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Introduction

. MIMO Channel Models can be classified as follows:†

NT  TX 
antennas

NR  RX 
antennas
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... ...

MIMO CHANNEL
Transmitter Receiver

†P. Almers et. al., “Survey of Channel and Radio Propagation Models for Wireless MIMO
Systems,” EURASIP Journal on Wireless Communications and Networking, 2007.
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Parametric Channel Model

. Parametric channel models use important physical parameters
such as phases, delays, doppler frequency, angle of departure (AOD),

angle of arrival (AOA) and angle spread to provide a description of

the MIMO channel.

Each path consists of (unresolvable) S subpaths that all have the

same delay, but different angles of arrival and departures distributed

around the mean angles.

How many subpaths are sufficient to accurately capture the statis-

tical properties of the MIMO wireless channel?
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Wireless Propagation Environment

. We consider a MIMO system in an urban macro-cell environ-
ment.
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Reference Channel Model

. The channel impulse response between MS antenna m and BS

antenna n for user k’s path l can be written as

hm,n
k,l (t) = (hI)

m,n
k,l (t) + j(hQ)m,n

k,l (t)

For isotropic scattering, the temporal correlation properties are

summarized below:

RhIhI
(τ ) = E[hI(t)hI(t + τ )] = J0(2πfDτ )

RhQhQ
(τ ) = E[hQ(t)hQ(t + τ )] = J0(2πfDτ )

RhIhQ
(τ ) = E[hI(t)hQ(t + τ )] = 0

Rhh(τ ) = E[h(t)h∗(t + τ )] = J0(2πfDτ )

R|h|2|h|2(τ ) = 4 + 4J2
0 (2πfDτ )
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Reference Channel Model

. The Level Crossing rate is defined as the rate at which the fading

envelope crosses a specified threshold in the positive slope

L|h| =
√

2πfDρe−ρ2

. The Average Fade Duration is the average duration of time that

the fading envelope remains below a specified

T|h| =
eρ2 − 1

ρ
√

2πfD
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Reference Channel Model

. We assume that the angular distribution of the subpaths at the MS
can be modelled by a Uniform PDF over [−π, π].

Measurements have shown that the angular distribution of the sub-

paths at the BS can be modelled by a Gaussian PDF.

For urban macro-cellular environment, median angular spread:

5◦ − 20◦.
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Reference Channel Model

. The spatial envelope correlation coefficient ρs, between the

pth and qth antenna elements for a ULA, is given by

ρs(p, q) = |Rs(p, q)|2 = |<{Rs(p, q)} + j={Rs(p, q)}|2

. Spatial Correlation at BS

<{Rs(p, q)} = J0(zpq) + 2Cg

∞∑
v=1

J2v(zpq) cos(2vθAOD)e(−2v2σ2
AOD)<

{
erf

(
π + j2vσ2

AOD√
2σAOD

)}

={Rs(p, q)} = 2Cg

∞∑
v=0

J2v+1(zpq) sin[(2v + 1)θAOD]e

[
−(2v+1)2σ2

AOD
2

]
<

{
erf

(
π + j(2v + 1)σ2

AOD√
2σAOD

)}

. Spatial Correlation at MS

<{Rs(p, q)} = J0(zpq) + 2
∞∑

v=1

J2v(zpq) cos(2vθAOA)sinc(2v∆)

={Rs(p, q)} = 2
∞∑

v=0

J2v+1(zpq) sin[(2v + 1)θAOA]sinc[(2v + 1)∆]
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Parametric Channel Model

. The channel impulse response can be written as

h
(m,n)
k,l (t)=

√
Ωk,l

S

{
S∑

s=1

exp[j(φ
(s)
k,l + 2πfDt cos θ

(s)
k,l,AOA)]

×exp[−jκdM(m− 1) sin θ
(s)
k,l,AOA]

× exp[−jκdB(n− 1) sin θ
(s)
k,l,AOD]

}
δ(t− τk,l)

Temporal Parameters
K = users;

L = multipaths;

S = sub-paths/path;

Ωk,l = mean path power;

τk,l = propagation delay;

φ
(s)
k,l = random phase;

fD = Doppler frequency;

Spatial Parameters
N = No. of antennas;

d = inter-element distance;

κ = 2π/λ;

θ
(s)
k,l,AOD = θk,AOD+ϑ

(s)
k,l,AOD

θ
(s)
k,l,AOA=θk,AOA+ϑ

(s)
k,l,AOA

θk,AOA = Mean Angle of Arrival;

θk,AOD = Mean Angle of Departure;
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Parametric Channel Model

Aspect Parameter Value or Description
Carrier frequency fc = 2 GHz

General Number of channel samples T = 20000
Samples/wavelength 8
MS velocity v = 60 km/hr

Temporal Number of paths L = 1
Number of subpaths S = 25
Antenna geometry ULA

Antennas Number of antennas NB = 2, NM = 2
BS Inter-element distance dB = 5λ
MS Inter-element distance dM = 0.5λ
Mean Angle of Arrival θAOA = 60◦

pdf in Angle of Arrival Uniform [−π, π]
Spatial Mean Angle of Departure θAOD = 0◦

pdf in Angle of Departure Gaussian
BS Angle spread σAOD = 5◦, 10◦, 20◦
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Results − Temporal Correlations

Autocorrelations
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For S = 25, simulation results agree with reference results for 0 ≤
fDτ ≤ 3.
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Results − LCR & AFD

MS velocity v = 60 km/hr (fD = 111.11 Hz)
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. For S = 25, simulation results deviate from reference results only

for very low threshold values.
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Results − MS Spatial Correlation

Spatial Correlation Coefficient vs. distance dM/λ
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Results − BS Spatial Correlation

Spatial Correlation Coefficient vs. distance dB/λ
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Conclusions

. In this paper, we have analysed the statistical properties of
a parametric channel model for MIMO systems in an urban

macrocell environment.

The proposed channel model can accurately represent the tempo-
ral correlations for time delays 0 ≤ fDτ ≤ 3 and spatial corre-
lations at MS and BS for inter-element spacings 0 ≤ d/λ ≤ 3.

The obtained results have shown that S = 25 subpaths is sufficient

to capture the important statistical properties of MIMO wireless

channel.
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