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Abstract—In this paper, we present a graphical approach to
the power control problem, and show how to find a near optimal
solution to maximizing sum rate with individual power and user
requirements by searching from the vertices of the power region.
By leveraging our two previous results on the quasiconvexity and
asymptotic nature of sum signal-to-interference-plus-noise ratio
(SINR) and sum rate respectively, we determine an equivalency
relationship between sum rate and sum SINR. As a related
aside, we show that sum rate is indeed convex with respect to
one varying power. Our conclusions are applicable to multi-
user interference channels where resources are shared, and
received powers vary by an order of magnitude or more,
e.g., heterogeneous network whose transmitting powers span
a magnitude of ranges.

Index Terms—Power control, sum rate optimization, interfer-
ence channel, heterogeneous networks.

I. INTRODUCTION

The general multi-user interference channel allows mul-
tiple transmitters and receivers to communicate simultane-
ously, leading to higher spectral efficiencies. However, in
networks with high loads or large number of users, devices
must share the same resources, leading to high interference
scenarios. The most common way of combating these un-
favourable reuse conditions is through power control, while
at the same time aiming to maximize some system metric
and satisfying various requirements. While capacity is ideal
from an information theory perspective, the capacity of a mul-
tiuser interference channel is still unknown [1]. Alternatively,
researchers have focused on sum rate as a metric.

However, even this option has its shortcomings. Although
it has been proven for two transmitting sources that sum rate
is a convex expression [2], it is known that for more than
two sources sum rate is generally non-convex, and thus not
easy to solve using standard optimization techniques. Often,
non-convex formulations can be transformed into more man-
ageable forms, as is the case with geometric programming
[3], [4], but these require certain approximations (e.g., high
signal-to-noise-plus-interference (SINR) regime).

An alternative for sum rate for more than two users is to
use sum SINR [5], which, due to the absence of a log term,
is easier to solve. Although for one or two users this will
lead to the same optimal solutions, in general, maximizing
sum SINR may not also maximize sum rate. It is known that
sum rate is not convex with respect to arbitrary combinations
of varying powers (i.e., not jointly convex in all powers), but
neither is sum SINR, which is known to be convex with one
varying power but not convex in general [6]. Although these
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facts may be known by researchers, to the best of the authors’
knowledge there has been no discussion or mathematical
study on the relationship between sum rate and sum SINR
and their behaviour with varying powers. A natural question
to ask is: Will the same set of powers that maximize sum
SINR also maximize sum rate?

An early approach to the power control problem was
through finding a Pareto optimal solution [7]. This was done
by rearranging the constraints and expressing it in matrix
form, then solving the system of equations to obtain a set
of powers. However, since this is a Pareto optimal solution,
it does not necessarily maximize the objective, nor does it
always satisfy individual power constraints. Such an approach
has been used as an initial feasibility test [8].

In [3], the authors proved that to maximize sum rate with
individual power constraints, binary power control, i.e., each
power operates either at maximum or minimum levels, is the
optimal solution for two users, and a suboptimal solution for
more than two users. Further, the authors indirectly suggest
that binary power control is the optimal solution to any
objective that is convex. A bound on the approximation
of sum rate with an alternative expression relying on the
arithmetic-geometric mean inequality and the Specht’s ratio
is also given, but this does not answer the question of whether
the same set of powers can maximize both sum rate and sum
SINR, or how similar are the powers that do. Further, [3]
does not include individual rate constraints.

In this paper we describe graphically the feasible power
region under both individual power and rate (or equivalently,
SINR) constraints, and show how the vertices or corners
of this region provides the finite set of powers which can
yield near-optimal solutions to maximize sum rate. Our work
illustrates three main mathematical insights:

1) We show that sum SINR is in fact guasiconvex in
any combinations of varying powers (i.e., also jointly
quasiconvex), and hence its maximizing powers will
always occur at the vertices of the power region.

2) We show that when one received power dominates
others, sum rate and sum SINR exhibit almost identical
behaviour with varying powers, implying that global
maxima and minima occur at the same powers.

3) We prove that on the edge of the power region, i.e.,
when only one power is varying, sum rate is indeed a
convex function, and hence the vertices on the edges
will always maximize the sum rate along those edges.
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II. SYSTEM MODEL

Consider a system with NV links, each of which has a
unique transmitter and receiver. Each receiver treats any
interference it receives from the other links as noise. We
desire to solve:

N
hi ipi

maximize R = log, | 1+ ’ (D)
; > ji hyipj + 0°

= log, 1+ Lt (2
il;[l >z hjapj + 02

subject to  p; < P, 3)

hiipi

> jzi hjapy + 02 >, t=1,...,N. 4)
where hj; is the channel gain from the jth transmitter to
the ith receiver, p; is the transmission power at the ith
transmitter, P/"™* is the maximum transmission power at the
ith transmitter, ~y; is the SINR threshold corresponding to
the minimum rate for the ith user, and o2 is the zero mean
additive Gaussian white noise (AWGN). Equations (3) and
(4) represent the individual transmit power and minimum user
rate constraints respectively.

For analytical simplicity, we drop the channel gains h; ;,
as fading characteristics become less significant compared to
differences in magnitudes of transmit powers. Thus, p; repre-
sent the received powers from each transmitter. For example,
a macro station may transmit at 43 dB compared to 23 dB
for a femtocell, where the 20 dB difference in magnitude
will mostly dominate fading effects. Our conclusions are
therefore more accurate for Gaussian channels. We also let
a; =y i P T o2 to represent the interference plus noise
at the ¢th receiver.

III. POWER REGION IN N-DIMENSIONS

Plotting individual power constraints on their own orthog-
onal axis in N-dimensional space RY, the feasible power
region can be described as a hypercube, the interior and
boundary of which contains all possible transmit powers.
The corners or vertices of the hypercube are the points with
coordinates (ps,...,pn) either p; = 0 or p; = P™*. For
different maximum powers, e.g., in a downlink heterogeneous
network, the hypercube will have different side lengths.

In addition to individual power constraints, the feasible
region can be formed by minimum user rate constraints.
By rearranging the minimum rate constraints in (2), we can
obtain NV inequalities of the form

Di — i ij >0 Viel,...,N. (5)

J#i
Geometrically, with equality the above is the equation of
a hyperplane in RY, while with inequality it is the region
above' the hyperplane. Thus, the power constraints form the
hypercube, while the minimum user rate constraints further
bound the power region into a polytope. Increasing the

Here, ‘above’ refers to the region satisfying the inequality, and may not
always be ‘above’ in the everyday sense.

number of powers increases the dimensionality of the region,
while increasing the number of users increases the number
of hyperplanes and further restricts the polytope.

The intersection of all the SINR inequalities, denoted as
the point ), can be found by solving for their equality expres-
sions simultaneously, which can be done using methods such
as Cramer’s Rule. The final region bounded by the boundaries
of the hypercube and the hyperplanes form the feasible power
region. Possible regions for two and three transmitting powers
are illustrated in Figs. 1 and 2.
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Fig. 1: Power region for two transmitters bound by edges of the
rectangle (power constraint) and lines (minimum rate constraint).

P2
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/

1

Fig. 2: Power region for three transmitters bound by edges of the
cube (power constraint) and planes (minimum rate constraint, not
shown for clarity).

IV. SuM SINR APPROXIMATION

From [3], we know that the optimal powers that maximizes
sum rate occur at the boundary of the power region. Further,
if the function to be maximized is convex, the vertices of
the power region, with the exception of the point (), form
the finite set of points that contain the optimal powers.
The coordinates of these vertices are powers that are either
maximum powers defined by the power constraints, or min-
imum powers allowed by other users’ constraints. However,
although convexity is a more common property to prove, it is
in fact quasiconvexity which states that for a given domain,
the maximum of a function lies on the endpoints. Of course,
convex functions are also quasiconvex and share this property.

Previously, other works have claimed that since SINRs are
convex expressions in individual powers, which implies that
the optimal powers lie on the vertices. However, this only
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applies if the vertices also lie on the hypercube edges of the
power region, since on the edges only one power is varying.
For N powers, the hypercube will have vertices that lie on
other types of boundaries, e.g. a face, which represent the
condition that there is more than one varying power. Hence,
on these boundaries where more than one power is varying,
it is also required that the function is also quasiconvex with
respect to more than one varying power in order to justify
searching only vertices for optimal powers.

To illustrate, consider the simple case of a two user system
in Fig. 1. Without minimum user constraints, binary power
control tells us the powers which will maximize sum rate will
either be p; = P"™™ or p; = 0. However, with the minimum
user constraints, the power region is now also bounded by
the lines, and thus the optimal set of powers also include
the points A and B, whose coordinates can be found by
using (5). A similar approach can be used to determine the
set of points for more dimensions, although they become
increasingly more difficult to visualize.

A. Quasiconvexity of Sum SINR for arbitrary number of
varying powers

Although it is commonly stated that sum SINR, i.e.,
N b
S = =

is convex in each individual power (since each SINR is
convex, and the sum of convex functions is also convex),
sum SINR is not jointly convex, nor is it convex with respect
to arbitrary combinations of powers, i.e., treat a set of powers
as varying and the rest as constants. This can be easily
observed by evaluating the Hessian matrix for a generic set
{p1,...,pn}, which is not positive semidefinite. However,
in order to justify searching only the vertices for powers that
maximize sum SINR, we require the sum SINR function to
be quasiconvex in any combinations of varying powers. The
following proposition proves this property:

(6)

Proposition 1. Sum SINR is a quasiconvex function for any
combination of varying powers. Hence, it is also jointly
quasiconvex in all powers.

Proof. See Appendix A in [9] for details. The proof involves
showing that (6) satisfies the quasiconvexity condition in [10].

Remark 1. The joint quasiconvexity of sum SINR ensures
that the optimal powers will be a subset of the vertices of
the power region.

B. Sum SINR as a close approximation of sum rate

Since sum rate is not convex (or quasiconvex) in general,
the vertices of the power region may not give the maximum
sum rate. At first it may seem that sum SINR can be
a good approximation to sum rate since the logarithm is
a monotonically increasing function, and thus any set of
powers which maximize SINR will also maximize sum rate.
In the low SINR regime, this is true, since for low SINR

log, (14 SINR) ~ SLYE [3]. However, this is not the case

in general for more than three SINR terms, since the product
of the (14 SINR) terms in (2) is not convex in the powers.

Although a direct match between sum rate and sum SINR
is not immediately clear, we can show that under asymptotic
conditions, i.e., when one receive power dominates over
others, sum rate and sum SINR have very similar derivatives.

Proposition 2. When one receive power dominates, e.g., an
order of magnitude larger than others, maxima and minima
of sum rate and sum SINR occur at the same set of powers.

Proof. See Appendix B in [9]. The proof involves taking
derivatives of both the log, expression (2) and (6) with
respect to an arbitrary p;, then showing their equivalence
as p; — oo. Since monotonic functions such as logarithms
preserve order, having the same derivatives indicates that
maxima and minima occur at the same locations.

Remark 2. We can conclude from this that since the two
derivatives are equal, when one receive power dominates, and
logarithm is monotonic and thus doesn’t affect the locations
of maxima and minima, global maxima and minima for sum
rate and sum SINR will occur at almost identical powers.

As a related aside, although sum rate is not convex in
general, we make the following proposition in relation to the
convexity of sum rate when only one power is varying:

Proposition 3. For any number of transmitting powers, sum
rate in individual powers, i.e., one power varying and the
others constant, is always convex.

Proof. See Appendix A.

V. SIMULATION RESULTS

In our simulations we considered three and four trans-
mitting powers, and tested all combinations to illustrate
the validity of Proposition 2. All powers were normalized
with respect to the noise power. We set a power range for
each transmitter, and tested all combinations of powers with
step sizes chosen such that there were five powers in each
transmitting set. All possible combinations of powers were
searched through, with each combination labelled with a
‘search index.’

For three transmitters, Fig. 3a shows the derivatives of sum
SINR and the product term in (2) when received powers are
of the same order of magnitude around 10 dB with respect
to the noise power, while Fig. 3b shows the derivatives when
one power is an order of magnitude larger than others. It is
clear that when there is one dominating power, the derivatives
coincide almost perfectly, indicating that the log term in sum
rate and sum SINR, ‘follow’ one another and thus have their
maxima and minima occur at the same locations. We observe
the same trend when there are four transmitters as shown in
Fig. 4a and Fig. 4b.

When considering the actual sum rate, i.e., taking the
logarithm, we find that the global maxima and minima indeed
still occur at the same set of powers as expected when a
received power is an order of magnitude larger, as shown
in Fig. 5 for three transmitters. In other words, while the
logarithm does change the actual asymptotic derivative values
of sum rate and sum SINR, its monotonicity ensures that the
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Fig. 3: Derivatives of rate and SINR with 3 transmitting powers.
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Fig. 4: Derivatives of rate and SINR with 4 transmitting powers.

locations of maxima and minima remain the same. In the case
of the chosen powers, there is one global maximum each for
sum rate and sum SINR, with both occurring at the same
location at search index 5.

Our simulated scenarios can exist in high load downlink
HetNets, e.g., when a macro receiver receives much more
power than a femto user. As shown in [9], searching the
vertices to maximize sum rate is much less computationally
extensive for small number of users compared to conventional
methods such as geometric programming, and produces near-
optimal solutions. Thus, using power region vertices is a
suitable near-optimal method for sum rate maximization.

VI. CONCLUSION

We have provided a graphical and geometric description of
the feasible power region for multiuser interference channels
for arbitrary number of users subject to individual power
and minimum user rate constraints. We have shown that
sum SINR is quasiconvex with respect to any number of

varying powers, and that sum SINR is an almost equivalent
objective to maximize as sum rate when transmit powers are
orders of magnitude apart, or when one power dominates the
others. Through our findings, we confidently conclude that
for multi-user interference scenarios where received powers
can vary by an order of magnitude, searching for the vertices
of the power region is a suitable near-optimal approach to
maximizing sum rate.

APPENDIX A
CONVEXITY OF SUM RATE WITH RESPECT TO ONE
VARYING POWER

Consider the expression within the log, in (2), i.e.,

N
H <1 Pz‘) B (Zi]\;lpi+02)N
L N
i=1 @i [Tiiai

(+a)” o %)

ai [Toz (@ + aix)
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Fig. 5: Derivatives of sum rate and sum SINR with 3 transmitters
including one larger power. Maxima and minima occur at the same
locations, despite there being a mismatch in magnitude.

where z = pi, a; =Y., pjto’and aip = 3,4, . pito’.
The N roots of f(z) are at x = —a;, while the asymptotes
are at x = —a; , for k # i. Since a; = a; k + Pr. a; > Gk,
meaning that the roots occur to the left of all the asymptotes.
To show that f(z) is convex for z > 0, we can take
derivatives and use the precise definition of convexity, but
this is tedious to do with so many products. Instead, we adopt
a graphical approach.

In general, since f(z) is a function with polynomial nu-
merators and denominators, basic curve sketching techniques
can be employed to determine its generic shape.

1) Consider the case when N is even (Fig. 6). The small-
est, i.e., left most critical point is the root at x = —a;.
If N is even f(z) must have either a maximum or
minimum turning point at that root. It is easy to see that
since for x to the left of the first vertical asymptote,
f(z) <0, the function must have a maximum turning
point at x = —a;. The behaviour and shape of f(z)
then alternates between convex positive and concave
negative graphs between each set of asymptotes. Since
there are an even number of such graphs, the right
most one corresponding to when x > 0 will always
be positive and convex.

2) Consider the case when N is odd (Fig. 7). At the
root, the function has a point of inflexion due to the
odd power, while it is easy to see that f(z) will be
negative between when z is between the two left-most
vertical asymptotes. Following the same pattern as the
even case, the function will alternate between convex
positive and concave negative graphs between each set
of asymptote, and again will end up being positively
convex for x > 0.

Since log, is a monotonically increasing function, and the
relevant branches are decreasing with second derivatives less
than 0, the sum rate over those ranges will remain convex.

oo
—a;

Fig. 6: General curve behaviour of sum rate with respect to one
power for even number of powers.

f(z)

LX)

Fig. 7: General curve behaviour of sum rate with respect to one
power for odd number of powers.
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