rho c_{m} r^{m}}
$$

where coefficients $c_{m}$ are given by

$$
c_{m}= \begin{cases}\frac{\pi^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!} & \text { for even } m \\ \frac{\pi^{\frac{m-1}{2}}\left(\frac{m-1}{2}\right)!}{m!} & \text { for odd } m\end{cases}
$$

(e.g., $c_{1}=2, c_{2}=\pi, c_{3}=\frac{4 \pi}{3}$ )
$\diamond$ Special case $(m=2, n=1): f_{R_{1}}(r)=2 \pi \rho r e^{-\rho \pi r^{2}}$

[^5]
## Distance Distributions - BPP

$\diamond$ Distance distribution in a BPP with $N$ nodes distributed inside a $L$-sided regular polygon ( $L$-gon) with area $\mathcal{A}$.


Section of an $l$-sided regular polygon depicting one of its sides.

## Distance Distributions - BPP

$\diamond$ Distance distribution for BPP in a polygon (assuming center of polygon as reference point) ${ }^{\text {® }}$

$$
f_{R_{n}}(r)= \begin{cases}\frac{2 r \pi}{A} \frac{(1-p)^{N-n} p^{n-1}}{B(N-n+1, n)} & 0<r \leq R_{i} \\ \frac{2 r(\pi-L \theta)}{A} \frac{(1-q)^{N-n} q^{N-n}}{B(N-n+1, n)} & R_{i}<r \leq R_{C} \\ 0 & R_{c}<r\end{cases}
$$

where
$R_{i}=\sqrt{\frac{A}{L} \cot \left(\frac{\pi}{L}\right)}$,
$R_{c}=\sqrt{\frac{2 A}{L} \csc \left(\frac{2 \pi}{L}\right)}$,
$p=\frac{\pi r^{2}}{A}, q=\frac{\pi r^{2}-\left(L r^{2} \theta-L R_{i} \sqrt{r^{2}-R_{i}^{2}}\right)}{A}, \theta=\arccos \left(R_{i} / r\right)$,
beta function $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$.

[^6]
## Distance Distributions - Illustration

$\diamond$ BPP with $N=5$ nodes distributed inside a unit square $(L=4)$ (solid lines $=$ BPP, dotted lines $=P P P$ ).


## Contribution of this Work

$\diamond$ We derive the closed-form PDF of the distance between any arbitrary reference point and its $n$-th neighbour node, when $N$ nodes are uniformly distributed inside a regular L-sided polygon.

## Polygon Geometry

$\diamond N$ nodes are independently and uniformly distributed inside a regular $L$-sided polygon $\mathcal{A}$, inscribed in a circle of radius $R$ centered at the origin. Let $\boldsymbol{u}=[x, y]^{T}$ denote an arbitrary reference point.

Circumradius: $R$
Inradius: $R_{\mathrm{i}}=R \cos (\pi / L)$
Area:
$A=|\mathcal{A}|=\frac{1}{2} L R^{2} \sin \left(\frac{2 \pi}{L}\right)$
Side length: $t=2 R \sin \left(\frac{\pi}{L}\right)$
Interior angle: $\theta=\frac{\pi(L-2)}{L}$
Central angle: $\vartheta=\frac{2 \pi}{L}$


## Problem Formulation

$\diamond$ Define the cumulative density function (CDF) $F(\boldsymbol{u} ; r)$, which is the probability that a random node falls inside a disk $\mathcal{D}(\boldsymbol{u} ; r)$ centered at the arbitrary reference point $\boldsymbol{u}$, as

$$
F(\boldsymbol{u} ; r)=\frac{|\mathcal{D}(\boldsymbol{u} ; r) \cap \mathcal{A}|}{|\mathcal{A}|}=\frac{O(\boldsymbol{u} ; r)}{A}
$$

where $O(\boldsymbol{u} ; r)=|\mathcal{D}(\boldsymbol{u} ; r) \cap \mathcal{A}|$ is the overlap area.


## Problem Formulation

$\diamond$ The CCDF expressing the probability that there are less than $n$ nodes in the disk $\mathcal{D}$ is given byll

$$
1-F_{n}(\boldsymbol{u} ; r)=\sum_{j=0}^{n-1}\binom{N}{j}(F(\boldsymbol{u} ; r))^{j}(1-F(\boldsymbol{u} ; r))^{N-j}
$$

[^7]
## Problem Formulation

$\diamond$ The CCDF expressing the probability that there are less than $n$ nodes in the disk $\mathcal{D}$ is given byll

$$
1-F_{n}(\boldsymbol{u} ; r)=\sum_{j=0}^{n-1}\binom{N}{j}(F(\boldsymbol{u} ; r))^{j}(1-F(\boldsymbol{u} ; r))^{N-j}
$$

$\diamond$ The corresponding PDF is

$$
f_{n}(r)=\frac{(1-F(\boldsymbol{u} ; r))^{N-n}(F(\boldsymbol{u} ; r))^{n-1}}{B(N-n+1, n)} \frac{d}{d r} F(\boldsymbol{u} ; r)
$$

where beta function $B(a, b)=\Gamma(a) \Gamma(b) / \Gamma(a+b)$.

[^8]
## Why is the CDF $F(\boldsymbol{u} ; r)$ so hard to find ?

$\diamond$ Boundary effects: nodes located near the physical boundaries of the region have their coverage area reduced.**


[^9]
## Special case: reference point at the center

$\diamond$ Boundary effects are easy to characterise: circular segment areas are symmetric, with no overlap.


$$
F(\mathbf{u} ; r)=\frac{\pi r^{2}}{A} \quad F(\mathbf{u} ; r)=\frac{\pi r^{2}-4(\text { area of one circular segment })}{A}
$$

## General case: reference point at arbitrary location

$\diamond$ Boundary effects are complicated to characterise:

- Problem 1: circular segment areas are no longer symmetric and they may have overlap.



## General case: reference point at arbitrary location

$\diamond$ Boundary effects are complicated to characterise:

- Problem 1: circular segment areas are no longer symmetric and they may have overlap.

- Problem 2: since a $L$-gon has $L$ sides and $L$ vertices, there can be $2 * L+1$ different ranges for the distance $r$.


## Proposed Approach

$\diamond$ We decompose the boundary effects into border and corner effects.

- Let $B_{\ell}=$ the area of the circular segment formed outside the side $S_{\ell}(\ell=1,2, \ldots, L)$.
- Let $C_{\ell}=$ the corner overlap area formed at vertex $V_{\ell}$.




## Distances to Sides and Vertices

$\diamond$ Distance $d\left(\boldsymbol{u} ; V_{1}\right)$ between the point $\boldsymbol{u}$ and the vertex $V_{1}$ is

$$
d\left(\boldsymbol{\mu} ; V_{1}\right)=\sqrt{(x-R)^{2}+y^{2}}
$$



## Distances to Sides and Vertices

$\diamond$ Shortest distance $d\left(\boldsymbol{u} ; S_{1}\right)$ to the side $S_{1}$ is

$$
d\left(\boldsymbol{u} ; S_{1}\right)= \begin{cases}\min \left(d\left(\boldsymbol{u} ; V_{1}\right), d\left(\boldsymbol{u} ; V_{2}\right)\right), & \max \left(d\left(\boldsymbol{w} ; V_{1}\right), d\left(\boldsymbol{w} ; V_{2}\right)\right)>t \\ p\left(\boldsymbol{u} ; S_{1}\right), & \text { otherwise }\end{cases}
$$

where $t$ is the side length and

$$
\begin{gathered}
\boldsymbol{w}=\left[R-\frac{1}{2}(x-R)(\cos \vartheta-1)+y \sin \vartheta, \frac{\sin \vartheta((x-R)(\cos \vartheta-1)+y \sin \vartheta)}{2(1-\cos \vartheta)}\right] \\
p\left(\boldsymbol{u} ; S_{1}\right)=\frac{\operatorname{abs}\left(y+\tan \left(\frac{\theta}{2}\right) x-R \tan \left(\frac{\theta}{2}\right)\right)}{\sqrt{1+\tan ^{2}\left(\frac{\theta}{2}\right)}}
\end{gathered}
$$

## Corner Effects

$\diamond$ Circular segment area formed outside side $S_{1}$ of $\ell$-gon is ${ }^{\dagger \dagger}$

$$
B_{1}(\boldsymbol{u} ; r)= \begin{cases}r^{2} \arccos \left(\frac{p\left(\boldsymbol{u} ; S_{1}\right)}{r}\right)-\left(d\left(\boldsymbol{u} ; S_{1}\right)\right)^{2} \arccos \left(\frac{p\left(\boldsymbol{u} ; S_{1}\right)}{d\left(u ; S_{1}\right)}\right)- \\ p\left(\boldsymbol{u} ; S_{1}\right)\left(\sqrt{r^{2}-\left(p\left(\boldsymbol{u} ; S_{1}\right)\right)^{2}}-\sqrt{\left(d\left(\boldsymbol{u} ; S_{1}\right)\right)^{2}-\left(p\left(\boldsymbol{u} ; S_{1}\right)\right)^{2}}\right), & r \geq d\left(\boldsymbol{u} ; S_{1}\right) \\ 0, & \text { otherwise }\end{cases}
$$

$\diamond$ Corner overlap area formed at vertex $V_{1}$ of $\ell$-gon is

[^10]
## Rotation Operator

$\diamond$ We define the rotation operator $\mathfrak{R}^{\ell}$ which rotates an arbitrary point $\boldsymbol{u}=[x, y]^{T}$ anti-clockwise around the origin by an angle $\ell \vartheta$.
$\diamond$ The rotated point $\mathfrak{R}^{\ell} \boldsymbol{u}$ can be expressed as

$$
\left(\mathfrak{R}^{\ell} u\right)=\mathbf{T} u
$$

$\diamond$ The rotation matrix is given by

$$
\mathbf{T}=\left(\begin{array}{cc}
\cos (\ell \vartheta) & -\sin (\ell \vartheta) \\
\sin (\ell \vartheta) & \cos (\ell \vartheta)
\end{array}\right)
$$

## Exploiting Rotational Symmetry

$\diamond$ Solution to Problem 1: circular segment areas are no longer symmetric and they may have overlap:

$$
\begin{aligned}
& d\left(\boldsymbol{u} ; V_{\ell}\right)=d\left(\mathfrak{R}^{-(\ell-1)} \boldsymbol{u} ; V_{1}\right) \\
& p\left(\boldsymbol{u} ; S_{\ell}\right)=p\left(\Re^{-(\ell-1)} \boldsymbol{u} ; S_{1}\right) \\
& d\left(\boldsymbol{u} ; S_{\ell}\right)=d\left(\mathfrak{R}^{-(\ell-1)} \boldsymbol{u} ; S_{1}\right) \\
& B_{\ell}(\boldsymbol{u} ; r)= \begin{cases}B_{1}\left(\mathfrak{R}^{-(\ell-1)} \boldsymbol{u} ; r\right), & r \geq d\left(\boldsymbol{u} ; S_{\ell}\right) ; \\
0, & \text { otherwise. }\end{cases} \\
& C_{\ell}(\boldsymbol{u} ; r)= \begin{cases}C_{1}\left(\Re^{-(\ell-1)} \boldsymbol{u} ; r\right), & r \geq d\left(\boldsymbol{u} ; V_{\ell}\right) ; \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

## Exploiting Rotational Symmetry

$\diamond$ Define the distance vector $\mathbf{d}$ as

$$
\mathbf{d}=\left[d\left(\boldsymbol{u} ; S_{1}\right), \ldots, d\left(\boldsymbol{u} ; S_{L}\right), d\left(\boldsymbol{u} ; V_{1}\right), \ldots, d\left(\boldsymbol{u} ; V_{L}\right)\right]
$$

and $\mathbf{d}$ is the sorted distance vector in ascending order. $\mathbf{k}$ is the index vector that transforms $\mathbf{d}$ into $\mathbf{d}$.
$\diamond$ We use the sorted distance vector $\mathbf{d}$ and the index vector $\mathbf{k}$ to identify each unique range and to find the boundary effects for that range.

## Proposed Algorithm

Solution to Problem 2: there can be $2 * L+1$ different ranges for the distance $r$ :

```
Algorithm 1 Algorithm to find the overlap area
    Step 1: Sort d in (10) in ascending order to obtain d́
    Step 2: Determine the index sorting that transforms d into
    d and obtain the index vector \(k\)
    Step 3: Find the appropriate circular segment areas and the
    overlap area
    for each \(j\) in \(j=1,2,3, \ldots, 2 L+1\) do
        if \(\dot{d}_{j-1}-\dot{d}_{j} \neq 0,\left(\dot{d}_{0}=0\right)\) then
            \(O_{j}(\boldsymbol{u} ; r)=\pi r^{2}\)
            for each \(i\) in \(i=1,2,3, \ldots, j-1\) do
                if \(k_{i} \leq L\) then
                    \(O_{j}(\boldsymbol{u} ; r)=O_{j}(\boldsymbol{u} ; r)-B_{k_{i}}(\boldsymbol{u} ; r)\)
                else
                    \(O_{j}(\boldsymbol{u} ; r)=O_{j}(\boldsymbol{u} ; r)+C_{k_{i}-L}(\boldsymbol{u} ; r)\)
                end if
            end for
        end if
    end for
```


## Results: Example 1

$\diamond$ Arbitrary reference point: middle of side $S_{4}$ for a square with $R=1$.

$$
\begin{aligned}
& \mathbf{d}=\left[\frac{R}{\sqrt{2}}, \sqrt{2} R, \frac{R}{\sqrt{2}}, 0, \frac{R}{\sqrt{2}}, \frac{\sqrt{10} R}{2}, \frac{\sqrt{10} R}{2}, \frac{R}{\sqrt{2}}\right] \\
& \mathbf{d}=\left[0, \frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}, \sqrt{2} R, \frac{\sqrt{10} R}{2}, \frac{\sqrt{10} R}{2}\right] \\
& \mathbf{k}=[4,1,3,5,8,2,6,7]
\end{aligned}
$$



## Results: Example 1

$\diamond$ Arbitrary reference point: middle of side $S_{4}$ for a square with $R=1$.

$$
\begin{aligned}
& \mathbf{d}=\left[\frac{R}{\sqrt{2}}, \sqrt{2} R, \frac{R}{\sqrt{2}}, 0, \frac{R}{\sqrt{2}}, \frac{\sqrt{10} R}{2}, \frac{\sqrt{10} R}{2}, \frac{R}{\sqrt{2}}\right] \\
& \mathbf{d}=\left[0, \frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}, \sqrt{2} R, \frac{\sqrt{10} R}{2}, \frac{\sqrt{10} R}{2}\right] \\
& \mathbf{k}=[4,1,3,5,8,2,6,7]
\end{aligned}
$$


$\diamond$ The CDF is

| Range | $F(\boldsymbol{u} ; r)$ |
| :---: | :--- |
| $0 \leq r \leq R / \sqrt{2}$ | $\frac{\pi r^{2}-\left(B_{4}\right)}{A}$ |
| $R / \sqrt{2} \leq r \sqrt{2} R$ | $\frac{\pi r^{2}-\left(B_{1}+B_{3}+B_{4}-C_{1}-C_{4}\right)}{A}$ |
| $\sqrt{2} R \leq r \leq \sqrt{10} R / 2$ | $\frac{\pi r^{2}-\left(B_{1}+B_{2}+B_{3}+B_{4}-C_{1}-C_{2}\right)}{A}$ |
| $r \geq \sqrt{10} R / 2$ | 1 |

## Results: Example 1

$\diamond$ Arbitrary reference point: middle of side $S_{4}$ for a square with $R=1$ and $N=5$.


## Results: Example 2

$\diamond$ Arbitrary reference point located at vertex of a polygon with Area $A=100$ and $N=10$ nodes: PDF of nearest neighbour.


## Results: Example 3

$\diamond$ Arbitrary reference point located at vertex of a polygon with Area $A=100$ and $N=10$ nodes: PDF of farthest neighbour.


## Conclusion and Future Work

$\diamond$ In this work, we have derived the $n$-th neighbour distance distribution results in regular polygons.
$\diamond$ The knowledge of these general distance distributions can be used to analyse the wireless network characteristics from the perspective of an arbitrary node located anywhere (i.e. not just the center) in the finite coverage area.
$\diamond$ Applications:

- Connectivity: S. Durrani, Z. Khalid and J. Guo, "A Tractable Framework for Exact Probability of Node Isolation in Finite Wireless Sensor Networks", submitted to IEEE Trans. Veh. Tech., 2013 (http://arxiv.org/abs/1212.1283)
- Interference and outage: work under progress.


## Thank you for your attention


[^0]:    *A. Baddeley, "Analysing spatial point patterns in R", CSIRO Workshop Notes, Febr 2008. [्[Cited 的 71] 引

[^1]:    * A. Baddeley, "Analysing spatial point patterns in R", CSIRO Workshop Notes, Febr 2008. [[]Cited 的 71] 三

[^2]:    $\dagger_{\text {Sheldon M. Ross, Simulation, 4th ed., Elsevier Inc., } 2006 . ~}^{\text {. }}$

[^3]:    $\ddagger$ J. G. Andrews et. al., "A primer on spatial modeling and analysis in wireless networks", IEEE
    

[^4]:    $\S_{\text {M. Haenggi, " On Distances in Uniformly Random Networks", IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. }}$ 3584-3586, 2005. [Cited by 166]

[^5]:    $\S_{\text {M. Haenggi, " On Distances in Uniformly Random Networks", IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. }}$ 3584-3586, 2005. [Cited by 166]

[^6]:    【S. Srinivasa and M. Haenggi, "Distance Distributions in Finite Uniformly Random Networks: Theory and Applications", IEEE Trans. Veh. Tech., vol. 59, no. 2, pp. 940-949, Feb. 2010. [Citedby 34] इ

[^7]:    $\|_{\text {S. Srinivasa and M. Haenggi, "Distance Distributions in Finite Uniformly Random Networks: Theory and }}$ Applications", IEEE Trans. Veh. Tech., vol. 59, no. 2, pp. 940-949, Feb. 2010. [Citedby 34] इ

[^8]:    $\|_{\text {S. Srinivasa }}$ and M. Haenggi, "Distance Distributions in Finite Uniformly Random Networks: Theory and Applications", IEEE Trans. Veh. Tech., vol. 59, no. 2, pp. 940-949, Feb. 2010』[Cited by 34] इ

[^9]:    ${ }^{* *}$ C. Bettstetter, "On the minimum node degree and connectivity of a wireless multihop network", in Proc. 3rd ACM international symposium on Mobile ad hoc networking \& computing, 2002.. [Citedby 727]

[^10]:    ${ }^{\dagger} \dagger_{\text {Z. Khalid and S. Durrani, "Distance Distributions in Regular Polygons", IEEE Trans. Veh. Tech., } 2013 \text { (in }}$ press: http://arxiv.org/abs/1207.5857).

