
An Efficient Energy Curtailment Scheme For
Outage Management in Smart Grid

Wayes Tushar∗§, Jian (Andrew) Zhang‡, David B. Smith§∗, H. Vincent Poor†, Glenn Platt¶ and Salman Durrani∗
∗Research School of Engineering, The Australian National University, ACT, Australia

‡CSIRO ICT Center, Marsfield, NSW, Australia
§National ICT Australia (NICTA), Canberra ACT Australia

†School of Engineering and Applied Science, Princeton University, Princeton, NJ, USA
¶CSIRO Energy Transformed Flagship, Newcastle, NSW, Australia

Abstract—In this paper an efficient energy curtailment scheme
is studied, which enables the power users of a smart grid network
to decide on the reduction in energy supplied to them in the event
of a power outage in the system. Considering the advantages of
a two-way communications infrastructure for any future smart
grid, a non-cooperative generalized Nash game is proposed where
the players are users of power in the network. They adopt a
strategy to choose the amount of reduction in energy supplied to
them based on their energy requirements so as to minimize the
total cost incurred to the system due to the power outage (i.e.,
social optimality). The game is modeled as a variational inequality
problem, and it is shown that the socially optimum solution is
obtained at the variational equilibrium of the energy curtailment
game. An algorithm that enables the users to efficiently reach
this equilibrium is proposed. Simulation results show that the
proposed game yields an improvement of about 15% on average,
in terms of average total cost reduction, compared to a standard
equal power curtailment scheme.

Index Terms—Smart grid, energy curtailment, outage man-
agement, game theory, variational inequality, variational equilib-
rium.

I. INTRODUCTION

Increased expectations of customers, limited energy re-

sources and the expensive process of exploiting new resources

have put the reliability of the power grid in danger [1].

Especially in the event of a power outage in the grid system,

lack of “situational awareness” is often the main reason

that leads to a large scale fault event which may causes an

extensive cost to the whole system [2]. For instance, the

annual cost of power outage in United States in 2002 was

estimated to be on the order of $79 billion [3], rising to $100
billion in 2007 [4]. Therefore, the study of an efficient outage

management scheme in the event of a power disruption in

the grid (e.g., a scheme for optimal curtailment of electricity

from the customers) to reduce its catastrophic impact on the

whole grid system is of paramount importance to improve the

system’s reliability.
It is envisioned that a smart grid will transform the current

power grid into one that functions more intelligently, giving
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better situational awareness and providing resilience against

component failures and disastrous impacts on the grid [3]. In

a smart grid network energy consumers are able to actively

take part in the decision making process regarding various

grid management issues, and then agree on parameters that

better protect the grid from any undesirable fault event [5].

Hence in recent years, extensive research has been devoted to

system reliability and pre and post-failure protection of the

smart grid, e.g., [2, 6–10].

One of the key challenges for reliable smart grid operation

is the post-outage management of power among the users

immediately after a power disruption in the network. A power

outage may occur due to a fault in the power line or due

to the intermittent nature of renewable energy sources [5].

Hence, there is a need of curtailment of power from the users

in the network so as to manage the activities of the grid

effectively during the outage time until the whole system can

operate normally again. Of foremost importance is efficient

curtailment of energy so there is minimum total cost to the

whole system. It is important to note that even a reduction in

the total cost by 1% can significantly benefit the users in the

system. For example, the annual cost of outage in the U.S.A.

in 2002 would be reduced by up to $790 million with only

1% reduction in total cost of outage [3]. Thus, there is a need

to develop solutions that will be able to optimally reduce the

total cost incurred to a system during periods of power outage,

and thereby to benefit the power system users.

The main contribution of this paper is to model an efficient

outage management scheme for smart grid taking the advan-

tage of its two way communications infrastructure. An efficient

energy curtailment scheme for cutting off energy from the

users in the event of a power outage is proposed to minimize

the total cost incurred to the system for this outage. We study

an energy curtailment game (ECG) where the users play a

generalized Nash game amongst themselves to decide on the

amount of energy to be curtailed from them in the event

of a power disruption. We investigate the properties of the

game and show that there exists a socially optimal solution.

The socially optimal solution is where the total cost incurred

reaches a global minimum. An algorithm is proposed to obtain

this optimal solution. Through simulation, the performance of
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the game is assessed and the effectiveness of the scheme is

demonstrated by comparing it with a standard equal energy

curtailment scheme.

The rest of the paper is organized as follows: the system

model is presented in Section II. A non-cooperative general-

ized Nash game is formulated and its properties are studied

in Section III. In Section IV, the solution method of the

game is discussed and an algorithm is proposed to reach

the equilibrium. Numerical results for the proposed scheme

are given in Section V. Finally, Conclusions are drawn in

Section VI.

II. SYSTEM MODEL

Consider a smart grid system consisting of a single energy

source (ES) and multiple energy users (EUs). The ES can be

a single energy generating unit or an aggregation of multiple

distributed renewable energy generating units in the network

such as wind farms, smart homes, solar farms, bio-gas plants

and plug-in hybrid electric vehicles (PHEVs) acting as a single

virtual power plant in the system. It is assumed that each EU

is equipped with a smart meter that has a decision making

capability on the amount of energy to be curtailed and each

EU is also connected to the ES by means of a power line [11].

The smart meters are also connected to the ES through a local

area network (LAN). All communications between the ES and

EUs take place using an appropriate communication protocol

(e.g., Zigbee [12]).

Throughout the paper, it is assumed that N denotes the set

of EUs in the network where the number of EUs is N = |N |.
Each EU n ∈ N is a single user in the network, for instance

a smart home. Renewable energy generation is subjected to

wide fluctuations and the available energy for the consumers

may vary significantly with time [13]. In the event of an

unfavorable circumstance, e.g., a cloudy day making solar

energy generation unproductive, or the failure of a few energy

generating units, a power disruption may occur in the smart

grid system. Therefore, the ES would be unable to meet the

total energy demand of its customers in the network for a

particular period of time, e.g., before restoration of full service.

Let us assume that for a particular duration of time of the day

Ed is the total energy demand of the consumers and Ea is

the available energy to the ES at the event of power outage. If

Ed > Ea, the ES will be unable to meet the excess demand,

Ex = Ed − Ea, (1)

of the power users in the network for that period of time. So

this amount of energy must be curtailed from the EUs and

the users will experience a black-out. If en is the amount of

energy which is to be curtailed from user n, the curtailment of

energy en from each user n needs to maintain the constraint
∑

n

en = Ex. (2)

According to constraint (2), the total deficiency of energy Ex

is overcome by suitable curtailing of energy from all users and

is necessary for reliable power distribution in the smart grid

network.

Energy requirements of EUs may vary based on different

factors, such as the time of the day or the type of EU. For

example, a school requires less energy, and maintaining full

energy supply is less important, during vacation than during

term time. Hence, such factors must be taken into account

when designing an energy curtailment scheme for the EUs.

Thus, the main challenges faced during the decision making

process for energy curtailment in a smart grid in the event of

a power outage are:

1) modeling the decision making process of energy curtail-

ment from the energy users given the constraint in (2);

2) capturing the EUs’ requirements for energy during the

decision making process for curtailment; and

3) developing an algorithm that enables the EUs to optimize

the amount of energy to be curtailed from them so as to

minimize the total cost incurred to the system.

To address the above challenges, first we define a cost function

for each EU in Section II-A and then formulate the decision

making process as a constrained optimization problem in

Section II-B.

A. EU’s cost function

To capture the effects of energy outage on the overall

smart grid system, we define a cost function cn for each EU

n ∈ N in the network, which represents the cost incurred by

the EU n due to the curtailment of en from it. The choice

of cost function is based on a linearly decreasing cost with

decrease in energy supply, which has recently been shown to

be appropriate for users of power [1]. The cost function cn
for EU n is defined as, [14],

cn(en, θn) = k1e
2
n
+ k2(en − θnen), (3)

where k1, k2 > 0 are the scaling factors and θn is the customer

preference parameter (CPP) of EU n [14]. The CPP, θn, is a

measure of each EU’s preference for the amount of energy

to be curtailed from it. For example, curtailment of 1 kWh

of energy may have far worse impact on industry than on a

residential home. Thus, the CPP could be very different for

a residential home than for an industry for the same energy

curtailment. As from (3), a higher CPP leads to a lower cost

for an EU and hence, an EU with higher CPP would be able

to endure the cost of more curtailment of energy than the EU

with lower CPP. The cost function in (3) is assumed to possess

the following properties:

� the cost for EU n increases as the amount of energy to

be curtailed from it increases. That is

δcn
δen

> 0. (4)

� an EU with higher CPP will experience less cost com-

pared to an EU with lower CPP for the same energy

curtailment. Therefore,

cn(en, θ̃n) < cn(en, θ̂n), ∀ θ̃n > θ̂n. (5)
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B. Problem formulation

It is clear from (3) that, for a fixed amount of energy

curtailed from an EU, the cost incurred by the EU changes as

the CPP of the EU changes. Hence, each EU n in the smart

grid network needs to optimally choose an amount of energy

en to be curtailed from it so as to minimize the overall cost

incurred to the whole system. Thus, the objective of each EU

is

min
en

∑

n

cn(en, θn) = min
en

∑

n

(
k1e

2
n
+ k2(en − θnen)

)
,

subject to
∑

n

en = Ex, ∀n ∈ N . (6)

The optimization problem in (6) can be solved by the ES

in a centralized fashion if the ES knows all the parameters.

However, in smart grid the ES may not have full control

over the decision making process of the EUs [15], and in

particular the ES may not know the preference parameter θn
when EUs keep θn as confidential. Therefore, a decentralized

decision making scheme is required for the EUs to voluntarily

choose an amount of energy to be curtailed from them for

the whole system’s social benefit. Next we will show that the

optimization can be achieved with limited coordination by the

ES and without letting the ES know the en that each EU

contributes.

III. GENERALIZED NASH GAME

To study the energy curtailment scheme for outage manage-

ment in a smart grid, we use the framework of a generalized

Nash game [16]. A generalized Nash game (GNG) is a type of

game that allows joint constraints for all players involved in the

game [16]. In the proposed game, the players are the energy

users in the network, which choose the amount of energy to

be curtailed from them subject to the joint constraint in (2).

The game is formally defined by its strategic form

χ = {N ,En, c}, (7)

which has the following components:

(i) the set of energy users in the smart grid network N .

(ii) the strategy vector En of each player n ∈ N , which

refers to the amount of energy to be curtailed en ∈ En

from n satisfying the constraint
∑

n
en = Ex.

(iii) the total cost incurred by all the EUs c due to the

curtailment of energy en from the EU n for all n ∈ N .

It is important to note that the action of each EU n, to optimize

(6), affects the choice of actions of other EUs in the network

due to the presence of (2). Thus, the proposed GNG is a

jointly convex generalized Nash equilibrium problem (GNEP)

with coupled constraint (2) [16]. To solve this jointly convex

GNEP, we formulate the game as a variational inequality

problem (VIP) and investigate the existence of the variational

equilibrium (VE) of the game [17]. The VE is the socially

optimal outcome of a GNEP and a valuable target solution for

the proposed energy curtailment scheme. This is due to the

fact that a socially optimal solution leads to the minimum total

cost for the whole system. Thus the socially optimal solution

is the main target of the proposed game. In the following we

investigate the existence of a socially optimal solution of the

proposed GNG.

A. Existence of a socially optimal solution

A pure strategy solution in a non-cooperative game is

not always guaranteed [18]. Therefore, we investigate the

existence of a solution of the proposed GNG and study its

optimality, if it exists. Now, the joint cost function in (6) of

the proposed game can be expressed as, [19],

c(e) =
N∑

n=1

cn(en, θn), (8)

where

e =




e1
e2
...

eN


 ∈ E (9)

and E is included in the definition of joint convexity [16].

Due to the jointly convex nature of the GNEP, the proposed

GNG can be formulated as a variational inequality problem

VIP(E,F) [16] where F = (∇ecn(e))
N
n=1 is the pseudo-

gradient of (8). Now, to show the existence of an optimal

solution, we will prove the following theorem:

Theorem 1: A variational equilibrium (VE) exists for the

proposed VIP(E,F) and the VE is unique.

Proof: To prove this, we need only to prove that the

pseudo-gradient of c(e) monotonically increases with en for

fixed k1, k2 and θn [19]. The pseudo-gradient of c(e) is

F =




2k1e1 + k2(1− θ1)
2k1e2 + k2(1− θ2)

...

2k1eN + k2(1− θN )


 (10)

and the Jacobian of F is [17],

JF =




2k1 0 . . . 0
0 2k1 . . . 0
...

... . . .
...

0 0 . . . 2k1


 . (11)

In (11), the scaling factor k1 is always positive. Now consid-

ering the ith leading principal minor (LPM) JFi of the leading

principal sub-matrix1
JF, it can be shown that JFi is always

positive (i.e., |JF1| > 0, |JF2| > 0, and so on). Hence, JF

is positive definite on E, and thus, F is strictly monotone. So,

VIP(E,F) admits a unique VE solution [16].

Remark 1: An important result of Theorem 1 is that the VE

is the socially optimal solution of the proposed GNG. This can

be explained as follows: from Theorem 1, the VE is unique

for the proposed VIP(E,F). On the other hand, the proposed

1The ith order principal submatrix Ai can be created by deleting the last
g − i rows and last g − i columns from g × g matrix A.
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Algorithm 1 Algorithm to reach VE

1. The ES announces Ex to the EUs in the network.
2. Each EU n estimates an amount en to be curtailed using the S-S
method [20]:

S-S method

a) At iteration k, EU n ∈ N computes the hyperplane projection r(ekn)
and updates ek+1

n = r(ekn).
b) The EU checks: if r(ekn) = 0

if r(ekn) = 0
a) The EU chooses the energy en to submit to the ES.

else
a) the EU n determines the hyperplane zkn and the

half space Hk
n from the projection.

b) the EU updates the amount ek+1
n from the

projection of its previous energy ekn on to X ∩Hk
n and

choose to submit to the ES.
end if

3. The EU n calculates λn using Proposition 1 and submits it to the ES.
4. The ES checks λn, ∀n ∈ N .

if λ1 = λ2 = ... = λN = λ
The ES determines the VE energy vector e∗ of all

the EUs in the network.
else

The ES directs the EUs to Repeat step - 2 and Step - 3.
end if

The VE energy choices of all the energy users in the network e∗ are
obtained.

GNEP has already been shown to be a jointly convex GNEP.

Hence, the VE is the unique global minimizer of (8) [16].

Thus, in other words, it is also the socially optimal solution

of the proposed GNG. We will use VE to indicate the solution

of the proposed GNG for the rest of the paper.

IV. GAME SOLUTION AND ALGORITHM

Each EU plays a GNG, to choose an amount of energy to be

curtailed, by solving the variational inequality problem. Each

EU n wants to minimize the total cost incurred to the system

by suitably choosing its strategy en subject to (2). The total

cost is minimized as soon as the solution of the game reaches

the VE.

Definition 1: Consider the GNG χ given in Section III

where the joint cost function c is defined as in (8). A vector

of strategies e∗ constitutes the VE of the game if and only if

it satisfies the following set of inequalities:

c(e∗) ≤ c(e), ∀en ∈ En, n ∈ N , (12)

where e
∗ = [e∗1, e

∗

2, ..., e
∗

N
]T and e =

[e∗1, e
∗

2, ..., e
∗

n−1, en, e
∗

n+1, .., e
∗

N
] for one or more n ∈ N .

Thus, the VE defines a state of the game in which the total

cost incurred by the system cannot be reduced if any EU

deviates from its VE strategy and chooses a different amount

of energy to be curtailed from it, given other EUs are playing

their VE strategies.

To find the VE of the game the EUs in the network have to

solve a VIP. As shown in Section III, the VIP of the proposed

scheme is strictly monotonic and thus, the EUs can reach

the VE of the game by solving a monotone VIP. To find the

solution of the proposed monotone VIP, it will be useful to

state the following proposition which characterizes the solution

of a strictly monotone VIP [16].

Proposition 1: For a strongly monotone VIP, the slack

variable λn = δcn/δen possesses the same value λ at the

VE solution for all the EUs in the smart grid network. That

is, λ1 = λ2 = ... = λN = λ, ∀n ∈ N .

This property is used to determine the VE of the proposed

GNG. We use a hyperplane projection method2, particularly

the iterative S-S method [20], to solve the proposed mono-

tone variational inequality problem to determine the EUs’

decisions on the energy vector. The algorithm, as detailed

in Algorithm 1, requires limited communication between the

EUs and the ES in the network3. The algorithm starts with

an announcement by the ES of the total energy deficiency in

the network and the EUs play a GNG amongst themselves

to reach an optimal solution. Each EU n solves the S-S

hyperplane projection method to choose its energy curtailment

and calculates λn from its choice using Proposition 1. The

EUs submit these λn, ∀n ∈ N , to the ES. The ES checks

λn for each EU n and informs the EUs as to whether all

λn’s are equal. The algorithm converges to the optimal VE

and the curtailment of energy takes place as soon as λn

converges to the single value λn = λ, ∀n ∈ N . For a

strongly monotone VIP, the hyperplane projection method is

guaranteed to converge to a non-empty solution [21] and

thus, the proposed algorithm always converges to a non-empty

optimal solution.

V. NUMERICAL SIMULATION

To simulate the proposed energy curtailment scheme, we

consider a number of EUs in the network and simulate the

scheme for different scenarios. The consumer preference pa-

rameter is chosen from a uniform random distribution between

0 and 1 [14]. The value of k1 and k2 is chosen in such a way

that k1

k2

= 0.5 is maintained [14]. The minimum deficiency in

energy is chosen as 2 kWh and the maximum deficiency is

chosen as 10 kWh for the duration of the power outage4.

To show the convergence of the proposed algorithm to

the VE, we assume a network with five EUs in which they

are playing a generalized Nash game amongst themselves

to reduce the effect of a total energy outage of an amount

of 10 kWh on the system. In Fig. 1 and Fig. 2, we show

the convergence of the amount of energy that has to be

curtailed from each EU to the VE and also the convergence

of the cost due to this curtailment. From Fig. 1 and Fig. 2

it can be seen that as the amount of energy to be curtailed

reduces, the cost incurred to the corresponding EU decreases

and vice versa. This is due to the variation in the customer

preference parameter, CPP, or each EU, as the choice of

energy curtailment is highly dependent on the CPP. Hence,

by choosing more curtailment by the EU with higher CPP

and lower curtailment by the EU with lower CPP, the total

cost incurred by the system can be reduced to a minimum at

the VE. Both the choice of energy and the cost incurred by

2Projection r(z) = argmin{||w − z||, w ∈ E}, ∀z ∈ Rn.
3For instance, a single bit can be sent by the ES to the EU n if the EU’s

strategy does not satisfy (2) given the strategies of other EUs.
4Clearly this energy deficiency range is highly variable and could be

different for many scenarios.
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Fig. 1: Convergence of the amount of energy to be curtailed from
each EU to the variational equilibrium.
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each EU converges to the VE after the 10th iteration of the

algorithm.

The total cost incurred by the system at VE is shown in

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Total energy deficiency in the grid (kWh)

A
v
e
ra

g
e
 c

o
s
t 

p
e
r 

E
U

Proposed scheme

EEC

Fig. 4: Effect of the total energy deficiency on the cost of each EU.

Fig. 3, where we see that the total cost is reduced to its

minimum value after 10 iterations. Although the cost, incurred

at variational equilibrium, to each EU does not achieve a

minimum value for all EUs, as seen in Fig. 2, the total cost

to the system is minimized at equilibrium. This is due to a

preference based choice of energy by the EUs in the network.

An EU with higher CPP can endure the impact of more energy

curtailment (i.e., more costs) compared to the other EUs with

lower CPP. Thus, higher cost to an EU with higher CPP does

not affect the system, due to its higher tolerance to reductions

in energy supply.

The performance benefit of the proposed scheme is assessed

in Fig. 4 and Fig. 5. The effect of total energy deficiency on

the average cost incurred by any EU in the network is shown

in Fig. 4. The effect of the number of EUs on the total average

cost of the system is shown in Fig. 5. In both Fig. 4 and Fig. 5

we compare our proposed scheme with a standard equal energy

curtailment (EEC) scheme [22] in which an equal amount of

energy is curtailed from each of the users in the network to

mitigate the effect of total system energy deficiency.

In Fig. 4, for a fixed number of EUs in the network, the

effect of variation in total system energy deficiency on the

average cost per EU is observed. It is shown for both the EEC

and the proposed case that the average cost per EU increases

as the system’s total energy deficiency increases. Because of

more energy curtailment allowed by the EUs the average cost

incurred per EU increases. However, the average cost per EU is

less for our scheme than for the EEC scheme. As shown in the

figure, the average costs per EU for the proposed case are 0.76,

0.86, 0.78, 0.85 and 0.88 times the cost of the EEC scheme

for energy deficiencies of 2, 4, 6, 8 and 10 kWh respectively.

Therefore, there is an average reduction in cost of 17% for

our scheme. The CPP of each EU enables it to decide on the

amount to be curtailed to reduce the total cost to the system

and thus obtain performance benefit in terms of average cost

per EU relative to the EEC scheme.

The effect of the number of EUs on the average total cost

for the system is shown in Fig. 5. Assuming a total 10 kWh
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energy deficiency, we increase the number of EUs in the

network from 5 to 25 and observe impact on total cost for

both the proposed scheme and the EEC scheme. In Fig. 5 the

total cost for the system decreases as the number of EUs in

the network increases. The reason behind this phenomenon

is that as the number of EUs in the network increases less

energy can be curtailed from each EU to address the total

system energy deficiency, and consequently the average total

cost decreases. It is also observed in Fig. 5 that the average

total cost for our proposed scheme is between 5.6% and 26%
less than the EEC scheme, and on average 15% less than

the EEC scheme, with increasing performance benefit for our

scheme as the number of EUs increases. The performance

benefit is due to the fact that in the proposed scheme the

EUs decide on their energy curtailment amount based on their

preferences, and optimally choose the amount to be curtailed

from them. On the other hand, in the EEC scheme the energy

is curtailed uniformly from all the users in the network. Hence,

this optimal selection of the energy leads to an improvement

for the proposed scheme in terms of total cost incurred to the

smart grid system compared to the EEC scheme. Furthermore,

such improvement in total cost becomes more pronounced as

the number of EUs increases.

VI. CONCLUSION

In this paper we have introduced an approach for outage

management in smart grid to address power disruption in the

system. We have formulated a non-cooperative generalized

Nash game among the energy users in the network. In the

game each user strategically chooses an amount of energy to

be curtailed from them based on their preference parameter.

We have studied the properties of the game and showed that

the game leads to an optimal solution for curtailment. By

formulating the game as a variational inequality problem we

have proposed an algorithm that enables the users of energy

in the network to choose their strategies of energy curtailment

and reach the optimal solution for the game. With simulations,

it has been shown that the total cost to the smart grid system

due to this energy outage converges to a minimum at the

variational equilibrium. We have compared our scheme with

an equal energy curtailment scheme and have demonstrated

improvement in terms of reduction in average total cost and

reduction in average cost per user in the system. Considering

the proposed scheme, potential future extensions of this work

include determining computational complexity, for any number

of EUs, and determining optimal network sizes.
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