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Background
� Spatial point processes are used to model the locations of

objects or events in a wide variety of scientific disciplines∗.

◦ Forestry/Seismology/Geography/Astronomy
• Locations of trees/earthquake epicenters/cities/galaxies

◦ Medicine and Biology
• Home locations of infected patients.
• Spikes of neurons.
• Microcalcifications in mammogram images.

◦ Material Science
• Positions of defects in industrial materials.

◦ Wireless Communications
• A wireless network can be viewed as a collection of nodes,

where the location of nodes are seen as realizations of some
spatial point process.

∗A. Baddeley, “Analysing spatial point patterns in R", CSIRO Workshop Notes, Feb. 2008. [Cited by 71]
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Background - PPP

� Popular model: infinite homogenous Poisson point process
(PPP).
◦ Rationale: Homogeneous PPP can be regarded as the limiting

case of a uniform distribution of N nodes on an area of size A,
as N and A tend to infinity but their ratio ρ= N/A remains
constant.

◦ Advantage: Mathematical tractability - provides a model for
‘completely random’ distribution of points.

◦ Main shortcoming: The number of nodes in disjoint areas is
independent.
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Background - BPP

� More realistic model: Finite number of nodes independently
and uniformly distributed over a finite area (Binomial point
process (BPP)).
◦ Cellular networks: cells are hexagons.
◦ Ad hoc and sensor networks: finite square region.

� Advantage: The number of nodes in disjoint areas is no
longer independent: the more nodes in one sub-area, the
fewer can fall in another.
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Background - PPP & BPP
� Illustration: Nodes distributed in 1×1 m2 area according to
(a) PPP, 100 nodes/m2† and (b) BPP, N = 100.

PPP in 2D can be realized
as a 1D PPP enriched by
attaching to each
one-dimensional point an
independent Uniform
random variable to provide
the second coordinate.

BPP in 2D:
»x=rand(1,100);
»y=rand(1,100);
»plot(x,y,‘r+’);

0 1
0

1
PPP,N=95

0 1
0

1
PPP,N=118

0 1
0

1
PPP,N=102

0 1
0

1
BPP,N=100

0 1
0

1
BPP,N=100

0 1
0

1
BPP,N=100

†Sheldon M. Ross, Simulation, 4th ed., Elsevier Inc., 2006.
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Background - Spatial Point Processes
� Useful point processes for wireless network modeling‡:

‡J. G. Andrews et. al., “A primer on spatial modeling and analysis in wireless networks", IEEE
Communications Magazine, vol. 48, no. 9, pp. 156−163, Nov. 2010. [Cited by 42]
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Distance Distributions
� The performance of wireless networks depends critically on
the distances between the transmitters and receivers.

� Euclidean distance to n-th neighbor from an arbitrarily
chosen reference point.
◦ n = 1 corresponds to nearest neighbour.
◦ n = 2 corresponds to second nearest neighbour.
◦ n = N corresponds to farthest neighbour.

R1

R2
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n-th Neighbour PDF − PPP
� PDF of Euclidean distance to n-th nearest neighbor in a
homogeneous m-dimensional PPP: generalized Gamma
distribution§ �

�
�

fRn (r) =

m(ρcmrm)n

rΓ(n)
e−ρcmrm

where coefficients cm are given by

cm =


π

m
2

( m
2 )!

for even m

π
m−1
2 ( m−1

2 )!

m! for odd m

(e.g., c1 = 2,c2 = π, c3 = 4π
3 )

� Special case (m = 2, n = 1):
�
�

�
�fR1(r) = 2πρre−ρπr2

§M. Haenggi, “On Distances in Uniformly Random Networks", IEEE Trans. Inf. Theory, vol. 51, no. 10, pp.
3584−3586, 2005. [Cited by 166]
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Distance Distributions − BPP
� Distance distribution in a BPP with N nodes distributed
inside a L-sided regular polygon (L-gon) with area A.

Triangle Square Hexagon Disk

Source: [Haenggi Paper]
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Distance Distributions − BPP
� Distance distribution for BPP in a polygon (assuming
center of polygon as reference point)¶�

�

�

�
fRn (r) =


2rπ
A

(1−p)N−npn−1

B(N−n+1,n) 0< r ≤ Ri
2r(π−Lθ)

A
(1−q)N−nqN−n

B(N−n+1,n) Ri < r ≤ Rc

0 Rc < r

where
Ri =

√
A
L cot

(
π
L
)
,

Rc =

√
2A
L csc

( 2π
L
)
,

p = πr2
A , q =

πr2−
(

Lr2θ−LRi
√

r2−R2
i

)
A , θ = arccos(Ri/r),

beta function B(a,b) = Γ(a)Γ(b)
Γ(a+b)

.

¶S. Srinivasa and M. Haenggi, “Distance Distributions in Finite Uniformly Random Networks: Theory and
Applications", IEEE Trans. Veh. Tech., vol. 59, no. 2, pp. 940−949, Feb. 2010. [Cited by 34]
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Distance Distributions - Illustration
� BPP with N = 5 nodes distributed inside a unit square (L = 4)
(solid lines = BPP, dotted lines = PPP).
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Contribution of this Work

� We derive the closed-form PDF of the distance between
any arbitrary reference point and its n-th neighbour
node, when N nodes are uniformly distributed inside a
regular L-sided polygon.
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Polygon Geometry
� N nodes are independently and uniformly distributed inside a
regular L-sided polygon A, inscribed in a circle of radius R
centered at the origin. Let u = [x , y ]T denote an arbitrary
reference point.

Circumradius: R
Inradius: Ri = R cos(π/L)
Area:
A = |A|= 1

2LR2 sin
(
2π
L

)
Side length: t = 2R sin

(
π
L
)

Interior angle: θ = π(L−2)
L

Central angle: ϑ= 2π
L

AusCTW 2013 14/35
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Problem Formulation
� Define the cumulative density function (CDF) F (u; r),
which is the probability that a random node falls inside a disk
D(u; r) centered at the arbitrary reference point u, as�



�
	F (u; r) = |D(u;r)∩A|

|A| = O(u;r)
A

where O(u; r) = |D(u; r)∩A| is the overlap area.

x

S1
S2

S3
S4

V1

V2

V3

V4

r

R

y

Ri
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Problem Formulation

� The CCDF expressing the probability that there are less than
n nodes in the disk D is given by‖�
�

�
�1−Fn(u; r) =

n−1∑
j=0

(
N
j

)
(F (u; r))j(1−F (u; r))N−j

� The corresponding PDF is�
�

�

fn(r) =

(1−F (u; r))N−n(F (u; r))n−1

B(N−n +1,n)

d
dr F (u; r)

where beta function B(a,b) = Γ(a)Γ(b)/Γ(a + b).

‖S. Srinivasa and M. Haenggi, “Distance Distributions in Finite Uniformly Random Networks: Theory and
Applications", IEEE Trans. Veh. Tech., vol. 59, no. 2, pp. 940−949, Feb. 2010. [Cited by 34]
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Why is the CDF F (u; r) so hard to find ?

� Boundary effects: nodes located near the physical
boundaries of the region have their coverage area reduced.∗∗

A

B

r

r

∗∗C. Bettstetter, “On the minimum node degree and connectivity of a wireless multihop network", in Proc. 3rd
ACM international symposium on Mobile ad hoc networking & computing, 2002. [Cited by 727]
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Special case: reference point at the center
� Boundary effects are easy to characterise: circular
segment areas are symmetric, with no overlap.
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General case: reference point at arbitrary location

� Boundary effects are complicated to characterise:
◦ Problem 1: circular segment areas are no longer symmetric

and they may have overlap.

x

S1
S2

S3
S4

V1

V2

V3

V4

r

RRi

y

◦ Problem 2: since a L-gon has L sides and L vertices, there
can be 2∗L +1 different ranges for the distance r .
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Proposed Approach
� We decompose the boundary effects into border and
corner effects.
◦ Let B` = the area of the circular segment formed outside the

side S` (`= 1,2, . . . ,L).
◦ Let C` = the corner overlap area formed at vertex V`.
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Distances to Sides and Vertices
� Distance d(u; V1) between the point u and the vertex V1 is�



�
	d(u; V1) =

√
(x −R)2 + y2
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Distances to Sides and Vertices

� Shortest distance d(u; S1) to the side S1 is�
�

�

d(u; S1) =

{
min(d(u; V1), d(u; V2)), max(d(w ;V1), d(w ;V2))> t;

p(u; S1), otherwise;

where t is the side length and

w =
[
R− 1

2 (x −R)(cosϑ−1) + y sinϑ,
sinϑ

(
(x −R)(cosϑ−1) + y sinϑ

)
2(1− cosϑ)

]T
�
�

�
�

p(u; S1) =
abs
(
y + tan

(
θ
2
)

x −R tan
(
θ
2
))√

1+ tan2
(
θ
2
)
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Corner Effects
� Circular segment area formed outside side S1 of `-gon is††�
�

�
�

B1(u; r) =


r2 arccos

( p(u;S1)
r

)
− (d(u; S1))2 arccos

( p(u;S1)

d(u;S1)

)
−

p(u; S1)

(√
r2−
(

p(u; S1)
)2
−

√
(d(u; S1))2−

(
p(u; S1)

)2)
, r ≥ d(u; S1);

0, otherwise;

� Corner overlap area formed at vertex V1 of `-gon is'

&

$

%

C1(u; r) =



r2
2

(
arccos

( p(u;S1)
r

)
+ arccos

( p(u;SL)

r

))
−

(d(u;V1))2
2

(
arccos

( p(u;S1)

d(u;V1)

)
+ arccos

( p(u;SL)

d(u;V1)

))
+

p(u;S1)
2

(√(
d(u; V1)

)2
−
(

p(u; S1)
)2
−

√
r2−
(

p(u; S1)
)2)

+

p(u;SL)

2

(√(
d(u; V1)

)2
−
(

p(u; SL)
)2
−

√
r2−
(

p(u; SL)
)2)

−

π
L

(
r2−
(

d(u; V1)
)2)

, r ≥ d(u; V1);

0, otherwise;

††Z. Khalid and S. Durrani, “Distance Distributions in Regular Polygons", IEEE Trans. Veh. Tech., 2013 (in

press: http://arxiv.org/abs/1207.5857).
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Rotation Operator

� We define the rotation operator R` which rotates an arbitrary
point u = [x , y ]T anti-clockwise around the origin by an angle
`ϑ.

� The rotated point R`u can be expressed as�� ��(R`u) = Tu

� The rotation matrix is given by�
�

�

T =

(
cos(`ϑ) −sin(`ϑ)
sin(`ϑ) cos(`ϑ)

)

AusCTW 2013 24/35
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Exploiting Rotational Symmetry

� Solution to Problem 1: circular segment areas are no
longer symmetric and they may have overlap:

d(u; V`) = d(R−(`−1)u; V1)

p(u; S`) = p(R−(`−1)u; S1)

d(u; S`) = d(R−(`−1)u; S1)

B`(u; r) =

{
B1(R−(`−1)u; r), r ≥ d(u;S`);

0, otherwise.

C`(u; r) =

{
C1(R−(`−1)u; r), r ≥ d(u;V`);

0, otherwise.
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Exploiting Rotational Symmetry

� Define the distance vector d as�� ��d = [d(u;S1), . . . , d(u;SL), d(u;V1), . . . , d(u;VL)]

and d́ is the sorted distance vector in ascending order. k is the
index vector that transforms d into d́.

� We use the sorted distance vector d́ and the index vector k to
identify each unique range and to find the boundary effects for
that range.
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Proposed Algorithm
� Solution to Problem 2: there can be 2∗L +1 different
ranges for the distance r :
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Results: Example 1
� Arbitrary reference point: middle of side S4 for a square
with R = 1.

d =

[
R
√
2
,
√
2R,

R
√
2
, 0,

R
√
2
,

√
10R
2
,

√
10R
2
,

R
√
2

]
d́ =

[
0,

R
√
2
,

R
√
2
,

R
√
2
,

R
√
2
,
√
2R,
√
10R
2
,

√
10R
2

]
k = [4, 1, 3, 5, 8, 2, 6, 7]

x

S1
S2

S3
S4

V1

V2

V3

V4

y

R

� The CDF is
Range F (u; r)

0≤ r ≤ R/
√
2 πr2−(B4)

A
R/
√
2≤ r

√
2R πr2−(B1+B3+B4−C1−C4)

A√
2R ≤ r ≤

√
10R/2 πr2−(B1+B2+B3+B4−C1−C2)

A
r ≥
√
10R/2 1
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Results: Example 1
� Arbitrary reference point: middle of side S4 for a square
with R = 1 and N = 5.
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Results: Example 2
� Arbitrary reference point located at vertex of a polygon
with Area A = 100 and N = 10 nodes: PDF of nearest
neighbour.
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Results: Example 3
� Arbitrary reference point located at vertex of a polygon
with Area A = 100 and N = 10 nodes: PDF of farthest
neighbour.
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Conclusion and Future Work

� In this work, we have derived the n-th neighbour distance
distribution results in regular polygons.

� The knowledge of these general distance distributions can
be used to analyse the wireless network characteristics from
the perspective of an arbitrary node located anywhere (i.e.
not just the center) in the finite coverage area.

� Applications:
◦ Connectivity: S. Durrani, Z. Khalid and J. Guo, “A Tractable Framework for Exact

Probability of Node Isolation in Finite Wireless Sensor Networks", submitted to IEEE Trans. Veh.

Tech., 2013 (http://arxiv.org/abs/1212.1283)

◦ Interference and outage: work under progress.
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Thank you for your attention
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