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Abstract— Access class barring (ACB) is regarded as an
efficient and practically implementable method to reduce the
traffic overload in cellular networks. In this paper, we present a
unified analytical framework to analyze the performance of the
fixed ACB scheme for a simple random access procedure (i.e.,
one-shot transmission model) in machine type communication
(MTC) over cellular networks. We derive the exact expressions
for the probability of a machine’s packet being served by the
base station (BS), the average number of machine type devices
(MTDs) successfully served by the BS per second and the non-
collision slot access probability. We verify the accuracy of the
derived expressions by comparison with simulations. Based on
the analytical expressions, we then maximize the probability
of a MTD’s packet being served and obtain the sub-optimal
probability factor value for the fixed ACB in closed-form. Our
results confirm that, the use of ACB scheme is important for
scenarios with high MTD packet arrival rate, which is relevant
for massive MTC. The proposed framework allows fine tuning
and accurate prediction of the MTC performance with ACB.

I. INTRODUCTION

By allowing ubiquitous connection among massive number

of machines, without the human intervention, machine type

communication (MTC) is regarded as a key enabler for 5G

communication systems [1]. Besides the short-range wireless

communication techniques to support the MTC, the cellular

network is a major and promising candidate because of its

existing infrastructure and high-performance capabilities [2].

In terms of its characteristics, MTC differs greatly from the

human-to-human communication, i.e., the number of devices,

transmission periodicity, etc. [1–3]. Consequently, the current

cellular network system has to be revisited and redesigned

to improve its compatibility for managing MTC. Particularly,

the enhancement of random access channel becomes a critical

issue among the possible challenges, since MTC will lead to

the huge data congestion and collision on the random access

channel due to the massive number of machines trying to

access the base station (BS) [4–6].

In 3GPP, access class barring (ACB) is considered as an

effective solution to improve the operation of random access

scheme [7]. In ACB, each machine that is trying to access the

cellular network first draws a random number and compares it

with the probability factor p. Only if the generated number is

lower than p, the machine is allowed to attempt the access

procedure. Based on the ACB principle, some works have
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developed modified ACB schemes. For example, the extended

ACB was proposed by 3GPP [8], where different probability

factors are distributed to machines depending on their service

requirements. In [9], the authors combined the virtual resource

allocation and dynamic ACB technique and proposed a prior-

itized random access with dynamic access barring framework.

A cooperative ACB scheme was proposed in [10], where the

probability factor for each BS was jointly determined instead

of individually. Other works concentrated on the optimization

of ACB performance via control or estimation techniques. A

heuristic algorithm to adaptively change the probability factor

was proposed in [7]. In [11], the authors developed a stabilized

multi-channel slotted ALOHA algorithm that maintains a finite

number of unserved users in the system. The authors in [12]

estimated the number of incoming machines using Kalman

filtering approach, thereby adjusting the probability factor

value.

In this work, we propose an analytical framework to inves-

tigate the performance of a simple ACB scheme, known as the

fixed ACB (i.e., p is fixed), in MTC over a cellular network

under a simplified random access procedure (i.e., one-shot

transmission model). The major contributions of this paper

are:

• We derive the exact expressions for the probability that

a machine’s packet is successfully delivered to the BS,

the average number of machines successfully served by

the BS and the non-collision probability of a slot. These

results generalize the analytical results in [13] to include

ACB schemes.

• We obtain the closed-form sub-optimal p for the fixed

ACB scheme, which maximizes the packet successful

delivery probability. It show that the results from the sub-

optimal value are very similar to the results using optimal

value under the fixed ACB scheme.

• Our derived analytical results confirm that when the

MTD packet arrival rate is high, the performance of

MTC can be improved using ACB scheme. The proposed

framework allows fine tuning and accurate prediction of

the MTC performance with ACB.

II. SYSTEM MODEL

Consider a single cell scenario, with a base station located

at the center. The coverage area of the BS is a disk of radius

R. There are multiple machine type devices (MTDs) residing

in the coverage area. As is done in one of the simulation cases



for 3GPP model, we do not consider the inter-cell interference

in this work [14]. The MTDs transmit data to the BS using

the cellular uplink. A time division multiple access (TDMA)

system is considered in this work, where time is divided into

frames of duration L ∗ T . Each frame has fixed L slots and

each slot has the fixed duration T .

We model the traffic arrival at the BS as a Poisson dis-

tribution with rate λ packets per second. This is a widely

adopted model in the literature [13, 14]. We further assume

that, for each frame, at most one packet can be generated by

one MTD. Hence, the number of MTDs with packets to deliver

per frame, denoted as M , is a Poisson random variable with

mean λa = λLT . For example, its probability mass function

(PMF) is given by

Pr(M = m) =
λm
a exp(−λa)

m!
. (1)

As for the location of MTDs, for analytical tractability, we

assume that each MTD is uniformly distributed in the BS’s

coverage area. Let r denote the distance between a MTD and

BS and its probability density function (PDF) is f(r) = 2r
R2 .

Based on the TDMA system, each frame for the commu-

nication between MTDs and BS can be divided into three

phases: access barring, reservation and connection. Let LB ,

LR and LC denote the number of slots for the accessing

barring, reservation and connection phases, respectively. Then,

we have

L = LB + LR + LC . (2)

The detailed description for each phase is presented in the

following subsections. Note that we employ the one-shot

transmission scheme in this work, i.e., if one packet fails in

one frame, it does not appear in the following frames [13].

A. Access Barring Phase

The first part of the frame is used to implement the access

class barring scheme. According to the conventional ACB

mechanism [7], for the MTD having a packet to transmit, it

will generate a random number within 0 and 1. If this number

is less than the probability factor p, this MTD is allowed to

attempt an access (i.e., contend for an access reservation in

the following reservation phase) and these MTDs are called

accessing MTDs. Otherwise, the access of this MTD is barred

in this frame (i.e., the packet is dropped).

The time consumed on the random number generation and

comparison is assumed to be negligible. We only account for

the time for broadcasting the probability factor p, which varies

according to the ACB scheme. In this work, we consider

the fixed ACB scheme, where the probability factor p is

constant and this information is previously known by each

MTD. Hence, the number of slots taken up by broadcasting,

LB , equals to zero2.

2Note that for dynamic ACB (where p is varing), the overhead associated
with the slot used to broadcast probability to MTDs has to be taken into
account. Hence, LB is no longer zero. Our derived framework in this work
can be extended to include dynamic ACB scheme. This is outside the scope
of this work.

B. Reservation Phase

The reservation phase is used to implement the random

access for those MTDs that pass the ACB scheme (i.e., indicate

their request for packet transmission to the BS). We assume

that the reservation phase in each frame has LC mini-slots and

each mini-slot takes up tmini. The accessing MTDs contend

for these reservation mini-slots. In order to have the mini-

slot as being successfully reserved by an accessing MTD, two

requirements must be met, i.e., no collision on the mini-slot

and no channel outage between the accessing MTD and BS.

Those accessing MTDs satisfying these two requirements are

called the reserved MTDs and they will be served by the BS

later on.

We employ frame slotted ALOHA in this work [13, 15].

Each accessing MTD randomly, independently and uniformly

picks a mini-slot to send its connection request. Once more

than one accessing MTDs choose the same mini-slot, we

assume that none of the requests can be detected on the mini-

slots and, thus, the packets of these collided accessing MTDs

are dropped.

Even though there is no collision for a mini-slot selected

by a MTD, the request of this MTD may still fail to be

decoded by the BS if the link experiences channel outage.

We model the communication channel as a path-loss plus

block Rayleigh fading channel, where fading within one frame

keeps the same. Note that non-line-of-sight propagation model

is the worst case scenario for machine type communication.

The instantaneous signal-to-noise ratio (SNR) on a link is,

thus, given by ptgr
−α

N
, where pt is the transmit power of an

accessing MTD which is assumed to be the same for all MTDs,

g is the fading power gain which follows independent and

identical exponential distribution, α is the path-loss exponent

and N is the noise power. The channel outage occurs when

the SIR falls below a threshold γ.

At the end of this phase, there is one extra slot remaining

for the transmission of feedback information from the BS to

MTDs. Again, this channel is assumed to have zero error

because of the robust coding [13]. Based on the description,

the number of slots for the reservation phase is LR =
ceil

(

LC×tmini

T

)

+ 1, where ceil(·) is the ceiling operator.

C. Connection Phase

This phase is for the packet transmission between reserved

MTDs and the BS. Given that there are LC mini-slots in

the reservation phase, there will be LC slots reserved for the

purpose of connection. Since not all the LC mini-slots are

successfully reserved in the reservation phase, only certain

number of slots (equal to the number of reserved MTDs) are

used for packet transmission. The remaining slots are unused.

Note that all these reserved MTDs’ packets can be successfully

received at the BS in this phase, because the fading is constant

within each frame and their SIR has already met the channel

requirement from the reservation phase. In other words, these

reserved MTDs are no longer in channel outage within the

frame.



III. PERFORMANCE ANALYSIS

To evaluate the MTC performance, in this work, we consider

three performance metrics, namely, packet successful delivery

probability, average number of served MTDs and slot non-

collision probability. Their definitions, along with the detailed

analysis, are presented in the following subsections.

A. Packet Successful Delivery Probability

The packet successful delivery probability examines the

performance of a MTD and it is the probability that the packet

of a MTD can be finally received at the BS.

Proposition 1: Based on the system model in Section II, the

packet successful delivery probability can be expressed as

Pdelivery =psuc

∞
∑

m=1

p

(

1−
p

LC

)m−1
λm
a exp(−λa)

m!
, (3)

where psuc is shown in (13).

Proof: See Appendix A.

B. Average Number of Served MTDs

Average number of served MTDs is defined as the average

number of MTDs that can be successful served by the BS per

second.

Proposition 2: Based on the system model in Section II, the

average number of served MTDs is

Nsuc =
EN {N}

LT
=

∑LC

n=0
n× Pr(N = n)

LT
, (4)

where N denotes the number of successfully served MTDs and

is equivalent to the reserved MTDs. These two terms are used

interchangeably in this work. Pr(N = n) is its corresponding

PMF, which is given by

Pr(N=n) =

LC
∑

m2=0

(

Pr(N = n|m2)

(

∞
∑

m=0

λm
a exp(−λa)

m!

×

(

m
∑

m1=0

Pr(M2=m2|m1)Pr(M1=m1|m)

)))

, (5)

where M1 denote the number of accessing MTDs, M2 denote

the number of accessing MTDs without collision which is

called the non-collision MTDs, Pr(M1 = m1|m), Pr(M2 =
m2|m1) and Pr(N = n|m2) are presented in (14), (15)

and (18), respectively.

Proof: See Appendix B.

C. Slot Non-collision Probability

The slot non-collision probability is defined as the proba-

bility that no collision occurs at a mini-slot, which shows the

packet congestion at the mini-slot level.

Proposition 3: Based on the system model in Section II, the

slot non-collision probability is given by

Pnon-collision=
∞
∑

m=1

LC−p+mp

LC

(

1−
p

LC

)m−1
λm
a exp(−λa)

m!
.

(6)

Proof: See Appendix C.

Remark 1: In this paper, we extend the system model in [13]

to include fixed ACB scheme, which is not considered in [13].

The first two metrics, Pdelivery and Nsuc, are also considered

in [13]. The results in this work include the results in [13]

as special cases. For example, when we set p = 1, (3)

reduces to the result in [13, eq.(23)]. When we ignore the term

Pr(M1 =m1|m) in (5) and treat the term Pr(M2 =m2|m)
as a binomial distribution, (5) reduces to the result in [13,

eq.(5)]. In addition, in this paper, we introduce and analyze a

new metric Pnon-collision to exam how the collision at each slot

is minimized by the incorporation of the ACB scheme. This

metric has not been studied in [13].

IV. PERFORMANCE OPTIMIZATION

According to (3), (5) and (6), the network performance is

governed by the selection of probability factor p. In general,

a large value of p results in a lot of collided MTDs. By

contrast, a small value of p implies the less congestion at the

reservation phase, but it also cuts the number of MTDs for

contention which leads to the under-utilization of resources.

In this section, we aim to find the optimum p∗ value which

can optimize the network performance.

Pdelivery Optimization: The following optimization problem

maximizes the packet successful delivery probability:

maximize
p

Pdelivery

subject to 0 < p ≤ 1, (7)

where Pdelivery is presented in (3).

(7) is a relatively simple optimization problem. In order to

solve it, we take the first order derivative of Pdelivery in (3) with

respect to p and set this expression to zero. Then, we find the p

value satisfying the equation and this p is the optimum value.

The first order derivative of Pdelivery with respect to p is

dPdelivery

dp
=

d

dp

(

psuc

∞
∑

m=1

p

(

1−
p

LC

)m−1
λm
a exp(−λa)

m!

)

=psuc

(

∞
∑

m=1

λm
a exp(−λa)

m!

(

1−
p

LC

)m−2
LC−pm

LC

)

.

=psuc

exp
(

−λap
LC

)

(

1− p
LC

)2





∞
∑

m=1

(

λa

(

1− p
LC

))m

exp
(

−λa

(

1− p
LC

))

m!

−(1−
p

LC

)
p

LC

λa

∞
∑

m=1

(

λa

(

1− p
LC

))m−1

exp
(

−λa

(

1− p
LC

))

(m− 1)!







=psuc

exp
(

−λap
LC

)

(

1− p
LC

)2

(

1− exp

(

−λa

(

1−
p

LC

))

−

(

p

LC

−
p2

L2

C

)

λa

)

, (8)
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Fig. 1. Packet successful delivery probability Pdelivery versus the probability
factor p with different arrival rate λ.

where the last step comes from the fact that

∞
∑

m=0

(

λa

(

1− p
LC

))m

exp
(

−λa

(

1− p
LC

))

m!
= 1

=
∞
∑

m=1

(

λa

(

1− p
LC

))m−1

exp
(

−λa

(

1− p
LC

))

(m− 1)!
. (9)

Setting (8) equal to zero, we need to solve p which satisfies

1− exp

(

−λa

(

1−
p

LC

))

=

(

p

LC

−
p2

L2

C

)

λa. (10)

Unfortunately, there is no closed-form expression for p

which satisfies the above expression. Hence, in general, we

have to find p∗ using numerical iteration. However, we can

work out a sub-optimal p∗ in closed-form.

Using Jensen inequality, the exact packet successful delivery

probability in (3) can be approximated by

Pdelivery ≈ p× psuc

(

1−
p

LC

)λa−1

. (11)

Taking the first order derivative of (11) with respect to p

and then finding the p which leads to the expression being to

zero, we have the sub-optimal p for the fixed ACB scheme

expressed as

psubfixed = min

{

LC

λa

, 1

}

. (12)

Fig. 1 plots the packet successful delivery probability versus

the probability factor p with different density λ. The adopted

system parameters follow Table. I. Note that the results from

both the optimal and sub-optimal values are marked. From the

figure, we can see that, the results under the sub-optimal value

are very close to the results under the optimal value.

Nsuc Optimization: With regards to the optimal performance

for average number of served MTDs, Nsuc, it is not easy

to work out the optimal p∗ in closed-form, because of the

complicated form of (5). We can obtain the sub-optimal p∗

via approximation (i.e., assuming that the number of accessing

TABLE I
MAIN SYSTEM PARAMETER VALUES.

Parameter Value Parameter Value

cell radius R 200 m path-loss exponent α 3.5

transmit power pt -10 dBm noise power N -100 dBm

slot duration T 1 ms mini-slot duration tmini 0.1 ms

SNR threshold γ 1 no. of mini-slots LC 50

MTDs per mini-slot follows a Poisson distribution with density
pλa

LC
), which is shown to be equivalent to (12). More important-

ly, packet successful delivery probability can be interpreted as

the average probability that a MTD can be successfully served

by the BS and it is closely related to the average number of

served MTDs. Thus, we believe that our results in (12) can

provide the sub-optimal performance for Nsuc.

V. RESULTS

In this section, we present numerical results to investigate

the performance of the ACB scheme. To validate the numer-

ical results, simulation results are also presented, which are

generated using MATLAB and are averaged over 1 million

simulation runs. Unless specified otherwise, the values of the

main system parameters shown in Table I are used.

A. Model Validation

Figs. 2(a), 2(b) and 2(c) plot the MTD packet arrival rate

λ versus the packet successful delivery probability, average

number of served MTDs and slot non-collision probability for

the scenario without ACB and the fixed ACB with sub-optimal

p, respectively. As shown in these figures, our analytical results

match exactly with the simulation results, which confirms the

correctness of our derived expressions.

B. Packet Successful Delivery Probability

From Fig. 2(a), we find that when the arrival rate λ is

relatively small, the curve for without ACB overlaps with the

curve for fixed ACB. This is because, under such a scenario the

number of mini-slots is greater than the average arrival rate

per frame. Hence, the fixed ACB does not work according

to (12), i.e., p = 1. When λ becomes large, the ACB scheme

begins to kick in and reduces the collision in the reservation

phase. Thus, Pdelivery with fixed ACB is higher than Pdelivery

without ACB for the larger value of λ.

C. Average Number of Served MTDs

Fig. 2(b) shows that the fixed ACB scheme can improve

the performance of Nsuc when the packet arrival rate is high.

From this figure, we can also see that, under the fixed ACB

scheme, Nsuc increases at first and then almost becomes flat.

This can be explained as follows. When the packet arrival

rate is small, there is little traffic congestion and hence, more

arrival rate leads to the higher Nsuc. When λ is large, the

ACB begins to play a role and results in almost constant non-

collision probability, which maintains the number of accessing

MTDs to the same level regardless of the packet arrival rate.
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D. Slot Non-collision Probability

As shown in Fig. 2(c), without the ACB scheme, the non-

collision probability is always decreasing with increasing λ.

After incorporating the ACB scheme, Pnon-collision remains

almost as a constant regardless of how large λ is. It can be

easily explained using similar arguments as before.

VI. CONCLUSIONS

In this paper, we presented an analytical framework to

investigate the performance of ACB for MTC over a cellular

network, where ACB is incorporated to improve system per-

formance. The analytical expressions for the packet successful

delivery probability, average number of served MTDs and slot

non-collision probability were obtained. We also computed the

optimal probability factor p for this system. Our numerical

results showed that, the use of access barring technique is nec-

essary for the MTC scenarios characterized by high data arrival

rate. Future work can consider the scenarios with time-varying

traffic demands, more complicated random access procedures

with backoff and retransmissions, and joint optimization of

random access and data transmission.

APPENDIX

A. Derivation of Proposition 1

Proof: In order to make the packet of a MTD successfully

served, three requirements have to be met, i.e., the MTD passes

the ACB scheme, no collision of mini-slot selection for the

MTD and the MTD is not in channel outage.

We assume M MTDs with packet arrival in a certain frame

and one MTD among them is regarded as the typical MTD. For

this typical MTD, in the access barring phase, the probability

that it can passes the ACB scheme is p. This corresponds to

the first condition.

In the reservation phase, since each accessing MTD uni-

formly and randomly selects a mini-slot, the probability that

one mini-slot is selected is 1

LC
. Then combining with the

accessing barring phase, for any MTD among the M − 1
MTDs, we have the probability that it passes the ACB scheme

and selects the same mini-slot as the typical MTD is given by

p× 1

LC
. Its complementary probability, which is the probability

of non-collision between this MTD and the typical MTD, is

1 − p
LC

. There are total number of M − 1 MTDs and they

make their own decision individually. Thus, the non-collision

probability for the mini-slot selected by the typical MTD is
(

1− p
LC

)M−1

. This corresponds to the second condition.

In terms of the third condition, the probability of not being

in channel outage for the typical MTD can be expressed as

psuc = Pr

(

ptgr
−α

N
> γ

)

= Er

{

Pr

(

g >
γN rα

pt

)}

=

∫ R

0

exp

(

−
γN rα

pt

)

2r

R2
dr

=
2

αR2

(

pt

γN

)
2

α

Γ

[

2

α
, 0,

γNRα

pt

]

, (13)

where E{} is the expectation operator, Γ[·, ·, ·] is the Gamma

function, and the third step comes from the fact that fading

power gain g follows the exponential distribution.

From the above analysis, the conditional packet successful

delivery probability, which is conditioned on the number of

MTDs M , is p×
(

1− p
LC

)M−1

×psuc. Since M is a Poisson

random variable, by averaging the conditional probability over

the distribution of M (i.e., (1)), we have Pdelivery shown in (3).

B. Derivation of Proposition 2

Proof: The PMF of the number of served MTDs is de-

termined by the three phases and is also related to the number

of MTDs passing each phase. Let’s derive the distribution of

number of MTDs passing each phase.

• The number of accessing MTDs and its PMF: As indicated

in Section II-A, in the accessing barring phase, the random

number is generated independently for each MTD. Given M

MTDs in a certain frame, using the Binomial theorem, the

conditional PMF of the number of accessing MTDs (i.e., these

MTDs pass the ACB scheme), is

Pr(M1 = m1|M) =

(

M

m1

)

pm1(1− p)M−m1 , (14)

where M1 is within the range of 0 and M and
(

·

·

)

is the

combinatorial operator.



• The number of accessing MTDs without collision and its

PMF: For those accessing MTDs, their packets can be dropped

in the reservation phase if their selected mini-slots are collided.

The mini-slots selection for accessing MTDs in fact belongs

to a well known occupancy problem, which is about the

random allocation of balls into a number of bins. Under

our scenario, the balls become the accessing MTDs and the

bins become the mini-slots. To determine the distribution of

the number of non-collision MTDs, we leverage the results

presented in [16, eqs.(3)&(4)]. By setting r = 1 in [16,

eqs.(3)&(4)], we have the conditional distribution of M2, given

M1 accessing MTDs, displayed as

Pr(M2 = m2|M1) =

(

LC

m2

)

(

∏m2−1

k=0
(M1 − k)

)

LM1

C

×G(LC −m2,M1 −m2), (15)

where G(U, u) = 1 when U = 0 and u ≤ 0 and

G(U, u)=Uu+
u

∑

k=1

(−1)k





k−1
∏

j=0

(u−j)(U−j)





(U−k)u−k

k!
.

(16)

Combining the conditional PMFs in (14) and (15), we then

average the number of MTDs M , we can obtain the PMF of

the number of non-collision MTDs as

Pr(M2=m2)=EM

[

M
∑

m1=0

Pr(M2=m2|m1)Pr(M1=m1|M)

]

.

(17)

• The number of served MTDs and its PMF: In order to

become the reserved (equivalently, served) MTDs, the non-

collision MTD must not be in channel outage in the reservation

phase. For a non-collision MTD, the probability of not being

in channel outage psuc is presented in (13). Again, whether the

non-collision MTD is in outage or not is an independent event.

Given M2 non-collision MTDs, using the Binomial theorem,

the conditional PMF of the number of served MTDs is

Pr(N = n|M2) =

(

M2

n

)

pnsuc (1− psuc)
M2−n

. (18)

Finally, de-conditioning the above result with respect to M2

(i.e., its PMF is shown in (17)), we obtain the PMF of the

number of served MTDs as shown in (5).

C. Derivation of Proposition 3

Proof: Let us assume that the system contains M MTDs

in a certain frame. One mini-slot is treated as a typical mini-

slot among the LC available mini-slots.

As long as either zero or one MTD chooses this typical

mini-slot, this mini-slot is not collided. From the previous

subsection, we find that the probability of one MTD passing

the ACB scheme and selecting the typical mini-slot is p
LC

.

Hence, the probability that none MTD picks the typical mini-

slot is given by

Pr(no. select = 0|M) =

(

1−
p

LC

)M

. (19)

Similarly, the probability that only one MTD selects the

mini-slot is

Pr(no. select = 1|M) =

(

M

1

)

p

LC

(

1−
p

LC

)M−1

. (20)

Combining the above two probabilities, we have the condi-

tional slot non-collision probability given by
(

1− p
LC

)M

+
(

M
1

)

p
LC

(

1− p
LC

)M−1

. We then average this conditional

probability over the number of MTDs M and have the slot

non-collision probability given in (6).
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