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Abstract

In this thesis we investigate the design of transmission resource allocation in current

and future wireless communication systems. We focus on systems with multiple

antennas and characterize their performance from an information-theoretic view-

point. The goal of this work is to provide practical transmission and resource

allocation strategies taking into account imperfections in estimating the wireless

channel, as well as the broadcast nature of the wireless channel.

In the first part of the thesis, we consider training-based transmission schemes

in which pilot symbols are inserted into data blocks to facilitate channel estimation.

We consider one-way training-based systems with and without feedback, as well as

two-way training-based systems. Two-way training enables both the transmitter

and the receiver to obtain the channel state information (CSI) through reverse

training and forward training, respectively. In all considered cases, we derive ef-

ficient strategies for transmit time and/or energy allocation among the pilot and

data symbols. These strategies usually have analytical closed-form expressions and

can achieve near optimal capacity performance evidenced by extensive numerical

analysis.

In one-way training-based systems without feedback, we consider both spa-

tially independent and correlated channels. For spatially independent channels, we

provide analytical bounds on the optimal training length and study the optimal

antenna configuration that maximizes an ergodic capacity lower bound. For spa-

tially correlated channels, we provide simple pilot and data transmission strategies

that are robust under least-favorable channel correlation conditions.

In one-way training-based systems with feedback, we study channel gain feed-

back (CGF), channel covariance feedback (CCF) and hybrid feedback. For spatially

independent channels with CGF, we show that the solutions to the optimal training

length and energy coincide with those for systems without feedback. For spatially

correlated channels with CCF, we propose a simple transmission scheme, taking

into account the fact that the optimal training length is at most as large as the

number of transmit antennas. We then provide a solution to the optimal energy
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allocation between pilot and data transmissions, which does not depend on the

channel spatial correlation under a mild condition. Our derived resource allocation

strategies in CGF and CCF systems are extended to hybrid CCF-CGF systems.

In two-way training-based systems, we provide analytical solutions to the trans-

mit power distribution among the different training phases and the data transmis-

sion phase. These solutions are shown to have near optimal symbol error rate

(SER) and capacity performance. We find that the use of two-way training can

provide noticeable performance improvement over reverse training only when the

system is operating at moderate to high signal-to-noise ratio (SNR) and using high-

order modulations. While this improvement from two-way training is insignificant

at low SNR or low-order modulations.

In the second part of the thesis, we consider transmission resource allocation in

security-constrained systems. Due to the broadcast nature of the wireless medium,

security is a fundamental issue in wireless communications. To guarantee secure

communication in the presence of eavesdroppers, we consider a multi-antenna trans-

mission strategy which sends both an information signal to the intended receiver

and a noise-like signal isotropically to confuse the eavesdroppers. We study the

optimal transmit power allocation between the information signal and the artificial

noise. In particular, we show that equal power allocation is a near optimal strategy

for non-colluding eavesdroppers, while more power should be used to generate the

artificial noise for colluding eavesdroppers. In the presence of channel estimation

errors, we find that it is better to create more artificial noise than to increase the

information signal strength.
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Chapter 1

Introduction

1.1 Motivation and Background

Over the past thirty years, the wireless communication technology has undergone

three generations trying to meet the increasing demand for high-speed and reliable

communications. Error-resilient high-rate information transfer has proven to be

very challenging in the time-varying channel conditions due to the user mobility.

The existing wireless networks have gradually become saturated by conventional

mobile telephone traffic. To address the ever-increasing demand, the telecommu-

nication industry is constantly looking into new network architectures and more

efficient use of transmission resource.

The main impairment in wireless communication systems is the wireless channel,

a key feature of which is multipath fading [1]. The transmitted signal is reflected

and diffracted by the obstacles in the wireless environment, resulting in multiple

copies of the same signal superimposed at the receiver. Due to the movement

in the wireless environment and the change in locations of the transmit-receive

pair, the multipath phenomenon causes rapid change in both the amplitude and

the phase of the received signal. Early designs of wireless communication systems

aimed to mitigate the multipath fading effect, while recent designs utilize the mul-

tipath fading to improve the system performance. The technique that makes use of

the channel fading effect is named diversity, which allows the reception of a num-

ber of different replica of the transmitted signal over time (temporal diversity),

space (spatial diversity), frequency (frequency diversity) or antenna polarization

(polarization diversity) [2–4]. The system performance measures used to assess the

diversity schemes are usually in terms of the information capacity or the detection

error probability. The former is an important theoretical metric characterizing the

maximum data rate that the wireless channel can support, while the latter is a prac-

1
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tical metric characterizing the quality of service (QoS) of a particular transceiver

design.

In this thesis, we focus on the information-theoretic performance of spatial

diversity systems with multiple transmit and/or receive antennas. The idea of

spatial diversity using multiple transmit and receiver antennas was first discussed

in [3]. The spatial diversity technique combines multiple copies of the signal re-

ceived at different antennas in an optimal way to improve the information ca-

pacity with no extra expense on transmit power or bandwidth. This surprising

result has stimulated enormous amount of research in the area of multi-antenna

systems. Pioneering works on multi-antenna systems demonstrated a linear im-

provement in the capacity with the number of antennas [5, 6]. Recent literature

surveys on multi-antenna techniques can be found in [7, 8]. Multi-antenna tech-

nology has been incorporated into current wireless communication standards, in-

cluding wireless local area networks (WLAN) [9–11], wireless metropolitan area

networks (WMAN) [11–13], the third generation cellular networks [14,15] and even

in a second generation terrestrial digital video broadcasting system (DVB-T2) [16].

In multi-antenna systems, there are many degrees of freedom in transmission

resource optimization, such as the structure of data transmission and the power

allocation among different transmit antennas. Therefore, the main focus of this

thesis is on the transmission resource allocation to realize the enormous capacity

gains with multi-antenna transmission. In particular, we study the problem of

resource allocation in the following two scenarios:

• systems with channel estimation errors

• systems with physical-layer security constraints

In order to achieve the maximum capacity gain offered by multi-antenna sys-

tems, the channel state information (CSI) is required at the transmitter and/or

the receiver. In practical systems, however, the states of the wireless channel are

unknown and hence, need to be estimated. Therefore, an accurate channel estima-

tion is crucial in achieving high system performance. Both blind and pilot-assisted

channel estimation methods were proposed in the literature, e.g ., [17–23]. The use

of pilot signals, which is known to the receiver, simplifies the channel estimation

problem. However, a portion of the transmission resource, such as time and en-

ergy, needs to be allocated to pilot transmission. As a result, less resource is left

for transmitting the actual data. Hence, the optimal resource allocation between

pilot and data becomes a very interesting and important design problem.
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Figure 1.1: An example of a multiple-input multiple-output (MIMO) communi-
cation system over a wireless channel. The transmitter has Nt antennas and the
receiver has Nr antennas.

Security is a fundamental problem in wireless communications due to the broad-

cast nature of the wireless medium. This problem deals with the transmission of

a confidential message to the intended receiver in the presence of malicious users

(also called eavesdroppers). With multiple transmit antennas, the transmitter is

able to send the confidential message to the intended receiver and at the same

time generating a noise-like signal to confuse the eavesdroppers [24]. As the to-

tal transmit power is limited, the ratio of power allocated to the transmission of

the confidential message and the artificial noise is a crucial design parameter for

maximizing the achievable data rate while ensuring security.

In the reminder of this chapter, we first provide background information on the

capacity of multi-antenna systems without channel estimation errors and security

constraints. Then we discuss new design problems by considering imperfect channel

estimation or security constraints, which are to be investigated in this thesis.

1.1.1 Capacity of Multi-Antenna Systems

Fig. 1.1 shows an example of a multiple-input multiple-output (MIMO) commu-

nication system. Assuming perfect symbol timing synchronization and matched

filter sampling [20], the discrete-time input-output relationship is given by

y = Hx + n, (1.1)
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where

• Nt is the number of antennas at the transmitter

• Nr is the number of antennas at the receiver

• y is the Nr × 1 received symbol vector

• x is the Nt × 1 transmitted symbol vector

• H is the Nr × Nt channel gain matrix with zero-mean complex Gaussian

entries. The (i, j)th entry, denoted by [H ]ij, represents the channel gain from

the jth transmit antenna to the ith receive antenna

• n is the Nr × 1 additive white Gaussian noise (AWGN) vector.

The signal model in (1.1) is suitable for narrowband communication systems where

the channel is flat fading [1], i.e., the signal bandwidth is smaller than the coherence

bandwidth of the wireless channel.

From an information-theoretic viewpoint, the information capacity is an funda-

mental system measure which depends on various parameters, such as the antenna

configuration and the availability of CSI. An overview of results on the capacity

limits of MIMO channels can be found in [25]. Most existing results in the liter-

ature, which focused on coherent detection, assumed perfect CSI at the receiver.

With the perfect receiver CSI assumption, the ergodic capacity of a generic MIMO

system described in (1.1) is given by [6]

C = EH

{
log2

∣∣∣INt +
1

σ2
n

H†HQ
∣∣∣
}

, (1.2)

where Q = E{xx†} is the input (data) covariance matrix and σ2
n is the AWGN

noise power at the receiver. The expectation takes into account all possible realiza-

tions of the MIMO channel. Hence, the ergodic capacity is a long-term performance

measure of a communication system.

The studies on MIMO systems can be categorized based on the availability of

CSI at the transmitter side as:

• Systems with no transmitter CSI : the transmitter has no knowledge about

the channel.

• Systems with statistical transmitter CSI : the transmitter knows the spatial

correlation between the MIMO channels, but not the instantaneous channel

gains.
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• Systems with full transmitter CSI : the transmitter knows the instantaneous

channel gains and the channel spatial correlation.

In the following, we discuss the existing results on each of the above categorizes

with the perfect receiver CSI assumption.

No transmitter CSI with spatially independent and identically dis-

tributed (i.i.d.) channels: The case of spatially i.i.d. channels can be justified by

having sufficient scattering around the transmitter and the receiver as well as suf-

ficient spacing between antenna elements. For spatially i.i.d. channels, the results

in [5, 6] showed that it is optimal to evenly distribute the transmit power among

the Nt antennas and transmit statistically independent Gaussian input (data) sig-

nals, when no CSI is available at the transmitter. Mathematically, the transmitter

chooses Q = Pd

Nt
INt , where Pd is the total data transmit power. More importantly,

their results demonstrated a linear improvement in the capacity with the number

of antennas, without increasing transmission resource. The ergodic capacity of a

MIMO system with the CSI perfectly known at the receiver is given by

C = EH

{
log2

∣∣∣INt +
Pd

σ2
nNt

H†H
∣∣∣
}

. (1.3)

No transmitter CSI with spatially correlated channels: The spatial

correlation between channels arises due to practical constraints on the antenna

configuration, the distance between the transmitter and the receiver, as well as in-

sufficient scattering environment [26–28]. Without transmitter CSI, the transmitter

may still evenly distribute the transmit power among the Nt transmit antennas re-

sulting in the same ergodic capacity expression as in the case of i.i.d. channels

given in (1.3).

Furthermore, the impact of channel spatial correlation on the capacity was

investigated in [29,30]. Their result showed that the ergodic capacity decreases as

the channel spatial correlation among either the transmit antennas or the receive

antennas increases. Since the transmitter does not have any knowledge about the

channel correlation, it is difficult to find the optimal transmission strategy that

maximizes the capacity. An alternative approach was used in [31] to find a robust

transmission strategy that maximizes the capacity for the least-favorable channel

correlation. Their result showed that evenly distributing the transmit power among

the Nt antennas is indeed the most robust transmission strategy.
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Statistical transmitter CSI with spatially correlated channels1: The

case where the channel spatial correlation is known at the transmitter is often re-

ferred to as systems with covariance feedback. For this type of systems, the transmit

power can be optimally distributed among the Nt antennas for maximum capacity.

Most existing studies on covariance feedback systems considered transmitter-side

correlation [32–34,36–38]. We define the covariance matrix of the channels as

RH =
E{H†H}

Nr

. (1.4)

Therefore, H = H0R
1/2
H , where H0 has i.i.d. complex Gaussian entries. Let

the eigenvalue decomposition (EVD) of the channel covariance matrix be RH =

UGU †. U is a unitary matrix whose columns represent the eigenvectors of RH . G

is a diagonal matrix whose entries represent the eigenvalues of RH given by gi, ∀ i =

1, ..., Nt. It was shown in [32,36] that the optimal transmit power allocation is given

by Q = UQ̂U †, where Q̂ is a diagonal matrix whose entries are q̂i, ∀ i = 1, ..., Nt.

That is to say, Q has the same eigenvectors as RH . Then, the ergodic capacity in

(1.2) reduces to

C = EH

{
log2

∣∣∣INr +
1

σ2
n

HQH†
∣∣∣
}

= EH0

{
log2

∣∣∣INr +
1

σ2
n

H0G
1/2Q̂G1/2H0

†
∣∣∣
}

= Ez

{
log2

∣∣∣INr +
1

σ2
n

Nt∑
i=1

giq̂izizi
†
∣∣∣
}

, (1.5)

where zi is the ith column of H0.

To achieve maximum capacity, q̂i needs to be optimized subject to a total power

constraint given by
∑Nt

i=1 q̂i = Pd. Intuitively, more power should be allocated into

stronger (statistical) eigen-channels, that is to say, q̂i is an increasing function

of gi. Unfortunately, there is no closed-form solution for q̂i and only numerical

methods are available [38]. In the special case where only one of q̂i is non-zero, the

transmission is referred to as beamforming. The use of beamforming implies q̂i = Pd

if gi is the largest eigenvalue of RH . The condition under which beamforming

transmission is the optimal transmission strategy was found in [33,34,36,37]. The

general message is that beamforming is optimal when the channel spatial correlation

1The most commonly considered statistical transmitter CSI is the channel spatial correlation,
which is discussed in this thesis. Apart from spatial correlation, the mean value of the channel
gains were also studied in the literature, usually referred to as mean feedback. The results on
capacity of multi-antenna systems with mean feedback can be found in [32–35].
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is sufficiently large or the signal-to-noise ratio (SNR) is sufficiently low. When

both the transmitter-side and receiver-side correlations are considered, the results

in [39] showed that the optimal eigenvectors of Q are still given by the eigenvectors

of the transmitter-side covariance matrix. However, the optimal eigenvalues of Q

depend on both the transmitter-side and receiver-side correlations. The optimality

of beamforming transmission was also studied in [39].

Furthermore, the impact of channel spatial correlation on the capacity was

investigated in [30]. With covariance feedback, it was shown that the ergodic

capacity is an increasing function of the channel spatial correlation. This is in

contrast with the result for systems with no transmitter CSI.

Full transmitter CSI with either i.i.d. or correlated channels: When

each realization of the channel gains is known at the transmitter, the data transmis-

sion can be adaptive according to the channel realization and hence, the capacity

can be further improved. Regardless of the spatial correlation between the chan-

nels, the transmit power allocation among the Nt antennas follows a water-filling

solution [6]. Let the EVD of H†H be H†H = V ΛV †, where the (diagonal)

elements of Λ are given by χi, ∀ i = 1, ..., Nt. The water-filling solution for the

transmit power allocation gives Q = V Q̂V † where the entries of the diagonal

matrix Q̂ are given by

q̂i = [η − σ2
nχ−1

i ]+, (1.6)

where [a]+ = max{0, a} and η represents the water level determined by the total

power constraint
∑Nt

i=1 q̂i = Pd. With the optimal transmit power allocation, the

ergodic capacity in (1.2) reduces to

C = EΛ

{
log2

∣∣∣INt +
1

σ2
n

ΛQ̂
∣∣∣
}

= Eχ

{ Nt∑
i=1

log2

(
1 +

1

σ2
n

χiq̂i

)}

= Eχ

{ m∑
i=1

log2

(ηχi

σ2
n

)}
, (1.7)

where m denotes the number of non-zero q̂i and the expectation in (1.7) is taken

over the m largest χi. Compared with the capacity of systems with no transmitter

CSI, the capacity improvement from water-filling is significant at low SNR while

the improvement reduces as SNR increases. At asymptotically high SNR, the

water-filling solution converges to the equal power distribution, i.e., q̂i = Pd/Nt or
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Q = Pd

Nt
INt , which is the optimal solution for systems with no transmitter CSI.

Taking into account the time-varying nature of the fading channels, a temporal

water-filling with a long-term average power constraint was introduced in [40,41] in

addition to the spatial water-filling discussed above. Intuitively, less power should

be used when the channel is weak and more power should be used when the channel

is strong. Therefore, the capacity can be further improved by applying the temporal

water-filling.

For correlated channels, the optimality of beamforming, which only uses the

strongest eigen-channel for transmission, was studied in [42]. Furthermore, the

impact of channel spatial correlation on the capacity was investigated in [30]. With

full transmitter CSI, the ergodic capacity is a decreasing function of the channel

spatial correlation. This agrees with the result for systems with no transmitter

CSI, while it is in contrast with that for systems with covariance feedback.

The capacity results from the literature discussed so far assume perfect receiver

CSI. In the next section, we focus on practical transmission schemes and identify

new design problems with imperfect receiver CSI.

1.1.2 Training-Based Systems

In practical communication systems with coherent detection, the CSI needs to be

estimated at the receiver and hence, the CSI is never perfectly known due to the

noise and time variations in the fading channels. Pilot-symbol-assisted modula-

tion (PSAM) has been widely used in many practical communication systems [43],

e.g ., in Global System for Mobile Communications (GSM) [44], to assist estimation

of unknown channel parameters. In PSAM schemes, training symbols or pilots are

inserted into data blocks periodically to facilitate channel estimation at the re-

ceiver [43]. Therefore, the channel gains can be modeled as

H = Ĥ + H̃ , (1.8)

where Ĥ denotes the estimate of H and H̃ denotes the estimation error. The

choice of channel estimation method depends on the performance criteria, e.g .,mean

square error or likelihood. In this thesis, we consider the minimum mean square

error (MMSE) estimator as the optimal estimator.

A survey on various PSAM schemes can be found in [45]. Generally speaking,

there are two types of PSAM schemes, namely time-division multiplexing and su-

perimposed transmission, as shown in Fig. 1.2. The pilot and data symbols are

time multiplexed in the transmission blocks in the former type, while the pilot and
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Figure 1.2: Examples of pilot-symbol-assisted modulation (PSAM). Each rectangu-
lar block represents a transmitted symbol. d denotes a data symbol and p denotes
a pilot symbol. The time-division multiplexing scheme is shown on the top and the
superimposed transmission scheme is shown at the bottom.

data symbols are transmitted simultaneously in the latter type. This thesis focuses

on the time-division multiplexing schemes.2

Similar to the previous section, we can categorize the studies on training-based

MIMO systems based on the availability of CSI at the transmitter side as:

• One-way training-based systems with no feedback : the transmitter has no

knowledge about the channel, i.e., no transmitter CSI.

• One-way training-based systems with feedback : there exists a feedback link

from the receiver to the transmitter to provide the following two forms of

transmitter CSI:

– Channel covariance feedback (CCF): the transmitter knows the spatial

correlation between the MIMO channels, i.e., statistical transmitter CSI.

– Channel gain feedback (CGF): the transmitter knows the estimated

channel gains. Note that when the channels are spatially correlated,

the channel correlation can be readily obtained from CGF, which effec-

tively results in a hybrid CCF-CGF system, i.e., full transmitter CSI.

• Two-way training-based systems : the channel gains are estimated by both

the transmitter and the receiver with two-way pilot transmissions.

In the following, our discussions are focused on traditional one-way training-

based systems to provide background knowledge for Chapters 2 and 3. On the

other hand, two-way training was recently proposed in [49] as an alternative way

of obtaining transmitter CSI, instead of using explicit feedback. In this scheme,

2The design of superimposed transmission schemes was discussed in [22,46–48].
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the transmitter acquires the outgoing CSI using the pilots sent from the receiver

(i.e., reverse training) and then the receiver estimates the effective CSI using the

pilots sent from the transmitter (i.e., forward training). We will discuss two-way

training-based systems in detail in Chapter 4.

Ergodic capacity with imperfect receiver CSI: With channel estimation

errors at the receiver, the capacity results discussed in Section 1.1.1 are not achiev-

able. The degradation in the capacity due to imperfect receiver CSI was analyzed

in [50–52]. The exact ergodic capacity with imperfect receiver CSI is still unknown.

However, analytical bounds were derived in the literature [50, 53]. In particular, a

lower bound and an upper bound on the ergodic capacity were derived for spatially

i.i.d. MIMO channels in [53], and they were shown to be reasonably tight. The

ergodic capacity lower bound is given by

C = EĤ

{
log2

∣∣∣INt +
1

σ2
n + σ2

H̃
Pd

Ĥ
†
ĤQ

∣∣∣
}

, (1.9)

where σ2
H̃

is the variance of the channel estimation error H̃ . One can see from

(1.9) that the effect of channel estimation errors is amplified by the data transmit

power Pd. Therefore, for a fixed quality of channel estimation, the ergodic capacity

saturates as the data transmit power increases [53]. This is in contrast with the

perfect receiver CSI case where the ergodic capacity always increases with the data

transmit power.

The optimal data transmission strategy for spatially i.i.d. MIMO channels was

discussed in [53–56]. With no transmitter CSI, it is optimal to evenly distribute

the transmit power among Nt antennas, i.e.,Q = Pd/Nt. With full transmitter

CSI3, the optimal strategy follows a spatial water-filling solution according to Ĥ
†
Ĥ

(normalized by σ2
n +σ2

H̃
Pd) instead of H†H . Taking into account the time-varying

nature of the fading channels, another temporal water-filling can be applied for such

MIMO systems with a long-term power constraint. However, it was shown in [53]

that the temporal water-filling does not give noticeable capacity gains when the

spatial water-filling is already used.

For spatially correlated MIMO channels, the derivation of capacity bounds with

imperfect receiver CSI remains an open problem. Some initial result was reported

in [57] in which a suboptimal channel estimation method was chosen to obtain a

lower bound on the ergodic capacity. Another attempt can be found in [58] in

which a relaxed ergodic capacity lower bound was found for a special class of rank-

3Full transmitter CSI means the transmitter has the same channel knowledge as the receiver,
that is the channel estimates Ĥ.
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deficient channel covariance matrices. However, it is unclear how tight the relaxed

capacity bound is. This thesis aims to derive a reasonably tight lower bound on the

ergodic capacity for correlated MIMO channels with the optimal channel estimation

method.

Design of pilot structure: The quality of the channel estimation is deter-

mined by the structure and power of pilot transmission. The pilot structure be-

comes important for MIMO systems in which there is a large number of channel

gains to be estimated. By optimally designing the pilot structure, the channel es-

timation error can be minimized, which in turn, maximizes the ergodic capacity.

For spatially i.i.d. channels, the optimal pilot signals are orthogonal with respect

to time among the transmit antennas and the total energy of the pilots transmitted

on each antenna is equal to each other [21,54,59].

For spatially correlated MIMO channels, the design of pilot structure depends

on the availability of statistical transmitter CSI. For systems with no transmitter

CSI, it is difficult to find the optimal pilot structure for the unknown channel spatial

correlation. In this thesis, we look for a robust design that minimizes the channel

estimation error for the least-favorable channel correlation. For systems with co-

variance feedback, the optimal pilot structure is to train along the eigenvectors of

the channel covariance matrix with training power being water-filled according to

the eigenvalues of the channel covariance matrix [60–63]. It was shown in [62, 63]

that the use of the optimal pilot structure, compared to the orthogonal pilot struc-

ture, significantly reduces the channel estimation error at low SNR for correlated

MIMO channels. While at asymptotically high SNR, the water-filling solution

converges to the equal power distribution, which makes the optimal pilot signals

having an orthogonal structure.

Transmission resource allocation: A crucial and nontrivial problem in

PSAM systems is the transmission resource allocation between the pilot and data

symbols. Since pilots carry no useful information, the insertion of pilots reduces

the information capacity as less resource is allocated to the actual data transmis-

sion. Trade-off analysis is required on the distribution of transmission resource,

such as the transmit time and energy to pilots and data. On one hand, allocating

more resource to pilot transmission results in more accurate channel estimation

which helps the detection during data transmission. On the other hand, when

more resource is allocated to pilots, less resource is left for data transmission which

directly affects the information capacity. Therefore, it is important to find the

optimal resource allocation in order to achieve maximum capacity.

In the time-division multiplexing PSAM scheme, only a portion of the total
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transmit time is used for data transmission and the rest of the time is used for

training. Denote the proportion of time for data transmission as ψ. Taking into

account the training overhead, the ergodic capacity lower bound for spatially i.i.d.

channels is given by

C = ψEĤ

{
log2

∣∣∣INt +
1

σ2
n + σ2

H̃
Pd

Ĥ
†
ĤQ

∣∣∣
}

. (1.10)

From the results in [53] we know that the ergodic capacity lower bound in (1.10)

is reasonably tight. Hence, it can be used as the objective function to study the

transmission resource allocation problem.

Existing studies on the optimal training length and energy allocation mainly fo-

cused on spatially i.i.d. channels with no transmitter CSI [54,64–67]. The common

trends found in these works are as follows. Firstly, the optimal training length in-

creases with the number of transmit antennas, while it is independent of the number

of receive antennas. Secondly, the frequency of pilot transmission increases with the

Doppler spread of the fading channel. Thirdly, the ratio of total energy allocated

to pilot transmission decreases as the average operating SNR increases. The spe-

cific design guidelines depend on the system model used. For example, the authors

in [54] considered a block-fading MIMO channel model which assumes that the

channel gains stay constant over a transmission block and change to independent

realizations in the next block. For the block-fading channel model, they showed

that the optimal training length equals the number of transmit antennas and the

optimal ratio of energy allocated to training was found in a simple closed form.

However, optimal solutions for the training length and energy allocation are

generally unknown for both spatially i.i.d. and correlated MIMO systems with

statistical or full transmitter CSI. For i.i.d. channels with full transmitter CSI, the

water-filling solution of the data transmission results in a complicated expression

for the ergodic capacity lower bound, which makes the resource allocation problem

difficult to solve. For correlated channels, the lack of a tight ergodic capacity bound

is the key hurdle in studying the resource allocation problem from an information-

theoretic viewpoint. In this thesis, we address these issues and provide design

guidelines on transmission resource allocation with various forms of transmitter

CSI.

1.1.3 Security-Constrained Systems

Security is a fundamental problem in wireless communications due to the broadcast

nature of the wireless medium. Traditionally, secure communication is achieved
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by using cryptographic technologies such as encryption. On the other hand, the

studies from an information-theoretic viewpoint have found conditions for reliable

secure communication without using traditional cryptographic technologies that are

based on unproven mathematical assumptions such as the assumed infeasibility of

factoring large integers and finding discrete logarithms over large finite fields [68].

The notion of information-theoretic security provides a fundamental measure of

the security level of a system at the physical layer, which is independent of the

computational power of the eavesdropper. The technique to realize such security is

particularly important in the initial stage of exchanging the secret key in a practical

secure communication system. Furthermore, this physical-layer approach can be

used jointly with encryption to enhance security in future wireless communication

systems.

In this thesis, we carry out an information-theoretic study on the transmit

power allocation for physical-layer security-constrained systems with a specific

multi-antenna transmission scheme. In the following, we first introduce the no-

tion of secrecy capacity and the transmission scheme. Then, we briefly discuss the

problem of transmit power allocation.

Secrecy Capacity: In the pioneering works on information-theoretic security,

Wyner introduced the wiretap channel for single point-to-point communication [69],

which was extended to broadcast channels by Csiszár and Körner [70]. In partic-

ular, a widely-used lower bound on the secrecy capacity of a wireless link in the

presence of an eavesdropper is given as [70]

CS = [C1 − C2]
+, (1.11)

where C1 denotes the information capacity of the channel between the transmitter

and the intended receiver, C2 denotes the information capacity of the channel

between the transmitter and the eavesdropper, and [a]+ = max{0, a} ensures the

secrecy capacity lower bound to be non-negative. From (1.11) we see that a positive

secrecy capacity can be achieved if the intended receiver has a better channel than

the eavesdropper.

Recently, information-theoretic security with multi-antenna transmission has

drawn considerable attention. Many works have been devoted to deriving and

analyzing the secrecy capacity with various antenna configurations and channel

conditions. With multiple antennas at the transmitter, the optimal input struc-

ture (for Gaussian codes) that achieves the secrecy capacity of Gaussian channels

was found to be in the form of beamforming transmission [71, 72]. The secrecy

capacity of Gaussian channels with multiple antennas at both the transmitter and
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the receiver was obtained in [73,74]. These results were also extended to multiple-

access [75,76] and broadcast channels [77,78]. One of the main assumptions in the

above-mentioned works is that both the intended receiver’s channel and the eaves-

dropper’s channel are known at the transmitter. Clearly the assumption of knowing

eavesdropper’s channel is not always possible, especially for fading channels. The

ergodic secrecy capacity without knowing the eavesdropper’s channel was studied

in [79,80]. The authors in [79] considered the single antenna case and proposed an

on-off power transmission with variable-rate allocation scheme, which was shown to

approach the optimal performance at asymptotically high SNR. The authors in [80]

extended the ergodic secrecy capacity result to systems with multiple antennas and

developed capacity bounds in the large antenna limit.

Transmission of Artificial Noise: Various physical-layer signal processing

techniques were proposed to achieve secure communication even if the receiver’s

channel is worse than the eavesdropper’s channel. One of the main techniques

is the use of interference or artificial noise to confuse the eavesdropper. With

two base stations connected by a high capacity backbone, one base station can

simultaneously transmit an interfering signal to secure the uplink communication

for the other base station [81, 82]. In the scenario where the transmitter has a

helping interferer or a relay node, the secrecy level can also be increased by having

the interferer [83] or relay [84] to send codewords independent of the source message

at an appropriate rate. When multiple cooperative nodes are available to help the

transmitter, the secrecy rate maximizing weights of the signal transmitted from

cooperative nodes were derived for both decode-and-forward [85] and amplify-and-

forward [86] protocols.

When multiple antennas are available at the transmitter, it is possible to simul-

taneously transmit both the information bearing signal and the artificial noise to

achieve secrecy in a fading environment [24]. The artificial noise acts as a mask for

the information transmission. This technique was studied under the scenario where

the transmitter knows the intended receiver’s channel but not the eavesdropper’s

channel. In this case, as shown in Fig. 1.3, the information signal is transmitted

into the intended receiver’s channel, while the artificial noise is radiated isotropi-

cally into all channel directions other than the intended receiver’s channel. Hence,

the artificial noise is always received by the eavesdropper but not by the intended

receiver.

Optimal Power Allocation: We focus on this multi-antenna transmission

technique with a constraint on the total transmit power. Since the limited amount

of transmit power needs to be used for both the transmission of the information
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Figure 1.3: Multi-antenna transmission in the presence of the eavesdroppers. The
transmitter is able to send the information signal to the intended received, at the
same time generating the artificial noise isotropically (except in the direction of
the intended receiver) to confuse the eavesdropper.

signal and the artificial noise, the ratio of power allocation between the two becomes

an important design parameter. Denote the ratio of the total transmit power

allocated to the information signal as φ. The secrecy capacity lower bound is

clearly a function of φ given by

CS(φ) = [C1(φ)− C2(φ)]+, (1.12)

where C1(φ) and C2(φ) are both increasing functions of φ. When the transmitter

introduces the artificial noise, i.e.,φ decreases from 1, both C1(φ) and C2(φ) de-

crease as less power is used to transmit the information signal. The decrease in

C2(φ) may be faster than that in C1(φ) due to the reception of the artificial noise

at the eavesdropper. In this thesis we aim to find the optimal value of the power

allocation ratio φ to maximize the secrecy capacity lower bound CS.
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1.2 Overview and Contribution of Thesis

The main focus of this thesis is on the transmission resource allocation of multi-

antenna wireless communication systems. The ergodic capacity or its bounds are

used as the figure of merit. For training-based transmission systems, we study

the optimal allocation of the transmit time and energy between pilot symbols and

data symbols. For security-constrained systems, we consider the multi-antenna

transmission with artificial noise and study the optimal transmit power allocation

between the information signal and the artificial noise.

1.2.1 Questions to be Answered

The following open questions are answered in the thesis:

• What is the optimal transmit and receive antenna configuration taking chan-

nel estimation errors into account?

• How does the channel spatial correlation affect the design of pilot and data

transmission?

• How does the statistical transmitter CSI change the optimal transmission

resource allocation?

• How does the full transmitter CSI change the optimal transmission resource

allocation?

• What is the optimal transmit energy allocation between pilots and data in

two-way training-based systems?

• For multi-antenna transmission in the presence of eavesdroppers, what is the

optimal transmit power allocation between the information signal and the

artificial noise?

• How does the channel estimation error affect the optimal power allocation

between the information signal and the artificial noise?

1.2.2 Thesis Contributions and Organization

Chapter 2 - One-Way Training-Based Systems with No Feedback

Chapter 2 considers and revisits the traditional one-way training-based sys-

tems where pilot symbols are periodically inserted into data symbols for channel

estimation at the receiver. The transmitter does not have any CSI. We obtain
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new practical design solutions to transmit time allocation between pilots and data,

transmit energy allocation between pilots and data, as well as the optimal number

of transmit and receive antennas. An ergodic capacity lower bound is used as the

figure of merit in solving the optimization problems. The new contributions in this

chapter are:

• For fixed power transmission, we show that all available time should be used

for transmission if the training and data lengths can be jointly optimized.

We also provide analytical bounds on the optimal training and data lengths.

• For fixed power transmission with a fixed training length, we derived a thresh-

old SNR above which it is optimal to use all available time for transmission.

• When an extra antenna is available to be placed on either end of the system,

we find that it should be placed at the receiver at moderate to high SNR when

Nt ≥ Nr. When Nt < Nr, we show that a critical SNR value needs to be

considered, below which the extra antenna should be placed at the receiver.

• When it is only practical to change the number of transmit antennas, adding

extra antennas generally improves the capacity at high SNR and large channel

coherence interval, provided that Nt < Nr. More importantly, the optimal

number of transmit antennas can exceed the number of receive antennas, and

the capacity improvement by optimal antenna configuration is significant

when the channel coherence interval is large. We also show that optimizing

antenna configuration can be more beneficial than power optimization over

pilot and data symbols particularly at large channel coherence intervals.

• We derive a lower and upper bound on the ergodic capacity for spatially cor-

related MIMO systems. Our numerical results show that the derived bounds

are reasonably tight.

• We show that the capacity increases with channel correlation at low SNR, but

decreases with correlation at high SNR. We also derive a robust transmission

scheme which achieves the best channel estimation and capacity performance

for the least-favorable channel correlation.

The results in this chapter have been presented in the following publications

which are listed again for ease of reference:

J1. Xiangyun Zhou, Parastoo Sadeghi, Tharaka A. Lamahewa, and Salman Dur-

rani, “Optimizing Antenna Configuration for MIMO Systems with Imperfect
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Channel Estimation”, IEEE Trans. Wireless. Commun., vol. 8, no. 3, pp.

1177-1181, Mar. 2009.

C1. Xiangyun Zhou, Tharaka A. Lamahewa, Parastoo Sadeghi, and Salman Dur-

rani, “Capacity of MIMO Systems: Impact of Spatial Correlation with Chan-

nel Estimation Errors”, in Proc. IEEE Int. Conf. on Commun. Syst.

(ICCS), Guangzhou, China, Nov. 2008, pp. 817-822.

C4. Xiangyun Zhou, Parastoo Sadeghi, and Tharaka A. Lamahewa, “Optimizing

Training-based MIMO Systems: How Much Time is Needed for Actual Trans-

mission?”, in Proc. IEEE Veh. Tech. Conf. (VTC-Spring), Taipei, Taiwan,

May 2010, pp. 1-5.

Chapter 3 - One-Way Training-Based Systems with Feedback

Chapter 3 considerers the traditional one-way training-based systems as in

Chapter 2. The major difference between the two chapters is the availability of

transmitter CSI. In Chapter 3, both CCF and CGF, as well as hybrid CCF-CGF

are considered. We obtain practical solutions to transmit time and energy alloca-

tion between the pilots and data. An ergodic capacity lower bound is used as the

figure of merit in solving the optimization problems. The new contributions in this

chapter are:

• For systems with i.i.d. channels and estimated channel gains available at

the transmitter at the start of the data transmission phase (i.e., no feedback

delay), we prove that the solutions to the optimal energy allocation to pilot

and data transmission, as well as the optimal training length coincide with

the solutions for systems with no transmitter CSI.

• For systems with i.i.d. channels and estimated channel gains available at

the transmitter after the data transmission phase starts (due to feedback

delay), our numerical results show that evenly distributing the power over

the entire data transmission (regardless of the delay time) gives near optimal

performance at practical SNR values. As a result, the solutions to the opti-

mal energy allocation to pilot and data transmission, as well as the optimal

training length for the delayless feedback system stay nearly optimal for the

delayed system regardless of the delay time.

• For systems with correlated channels and statistical transmitter CSI, we pro-

pose a simple transmission scheme, taking into account the fact that the
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optimal training length is at most as large as the number of transmit anten-

nas. Our numerical results show that this scheme is very close to optimal and

optimizing training length can result in a significant capacity improvement

for correlated channels.

• Using the proposed transmission scheme mentioned above, we find the solu-

tion to the optimal energy allocation to pilot and data transmission, which

does not depend on the channel spatial correlation under a mild condition on

the channel coherence interval or SNR. Therefore, the proposed transmission

and resource allocation schemes give near optimal performance while having

very low computational complexity.

• For systems with correlated channels and full transmitter CSI, we prove that

the optimal data transmission is given by a water-filling solution according

to the estimated channel gains, rotated and truncated into the trained eigen-

directions.

• For systems with correlated channels and full transmitter CSI, we show that

the optimal training length is at most as large as the number of transmit

antennas. We consider a closed-form solution of optimal energy allocation

between pilot and data and numerically show that this solution achieves near

optimal performance.

The results in this chapter have been presented in the following publications

which are listed again for ease of reference:

J2. Xiangyun Zhou, Parastoo Sadeghi, Tharaka A. Lamahewa, and Salman Dur-

rani, “Design Guidelines for Training-based MIMO Systems with Feedback”,

IEEE Trans. Signal Processing, vol. 57, no. 10, pp. 4014-4026, Oct. 2009.

C3. Xiangyun Zhou, Tharaka A. Lamahewa, Parastoo Sadeghi, and Salman Dur-

rani, “Optimizing Training-based Transmission for Correlated MIMO Sys-

tems with Hybrid Feedback”, in Proc. IEEE Global Commun. Conf. (Globe-

com), Honolulu, HI, Nov. 2009, pp. 1-6.

Chapter 4 - Two-Way Training-Based Systems

Chapter 4 considers two-way training which allows the transmitter CSI and the

receiver CSI to be obtained by pilot transmissions from both the receiver (reverse

training) and the transmitter (forward training), respectively. We obtain practi-

cal solutions to the transmit power distribution on the reverse training, forward
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training and data transmission. Both the symbol error rate (SER) and an ergodic

capacity approximation are used as the performance measure. The new contribu-

tions in this chapter are:

• We derive the linear minimum mean square error (LMMSE) channel estima-

tion for the forward training and find that the forward channel estimation

error is almost independent of the number of transmit antennas.

• An average SNR lower bound is used to obtain closed-form solutions to the

optimal power allocation at high SNR in three different scenarios. The de-

rived power allocation strategies are independent of the number of transmit

antennas.

• We carry out Monte-Carlo simulations to obtain both SER and ergodic capac-

ity performance. For both performance metrics, we verify the near optimality

of the derived power allocation strategies over a wide range of SNR values.

• We derive the optimal power allocation for systems with reverse training only.

Our numerical results show that two-way training provides no or marginal

performance gain over reverse training only, at low SNR or when low-order

modulations are used.

Part of the results in this chapter has been presented in the following publication

which is listed again for ease of reference:

J3. Xiangyun Zhou, Tharaka A. Lamahewa, Parastoo Sadeghi, and Salman Dur-

rani, “Two-way Training: Optimal Power Allocation for Pilot and Data

Transmission”, IEEE Trans. Wireless Commun., vol 9, no. 2, pp. 564-569,

Feb. 2010.

Chapter 5 - Physical-Layer Security-Constrained Systems

Chapter 5 considers multi-antenna transmission in the presence of eavesdrop-

pers. The transmitter sends the information bearing signal to the intended receiver

as well as the artificial noise to confuse the eavesdroppers. The eavesdroppers’ chan-

nels are unknown and hence, the artificial noise is radiated isotropically except in

the direction of the intended receiver. We obtain the optimal transmit power allo-

cation between the information signal and artificial noise and study its sensitivity

to channel estimation errors. The new contributions in this chapter are:

• We obtain a closed-form expression for the average secrecy capacity lower

bound, which is an achievable data rate that can be guaranteed for secure

communication without knowing the noise level at the eavesdroppers.
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• We derive the optimal power allocation between transmission of the informa-

tion signal and the artificial noise. In particular, equal power allocation is

shown to be a near optimal strategy in the case of non-colluding eavesdrop-

pers. When the number of colluding eavesdroppers increases, more power

should be used to generate artificial noise.

• We also derive an upper bound on the critical SNR above which the achievable

secrecy rate is positive and this bound is shown to be tight at low SNR.

• In the presence of channel estimation errors, we find that it is wise to create

more artificial noise to confuse the eavesdroppers than to increase the signal

strength for the intended receiver.

The results in this chapter have been presented in the following publications

which are listed again for ease of reference:

J4. Xiangyun Zhou and Matthew R. McKay, “Secure Transmission with Artificial

Noise over Fading Channels: Achievable Rate and Optimal Power Alloca-

tion”, submitted to IEEE Trans. Veh. Technol., revised in May 2010.

C2. Xiangyun Zhou and Matthew R. McKay, “Physical Layer Security with Arti-

ficial Noise: Secrecy Capacity and Optimal Power Allocation”, in Proc. Int.

Conf. on Signal Processing and Commun. Syst. (ICSPCS), Omaha, NE,

Sept. 2009, pp. 1-5.

Finally, Chapter 6 gives a summary of results presented and suggestions for future

research work.





Chapter 2

One-Way Training-Based Systems

with No Feedback

2.1 Introduction

In resource constrained communications, it is important to optimally allocate the

limited amount of resource to achieve maximum data rates. In training-based sys-

tems where training symbols or pilots are periodically inserted into data symbols,

the total available transmission time and energy should be optimally distributed

among training and data symbols. When multiple antennas are available to be

used at both the transmitter and the receiver, the optimal antenna configuration

(i.e., the number of transmit and receive antennas) is another important design pa-

rameter. In addition, the spatial correlation between the channels in multi-antenna

systems can significantly affect the system design and performance. In the past

few years, numerous results on optimizing resource allocation with certain system

model assumptions have been obtained. However, there is still some gap in the

knowledge. This chapter aims to fill this gap and studies the optimal resource

allocation in training-based systems with no transmitter CSI by addressing the

following questions:

Q1. What is the general optimal transmit energy and time allocation between

training and data transmission?

Q2. What is the optimal antenna configuration taking into account the channel

estimation errors?

Q3. How does the channel spatial correlation affect the optimal transmission re-

source allocation and capacity performance?

23
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For constantly time-varying channels, the optimal training length and train-

ing interval were investigated in [64, 66, 87, 88]. For block fading channels with

a fixed coherence block length, the training length for MIMO systems was opti-

mized in [21, 54]. A common assumption in these works is that all available time

is used for transmission. In Section 2.4, we revisit this common assumption used

in aforementioned works by first relaxing it and then investigating its optimality

in training-based transmissions. This is particularly important for many practical

systems in which the transmit power for training symbols and data symbols is fixed

to the same level. When the training and data lengths are allowed to be jointly

optimized, we show that all available time should always be used for transmis-

sion. We also provide analytical bounds on the optimal training and data lengths,

although the exact optimal values can only be found numerically. These bounds

significantly reduce the ranges of the possible values of the optimal training and

data lengths.

The optimal number of transmit and receive antennas has been studied in [29,

89–91] assuming perfect CSI at the receiver. In particular, the authors in [29] stud-

ied the situation where one extra antenna is available to be allocated at either end

of a MIMO system. Their results show that one should always allocate the extra

antenna to the side with less number of antennas at high SNR. In Section 2.5, we

study the same problem taking channel estimation errors into account and show

that the optimal antenna configuration in the perfect CSI case may not be appli-

cable to systems with imperfect CSI. Taking into account the channel estimation

errors, the authors in [54] found that the capacity decreases as the number of trans-

mit antennas increases beyond the number of receive antennas at sufficiently high

SNR. However, we show that this asymptotic result does not hold at a practical

range of high SNR, e.g ., from 20 dB to 30 dB.

Most studies on the effect of channel spatial correlation on the ergodic ca-

pacity do not consider channel estimation errors and assume perfect CSI at the

receiver [29,30,92]. For multiple-input single-output (MISO) systems, the authors

in [30] showed that the ergodic capacity decreases as correlation increases when no

CSI is available at the transmitter. Similar studies on MIMO systems found that

the channel spatial correlations among both the transmit antennas and the receive

antennas can reduce the capacity at high SNR [29] or for large number of transmit

and receive antennas [92]. In Section 2.6, we extend previous studies of systems

with perfect CSI and analyze the impact of channel spatial correlation on the er-

godic capacity of MIMO systems with channel estimation errors. In particular, we

show that the ergodic capacity increases with channel correlation at sufficiently low
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SNR, which is in contrast to the existing results in [30] for the perfect CSI case.

2.2 System Model

We consider a MIMO flat-fading channel model with input-output relationship

given by

y = Hx + n, (2.1)

where y is the Nr × 1 received symbol vector, x is the Nt × 1 transmitted symbol

vector, H is the Nr × Nt channel gain matrix, and n is the Nr × 1 noise vector

having zero-mean circularly symmetric complex Gaussian (ZMCSCG) entries with

unit variance. The entries of H are also ZMCSCG with unit variance.

2.2.1 Channel Spatial Correlation

The correlation between different entries of the channel gain matrix depends on

the scattering environment around the transmitter and the receiver as well as the

antenna spacing. To study the effects of channel correlation, we consider a typical

downlink transmission scenario where there may be insufficient scattering around

the base station transmitter, resulting in possible spatial correlations among the

channel gains. The spatial correlation is characterized by the covariance matrix

RH = E{H†H}/Nr. Therefore, H = H0R
1/2
H , where H0 has i.i.d. ZMCSCG

entries with unit variance. We assume that RH is a positive definite matrix and

denote the eigenvalues of RH by g = [g1 g2 . . . gNt ]
T .

Furthermore, we use the concept of majorization to characterize the degree

of channel spatial correlation [30, 92]. A vector a = [a1 a2 ... an]T is said to be

majorized by another vector b = [b1 b2 ... bn]T if

k∑
i=1

ai≤
k∑

i=1

bi, k = 1, ..., n− 1, and
n∑

i=1

ai =
n∑

i=1

bi, (2.2)

where the elements in both vectors are sorted in descending order [93]. We denote

the relationship as a ≺ b. Any real-valued function Φ, defined on a vector subspace,

is said to be Schur-convex, if a ≺ b implies Φ(a) ≤ Φ(b) [93]. Similarly Φ is Schur-

concave, if a ≺ b implies Φ(a) ≥ Φ(b). Following [30], we have the following

definition:
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PLTs

pilots data

LdLp

L

(1 − α)PLTs = PpLpTs αPLTs = PdLdTs

Figure 2.1: An example of a transmission block of L symbols in a non-feedback
system. Temporal energy allocations are shown at the top and the length of each
sub-block is shown at the bottom.

Definition 2.1 Let a contains the eigenvalues of the channel covariance matrix

Ra, and b contains the eigenvalues of the channel covariance matrix Rb. The

elements in both vectors are sorted in descending order. Then Ra is less correlated

than Rb if and only if a ≺ b.

2.2.2 Transmission Scheme

We assume that the channel gains remain constant over one coherence block of L

symbol periods and change to independent realizations in the next block. This is an

appropriate channel model for time-division multiple access or frequency-hopping

systems [54]. Fig. 2.1 shows an example of a transmission block of L symbol periods

in a PSAM scheme. At the beginning of each transmission block, each transmit

antenna sends Lp training symbols followed by Ld data symbols, with Lp +Ld ≤ L.

No training or data symbol is transmitted during the remaining time slots if any.

The total transmission energy per block is given by PLTs as shown in Fig. 2.1,

where P is the average transmit power and Ts is the symbol duration. Note that the

transmission energy PLTs is only distributed over Lp + Ld symbol periods, which

can be shorter than the duration of a transmission block. We define the PSAM

energy factor, α, as the ratio of the total energy allocated to the data transmission.

We also denote the power per pilot and data symbol by Pp and Pd, respectively.

Therefore, Pp = tr{xx†} during the pilot transmission and Pd = tr{Q} during

the data transmission, where we have defined the data covariance matrix as Q =
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E{xx†}. Due to the normalization of the receiver noise power and the channel

gains, we also refer to P , Pp and Pd as average SNR, pilot SNR and data SNR,

respectively. Therefore, we have the following relationships.

PLTs = PpLpTs + PdLdTs,

Pp = (1− α)
PL

Lp

, and Pd = α
PL

Ld

. (2.3)

Depending on the degrees of freedom in the system design and the cost of

power amplifiers, one can either have fixed power transmission or variable power

transmission. In the case of fixed power transmission, the pilot SNR and data SNR

are the same, i.e.,Pp = Pd = Pt, where Pt = PL/(Lp + Ld) is referred to as the

actual transmit power in the fixed power transmission scheme. On the other hand,

Pp and Pd are allowed to be different in the variable power transmission scheme.

2.2.3 Channel Estimation

In each transmission block, the receiver performs channel estimation during the

pilot transmission. Assuming the channel spatial correlation is known at the re-

ceiver, the channel gain H can be estimated using the LMMSE estimator [94]. The

assumption of knowing the channel correlation is reasonable since the correlation is

a long-term statistic which can be accurately measured by the receiver. We denote

the channel estimate and estimation error as Ĥ = Ĥ0R
1/2

Ĥ
and H̃ = H̃0R

1/2

H̃
,

respectively, where Ĥ0 and H̃0 have i.i.d. ZMCSCG entries with unit variance.

Ĥ is given as [62]

Ĥ = Y (Xp
†RHXp + ILp)

−1Xp
†RH , (2.4)

where Y is the Nt × Lp matrix combining the Lp received symbol vectors during

the pilot transmission and Xp is the Nt × Lp pilot matrix. The covariance matrix

of the estimation error is given by [62]

RH̃ =
E{H̃†

H̃}
Nr

= (R−1
H + XpXp

†)−1. (2.5)

From the orthogonality property of LMMSE estimator, we have

RĤ =
E{Ĥ†

Ĥ}
Nr

= RH −RH̃ . (2.6)
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2.3 Ergodic Capacity Bounds

From an information-theoretic viewpoint, we investigate the optimal resource al-

location using the ergodic capacity as the objective function. The exact capacity

expression under imperfect receiver CSI is still unavailable. We consider one lower

bound and one upper bound on the ergodic capacity for systems using LMMSE

channel estimation. In particular, the authors in [53] derived a lower bound and an

upper bound for spatially independent channels. Here we generalize their results

to include spatially correlated channels as follows.

A lower bound on the ergodic capacity per channel use is given by [53]

CLB = EĤ

{
log2

∣∣∣INt + Ĥ
†
(INr + ΣH̃x)−1ĤQ

∣∣∣
}

, (2.7)

where

ΣH̃x = E{H̃xx†H̃
†}

= E{H̃0R
1/2

H̃
xx†(R1/2

H̃
)
†
H̃

†
0}

= E
{

tr{R1/2

H̃
xx†(R1/2

H̃
)
†}

}
INr

= tr{RH̃Q}INr ,

where we have used E{H̃0ZH̃
†
0} = E{tr{Z}}INr , given that H̃0 has i.i.d. entries

with unit variance and is independent of Z. Therefore, the ergodic capacity lower

bound per channel use in (2.7) can be rewritten as

CLB = EĤ

{
log2

∣∣∣INt + (1 + tr{RH̃Q})−1Ĥ
†
ĤQ

∣∣∣
}

. (2.8)

An upper bound on the ergodic capacity per channel use is given by [53]

CUB = EĤ

{
log2

∣∣∣πeΣy|Ĥ

∣∣∣
}
− Ex

{
log2

∣∣∣πe(ΣH̃x|x + INr)
∣∣∣
}

,

where

Σy|Ĥ = E{yy†|Ĥ} = ĤQĤ
†
+ tr{RH̃Q}INr + INr ,

and

ΣH̃x|x = E{H̃xx†H̃
†|x}

= E{H̃0R
1/2

H̃
xx†(R1/2

H̃
)
†
H̃

†
0|x}
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Figure 2.2: Capacity bounds in (2.8) and (2.9) versus SNR P for different correla-
tion factors and antenna sizes. Lp = Nt, Ld = L−Lp and Pp = Pd = P (i.e., fixed
power transmission) is used. Dashed lines indicate the upper bound and solid lines
indicate the lower bound.

= tr{R1/2

H̃
xx†(R1/2

H̃
)
†}INr

= x†RH̃xINr .

Therefore, the ergodic capacity upper bound per channel use can be written as

CUB = EĤ

{
log2

∣∣∣INt +(1+tr{RH̃Q})−1Ĥ
†
ĤQ

∣∣∣
}

+NrEx

{
log2

1+tr{RH̃Q}
1+x†RH̃x

}

= CLB + Cgap, (2.9)

where Cgap is the difference between the upper bound and the lower bound, which

indicates the maximum error of the bounds.

The authors in [53] studied the tightness of the bounds for spatially indepen-

dent channels for fixed channel estimation errors. They observed that the gap

between bounds is small for Gaussian inputs. Similarly, we numerically study the

tightness of the above two bounds for correlated channels with Gaussian inputs
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and LMMSE channel estimation. For numerical analysis, we choose the channel

covariance matrix to be in the form of [RH ]ij = ρ|i−j|, where ρ is referred to as the

spatial correlation factor [62]. We investigate the gap between the capacity bounds

in (2.8) and (2.9) under different channel correlation conditions and antenna sizes.

Examples are shown in Fig. 2.2 in which the upper bounds are plotted using dashed

lines and the lower bounds are plotted using the solid lines. In general, we see that

the gaps between the bounds are insignificant for any channel correlation factors.

Therefore, the capacity lower bound per channel use in (2.8) is accurate enough to

be used in our analysis assuming Gaussian inputs.

Taking the training overhead into account, the average capacity lower bound is

therefore given by

CLB=
Ld

L
CLB

=
Ld

L
EĤ

{
log2

∣∣∣INt +(1+tr{RH̃Q})−1Ĥ
†
ĤQ

∣∣∣
}

. (2.10)

We will use “capacity lower bound” and “capacity” interchangeably throughout

the rest of this chapter. The average capacity lower bound in (2.10) will be used

as the figure of merit to study the optimal transmission and resource allocation

strategies in the following sections.

2.4 Optimal Transmission Scheme with Indepen-

dent Channels

For PSAM transmission, the four important design parameters are the structure

of pilot transmission, structure of data transmission, transmit energy allocation

between pilots and data as well as transmit time allocation between pilots and

data. The pilot structure is characterized by the pilot matrix Xp. The data

structure is characterized by the input data covariance matrix Q. The transmit

energy allocation is characterized by the PSAM energy factor α. And the transmit

time allocation is characterized by the training length Lp and the data length Ld.

Table 2.1 summarizes these design parameters.

We first consider the channels are spatially i.i.d. and will study the impact of

channel correlation in Section 2.6. For i.i.d. channels, the data transmission utilizes

all the channels with equal probability. Hence, it is reasonable to have at least

as many measurements as the number of channels for channel estimation, which

implies that Lp ≥ Nt. For non-feedback systems with spatially i.i.d. channels, the



2.4 Optimal Transmission Scheme with Independent Channels 31

Table 2.1: Design parameters in PSAM transmission

Design parameter Notation Description

pilot structure Xp transmitted pilot matrix (Nt × Lp)
data structure Q input data covariance matrix

PSAM energy factor α ratio of energy allocated to data
training length Lp number of training symbols in a block

data length Ld number of data symbols in a block

optimal pilot structure is orthogonal transmission, i.e.,XpXp
† = PpLp/NtINt , and

the optimal data structure has spatially i.i.d. inputs, i.e.,Q = Pd/NtINt [6, 54].

With the optimal pilot and data structure and i.i.d. channels, the covariance matrix

of channel estimation error in (2.5) reduces to

RH̃ =
1

1 + PpLp/Nt

INt

= σ2
H̃

INt , (2.11)

where σ2
H̃

= (1 +PpLp/Nt)
−1. The average capacity lower bound in (2.10) reduces

to

CLB =
Ld

L
EĤ0

{
log2

∣∣∣INt +
σ2

Ĥ
Pd

1 + σ2
H̃
Pd

Ĥ
†
0Ĥ0

Nt

∣∣∣
}

=
Ld

L
EĤ0

{
log2

∣∣∣INt + ρeff
Ĥ

†
0Ĥ0

Nt

∣∣∣
}

(2.12)

= n
Ld

L
Eλ{log2(1 + ρeffλ)}, (2.13)

where σ2
Ĥ

= 1− σ2
H̃

, n = min{Nt, Nr}, λ is an arbitrary eigenvalue of Ĥ
†
0Ĥ0/Nt,

and ρeff is named the effective SNR in [54] given by

ρeff =
(1− σ2

H̃
)Pd

1 + σ2
H̃
Pd

. (2.14)

The optimal transmit energy and time allocation depends on the degrees of

freedom in the communication systems. In the following, we consider both variable

power transmission and fixed power transmission. The former scheme achieves 5%

- 10% capacity improvement over the latter scheme [54], while the latter scheme is

more practical to implement.
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2.4.1 Variable Power Transmission

In the variable power transmission scheme, the transmit power for pilots and data

is allowed to be different. Denote the optimal training and data length as L∗p and

L∗d, respectively. An immediate result on the optimal transmit time allocation is

given below.

Lemma 2.1 The optimal transmission strategy uses all available time for trans-

mission, i.e.,L∗p + L∗d = L.

Proof: For any given Pp and Lp, σ2
H̃

is a constant. It can be easily shown

that the derivative of CLB in (2.13) w.r.t.Ld is positive. Therefore, the capacity

maximizing Ld takes its largest possible value, that is Ld = L− Lp. ¤

With Lp + Ld = L, the optimal transmit energy and time allocation in the

variable power transmission scheme was derived in [54]. The optimal PSAM energy

factor α∗ is given by

α∗ =





γ −
√

γ(γ − 1), for Ld > Nt

1
2
, for Ld = Nt

γ +
√

γ(γ − 1), for Ld < Nt

(2.15)

where γ = Nt+PL
PL(1−Nt/Ld)

. With α∗, the optimal training and data length is given by

L∗p = Nt and L∗d = L−Nt.

2.4.2 Fixed Power Transmission

In the fixed power transmission scheme, the transmit power for pilots and data is

the same, i.e.,Pp = Pd = Pt, and hence the PSAM energy factor is not a design

parameter. On the other hand, the transmit time allocation becomes a particularly

important design parameter as it directly affects the actual transmit power Pt. To

study the optimal transmit time allocation, two scenarios are considered: 1) the

training length Lp and the data length Ld are to be jointly optimized; 2) the data

length Ld is to be optimized for a given training length Lp.

Scenario 1: Joint Training and Data Length Optimization

In general, the optimal training and data lengths, denoted by L∗p and L∗d re-

spectively, need to be found numerically by evaluating the average capacity lower

bound for all possible values of Lp and Ld. Also, it is not clear whether Lp+Ld = L

is optimal for all SNR conditions. In the following, we provide analytical bounds

on L∗p and L∗d, and prove the optimality of Lp + Ld = L.
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Theorem 2.1 When both Lp and Ld are allowed to be optimized, the optimal

strategy is to use all available time for transmission at any SNR values, i.e.,L∗p +

L∗d = L. Furthermore, the optimal values of Ld and Lp satisfy the following condi-

tions.

{
L∗d = L−Nt, L∗p = Nt, if L ≤ 2Nt

ζ ≤ L∗d ≤ L−Nt, Nt ≤ L∗p ≤ L− ζ, otherwise
(2.16)

where

ζ =
2LP+NtP+2Nt−

√
Nt(NtP2+4NtP+4Nt+4LP2+4LP)

2P
is the value of Ld at which we have

√
NtLd(Ld + LP)

Nt + LP + Ld = L, (2.17)

Proof: see Appendix A.1.

When P → 0, we see from (2.17) that ζ → L/2. Therefore, the lower (upper)

bound on L∗d (L∗p) in (2.16) approaches L/2. In fact, by using the first order

approximation of the average capacity lower bound at sufficiently low SNR, it can

be shown that the optimal training and data lengths satisfy L∗p = L∗d = L/2 [54].

Therefore, we expect that the lower (upper) bound on L∗d (L∗p) given in Theorem 2.1

is tight at sufficiently low SNR. When P → ∞, it can be shown that Ld should be

chosen as large as possible, i.e.,L∗d = L−Nt. (The proof follows from Appendix A.1

by letting P → ∞.) Therefore, we expect that the upper (lower) bound on L∗d (L∗p)

given in Theorem 2.1 is tight at sufficiently high SNR. We note that the optimality

of Lp = Nt at sufficiently high SNR was also commented in [54].

Fig. 2.3 shows the upper bound on L∗p given in (2.16) as well as the exact values

of L∗p found numerically. We see that the upper bound significantly reduces the

range of possible values of L∗p at moderate to high SNR. For example in finding L∗p
for a 2× 2 system with L = 100 operating at 5 dB, the analytical bounds tell that

one only needs to search from 2 to 15, instead of searching every possible training

length from 2 to 99. In addition, we see that the upper bound becomes tighter as

SNR decreases.

Scenario 2: Optimal Data Length for a Given Training Length

As we have seen, the training and data lengths, Lp and Ld, need be found

numerically according to the operating SNR which usually varies with time. When
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Figure 2.3: The upper bound on L∗p given in (2.16) versus average SNR P for
different block lengths and different numbers of transmit antennas.

the operating SNR changes rapidly with time, it is undesirable to frequently change

Lp and Ld. In this scenario, we consider a transmission strategy which optimizes

Lp (and Ld) for a target SNR and fix it for a certain time period before redesigning

becomes crucial.

From Fig. 2.3 we see that L∗p decreases as SNR increases. If the operating SNR

is higher than the target SNR, the system is using more training resource than

the optimal amount, hence it is still desirable to use all available time for data

transmission, i.e.,L∗d = L− Lp. On the other hand, if the operating SNR is lower

than the target SNR, the system is using insufficient amount of training which

results in a degradation in channel estimation. In this scenario, the system may

need to at least reduce the data length from L− Lp to boost up the SNR.1

In the following, we find a threshold SNR Pth, such that the optimal data length

is given by L∗d = L − Lp for any given Lp as long as the operating SNR is above

Pth. That is, for a system with a fixed Lp which has been optimized according to

1For a given Lp, L∗d < L− Lp can happen at sufficiently low SNR. To see this, one can apply
the first order approximation of the average capacity lower bound and obtain the optimal data
length by letting the derivative of the capacity approximation be zero.
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Figure 2.4: The threshold SNR Pth given in (2.18) versus training length Lp for
different block lengths and different numbers of transmit antennas.

some target SNR, it can keep using the original design of Ld = L − Lp as long as

the operating SNR is above Pth.

Lemma 2.2 For any given Lp, a threshold SNR above which the optimal Ld equals

L− Lp is given by

Pth =
Nt(L− 2Lp)

Lp(Lp + Nt)
(2.18)

Proof: see Appendix A.2.

Fig. 2.4 shows the threshold SNR Pth given in (2.18) versus training length

Lp. If a 2 × 2 system with L = 100 has a fixed training length of Lp = 10 which

is optimal for a target SNR of 5 dB as shown in Fig. 2.3, the data length does

not need to be reduced from L − Lp = 90 as long as the operating SNR is above

Pth = 1.3 dB as shown in Fig. 2.4. Note that the optimal data length may or may

not equal L − Lp when the operating SNR is below Pth. Therefore, it is wise to

redesign the length of data transmission when the operating SNR is considerably

lower than Pth.
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2.5 Optimal Antenna Configuration with Inde-

pendent Channels

Link adaptation is an important practical problem for MIMO systems, where it is

desirable to optimize the number of transmit and receive antennas for high data

rate. In this section, we study the optimal antenna configuration at practical

range of high SNR, e.g ., from 20 dB to 30 dB, in PSAM schemes from capacity

maximization viewpoint. In particular, we extend the analysis in [29] and [54]

to investigate the following two important problems for systems with practical

antenna sizes.

• Problem 1: If an extra antenna is available to be added at either end of a

MIMO system, should one add it to the transmitter or to the receiver?

• Problem 2: If it is only practical to change the number of transmit antennas,

what is the optimal number of transmit antennas?

Similar to Section 2.4, we consider both variable and fixed power transmission

with spatially i.i.d. channels. For variable power transmission, we assume that the

optimal PSAM energy factor α∗ given in (2.15) is used. In the high SNR regime,

the effective SNR given in (2.14) can be approximated as ρeff = PL

(
√

L−Lp+
√

Nt)2

for variable power transmission and ρeff = P
1+Nt/Lp

for fixed power transmission.

To ease our analysis, we first obtain a closed-form approximation of the average

capacity lower bound in the high SNR regime.

For Nt ≥ Nr, the average capacity lower bound in (2.12) is approximated as

CLB(Nt, Nr) ≈ EĤ0

{
log2

∣∣∣ρeff

Nt

Ĥ0Ĥ
†
0

∣∣∣
}

=
Ld

L

[
Nr log2 ρeff −Nr log2 Nt +

1

ln 2

( Nr∑
j=1

Nt−j∑

k=1

1

k
−Nrε

)]
, (2.19)

where EĤ0
{log2 |Ĥ0Ĥ

†
0|} = 1

ln 2

( ∑Nr

j=1

∑Nt−j
k=1

1
k
− Nrε

)
[29] and ε ≈ 0.577 is the

Euler’s constant.

Similarly, for Nt < Nr, the average capacity lower bound in (2.12) can be

approximated by

CLB(Nt, Nr) ≈ EĤ0

{
log2

∣∣∣ρeff

Nt

Ĥ
†
0Ĥ0

∣∣∣
}

=
Ld

L

[
Nt log2 ρeff −Nt log2 Nt +

1

ln 2

( Nt∑
j=1

Nr−j∑

k=1

1

k
−Ntε

)]
. (2.20)
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2.5.1 Solution to Problem 1

Now, we investigate the first problem: If an extra antenna is available to be added

on either end of a MIMO system, should one add it to the transmitter or to the

receiver? This question is relevant in the design of point-to-point MIMO wireless

links with fixed total number of antennas [29]. It may also occur in on-the-fly

link adaptation, e.g ., IEEE802.11n. We present the analysis for the variable power

transmission scheme, while the result for the fixed power transmission scheme is

similar and hence, is omitted. Note that for variable power transmission, the

optimal training length is given by L∗p = Nt, which is assumed in the following

analysis.

We start with the case where Nt < Nr. Using (2.20), we compute the capacity

difference between the systems having (Nt, Nr + 1) and (Nt + 1, Nr), i.e., δCLB ,
CLB(Nt, Nr + 1)− CLB(Nt + 1, Nr) as

δCLB ≈ 1

L ln 2

[
Nt(L−Nt) ln ρeff − (Nt + 1)(L−Nt − 1) ln ρ′eff

+Nt(L−Nt) ln(1 +
1

Nt

)− (2Nt − L + 1) ln(Nt + 1)

+(L−Nt)
Nt∑
j=1

1

Nr + 1− j
− (L−Nt)

Nr−Nt−1∑

k=1

1

k

+
Nt+1∑
j=1

Nr−j∑

k=1

1

k
− (2Nt − L + 1)ε

]
, (2.21)

where ρeff = LP
L+2
√

(L−Nt)Nt

is the effective SNR for a (Nt, Nr + 1) system, and

ρ′eff = LP
L+2
√

(L−Nt−1)(Nt+1)
is the effective SNR for a (Nt + 1, Nr) system. We see

that the sign of (2Nt −L + 1) plays an important role in (2.21). In the case where

2Nt−L+1 ≥ 0 or equivalently L ≤ 2Nt +1, we find that one should add the extra

antenna to the receiver at moderate to high SNR. In the following, we focus on the

more practical case where L > 2Nt + 1.

We call the SNR value at which δCLB = 0 the critical SNR, denoted by Pc. It is

the threshold SNR in determining at which end the extra antenna should be added.

As the block length L approaches infinity in (2.21), we see that Pc approaches a

limiting value, given by

Pc,∞(Nt, Nr) = exp
[
Nt ln(1 +

1

Nt

) + ln(1 + Nt)

+
Nt∑
j=1

1

Nr + 1− j
−
Nr−Nt−1∑

k=1

1

k
+ ε

]
. (2.22)
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Fig. 2.5 shows the critical SNR Pc for a wide range of block lengths L, where

L > 2Nt + 1. In this case, one should add the extra antenna to the transmitter

if the operating SNR is above Pc for any given block length, and vice versa. For

example, consider the case where (Nt = 4, Nr = 5) and L = 50. Fig. 2.5 suggests

that one should add the extra antenna to the receiver when the operating SNR is

below Pc = 23.5 dB, while one should add the antenna to the transmitter when

the operating SNR is above Pc = 23.5 dB.

Furthermore, we see from Fig. 2.5 that Pc →∞ as L → 2Nt +1. This suggests

that one should always add the extra antenna to the receiver when L is close to

2Nt + 1. We also see that Pc decreases as L increases and approaches Pc,∞ as

L →∞. Therefore, Pc,∞ serves as the infimum of Pc. This implies that one should

always add the extra antenna to the receiver if the operating SNR is below Pc,∞,

regardless of the block length. For example, Pc,∞ = 19 dB for a (Nt = 4, Nr = 5)

system. These important trends of the critical SNR are not attained from the

analysis in [29] under the perfect CSI assumption.2 Therefore, the result for perfect

2The results in [29] showed that one should always add the extra antenna to the side with less
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CSI case cannot be directly applied to the systems with imperfect CSI.

In the case where Nt ≥ Nr, the same analysis can be carried out. We find that

it is generally better to place the extra antenna at the receiver side at moderate to

high SNR when Nt ≥ Nr, regardless of the block length. This observation agrees

with the result for the perfect CSI case in [29].

2.5.2 Solution to Problem 2

Now, we investigate the second problem for both variable and fixed power transmis-

sion: If it is only practical to increase or reduce the number of transmit antennas,

what is the optimal number of transmit antennas3?

Firstly we consider the case where Nt ≥ Nr. An example of this case would be

the downlink in mobile cellular networks, where it is practical to alter the number

of antennas at the base station to maximize the data rate for every mobile user,

possibly without significant cost. The gain in the average ergodic capacity lower

bound in (2.19) from adding an extra transmit antenna, i.e., 4CLB , CLB(Nt +

1, Nr)− CLB(Nt, Nr), is given by

4CLB ≈ 1

L ln 2

(
Nr ln(Nt + 1) + (L−Nt)

Nr∑
j=1

1

Nt + 1− j

+Nrε−Nr(L−Nt) ln
Nt + 1

Nt

−
Nr∑
j=1

Nt+1−j∑

k=1

1

k

+Nr(L−Nt − 1) ln ρ′eff −Nr(L−Nt) ln ρeff

)
, (2.23)

where ρeff and ρ′eff are the effective SNR for a (Nt, Nr) system and a (Nt + 1, Nr)

system, respectively.

We start with the analysis on the limiting case of large block length. With

L →∞, 4CLB in (2.23) reduces to

4CLB ≈ 1

ln 2

( Nr∑
j=1

1

Nt + 1− j
−Nr ln

Nt + 1

Nt

)

≥ Nr

ln 2

( 1

Nt

− ln
Nt+1

Nt

)
.

Also, it is easy to show that 1
Nt
− ln Nt+1

Nt
> 0. Hence, we have 4CLB > 0. This

number of antennas.
3From information-theoretic viewpoint, it is always beneficial to add extra antennas at the

receiver, if possible, as it increases the diversity of the system without the need to sacrifice
information symbols for training symbols.
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Table 2.2: Optimal number of transmit antennas and its corresponding range of
block length for systems with 4 receive antennas

Transmission scheme Optimal Nt 4 5 ≥ 6
Fixed power (P = 20 dB) Range of L 8 to 15 16 to 30 ≥ 31

Variable power (P = 20 dB) Range of L 8 to 16 17 to 38 ≥ 39
Fixed power (P = 30 dB) Range of L 8 to 22 23 to 46 ≥ 47

Variable power (P = 30 dB) Range of L 8 to 26 27 to 60 ≥ 61

implies adding more transmit antennas always results in higher average ergodic

capacity for both power allocation schemes at sufficiently large L. However, this is

not true for not so large block lengths.

Table 2.2 shows the optimal number of transmit antennas obtained from (2.23)

by a linear search and its corresponding range of block length L for fixed SNR

values, using L∗p and Nr = 4. For variable power transmission, L∗p = Nt. For fixed

power transmission, L∗p is found numerically from (2.19). We have also restricted

the minimum value of L to be 2Nt. We see that for both transmission schemes the

optimum value of Nt can exceed the value of Nr and increases with L at practical

high SNR values. This result is not predicted in the asymptotic high SNR analysis

in [54]. Therefore, the results presented here are more accurate and provide useful

insights at practical high SNRs.

Fig. 2.6 shows the average capacity lower bound computed using (2.19) versus

block length for MIMO systems with Nr = 2 and at P = 30 dB. We include the

capacity lower bounds achieved using the (optimal) variable power transmission

and/or optimal number of transmit antennas, as well as the non-optimized case

(i.e., the fixed power transmission and equal number of transmit and receive an-

tennas). The optimal training length L∗p is used in all computations. Comparing

the two solid or dashed curves in Fig. 2.6, we see that the capacity percentage im-

provement by variable power transmission generally decreases as the block length

increases. On the other hand, the capacity improvement from optimal antenna con-

figuration increases as the block length increases. Compared with equal antenna

configuration, we see in Fig. 2.6 that the capacity improvement from optimal an-

tenna configuration reaches approximately 4.5% (or 4.3%) at L = 100 and around

6% (or 5.3%) at L = 200.

Fig. 2.7 shows the SNR saving calculated from (2.19). It indicates the amount

of transmit power saved by using the (optimal) variable power transmission and/or

optimal antenna configuration to achieve the same capacity as in the non-optimized

case at P = 30 dB. The optimal training length is used in all computations. From

Fig. 2.7, we see that the SNR saving by variable power transmission decreases as the
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Figure 2.6: The average capacity lower bound CLB in (2.19) versus block length
L for MIMO systems with 2 receive antennas at SNR P = 30 dB. Equal antenna
configuration represents systems with 2 transmit and receive antennas. N∗

t denotes
the optimal number of transmit antennas.

block length L increases, while the SNR saving by optimal antenna configuration

increases with L. For large block lengths, optimal antenna configuration generally

saves more power than variable power transmission. At L = 100, the additional

SNR saving by antenna optimization is 1.2 dB, which equals the SNR saving by

power optimization alone. At L = 200, the additional SNR savings by antenna

optimization increases to 1.6 dB, while the SNR saving by power optimization

alone decreases to 1 dB. These results show that optimizing antenna configuration

is more important than optimizing power allocation from an information-theoretic

viewpoint.

When Nt < Nr, the analysis of the optimal number of transmit antennas can

be carried out in the same manner as in the case where Nt ≥ Nr. Assuming L À 1,

the result in [54] suggests that adding extra transmit antennas always improves the

capacity, provided Nt does not exceed Nr and P →∞. Our analysis confirms that

this claim is also accurate at practical range of high SNR and practical antenna

sizes.
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t denotes the optimal
number of transmit antennas.

The optimal antenna configuration at moderate SNR can be studied using the

average capacity lower bound in (2.12). We find that the optimal antenna config-

uration obtained at high SNR can be different from that at low to moderate SNR.

Particularly at sufficiently low SNR, (2.12) can be approximated as CLB = LP2

4 ln 2
Nr

Nt

for both variable and fixed power transmissions [54], which implies that the opti-

mal number of transmit antenna is 1. However, the trends observed at high SNR

on the capacity gain and SNR saving by optimizing antenna configuration are also

observed at moderate SNR. That is to say, the capacity improvement from optimal

antenna configuration increases as the block length increases, and optimizing an-

tenna configuration is more beneficial than optimizing power allocation over pilot

and data symbols at large block lengths.
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2.6 Effects of Channel Spatial Correlation

In the previous sections, we have assumed that the channels are spatially indepen-

dent. In the following, we will investigate the impact of channel spatial correlation

on the transmission design and capacity performance.

2.6.1 A Robust Transmission Scheme

For non-feedback systems, the transmitter does not have any knowledge about

the channel. Therefore, it is difficult to find the optimal resource allocation and

transmission strategies for the unknown channel spatial correlation. Intuitively,

the amount of training resource required should reduce as the channel gains be-

come more correlated. Therefore, one good strategy may be to use the optimal

PSAM energy factor α∗ and the optimal training length L∗p for i.i.d. channels so

that sufficient training is ensured for all channel correlation conditions. Similarly,

one may design the pilot and data transmission schemes to ensure a robust system

performance for possibly correlated channels. Here, we define robustness to be the

capability of achieving the best channel estimation and capacity performance for

the least-favorable channel correlation. Note that the least or most favorable chan-

nel correlation condition depends on the choice of the training or data transmission

strategy and does not necessarily imply i.i.d. or fully correlated channels.

Theorem 2.2 The transmission of orthogonal training sequences among the trans-

mit antennas with spatially equal power allocation minimizes the channel estima-

tion errors for the least-favorable channel correlation, i.e., using XpXp
† = PpLp

Nt
INt

is a robust training scheme.

Proof: see Appendix A.3.

Theorem 2.3 The transmission of i.i.d. data sequences among the transmit an-

tennas with spatially equal power allocation, i.e.,Q = Pd

Nt
INt , (a) maximizes the

capacity for the least-favorable channel correlation at sufficiently low SNR, and (b)

is the optimal transmission scheme at sufficiently high SNR.

Proof: see Appendix A.4.

From Theorem 2.2 and Theorem 2.3, we see that the optimal transmission

strategy for i.i.d. channels becomes a robust choice for correlated channels in non-

feedback systems.
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2.6.2 Ergodic Capacity Behavior

Having found the optimal pilot and data structure, the following result character-

izes the impact of channel spatial correlation on the ergodic capacity.

Theorem 2.4 When the pilot and data structure follows XpXp
† = PpLp

Nt
INt and

Q = Pd/NtINt , the ergodic capacity lower bound is (a) Schur-convex on the eigen-

values of channel covariance matrix at sufficiently low SNR and (b) Schur-concave

on the eigenvalues of channel covariance matrix at sufficiently high SNR. There-

fore, capacity increases as the channel spatial correlation increases at sufficiently

low SNR and decreases as the channel spatial correlation increases at sufficiently

high SNR.

Proof: see Appendix A.5.

From Theorem 2.4 we see that the capacity behaves very differently at low and

high SNRs. At low SNR, the channel estimation error plays a crucial role and it

reduces as channel spatial correlation increases, which results in an increase in the

capacity. This result is in contrast with [30] which showed that the channel spatial

correlation always reduces the capacity at any SNR with the assumption of perfect

channel estimation at the receiver.

To validate our theoretical low and high SNR analysis, we carry out numerical

studies using the ergodic capacity lower bound per channel use in (2.8). These

numerical results also provide insights into the effects of channel spatial correlation

on the capacity at moderate SNR values. It is noted that the ratio of energy

and time allocated to pilot transmission affects the capacity results. Here we do

not optimize the ratio of power and time allocated to training. We use Lp = Nt

and assume the fixed power transmission scheme. The trends on the capacity

behavior will be similar if optimal transmit energy and time allocation is used. For

numerical analysis, we choose the channel covariance matrix to be in the form of

(RH)ij = ρ|i−j|, where ρ is the spatial correlation factor. For systems having two

transmit antennas, ρ is referred to as the channel correlation coefficient.

Fig. 2.8 shows the ergodic capacity lower bound per channel use in (2.8) versus

SNR for 2 × 1 MISO systems. In general, we see that fully correlated channels

result in the highest capacity for a wide range of SNR values, even at 18 dB.

The spatially independent channels give the lowest capacity for SNR below 6 dB.

Comparing the two extreme cases, we see a significant increase in capacity from

independent channels to fully correlated channels at low to moderate SNR values,

which agrees with Theorem 2.4. For example, the increase in capacity from i.i.d.
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Figure 2.8: The ergodic capacity lower bound per channel use CLB in (2.8) versus
SNR P , for 2× 1 MISO systems with different levels of channel spatial correlation.

channels to fully correlated channels is approximately 33% at 0 dB and 13% at

5 dB.

Fig. 2.9 shows the ergodic capacity lower bound per channel use in (2.8) versus

SNR for 2×2 MIMO systems. In general, we see that fully correlated channels result

in the highest capacity for SNR values below 5 dB, while independent channels

maximize the capacity for SNR values above 5 dB. In particular, the capacity

difference between i.i.d. channels and fully correlated channels is significant at

high SNRs. This is because the benefit from receiver diversity outweighs the effect

of channel estimation error for i.i.d. channels at moderate to high SNRs.

2.7 Summary of Contributions

In this chapter we have investigated the optimal resource allocation in training-

based MIMO systems. The important design parameters are the transmit energy

and time to be distributed between training and data transmission, as well as the

number of transmit and receive antennas. We have also studied the impact of
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Figure 2.9: The ergodic capacity lower bound per channel use CLB in (2.8) versus
SNR P , for 2×2 MIMO systems with different levels of channel spatial correlation.

channel spatial correlation on the system design and capacity performance. Some

specific contributions made in this chapter are as follows.

Addressing Q1 in Section 2.1:

• For the fixed power transmission scheme where the training and data lengths

can be jointly optimized, we have shown that all available time should al-

ways be used for transmission. We have also provided analytical bounds to

significantly reduce the ranges of the possible values of the optimal training

and data lengths.

• For the fixed power transmission scheme designed to have a fixed training

length, we have derived a threshold SNR above which it is optimal to use all

available time for transmission. When the actual operating SNR is consid-

erably lower than the threshold SNR, it is wise to reduce the length of data

transmission in order to avoid substantial capacity degradation.

Addressing Q2 in Section 2.1:
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• When an extra antenna is available to be placed on either end of the system,

one should always place it at the receiver at moderate to high SNR when

the existing number of transmit antennas Nt is at least as large as that of

the receive antennas Nr. When Nt < Nr, a critical SNR value needs to be

considered, below which the extra antenna should be placed at the receiver.

• When it is only practical to change the number of transmit antennas, adding

extra antennas generally improves the capacity at high SNR and large block

lengths, provided Nt < Nr. More importantly, we have shown that the opti-

mal number of transmit antennas can exceed the number of receive antennas,

and the capacity improvement by optimal antenna configuration is significant

when the block length is large. We have also shown that optimizing antenna

configuration can be more beneficial than power optimization over pilot and

data symbols particularly at large block lengths.

Addressing Q3 in Section 2.1:

• Extending the existing results for spatially independent channels in [53], we

have derived a reasonably tight lower and upper bound on the ergodic capac-

ity for spatially correlated MIMO systems.

• Our study on the impact of channel spatial correlation has shown that the

capacity increases with channel correlation at low SNR, but decreases with

correlation at high SNR. The finding at low SNR is in contrast to the existing

result in [30] with perfect CSI assumption. We have also derived a robust

transmission scheme which achieves the best channel estimation and capacity

performance for the least-favorable channel correlation.





Chapter 3

One-Way Training-Based Systems

with Feedback

3.1 Introduction

The study of MIMO communication systems can be broadly categorized based on

the availability of CSI at the receiver or the transmitter side. In Chapter 2, we stud-

ied the optimal resource allocation in training-based systems with no transmitter

CSI. From [6, 32, 35, 39, 95–97] we know that the MIMO information capacity can

be further increased if some form of CSI is available at the transmitter. The trans-

mitter CSI can be in the form of causal channel gain feedback (CGF) or channel

covariance feedback (CCF). In this chapter, we study the optimal resource allo-

cation in training-based systems with CGF and CCF by addressing the following

questions:

Q1. What is the optimal transmission and resource allocation for systems with

CGF?

Q2. What is the optimal transmission and resource allocation for systems with

CCF?

Q3. What is the optimal transmission and resource allocation for systems with

both CGF and CCF?

For spatially i.i.d. channels, the optimal transmission and resource allocation

strategies were presented in Chapter 2 for non-feedback systems. In Section 3.3, we

investigate whether the optimal solutions for the non-feedback systems also stay

optimal for CGF systems. In addition, we consider the feedback delay in CGF

systems and study its effect on the optimal resource allocation.

49
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For CCF systems with spatially correlated channels, the optimal pilot structure

for transmission was investigated in [61–63]. The main assumption in these works

is that the number of pilot is at least as large as the number of antennas. In

Section 3.4, we find that the optimal training length may be shorter than the

number of transmit antennas for CCF systems. In this case, we aim to find a near

optimal, yet simple transmission and resource allocation strategy.

When both CCF and CGF are available, the system can be considered as a

hybrid CCF-CGF system. The optimal design for hybrid CCF-CGF systems is a

very difficult research problem partially due to lack of an analytical solution for the

optimal data transmission that takes both CCF and CGF into account. In addition,

the complicated nature of the capacity bound expression, due to hybrid CCF-CGF,

makes it nearly impossible to directly solve the problem of optimizing the training

resource allocation in closed form. In Section 3.5, we utilize the optimal pilot

structure and the property of LMMSE estimator to derive a closed-form solution

for the optimal data transmission. We also analytically study the possible range

of the optimal training length. In addition, we investigate the performance of a

closed-form suboptimal solution for the energy allocation between training and

data transmission.

3.2 System Model

The system model considered in this chapter is similar to that in Chapter 2. We

consider a MIMO flat-fading channel model with input-output relationship given

by

y = Hx + n, (3.1)

where y is the Nr × 1 received symbol vector, x is the Nt × 1 transmitted symbol

vector, H is the Nr × Nt channel gain matrix, and n is the Nr × 1 noise vector

having ZMCSCG entries with unit variance. The entries of H are also ZMCSCG

with unit variance.

We consider the possibility of channel spatial correlation at the transmitter

side. The spatial correlation is characterized by the covariance matrix RH =

E{H†H}/Nr. Therefore, H = H0R
1/2
H , where H0 has i.i.d. ZMCSCG entries

with unit variance. We assume that RH is a positive definite matrix and denote the

eigenvalues of RH by g = [g1 g2 . . . gNt ]
T . We use the concept of majorization to

characterize the degree of channel spatial correlation as explained in Section 2.2.1.
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Figure 3.1: An example of a transmission block of L symbols in a system with
delayed feedback. Temporal power allocations are shown at the top and the length
of each sub-block is shown at the bottom.

3.2.1 Transmission Scheme

Fig. 3.1 shows an example of a transmission block of L symbol periods in a PSAM

scheme. The channel gains remain constant over one block and change to inde-

pendent realizations in the next block. We focus on the variable power transmis-

sion, where the pilot and data transmissions have different powers. During each

transmission block, each transmit antenna sends Lp pilot symbols, followed by Ld

(= L − Lp) data symbols1 as shown in Fig. 3.1. The receiver performs channel

estimation during the pilot transmission. For CGF systems, the receiver feeds the

channel estimates back to the transmitter once per block to allow adaptive data

transmission in the form of power control. In practical scenarios, there is a time

delay of d symbol periods before the transmitter receives the feedback information

as shown in Fig. 3.1. Therefore, the data transmission during the first d symbol

periods is not adaptive to the channel, and adaptive transmission is only available

for the remaining Ld − d symbol periods. We define β = d/Ld as the feedback

delay factor. For CCF systems, less frequent feedback is required as the channel

correlation changes much more slowly than the channel gains. Therefore, we do not

consider feedback delay in CCF systems, i.e., d = 0. Note that for non-feedback

systems, d = Ld.

The total transmission energy per block is given by PLTs as shown in Fig. 3.1,

1Similar to the result for non-feedback systems in Section 2.4.1, it is easy to show that with
variable power transmission, it is optimal to use all available time for transmission, i.e.,Lp +Ld =
L. Therefore, we assume Lp + Ld = L in this Chapter.
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where P is the average power per symbol and Ts is the symbol duration. Similar

to Chapter 2, we define the PSAM energy factor as the ratio of the total energy

allocated to the data transmission, denoted by α. We also denote the power or

SNR per pilot and data symbol by Pp and Pd, respectively. Therefore, we have the

following relationships.

PLTs = PpLpTs + PdLdTs,

Pp = (1− α)
PL

Lp

, and Pd = α
PL

Ld

. (3.2)

For CGF systems with delay of d symbol periods as shown in Fig. 3.1, we define

the data energy division factor as the ratio of the total data energy allocated

to the non-adaptive sub-block, denoted by φ. Therefore, we have the following

relationships.

PdLdTs = Pd,1d Ts + Pd,2(Ld − d)Ts,

Pd,1 =
φ

β
Pd, and Pd,2 =

1− φ

1− β
Pd, (3.3)

where Pd,1 and Pd,2 are the power per symbol during the non-adaptive and adaptive

sub-blocks, respectively.

3.2.2 Channel Estimation

Similar to Chapter 2, the LMMSE channel estimation method is used during the

pilot transmission. Here we rewrite the key equations for ease of reference. We

denote the channel estimate and estimation error as Ĥ = Ĥ0R
1/2

Ĥ
and H̃ =

H̃0R
1/2

H̃
, respectively, where Ĥ0 and H̃0 have i.i.d. ZMCSCG entries with unit

variance. Ĥ is given as [62]

Ĥ = Y (Xp
†RHXp + ILp)

−1Xp
†RH , (3.4)

where Y is the Nt × Lp matrix combining the Lp received symbol vectors during

pilot transmission and Xp is the Nt × Lp pilot matrix. The covariance matrix of

the estimation error and the estimates are given by [62]

RH̃ =
E{H̃†

H̃}
Nr

= (R−1
H + XpXp

†)−1. (3.5)
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and

RĤ =
E{Ĥ†

Ĥ}
Nr

= RH −RH̃ . (3.6)

3.2.3 Ergodic Capacity Bound

In Chapter 2, we derived a general capacity lower bound which is applicable to

both non-feedback and feedback systems. The ergodic capacity lower bound per

channel use is given by

CLB = EĤ

{
log2

∣∣∣INt + (1 + tr{RH̃Q})−1Ĥ
†
ĤQ

∣∣∣
}

. (3.7)

Taking the training overhead into account, the average capacity lower bound is

therefore given by

CLB=
Ld

L
CLB

=
Ld

L
EĤ

{
log2

∣∣∣INt +(1+tr{RH̃Q})−1Ĥ
†
ĤQ

∣∣∣
}

. (3.8)

It was shown numerically in Section 2.3 that the above capacity lower bounds are

reasonably tight. Therefore, we will use “capacity lower bound” and “capacity”

interchangeably throughout the rest of this chapter. And the average capacity lower

bound in (3.8) will be used as the figure of merit to study the optimal transmission

and resource allocation strategies in the following sections.

3.3 Channel Gain Feedback (CGF) Systems

CGF systems require the receiver to feed the channel estimates back to the trans-

mitter once per transmission block. Once the transmitter receives the estimated

channel gains, it performs spatial power adaptation accordingly. When noise is

present in the feedback link, the capacity that can be achieved by adaptive trans-

mission reduces as the noise increases. The capacity reduction due to corrupted

channel gain estimates was studied in [56]. It was shown that the capacity reduc-

tion can increase quickly with the noise in the estimated channel gains. Therefore,

a reliable feedback scheme which minimizes the noise in the estimated channel gains

is essential for CGF systems. One solution is to use low rate feedback transmission

with appropriate quantization scheme for the feedback information [98]. However,

the design of digital feedback is beyond the scope of this work. In this section, we
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assume that the feedback link is noiseless, which is reasonable for CGF systems

with reliable feedback schemes.

We consider the channels to be spatially i.i.d.. For a CGF system with corre-

lated channels, it is fair to assume that the transmitter has the knowledge of the

spatial channel correlations as well. In other words, a CGF system with correlated

channels is effectively a hybrid CCF-CGF system, which will be discussed in Sec-

tion 3.5. With the assumption of i.i.d. channels, the data transmission utilizes

all the channels with equal probability. Hence, it is reasonable to have at least

as many measurements as the number of channels for channel estimation, which

implies that Lp ≥ Nt. From [54], we know that the optimal training for i.i.d.

channels consists of orthogonal pilots with equal power allocated to each antenna,

i.e.,XpXp
† = PpLp

Nt
INt .

For a given Pd, the ergodic capacity lower bound per channel use in (3.7) can

be rewritten as

CLB = EĤ0

{
log2

∣∣∣INt +
σ2

Ĥ

1 + σ2
H̃
Pd

Ĥ
†
0Ĥ0Q

∣∣∣
}

, (3.9)

where σ2
H̃

=
(
1 + PpLp

Nt

)−1

and σ2
Ĥ

= 1− σ2
H̃

.

3.3.1 CGF Systems with No Feedback Delay

Firstly, we study an ideal (delayless) scenario in which the transmitter receives the

estimated channel gains at the start of the data transmission. The delayless case

can be viewed as a reasonable approximation of the delayed case when d ¿ L.

Furthermore, the results in the delayless case will be used in Section 3.3.2 for the

delayed case. It was shown in [53] that the capacity is maximized when the matrix

Q has the same eigenvectors as Ĥ
†
0Ĥ0. Denoting the eigenvalues of Ĥ

†
0Ĥ0 by

λ = [λ1 λ2 . . . λNt ]
T sorted in descending order, the eigenvalues of Q are found

via the standard water-filling as

qi =
[
η −

( σ2
Ĥ

1 + σ2
H̃
Pd

λi

)−1]+

with
Nt∑
i=1

qi = Pd, (3.10)

where η represents the water level and [z]+ , max{z, 0}. Therefore, (3.9) can be

rewritten as

CLB = Eλ

{ Nt∑
i=1

log2

(
1 +

σ2
Ĥ

1 + σ2
H̃
Pd

λiqi

)}
(3.11)
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= Eλ

{ m∑
i=1

log2

( σ2
Ĥ

1 + σ2
H̃
Pd

λiη
)}

(3.12)

= Eλ

{ m∑
i=1

log2

( σ2
Ĥ
Pd

1 + σ2
H̃
Pd

+
m∑

i=1

λ−1
i

)
+

m∑
i=1

log2

λi

m

}
, (3.13)

where m denotes the number of non-zero qi, and (3.13) is obtained by substituting

η from (3.10) into (3.12). It should be noted that Eλ in (3.12) and (3.13) is the

expectation over the m largest values in λ. Using (3.13), we now present the result

for the optimal PSAM energy factor α∗.

Theorem 3.1 For delayless CGF systems with i.i.d. channels and the optimal

pilot structure XpXp
† = PpLp

Nt
INt , the optimal PSAM energy factor α∗ coincides

with α∗ for non-feedback systems and is given by

α∗ =





γ −
√

γ(γ − 1), for Ld > Nt

1
2
, for Ld = Nt

γ +
√

γ(γ − 1), for Ld < Nt

(3.14)

where γ = Nt+PL
PL(1−Nt/Ld)

.

Proof: see Appendix B.1.

From the study of the non-feedback systems in Section 2.4.1, we have seen

that the optimal training length L∗p is equal to Nt when the optimal PSAM energy

factor α∗ given in (3.14) is used. In the next theorem and corollary, we show a

more general result that L∗p = Nt for any fixed value of α as well as α∗ in delayless

CGF systems.

Theorem 3.2 For delayless CGF systems with i.i.d. channels and the optimal

pilot structure XpXp
† = PpLp

Nt
INt , the optimal training length equals the number

of transmit antennas for any given value of the PSAM energy factor α, i.e.,L∗p = Nt.

Proof: see Appendix B.2.

In Theorem 3.2, the value of α is required to be fixed. When α is allowed to

vary as Lp varies, L∗p may or may not equal Nt. For example, α varies according

to α = L−Lp

L
when fixed power transmission (Pd = Pp = P) is used, in which case

L∗p = Nt does not hold in general.

Corollary 3.1 For delayless CGF systems with i.i.d. channels and the optimal

pilot structure XpXp
† = PpLp

Nt
INt as well as the optimal PSAM energy factor α∗,

the optimal training length is given by L∗p = Nt.
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Proof: see Appendix B.3.

Theorem 3.1 and Corollary 3.1 show that the optimal pilot design for delay-

less CGF systems coincides with that for non-feedback systems discussed in Sec-

tion 2.4.1. That is to say, one can use the same design to achieve optimal perfor-

mance in both non-feedback and delayless CGF systems.

3.3.2 CGF Systems with Feedback Delay

For practical systems, a finite duration of d symbol periods is required before

feedback comes into effect at the transmitter as shown in Fig. 3.1. Therefore, the

transmitter has no knowledge about the channel during the first data sub-block of

d transmissions, which is equivalent to non-feedback systems. From Section 2.4, we

know that the transmitter should allocate equal power to each transmit antenna

during the first data sub-block (or the non-adaptive sub-block). After receiving

the estimated channel gains, the transmitter performs spatial power water-filling

similar to Section 3.3.1 during the second data sub-block (or the adaptive sub-

block) of length Ld − d. In order to optimize the PSAM energy factor α, we apply

a two-stage optimization approach. Firstly, we optimize the data energy division

factor φ for any given Pd and Ld. Then, we optimize the PSAM energy factor α.

Using (3.3), the capacity lower bound per channel use in (3.9) becomes

CLB = Eλ

{
β

Nt∑
i=1

log2

(
1 +

σ2
Ĥ

λi

1 + σ2
H̃
Pdφ/β

Pdφ

Ntβ

)

+(1−β)
Nt∑
i=1

log2

(
1+

σ2
Ĥ

λiqi

1+σ2
H̃
Pd(1−φ)/(1−β)

)}
(3.15)

= Eλ

{
β

Nt∑
i=1

log2

(
1 +

σ2
Ĥ

λi

1 + σ2
H̃
Pdφ/β

Pdφ

Ntβ

)

+(1−β)
m∑

i=1

log2

( σ2
Ĥ

λiν

1+σ2
H̃
Pd(1−φ)/(1−β)

)}
, (3.16)

where the water-filling solution for qi with water level ν is given by

qi =
[
ν −

( σ2
Ĥ

λi

1 + σ2
H̃
Pd(1− φ)/(1− β)

)−1]+

(3.17)

with
Nt∑
i=1

qi =
1− φ

1− β
Pd.
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Lemma 3.1 The capacity lower bound per channel use in (3.16) is concave on

φ ∈ [0, 1].

Proof: From the property of water-filling solution [99], we know that qi and ν

in (3.17) are continuous on φ ∈ [0, 1]. As a result, CLB in (3.16) is continuous on

φ ∈ [0, 1]. For any fixed m, one can show that d2CLB

dφ2 < 0 by directly computing

the derivative using (3.16). This implies that dCLB

dφ
given by

dCLB

dφ
=
Pd

ln 2
Eλ

{ β

Nt

Nt∑
i=1

σ2
Ĥ

λi − (σ2
Ĥ

λiσ
2
H̃
Pdφ)/(β + σ2

H̃
Pdφ)

β + σ2
H̃
Pdφ + σ2

Ĥ
λiPdφ/Nt

−1+σ2
Ĥ

σ2
H̃

∑m
i=1 λ−1

i

ν
+

mσ2
H̃

(1−β)

1−β+σ2
H̃
Pd(1−φ)

}
(3.18)

is a decreasing function of φ for any given m. Furthermore, it can be shown that

CLB is differentiable on φ ∈ [0, 1], including the points where m changes its value.

To obtain differentiability, we let φ = φ0 at which m changes between m0 and

m0 + 1. At this point, the water level is given by ν0 =
(

σ2
Ĥ

λ(m0+1)

1+σ2
H̃
Pd(1−φ0)/(1−β)

)−1

.

With ν = ν0, one can show that the left and right derivatives of CLB w.r.t.φ

equate, that is, dCLB

dφ
(m = m0) = dCLB

dφ
(m = m0 + 1) at φ = φ0. Therefore, one can

conclude that CLB is differentiable and its derivative is decreasing on φ ∈ [0, 1],

which implies concavity. ¤

With Lemma 3.1, the optimal data energy division factor φ∗ can be found

numerically. Using the Karush-Kuhn-Tucker (KKT) conditions [99], the result is

given by

{
φ∗ = 0, if dCLB

dφ
(φ = 0) ≤ 0

argφ
dCLB

dφ
= 0, otherwise

(3.19)

where dCLB

dφ
was given in (3.18).

Fig. 3.2 shows the optimal data energy division factor φ∗ given by (3.19) versus

average SNR P for different delay factors β. It can be seen that φ∗ increases from 0

to β at low SNR. For moderate to high SNR, φ∗ stays above β and converges to β as

P → ∞.2 As we are concerned with practical design solutions, it is desirable to have

a low complexity solution for φ which still gives near optimal performance under

practical transmission conditions. From Fig. 3.2, we see that φ∗ is usually close

to β at practical SNR range, e.g .,P > 0 dB, and φ∗ → β as P → ∞. Therefore,

2φ∗ for the (Nt = 4, Nr = 2) system exceeds and converges back to β at a higher SNR, which
is not shown in Fig. 3.2. This is because the use of spatial water-filling in data transmission gives
a significant improvement in the capacity when Nt > Nr.
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Figure 3.2: The optimal data energy division factor φ∗ vs. SNR P for different
values of the delay factor β and antenna sizes. In this example, a block length of
L = 100, training length of Lp = Nt = 4, and PSAM energy factor given in (3.14)
are used.

φ = β is a simple solution which provides good system performance. We will also

investigate the optimality of φ = β using capacity results in Section 3.3.3.

From (3.3) we see that φ = β is actually the simplest solution which allocates

the same amount of power during each data transmission in both non-adaptive and

adaptive sub-blocks, i.e.,Pd,1 = Pd,2 = Pd. In addition, this simple solution does

not require the knowledge of the feedback delay time. Furthermore, this choice

of φ leads to a simple closed-form solution for the optimal PSAM energy factor

α∗, as well as the optimal training length L∗p for delayed CGF system summarized

in Corollary 3.2, which can be shown by combining the results in Theorem 3.1,

Corollary 3.1 and those for the non-feedback systems summarized in Section 2.4.1.

Corollary 3.2 If XpXp
† = PpLp

Nt
INt and φ = β, the optimal PSAM energy factor

α∗ and the optimal training length L∗p coincide with those in the delayless case

given in Theorem 3.1 and Corollary 3.1.
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Figure 3.3: Average capacity lower bound CLB vs. SNR P for delayless CGF
systems (d = 0 and β = 0) with i.i.d. channels and different antenna sizes. Note
that CLB = (Ld/L)CLB where CLB is given in (3.11). The block length is L =
100. Both variable power transmission with α∗ given in (3.14) as well as fixed
power transmission are shown for comparison. For variable power transmission,
the training length is L∗p = 4; while for fixed power transmission, the pilot length
is optimized numerically.

3.3.3 Numerical Results

Now, we present numerical results to illustrate the capacity gain from optimizing

the PSAM energy factor. Fig. 3.3 shows the average capacity lower bound CLB

versus SNR P for delayless CGF systems (i.e., d = 0 and β = 0) with i.i.d. channels

and different antenna sizes. The solid lines indicate systems using α∗ and L∗p (L∗p =

4 in this case). The dashed lines indicate systems using fixed power transmission

and L∗p found numerically. Comparing the solid and dashed lines, we see that the

capacity gain from optimal variable power transmission is approximately 9% at 0

dB and 6% at 20 dB for all three systems. This range of capacity gain (5% to

10%) was also observed in [54] for non-feedback systems which can be viewed as an

extreme case of delayed CGF system with d = Ld. From the results for the extreme

cases, i.e., d = 0 and d = Ld, we conclude that the capacity gain from optimizing
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Figure 3.4: Average capacity lower bound CLB vs. SNR P for delayed CGF systems
with i.i.d. channels and different antenna sizes. Note that CLB = (Ld/L)CLB where
CLB is given in (3.15). Within a block length of L = 100, the training length is
Lp = 4, followed by a non-adaptive data transmission sub-block of length d = 20
and an adaptive data transmission sub-block of length 76. α in (3.14) is used. The
lines indicate the use of φ = β = 0.208, and the markers indicate optimal data
energy division factor found numerically.

the PSAM energy factor is around 5% to 10% at practical SNR for delayed CGF

systems with i.i.d. channels.

We now numerically verify the near optimality of φ = β. Fig. 3.4 shows the

average capacity lower bound CLB versus SNR P for delayed CGF systems with

i.i.d. channels and different antenna sizes. In this example, a transmission block of

length L = 100 consists of a training sub-block of Lp = 4 symbol periods, followed

by a non-adaptive data sub-block of d = 20 symbol periods3 and an adaptive data

sub-block of Ld − d = 76 symbol periods. Therefore, the delay factor is β = 0.208.

The lines indicate the use of φ = β, and the markers indicate optimal data power

division found through numerical optimization using CLB. The values of φ∗ for

3The delay length d takes into account the channel estimation and other processing time at
the receiver and transmitter, as well as the time spent on the transmission of low-rate feedback.
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SNR = 4 dB, 10 dB and 16 dB are shown in the figure as well. We see that the

capacity difference between the system using φ = β and φ = φ∗ is negligible. That

is to say the use of temporal equal power transmission over the entire data block is

near optimal for systems with channel estimation errors. We have also confirmed

that this trend is valid for a wide range of block lengths (results are omitted for

brevity). These results validate the near optimality of φ = β.

3.4 Channel Covariance Feedback (CCF) Systems

As discussed in Section 3.3, CGF systems require frequent use of feedback due to

the rapid change in the channel gains. This requires a non-negligible amount of

feedback overhead in the reverse link (from the receiver to the transmitter). On the

other hand, the statistics of the channel gains change much more slowly than the

channel gains themselves. As a result, it is practical for the receiver to accurately

measure the channel covariance matrix and feed it back to the transmitter at a

much lower frequency with negligible feedback overhead and delay. Note that for

completely i.i.d. channels, there is no need for CCF. In this section, we consider

CCF systems with spatially correlated channels and investigate the optimal pilot

and data transmission strategy, as well as the optimal resource allocation. We

assume that both the transmitter and the receiver have perfect knowledge of the

channel spatial correlations.

3.4.1 Proposed Transmission Scheme

Most studies on the optimal pilot design for correlated channels assume that the

training length is at least as large as the number of transmit antennas, i.e.,Lp ≥
Nt [61–63]. Intuitively, the amount of training resource can be significantly reduced

as the channels become more correlated. As an extreme case where the channels

are fully correlated, only one pilot transmission is needed to train all the channels.

Therefore, we relax this assumption by considering Lp ≥ 1. It was shown in [62]

that the optimal training strategy is to train along the eigenvectors of the channel

covariance matrix with training power being water-filled according to the eigenval-

ues of the channel covariance matrix, provided that Lp ≥ Nt. In the case where

Lp < Nt, only Lp eigen-channels can be trained. Therefore, we propose that only

the Lp strongest eigen-channels are to be trained when Lp < Nt.

We perform EVD on the channel covariance matrix as RH = UGU †, and let

the eigenvalues of RH be sorted in descending order in g = [g1 g2 . . . gNt ]
T . The

optimal training sequence which minimizes the channel estimation errors (i.e., tr{RH̃})
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has the property that the eigenvalue decomposition of XpXp
† is given by XpXp

† =

UPU † [62], where P is a diagonal matrix. We denote the diagonal entries of P by

p = [p1 p2 . . . pNt ]
T . Let n = min{Lp, Nt}, then the first n entries in p are given

by

pi = [µ− g−1
i ]+, with

∑n
i=1 pi = PpLp, (3.20)

where µ is the water level. All the remaining entries in p (if any) are set to zero. It

is not difficult to show that this choice of XpXp
† is optimal. Note that in practice,

the transmitter can ensure that the number of non-zero pi equals n by reducing Lp

when needed.

For data transmission, it was shown that the optimal strategy is to transmit

along the eigenvectors of RH under the perfect channel estimation [32,39,96]. With

the proposed training sequence, it is easy to show from (3.5) and (3.6) that the

eigenvectors of RH̃ and RĤ are the same as those of RH . Therefore, in the case of

imperfect channel estimation, a reasonable strategy is to transmit data along the

eigenvectors of RĤ which coincide with the eigenvectors of RH . From (3.5) and

(3.6), the eigenvalue decomposition of RĤ is given by RĤ = UĜU †, and we set

Q = UQ̂U † where Q̂ is a diagonal matrix with entries denoted by q̂i, ∀ i = 1, ..., Nt.

To the best of our knowledge, there is no closed-form solution to the opti-

mal spatial data power allocation even with perfect channel estimation [32,39,96].

Instead, the optimal q̂i can be found via numerical methods [100]. As we are

concerned with practical design solutions, it is desirable to have a low complexity

solution for q̂i which still gives near optimal performance. Following the proposed

training scheme, we propose a simple strategy which transmits data through the n

trained eigen-channels with equal power. That is

q̂i =

{
Pd/n, i = 1, . . . , n

0, else
(3.21)

It is easy to see that only the n trained eigen-channels should be used for data

transmission, since the capacity is zero for untrained eigen-channels. We will nu-

merically investigate the optimality of (3.21) in Section 3.4.4.

For the proposed training and data transmission scheme, the capacity lower

bound per channel use in (3.7) reduces to

CLB=EĤ0

{
log2

∣∣∣INt +Ĥ
†
0Ĥ0ĜQ̂(1+µ−1Pd)

−1
∣∣∣
}

, (3.22)
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where the non-zero (diagonal) entries of Ĝ are given by ĝi = gi−µ−1, ∀ i = 1, ..., n,

which is derived from (3.5), (3.6) and (3.20).

3.4.2 Optimal Training Resource Allocation

Now, we investigate the optimal training length L∗p as well as the optimal PSAM

energy factor α∗ using the average capacity lower bound CLB = (Ld/L)CLB with

CLB given in (3.22). The results are summarized in the following theorems and

corollary.

Theorem 3.3 For CCF systems in PSAM schemes with the transmission strategy

proposed in Section 3.4.1, the optimal training length is at most as large as the

number of transmit antennas for any given value of the PSAM energy factor α,

i.e.,L∗p ≤ Nt.

Proof: see Appendix B.4.

Corollary 3.3 For CCF systems in PSAM schemes with the transmission strategy

proposed in Section 3.4.1 as well as the optimal PSAM energy factor α∗, the optimal

training length is given by L∗p ≤ Nt.

Proof: The proof is similar to that of Corollary 3.1.¤

Although the optimal training length needs to be found numerically, the com-

putational complexity of optimizing Lp is low due to the fact that Lp only takes

integer values ranging from 1 to Nt. Hence, we will only consider Lp ≤ Nt in the

analysis on α∗.

Theorem 3.4 For CCF systems in PSAM schemes with the transmission strategy

proposed in Section 3.4.1, the optimal PSAM energy factor α∗ is given by (3.14)

with γ = Ld

Ld−Lp
, provided that PL À ∑Lp

i=1 g−1
i .

Proof: see Appendix B.5.

The condition of PL À ∑Lp

i=1 g−1
i can be easily satisfied when the block length

is not too small or the SNR is moderate to high (i.e.,PL À 1), and the spatial

correlation between any trained channels is not close to 1. Therefore, the result

in Theorem 3.4 applies to many practical scenarios. It is important to note that

the optimal PSAM energy factor α∗ given in Theorem 3.4 does not depend on the

channel spatial correlation, provided that the condition above is met. In other

words, a single design is suitable for a relatively wide range of channel spatial

correlations.
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3.4.3 A Special Case: Beamforming

From Theorem 3.3 we know that L∗p ≤ Nt. When only the strongest eigen-channel

is used, i.e.,Lp = 1, this scheme is called beamforming, which may be the opti-

mal strategy for highly correlated channels. Furthermore, the use of beamforming

significantly reduces the complexity of the system as it allows the use of well-

established scalar codec technology and only requires the knowledge of the strongest

eigen-channel (not the complete channel statistics) [96]. For beamforming trans-

mission, the capacity lower bound per channel use in (3.22) reduces to

CLB = Eĥ0

{
log2

(
1 + ĥ

†
0ĥ0

(gmax − µ−1)Pd

1 + µ−1Pd

)}

= Eĥ0

{
log2

(
1 + ĥ

†
0ĥ0

gmaxPpPd

g−1
max + Pp + Pd

)}
, (3.23)

where ĥ0 is a Nr × 1 vector with i.i.d. ZMCSCG and unit variance entries, gmax

is the largest eigenvalue in g, and µ = Pp + g−1
max which can be found by letting

Lp = 1 in (3.20).

Lemma 3.2 For CCF systems in PSAM schemes with beamforming, the ergodic

capacity lower bound per channel use in (3.23) is Schur-convex on the eigenvalues

of the channel covariance matrix. Therefore, capacity increases as channel spatial

correlation increases.

Proof: CLB in (3.23) is an increasing function of gmax. Also gmax is an increasing

function of g and is Schur-convex in g [93]. Therefore, CLB is also Schur-convex

in g, which means the capacity is an increasing function of the channel spatial

correlation. ¤

The Schur-convexity of the capacity holds at any SNR for beamforming trans-

mission only. However, the capacity can be neither Schur-convex nor Schur-concave

when Lp > 1. In other words, the capacity can be neither an increasing function

nor a decreasing function of the channel spatial correlation when Lp > 1, which

will be seen in Section 3.4.4.

Theorem 3.5 For CCF systems in PSAM schemes with beamforming, the optimal

PSAM energy factor α∗ is given in (3.14) with γ = 1+gmaxPL
gmaxPL(L−2)/(L−1)

.

Proof: The proof can be obtained by letting Lp = 1 and gi = gmax in the proof

of Theorem 3.4. ¤

It can be shown for the beamforming case that dα∗
dgmax

> 0. Therefore, the optimal

PSAM energy factor α∗ increases as the channel spatial correlation increases, that



3.4 Channel Covariance Feedback (CCF) Systems 65

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

Channel spatial correlation factor

O
pt

im
al

 P
S

A
M

 e
ne

rg
y 

fa
ct

or

 

 
L

p
 = 1

L
p
 = 2

L
p
 = 3

L
p
 = 4

Figure 3.5: Optimal PSAM energy factor α∗ vs. channel spatial correlation factor
ρ for CCF 4 × 4 systems with a block length of L = 20 and SNR = 10 dB. The
solid lines indicate the optimal α∗ found numerically. The dashed lines indicate
the analytical value of α given in Theorem 3.4 and Theorem 3.5.

is to say, more energy should be allocated to data transmission when the channels

become more correlated. When PL À 1, γ reduces to L−1
L−2

, hence α∗ does not

depend on the channel correlation.

3.4.4 Numerical Results

For numerical analysis, we choose the channel covariance matrix to be in the form

of [RH ]ij = ρ|i−j|, where ρ is referred to as the spatial correlation factor [62]. Firstly

we validate the solution to the optimal PSAM energy factor given in Theorem 3.4

and Theorem 3.5. Fig. 3.5 shows the optimal PSAM energy factor α∗ found nu-

merically versus the channel correlation factor ρ (the solid lines) for CCF 4 × 4

systems with a block length of L = 20 and SNR of 10 dB. We see that α∗ remains

constant before the correlation factor gets close to 1 for Lp > 1, and this value of

α∗ is very close to the analytical value given by Theorem 3.4 (the dashed lines).

For the beamforming case where Lp = 1, we see that α∗ does not depend on the



66 One-Way Training-Based Systems with Feedback

0 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

Channel spatial correlation factor

A
ve

ra
ge

 c
ap

ac
ity

 lo
w

er
 b

ou
nd

, b
its

/c
h 

us
e

 

 

L
p
 = 1

L
p
 = 2, spatially equal data power allocation

L
p
 = 2, spatially optimal data power allocation

L*
p
=2 L*

p
=1

Figure 3.6: Average capacity lower bound CLB in (3.8) vs. channel spatial correla-
tion factor ρ for CCF 2× 2 systems with a block length of L = 20 and SNR of 10
dB. Training length of Lp = 1 and Lp = 2 are shown. For Lp = 2, both spatially
equal data power allocation (dashed lines) and optimal data power allocation found
numerically (solid lines) are shown.

channel correlation, which agrees with our earlier observation from Theorem 3.5.

Similar to CGF systems, we have also compared the capacity achieved using α∗ and

that using fixed power transmission, and the same trend is observed (results are

omitted for brevity), that is, capacity gain from optimizing PSAM energy factor is

around 5% to 10% at practical SNR values.

In our proposed transmission scheme for CCF systems, spatially equal power

allocation is used for data transmission. Here we illustrate the near optimality

of this simple scheme in Fig. 3.6, which shows the average capacity lower bound

CLB versus channel correlation factor ρ for CCF 2 × 2 systems. We compute the

capacity achieved using Lp = 1, and Lp = 2 with spatially equal power allocation

for data transmission (solid line) and optimal power allocation found numerically

(dashed line) for a block length of L = 20. We also indicate the critical ρ at which

L∗p changes from 2 to 1 in Fig. 3.6. It is clear that the capacity loss from spatially

optimal power allocation to spatially equal power allocation increases as ρ increases.
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Figure 3.7: Average capacity lower bound CLB vs. channel spatial correlation
factor ρ for CCF 4× 4 systems with a block length of L = 20 and SNR = 10 dB.
Note that CLB = (Ld/L)CLB where CLB is given in (3.22). The optimal PSAM
energy factor α∗ is used in all results.

At the critical ρ, this capacity loss is less than 1.5%. We also studied the results for

different values of block lengths and the same trend was found (results are omitted

for brevity). These results imply that our proposed transmission scheme is very

close to optimal provided that the training length is optimized.

Fig. 3.7 shows the average capacity lower bound CLB versus the channel cor-

relation factor ρ for CCF 4 × 4 systems with a block length of L = 20 and SNR

of 10 dB. The optimal PSAM energy factor α∗ shown in Fig. 3.5 is used in the

capacity computation. We also include CLB for Lp = 5 in Fig. 3.5 with α∗ found

numerically. It is clear that CLB for Lp = 5 is always smaller than CLB for L∗p ≤ 4,

which agrees with Theorem 3.3. Comparing the capacity with different training

lengths, we see that L∗p decreases as the channel becomes more correlated. More

importantly, the capacity gain from optimizing the training length according to the

channel spatial correlation can be significant. For example, the capacity at ρ = 0.5

using Lp = 4 (which is optimal for i.i.d. channels) is approximately 6.3 bits per
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channel use, while the capacity at ρ = 0.5 using L∗p = 2 is around 7 bits per channel

use, that is to say, optimizing training length results in a capacity improvement of

11% at ρ = 0.5. Moreover, the capacity improvement increases as channel corre-

lation increases. The same trends are found for different values of block lengths,

although the capacity improvement by optimizing the training length reduces as

the block length increases (results are omitted for brevity). Therefore, it is impor-

tant to numerically optimize the training length for correlated channels at small to

moderate block lengths.

Furthermore, one can record the range of ρ for each value of L∗p from Fig. 3.7,

and observe the value of α∗ in the corresponding range of ρ in Fig. 3.5. It can be

seen that within the range of ρ where a given Lp is optimal, the value of α∗ for the

given Lp is a constant given by Theorem 3.4 provided that PL À 1. That is to say,

the condition in Theorem 3.4 (i.e.,PL À ∑Lp

i=1 g−1
i ) can be simplified to PL À 1

provided that the training length is optimized. To summarize, our numerical results

show that optimizing the training length can significantly improve the capacity,

and the simple transmission scheme proposed in Section 3.4.1 gives near optimal

performance.

3.5 Hybrid Feedback Systems

For systems with correlated channels, one can utilize both CCF and CGF to in-

crease the capacity. We refer to this type of system as the hybrid CCF-CGF system.

In this section, we study the optimal transmission and resource allocation strate-

gies in the hybrid system. As we will see, many results and derivations obtained in

CCF system and CGF system can be used in the hybrid system. For brevity, we

consider delayless feedback, while the impact of feedback delay can be analyzed in

a similar way as in Section 3.3.2.

3.5.1 Optimal Transmission Scheme

First we study the optimal spatial structures of both the pilots and data, which

maximize the capacity lower bound. At the beginning of each transmission block,

the transmitter only knows the statistical properties of the channels. Therefore, the

pilot structure design is based on the knowledge of the channel covariance matrix,

and hence is identical to that outlined in Section 3.4.1.

During the data transmission, the transmitter has received the estimated chan-

nel gains fed back from the receiver. Hence, the data structure design is based
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on the knowledge of both the channel covariance matrix and the estimated chan-

nel gains. The data transmission strategy characterized by Q shall be chosen to

maximize the following objective function for given RH and Ĥ as follows.

max
Q : tr{Q}≤Pd

log2

∣∣∣INt + (1 + tr{RH̃Q})−1Ĥ
†
ĤQ

∣∣∣. (3.24)

Since Q appears in two different places in (3.24), it is generally difficult to find

a closed-form solution to optimal Q and it is also not clear whether tr{Q} = Pd

maximizes the objective function. The constraint set of the above optimization

problem is a convex cone and hence, the solution can be found using iterative

algorithms such as cone programming [99]. However, in the case where the LMMSE

channel estimation and the optimal pilot structure outlined in Section 3.4.1 are

used, a closed-form solution for the optimal Q can be found as follows.

Recall that the EVD of the channel covariance matrix is given by RH =

UGU †. We denote the first n columns of ĤU as F which is an Nr × n ma-

trix, and let the EVD of F †F be F †F = V ΛV †, where the diagonal matrix

Λ = diag{χ1, χ2, . . . , χn}. The following theorem gives the optimal data trans-

mission strategy.

Theorem 3.6 The optimal data transmission structure can be written as Q =

UQ̂U † with

Q̂ =

(
Q̂a 0n×(Nt−n)

0(Nt−n)×n 0(Nt−n)×(Nt−n)

)
, (3.25)

where Q̂a is an n × n matrix and 0M×N is an all-zero matrix of size M × N .

The optimal Q̂a satisfies tr{Q̂a} = Pd and is given by Q̂a = V AV †, where A =

diag{a1, a2, . . . , an} with

ai =
[
η −

( χi

1 + µ−1Pd

)−1]+

,

n∑
i=1

ai = Pd, (3.26)

and η represents the data water level.

Proof: See Appendix B.6.

It can be seen from (3.25) that the optimal data transmission concentrates

the transmit power into the n trained eigen-directions. tr{Q̂a} = tr{Q} = Pd

implies that all available power for data transmission should be used to achieve

the capacity. As shown in (3.26), the optimal Q̂a follows a water-filling solution
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according to the estimated channel gains that are rotated by U and truncated into

the n trained eigen-directions. These results agree with the intuitions obtained from

CGF-only and CCF-only systems which are now rigorously proved in Theorem 3.6.

Furthermore, Theorem 3.6 contains an important message: only the channel gains

along the trained eigen-directions have effects on the optimal data transmission

design. As a result, the receiver should right rotate Ĥ by U , and only feed back

the first n columns of ĤU , i.e.,F . Note that n = Lp when Lp < Nt. This implies

that only Nr×Lp out of Nr×Nt channel gains need to be fed back when Lp < Nt.

Therefore, for a fixed training length, the amount of feedback overhead does not

increase by adding extra transmit antennas.

With the optimal pilot and data structure, the average capacity lower bound

in (3.8) can be rewritten as (derivation is similar to that in Appendix B.6)

CLB =
Ld

L
Eχ

{ m∑
i=1

log2

( Pd

1 + µ−1Pd

+
m∑

i=1

1

χi

)
+

m∑
i=1

log2

χi

m

}
, (3.27)

where m denotes the number of non-zero ai in (3.26).

3.5.2 Optimal Training Resource Allocation

Using the optimal transmission schemes in Section 3.5.1, we now study the opti-

mal training length and the optimal PSAM energy factor, denoted by L∗p and α∗,

respectively, which maximize the average capacity lower bound in (3.27).

First of all, we present results for L∗p in the following theorem and corollary.

Theorem 3.7 For hybrid CCF-CGF systems with the optimal transmission strat-

egy described in Section 3.5.1, the optimal training length is at most as large as

the number of transmit antennas for any given value of the PSAM energy factor

α, i.e., L∗p ≤ Nt.

Proof: We first consider the range of Lp ≥ Nt and show that Lp should be kept

to a minimum for any given α. The proof of this part follows from the proof of

Theorem 3.2. This result implies that the optimal value of Lp cannot be greater

than Nt in general. ¤

Corollary 3.4 For hybrid CCF-CGF systems with the optimal transmission strat-

egy described in Section 3.5.1 as well as the optimal PSAM energy factor α∗, the

optimal training length is given by L∗p ≤ Nt.

Proof: The proof is similar to that of Corollary 3.1. ¤
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In general, the optimal training length needs to be found numerically when L∗p <

Nt. Nevertheless, Theorem 3.7 and Corollary 3.4 suggest that the computational

complexity of numerically optimizing Lp is low due to the fact that Lp only takes

integer values ranging from 1 to Nt. Therefore, we only consider Lp ≤ Nt for

investigating the optimal PSAM energy factor α∗.

Generally it is difficult to find a closed-form solution for α∗ due to the water-

filling solution of Q̂a, although numerical methods can be applied [99]. Here, we

look for a near optimal closed-form solution, that is to say, a solution with near

optimal performance as well as minimal computational complexity. To this end, we

consider Q̂a to follow an equal power allocation given by Q̂a = (Pd/n)In instead

of the water-filling solution given in (3.26). Indeed, the equal power allocation

for data transmission was also considered in Section 3.4.1 for CCF-only systems.

Therefore, the optimal value of α for Q̂a = (Pd/n)In is given in Theorem 3.4. In

Section 3.5.3, we numerically investigate the optimality of α given in Theorem 3.4

for hybrid CCF-CGF systems with data transmission following the water-filling

solution.

3.5.3 Numerical Results

In the following, we numerically investigate the optimality of α given in Theorem 3.4

for hybrid CCF-CGF systems with the optimal data transmission strategy given

in Theorem 3.6. For numerical analysis, we choose the channel covariance matrix

to be in the form of [RH ]ij = ρ|i−j|, where ρ is referred to as the spatial correlation

factor.

Fig. 3.8 and Fig. 3.9 show α∗ found numerically for 4× 4 systems with P = 10

dB and for L = 20 and L = 50, respectively. We see that the values of α∗ shown as

solid lines in both figures are very close to (e.g ., with 1%-3% error) the analytical

solutions given in Theorem 3.4 shown as the dashed lines for a wide range of spatial

correlations, e.g ., ρ < 0.9. Therefore, we can conclude that α given in Theorem 3.4

is a near optimal solution for hybrid CCF-CGF systems.

In practical scenarios such as the downlink of cellular systems, the cost of adding

extra antennas at the base station is minimal compared with the capacity gain for

every downlink transmissions. However, one may argue that adding extra transmit

antennas increases the number of channels to be estimated, which results in an

increase in the required training resources and feedback overhead for systems with

CGF.

On the other hand, the spatial correlations between the transmit antennas usu-

ally increases as the number of antennas increases due to space constraints (at the
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Figure 3.8: Optimal PSAM energy factor α∗ vs. channel spatial correlation factor
ρ for 4× 4 systems with a block length of L = 20 and SNR at 10 dB. All values of
α∗ are found numerically. For comparison, the dashed lines indicate the analytical
values of α given in Theorem 3.4.

base station). The increase in the channel spatial correlations makes the dominant

eigen-directions stronger and the weak eigen-directions even weaker. Therefore,

it is possible to design a system with a fixed training length, which only requires

training a fixed number of strongest eigen-directions while still keeping the effect of

channel estimation errors to a minimum. Note that for a fixed training length, the

(near optimal) training energy is also fixed according to Theorem 3.4. From the

discussion of Theorem 3.6, we also know that the amount of feedback transmission

does not increase with the number of transmit antennas for a fixed training length.

Hence, we numerically investigate the capacity gain from adding extra transmit

antennas with fixed training resources and feedback overhead.

Fig. 3.10 shows the average capacity lower bound CLB versus the number of

transmit antennas Nt for systems with Nr = 4 and Lp = 1, 2, 3 and 4. The

transmit antennas are placed in a uniform circular array (UCA) with a fixed radius

equal to half of the wavelength. The spatial correlation coefficients between the

transmit antennas are calculated using the standard Jakes’ model [101]. For each

Lp, we see that the capacity lower bound increases as Nt increases from 4 to 20
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Figure 3.9: Optimal PSAM energy factor α∗ vs. channel spatial correlation factor
ρ for 4× 4 systems with a block length of L = 50 and SNR at 10 dB. All values of
α∗ are found numerically. For comparison, the dashed lines indicate the analytical
values of α given in Theorem 3.4.

(except for the case where Lp = 1 and Nt = 6).4 For example, the capacity gain

in using Nt = 10 compared to Nt = 4 is 24%. This gain increases to 55% when

Nt = 20 is used. We also include the capacity lower bound for L∗p which is found

numerically, and show the value of L∗p for Nt = 6, 10 and 14 in Fig. 3.10. It is clear

that the optimal training length can be significantly smaller than the number of

transmit antennas for correlated MIMO systems, which agrees with Corollary 3.4.

3.6 Summary of Contributions

In this chapter we have investigated the optimal transmission and resource alloca-

tion in training-based MIMO systems with various forms of transmitter CSI. The

important design parameters are the pilot and data structures for transmission, as

well as the transmit energy and time to be distributed between training and data

4This is caused by the decrease in the largest eigenvalue of RH from Nt = 4 to Nt = 6 due to
the UCA geometry and Jakes’ model.
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Figure 3.10: Average capacity lower bound CLB in (3.27) vs. number of transmit
antennas Nt. The transmit antennas are placed in a UCA with radius equal to
half of the wavelength. The block length is L = 50, SNR is 10 dB and the number
of receive antennas is 4. The value of α in Theorem 3.4 is used as a near optimal
choice.

transmission. Some specific contributions made in this chapter are as follows.

Addressing Q1 in Section 3.1:

• For delayless CGF systems with i.i.d. channels, we have proved that the

solutions to the optimal energy allocation to pilot and data transmission

as well as the optimal training length coincide with the solutions for non-

feedback systems given in Chapter 2.

• For delayed CGF systems with i.i.d. channels, our numerical results have

shown that evenly distributing the power over the entire data transmission

(regardless of the delay time) gives near optimal performance at practical

SNR values. As a result, the solutions to the optimal energy allocation to

pilot and data transmission, as well as the optimal training length for the

delayless system stay nearly optimal for the delayed CGF system regardless
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of the delay time.

Addressing Q2 in Section 3.1:

• For CCF systems with correlated channels, we have proposed a simple trans-

mission scheme, taking into account the fact that the optimal training length

Lp is at most as large as the number of transmit antennas. This scheme

only requires numerical optimization of Lp and does not require numerical

optimization of spatial or temporal power allocation over pilot and data trans-

mission. Our numerical results have shown that this scheme is very close to

optimal. In addition, optimizing Lp can result in significant capacity im-

provements for correlated channels.

• Using the proposed scheme for CCF systems, we have found the solution to

the optimal energy allocation to pilot and data transmission, which does not

depend on the channel spatial correlation under a mild condition on block

length or SNR. Therefore, the proposed transmission and resource allocation

schemes for CCF systems give near optimal performance while having very

low computational complexity.

Addressing Q3 in Section 3.1:

• We have proved that the optimal data transmission for hybrid CCF-CGF

systems is given by a water-filling solution according to the estimated channel

gains, rotated and truncated into the trained eigen-directions.

• We have shown that the optimal training length for hybrid CCF-CGF systems

is at most as large as the number of transmit antennas. We have considered

a closed-form solution of PSAM energy factor and have numerically shown

that this solution achieves near optimal performance for hybrid CCF-CGF

systems.

• We have also shown that capacity can be significantly increased by adding

extra transmit antennas without increasing the training or feedback overhead.





Chapter 4

Two-Way Training-Based Systems

4.1 Introduction

The availability of transmitter CSI can result in a significant increase in the data

throughput in wireless communication systems. As discussed in Chapter 3, the

transmitter CSI is usually obtained using various feedback transmission schemes [98].

Recently, a multi-stage training method was proposed to allow the transmitter to

estimate its outgoing channel gains using pilot transmissions from both the trans-

mitter and the receiver without using feedback [102]. The transmitter CSI can

also be obtained using a bent-pipe mechanism, which requires the receiver to send

back a portion of its received data to facilitate channel estimation at the transmit-

ter [103]. These methods are designed for asymmetric channels where the outgoing

and incoming channels have different characteristics.

When the channels are symmetric, such as in time-division duplex (TDD) sys-

tems, a simpler training method named two-way training was proposed in [49]

for block-fading single-input multiple-output (SIMO) systems. In this scheme,

the transmitter acquires the outgoing CSI using the pilots sent from the receiver

(i.e., reverse training) and performs block-wise power adaptation. After that, the

receiver estimates the effective channel gains using the pilots sent from the trans-

mitter (i.e., forward training). The two-way training scheme was also considered

in multi-user transmissions in [104,105].

For MISO systems, the major benefit of two-way training is the reduction in

the overhead of acquiring CSI at both the transmitter and the receiver. To further

improve the performance in resource-constrained systems, it is crucial to optimize

the transmit power for both pilot and data symbols. This issue is addressed in

this chapter. We study block-fading MISO TDD communications systems with

two-way training and answer the following questions:

77
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Q1. How are the reverse training and the forward training performed for MISO

TDD communication systems?

Q2. How should the system designer set the transmit power in various transmission

phases in order to optimize the system performance?

Q3. Under what conditions does the use of two-way training become inefficient or

redundant?

In two-way training-based systems, the important transmission phases are re-

verse training, forward training and data transmission. In Section 4.3, we derive

the optimal linear channel estimator for the forward training. When investigating

the optimal transmit power in different transmission phases, we consider three sce-

narios and obtain closed-form solutions at high SNR in Section 4.4. The SER and

ergodic capacity performance of the derived power allocation strategies are shown

in Section 4.6 and Section 4.7, respectively.

4.2 System Model

We consider a flat-fading wireless communication system with Nt transmit antennas

and a single receive antenna. For simplicity, we refer to the transmitter as the base

station (BS) and the receiver as the user terminal (UT). The received signal at the

UT is given by

y = hx + n, (4.1)

where x is the Nt × 1 transmitted symbol vector from the BS, h is the 1 × Nt

channel gain vector and n is the noise at the UT. We assume that both n and the

elements of h are i.i.d. ZMCSCG with unit variance. We also assume that the

forward and reverse channels are symmetric, i.e., channel reciprocity holds. The

symmetric channel assumption can be justified for TDD channels in which the

forward and reverse transmissions share a common frequency band, e.g ., in IEEE

802.11 standards [49].

4.2.1 Two-way Training-based Transmission

Similar to [104], we consider a four-stage TDD transmission scheme shown in

Fig. 4.1. The total duration of the four-stage transmission of L symbols is less

than the channel coherence time. Hence, we assume that the channel gains remain

constant over L symbol periods.
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Figure 4.1: An illustration of the four-stage TDD tranmission scheme with two-way
training.

• Stage 1 (reverse training): The UT sends one pilot with power Pr and the BS

estimates the channel using LMMSE estimator. Using channel reciprocity,

the BS obtains the estimates of its outgoing channel gains. We denote the

channel estimates and the estimation errors by ĥ and h̃, respectively, and

h = ĥ + h̃. The variance of each element in h̃ is given by σ2
h̃

= 1
Pr+1

. The

duration of the reverse training stage is one symbol period.

• Stage 2 (precoder design): The BS treats ĥ as the true channel and designs

the beamforming vector w as w = ĥ
†

‖ĥ‖ = ĥ
†√

ĥĥ
† to maximize the SNR at

the UT. For simplicity, we assume that the duration of the second stage is

negligible.

• Stage 3 (forward training): The BS sends one pilot denoted by p with power

|p|2 = pp∗ = Pf via the beamforming vector w. The UT estimates the

effective channel using LMMSE estimator, which will be discussed in detail

in Section 4.3. The duration of the forward training stage is one symbol

period.

• Stage 4 (data transmission): The BS transmits data symbols si, i = 1, 2, ..., L−
2 with power E{sisi

∗} = Pd via the beamforming vector w. The duration of

the data transmission stage is L− 2 symbol periods.
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Since the noise and channel variances are normalized to unity, we also refer to

Pr, Pf and Pd as the reverse training SNR, forward training SNR and data SNR,

respectively.

4.3 Forward Channel Estimation

During the forward training stage, the received signal at the UT is given by

y = hwp + n

= (‖ĥ‖+ h̃w)p + n

= fp + n, (4.2)

where f = ‖ĥ‖ + h̃w denotes the effective channel for the forward transmission.

Unlike the reverse training where the Gaussian channel makes the LMMSE estima-

tor equivalent to the MMSE estimator, the complicated non-Gaussian distribution

of f makes MMSE estimator in the forward training mathematically intractable.

Therefore, we consider the widely-used LMMSE channel estimation for the forward

training. Denoting the first and second order statistics of f by µ1 = E{f} and

µ2 = E{|f |2}, the LMMSE channel estimation is given by [94]

f̂ = µ1 +
σ2

fy

σ2
yy

(y − µ1p), (4.3)

where

σ2
fy = E{fy∗} − µ2

1p
∗ = (µ2 − µ2

1)p
∗,

and

σ2
yy = E{yy∗} − µ2

1Pf = (µ2 − µ2
1)Pf + 1.

To find the values of µ2 and µ1, we proceed as follows. Since the elements of h are

i.i.d. Gaussian random variables, its LMMSE estimate ĥ also has i.i.d. Gaussian

elements, and hence ‖ĥ‖2 has a Gamma distribution with parameters (Nt, 1−σ2
h̃
).

Therefore, we have

µ2 = E{‖ĥ‖2}+ E{h̃ww†h̃
†}

= Nt(1− σ2
h̃
) + σ2

h̃
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= Nt
Pr

Pr + 1
+

1

Pr + 1
. (4.4)

Furthermore, µ1 can be calculated using the probability density function of g =

‖ĥ‖2 as

µ1 = E{g1/2}

=

∫ ∞

0

g1/2gNt−1 e−g/(1−σ2
h̃
)

(1− σ2
h̃
)NtΓ(Nt)

dg

=
1√

(1− σ2
h̃
)Γ(Nt)

∫ ∞

0

( g

1−σ2
h̃

)Nt−1/2

e−g/(1−σ2
h̃
)dg, (4.5)

where Γ(z) =
∫∞

0
t−1+ze−tdt is the Gamma function. Letting t = g/(1− σ2

h̃
), (4.5)

reduces to

µ1 =

√
(1− σ2

h̃
)

Γ(Nt)

∫ ∞

0

tNt−1/2e−tdt

=

√ Pr

Pr + 1

Γ(Nt + 1/2)

Γ(Nt)
. (4.6)

Denoting the variance of f as σ2
f = µ2−µ2

1, the variance of the channel estima-

tion error f̃ = f − f̂ is given by

σ2
f̃

= E{|f̃ |2} =
σ2

f

σ2
fPf + 1

, (4.7)

where σ2
f =

kPr + 1

Pr + 1
and k = Nt −

(
Γ(Nt + 1/2)

Γ(Nt)

)2

.

We see that k characterizes the effect of Nt on σ2
f̃
. By evaluating k for different

Nt, we see that 0.232 < k < 0.250 for 1 < Nt < 100. Therefore, the value of Nt

has little impact on σ2
f̃
, which implies that adding or removing antennas at the BS

does not considerably change the forward channel estimation error.

4.4 Power Allocation with Two-way Training

In this section, we study the optimal power allocation for two-way training-based

transmission. The problem of optimizing power allocation can be formulated in

different ways according to the given power constraints and the degrees of freedom

in the system design. We provide a comprehensive study by solving the power

optimization problem in three different scenarios.
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The received signal at the UT during data transmission is given as

y = f̂ s + f̃ s + n. (4.8)

Hence, the received SNR for an instantaneous channel realization is given by

ρinst =
Pd|f̂ |2

1 + Pd|f̃ |2
. (4.9)

Due to the complicated nature of the distribution of ρinst, closed-form expressions

for long-term system performance measures, such as information capacity and sym-

bol error rate (SER), are generally very difficult to obtain, which makes the problem

of power optimization mathematically intractable. Instead of directly dealing with

ρinst, we define a measure of the average received SNR as

ρave =
PdE{|f̂ |2}

1 + PdE{|f̃ |2}
. (4.10)

Using E{|f̂ |2} > E{f̂}E{f̂ ∗}, we obtain a lower bound on ρave as

ρLB
ave =

Pdµ
2
1

1 + Pdσ2
f̃

= ν
PdPr[(kPr + 1)Pf + Pr + 1]

(Pr + 1)[(kPr + 1)(Pf + Pd) + Pr + 1]
, (4.11)

which is obtained using (4.6) and (4.7), and ν =
(

Γ(Nt+1/2)
Γ(Nt)

)2

. We simply refer to

ρLB
ave in (4.11) as the average SNR lower bound and propose to use it as the objective

function to obtain solutions for power optimization. Since the value of k is almost

independent of the number of transmit antennas Nt, the solution for power opti-

mization, using ρLB
ave as the objective function, is almost independent of Nt as well.

In the following, we formulate the power optimization problem in three different

scenarios and derive analytical solutions using high SNR approximations. We will

investigate the optimality of these solutions for SER and capacity performance in

Section 4.6 and Section 4.7, respectively.

4.4.1 Optimizing Reverse and Forward Training

In the first scenario, we study the optimal power allocation between reverse and

forward training for a given average training power budget. The data transmission

is assumed to have a fixed SNR, i.e.,Pd is fixed. This study allows us to investigate
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the relative importance of reverse training and forward training. Note that the

power optimization does not depend on the block length L. We denote the average

training power or SNR as Prf and the ratio of power (or indeed the ratio of total

training energy) allocated to forward training as α. Then, the power constraint

can be written as

2Prf = Pr + Pf . (4.12)

Therefore, we have the following relationships.

Pf = α2Prf and Pr = (1− α)2Prf . (4.13)

In the high SNR regime for training, we assume that Pr À 1 and Pf À 1

(which implies kPrPf À Pr). We also assume that kPrPf À Pd which is valid

when either Pr or Pf is much higher than Pd. Therefore, the average SNR lower

bound ρLB
ave in (4.11) can be approximated as

ρLB
ave ≈ νPd

Pr

Pr + 1

Pf

Pf + Pd

≈ 2νPdPrfα(1− α)

2α(1− α)Prf + (1− α)Pd + α
. (4.14)

Letting the first derivative of ρLB
ave in (4.14) w.r.t. α be zero, one can solve for the

optimal α as

α =

{
1
2
, for Pd = 1
Pd−

√Pd

Pd−1
, for Pd 6= 1

(4.15)

The solution given in (4.15) is obtained using the high SNR approximation. We

see that the optimal power allocation between the reverse and forward training

strongly depends on the data transmit power.

4.4.2 Optimizing Forward Transmission

In the second scenario, the BS tries to optimize the power allocation between

forward training and data transmission for a given average forward transmit power

budget. The reverse training is assumed to have a fixed SNR, i.e.,Pr is fixed.

We denote the average power or SNR for the forward link as Pfd and the ratio

of power (or indeed the ratio of total forward transmit energy) allocated to data
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transmission as β. Then, the power constraint can be written as

Pfd(L− 1) = Pf + Pd(L− 2). (4.16)

Therefore, we have the following relationships.

Pd = βPfd
L− 1

L− 2
, Pf = (1− β)Pfd(L− 1). (4.17)

In the high SNR regime for forward transmission, we assume that Pd À 1

and Pf À 1. Therefore, the average SNR lower bound ρLB
ave in (4.11) can be

approximated as

ρLB
ave ≈ νPr

Pr + 1

PdPf

Pd + Pf

=
νPrPfd

Pr + 1

(L− 1)β(1− β)

β + (L− 2)(1− β)
. (4.18)

Letting the first derivative of ρLB
ave in (4.18) w.r.t.β be zero, one can solve for the

optimal β as

β = φ−
√

φ(φ− 1), where φ =
L− 2

L− 3
. (4.19)

It is clear that the optimal forward power allocation at high SNR given in (4.19)

is independent of the reverse training SNR. This result implies that the power

optimization in the forward link is independent of the reverse link conditions, which

is an important message for system designers.

4.4.3 Optimizing Overall Transmission

In the third scenario, the system designer has the most degrees of freedom and

tries to optimize the power allocation between reverse training, forward training

and data transmission under an overall transmit power constraint. We denote the

average power or SNR for overall (reverse and forward) transmission as P , and the

ratio of power (or indeed the ratio of total energy) allocated to forward transmission

as γ. We also use β as defined in the second scenario. The power constraint can

be written as

PL = Pr + Pf + Pd(L− 2). (4.20)
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Therefore, we have the following relationships.

Pr = (1− γ)PL,

Pd = βγPL/(L− 2), (4.21)

Pf = (1− β)γPL.

In the high SNR regime, we apply all the assumptions stated in the previous

two scenarios, and hence the optimal power allocation satisfies the relationships

given in (4.15) and (4.19). Using (4.13) and (4.15), we have1 Pr =
Pf√Pd

. And using

(4.17), we have Pf = 1−β
β
Pd(L− 2). Therefore, we obtain

PL = Pr + Pf + Pd(L− 2)

=
1− β

β

√
Pd(L− 2) +

1

β
Pd(L− 2), (4.22)

from which one can easily solve for Pd. Then using the relationship between Pd and

γ in (4.21), the optimal power allocation strategies at high SNR can be obtained

as

γ =
L−2

2PLβ

[
(1−β)2+

2PLβ

L−2
−(1−β)

√
(1−β)2+

4PLβ

L−2

]
, (4.23)

where β is given in (4.19). Similar to the previous two scenarios, the optimal power

allocation at high SNR given in (4.23) is independent of the number of transmit

antennas.

4.5 Power Allocation with Reverse Training Only

The systems with only reverse training can be regarded as a special case of two-way

training based systems. In this section, we provide an analytical solution for the

optimal power allocation between the reverse training and the data transmission

under an overall transmit power budget. Since forward training is not used, the

duration of data transmission becomes L − 1. Similar to Section 4.4.3, we denote

the average power or SNR for both links as P and the ratio of power allocated to the

forward (data) transmission as γ. Therefore, we have the following relationships.

Pd = γPL/(L− 1) and Pr = (1− γ)PL. (4.24)

1Here we omit the result for the special case of Pd = 1 for brevity.
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With reverse training only, the UT does not know the effective channel. How-

ever, the UT can accurately obtain the mean value of the effective channel µ1,

since it is a long-term statistic which changes much more slowly than the channel

gain [106,107]. Therefore, the average received SNR at the UT is given by

ρave =
Pdµ

2
1

1 + Pdσ2
f

=
νPdPr

kPdPr + Pd + Pr + 1
(4.25)

=
νP2L2γ(1−γ)

kP2L2γ(1−γ)+PLγ+PL(L−1)(1−γ)+L−1
, (4.26)

where (4.25) is obtained using (4.6) and (4.7), and (4.26) is obtained using (4.24).

Letting the first derivative of ρave in (4.26) w.r.t. γ be zero, one can solve for the

optimal γ as

γ = θ −
√

θ(θ − 1), where θ =
(PL + 1)(L− 1)

PL(L− 2)
. (4.27)

It is clear that the optimal power allocation given in (4.27) is independent of the

number of transmit antennas, which is an important message for system designers.

4.6 Symbol Error Rate Performance

In this section, we obtain numerical results on SER to investigate the optimality

of the proposed power allocation strategies in Section 4.4. The results on ergodic

capacity will be presented in the next section. We carry out Monte-Carlo simula-

tion of a two-way training based communication according to Section 4.2.1 with

a simulation length of 5 × 106 symbols. The receiver performs minimum distance

detection on each received symbol. The SER is then computed as the ratio of the

number of incorrectly detected symbols and the total number of transmitted sym-

bols. The optimal ratios of power allocation, i.e.,α, β and γ, which minimize the

SER are found from a linear search between 0 and 1 with a step size of 0.01. We

will mainly use 16-QAM modulation which is a widely-considered constellation [1].

In the following, we obtain the SER performance in the three scenarios considered

in Section 4.4.
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Figure 4.2: Optimal power ratio to forward training α vs. average training SNR
Prf for systems with Nt = 4 transmit antennas and different values of data SNR
Pd. Lines indicate the values of α that maximize the average SNR lower bound
ρLB

ave in (4.11) and the markers indicate the values of α that minimize the SER for
16-QAM modulation found via Monte-Carlo simulations.

4.6.1 Optimal Power Allocation for Reverse and Forward

Training

Fig. 4.2 shows the optimal power ratio to forward training α versus average training

SNR Prf for different data SNR Pd. We see that the values of α which minimize

the SER for 16-QAM modulation follow the same trend as the values of α which

maximize ρLB
ave in (4.11), and the mismatch increases as Pd increases. This mismatch

is mainly due to the fact that maximizing ρLB
ave does not necessarily result in the

optimal distribution of ρinst which minimizes the SER, e.g ., it does not minimize

the probability of ρinst taking very small values. Furthermore, we see that more

power should be allocated to reverse (forward) training when Prf is low (high). In

particular, we see that forward training should not be used when Prf is sufficiently

low, e.g .,Prf < 0 dB. As Prf increases the optimal α is reasonably close to the

value given in (4.15) for low to moderate Pd, e.g .,α = 0.50 and 0.76 for Pd = 0 dB
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Figure 4.3: SER for 16-QAM modulation vs. average training SNR Prf for systems
with Nt = 4 transmit antennas and different values of the data SNR Pd. The
values of α used are found from Monte-Carlo simulations by minimizing the SER,
maximizing the average SNR lower bound ρLB

ave in (4.11), as well as the closed-form
solution given in (4.15).

and 10 dB, respectively.

Fig. 4.3 shows the SER for 16-QAM modulation versus average training SNR

Prf . For comparison, we use the values of α found by minimizing the SER, maxi-

mizing ρLB
ave given in (4.11), as well as the closed-form solution given in (4.15). We

see that the values of α that maximize ρLB
ave also achieves the near optimum SER

performance. Furthermore, the closed-form solution for α derived from the high

SNR approximation can be used to achieve near optimum SER at moderate to

high training SNR, e.g ., when Prf > 10 dB for Pd = 10 dB and Prf > 20 dB for

Pd = 20 dB. We have also investigated the SER performance with other modula-

tions. For example, the SER achieved by using the closed-form solution for α is

within 0.5 dB, 1 dB and 1.4 dB from the optimum SER for 32-QAM, 16-QAM and

8-QAM, respectively, when Prf > 20 dB for Pd = 20 dB. This suggests that the

closed-form solution is more accurate for higher order modulations.
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Figure 4.4: Optimal power ratio to data transmission β vs. forward average SNR
Pfd for systems with Nt = 4 transmit antennas and different values of the reverse
training SNR Pr and block length L. Lines indicate the values of β that maximize
the average SNR lower bound ρLB

ave in (4.11) and the markers indicate the values of β
that minimize the SER for 16-QAM modulation found via Monte-Carlo simulations.

4.6.2 Optimal Power Allocation for Forward Transmission

Fig. 4.4 shows the optimal power ratio to data transmission β versus the forward

average SNR Pfd for different reverse training SNR Pr and block lengths L. We

see that the values of β which minimize the SER for 16-QAM modulation follow

the same trend as the values of β which maximize ρLB
ave in (4.11), and the mismatch

occurs when Pfd is low to moderate. This mismatch is mainly due to the fact

that maximizing ρLB
ave does not necessarily result in the optimal distribution of ρinst

which minimizes the SER. Similar to the first scenario, we see that forward training

should not be used when Pfd is sufficiently low. As Pfd increases the optimal value

of β converges to the value given in (4.19), e.g .,β = 0.739 and 0.874 for L = 10

and 50, respectively, and the value is independent of the reverse training SNR Pr.

Fig. 4.5 shows the SER versus forward average SNR Pfd. For comparison, we

use the values of β found by minimizing the SER as well as the closed-form solution

given in (4.19). We see that the closed-form solution for β can be used to achieve
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Figure 4.5: SER vs. forward average SNR Pfd for systems with Nt = 4 transmit
antennas, reverse training SNR of Pr = 0, 20 dB, and block length of L = 50.
The values of β used are found from Monte-Carlo simulations by minimizing the
SER, as well as the closed-form solution given in (4.19). The SER with fixed power
transmission, i.e.,Pf = Pd = Pfd, is also included for comparison.

near optimum SER over a wide range of SNR. We also include the SER using fixed

power transmission, i.e.,Pf = Pd = Pfd. We observe that power optimization only

provides a maximum of 0.7 dB gain over fixed power transmission for 16-QAM

modulation. Therefore, the use of fixed power transmission achieves reasonably

good SER performance. On the other hand, the maximum SNR gain by using

power optimization is around 1.8 dB for QPSK modulation for Pr = 0 dB, while

this gain reduces to around 0.8 dB for Pr = 20 dB.

4.6.3 Optimal Power Allocation for Overall Transmission

Fig. 4.6 shows the optimal power ratio to forward transmission γ versus the average

SNR P for different block lengths L.2 The general trend is that a larger ratio of

power should be allocated to the forward transmission as P increases. Similar to

2For brevity, we omit the results on the optimal values of β as they are very similar to those
shown in Fig. 4.4.
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Figure 4.6: Optimal power ratio to forward transmission γ vs. average SNR P for
systems with Nt = 4 transmit antennas and block length of L = 10 and L = 50.
The values of γ which minimize the SER for 16-QAM modulation found via Monte-
Carlo simulations as well as those maximizing the average SNR lower bound ρLB

ave

in (4.11) are shown. The closed-form solutions for the optimal γ derived from high
SNR approximation in (4.23) are also included.

the previous two scenarios, we see that the values of γ which maximize ρLB
ave in (4.11)

are close to the values of γ that minimize the SER for 16-QAM modulation. We

also see that the closed-form solution of γ given in (4.23) is reasonably accurate over

a wide range of SNR, and the mismatch increases as P increases. This mismatch

is mainly due to the fact that maximizing ρLB
ave does not necessarily result in the

optimal distribution of ρinst which minimizes the SER, e.g ., it does not minimize

the probability of ρinst taking very small values.

Fig. 4.7 shows the SER versus the average SNR P . The values of β and γ used

in this plot are found both from minimizing the SER and from the closed-form

solutions in (4.19) and (4.23). We see that the closed-form solutions for β and γ

can be used to achieve near optimum SER over a wide range of SNR for 8-QAM

and 16-QAM modulation. For QPSK modulation, the closed-form solutions result

in a slight SER degradation of around 0.6 dB. In fact, we will see in the next
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Figure 4.7: SER vs. average SNR P for systems with Nt = 4 transmit antennas
and block length of L = 50. The values of β and γ used are found from Monte-
Carlo simulations by minimizing the SER as well as the closed-form solutions given
in (4.19) and (4.23). The SER with only reverse training (RT) is also included for
comparison.

paragraph that the system without forward training, i.e.,Pf = 0, can achieve near

optimal SER performance for QPSK modulation. With Pf = 0, the high SNR

assumptions used in deriving the closed-form solutions for β and γ are no longer

valid, which results in the observed SER degradation for QPSK modulation.

For comparison with two-way training based transmission, Fig. 4.7 also includes

the SER performance for systems using only reverse training. We see that the

closed-form solution for γ given in (4.27) achieves near optimum SER over a wide

range of SNR. When moderate to high-order modulation is used, e.g ., 8-QAM and

16-QAM, the use of two-way training achieves a significant SER reduction over

reverse training at moderate to high SNR. However, when low-order modulation

is used, e.g ., QPSK, it is clear that the systems with two-way training achieve no

or marginal performance gain over those with only reverse training. This result

suggests that reverse training is sufficient at low operating SNR or when low-order

modulations are used.
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4.7 Ergodic Capacity Performance

In previous sections, we focused on the SER performance as a measure of quality

of service (QoS) and verified the near optimality of the power allocation strate-

gies derived in Section 4.4. In this section, we investigate the optimality of the

derived power allocation strategies from an information-theoretic viewpoint. As

discussed in Section 4.4, the complicated nature of the distribution of the instanta-

neous received SNR ρinst given in (4.9) makes it difficult to obtain any closed-form

expression for information capacity. Therefore, we obtain an approximation of the

ergodic capacity by treating the noise components of the received signal in (4.8) as

Gaussian noise independent from the signal component. Using this approximation,

the ergodic capacity per channel use with Gaussian input is given by

C ≈ Ef̂

{
log2

(
1 +

Pd|f̂ |2
1 + Pdσ2

f̃

)}
. (4.28)

Note that this capacity approximation is not guaranteed to be a lower bound

because the LMMSE forward channel estimator is not the optimal MMSE esti-

mator [108]. Taking the training overhead into account, the ergodic capacity is

approximated by

C ≈ L− 2

L
Ef̂

{
log2

(
1 +

Pd|f̂ |2
1 + Pdσ2

f̃

)}
. (4.29)

For systems with only reverse training, the UT has the knowledge of the mean

value of the effective channel µ1, and hence the ergodic capacity is approximated

by

C ≈ L− 1

L
log2

(
1 +

Pdµ
2
1

1 + Pdσ2
f

)
, (4.30)

which is indeed a valid lower bound on the exact capacity [106,107].

In the following, we investigate the optimality of the derived power allocation

strategies in Section 4.4 using the approximations of the ergodic capacity. We will

refer to (4.28), (4.29) and (4.30) as “ergodic capacity”, while it should be noted

that these capacity expressions are approximations only. We obtain the capacity

performance in the three scenarios considered in Section 4.4.
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Figure 4.8: Optimal power ratio to forward training α vs. average training SNR
Prf for systems with Nt = 4 transmit antennas and different values of data SNR
Pd. Lines indicate the values of α that maximize the average SNR lower bound
ρLB

ave in (4.11) and the markers indicate the values of α that maximize the ergodic
capacity per channel use C in (4.28) found via Monte-Carlo simulations.

4.7.1 Optimal Power Allocation for Reverse and Forward

Training

Fig. 4.8 shows the optimal power ratio to forward training α versus average training

SNR Prf for different data SNR Pd. The lines indicate the values of α which

maximize the average SNR lower bound ρLB
ave in (4.11) and the markers indicate

the values of α which maximize the ergodic capacity per channel use C in (4.28)

found via Monte-Carlo simulations. We see that the markers are reasonably close

to the lines and the mismatch becomes insignificant at moderate to high data

SNR, e.g .,Pd = 10 dB and 20 dB. Furthermore, we see a general trend that more

power should be allocated to reverse (forward) training when Prf is low (high). In

particular, we see that forward training should not be used when Prf < −2 dB.

As Prf increases the optimal α is close to the value given in (4.15), e.g .,α = 0.760

and 0.909 for Pd = 10 dB and 20 dB, respectively. In addition, we see that more

power should be allocated to forward training as Pd increases.
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Figure 4.9: The ergodic capacity per channel use C in (4.28) vs. average training
SNR Prf for systems with Nt = 4 transmit antennas and different values of the
data SNR Pd. The values of α used are found from Monte-Carlo simulations by
maximizing C in (4.28) as well as the high SNR approximation given in (4.15).

Fig. 4.9 shows the ergodic capacity per channel use C in (4.28) versus average

training SNR Prf . For comparison, we use the values of α found by maximizing C

as well as the closed-form high SNR approximation given in (4.15). We see that

the closed-form solution for α can be used to achieve near maximum capacity at

moderate to high training SNR, e.g ., when Prf > 5 dB for Pd = 0 dB and Prf > 15

dB for Pd = 20 dB.

4.7.2 Optimal Power Allocation for Forward Transmission

Fig. 4.10 shows the optimal power ratio to data transmission β versus the forward

average SNR Pfd for different reverse training SNR Pr and block lengths L. The

lines indicate the values of β which maximize the average SNR lower bound ρLB
ave in

(4.11) and the markers indicate the values of β which maximize the ergodic capacity

C in (4.29) found via Monte-Carlo simulations. We see that the markers are close

to the lines and the mismatch becomes insignificant at high reverse training SNR,
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Figure 4.10: Optimal power ratio to data transmission β vs. forward average SNR
Pfd for systems with Nt = 4 transmit antennas and different values of the reverse
training SNR Pr and block length L. Lines indicate the values of β that maximize
the average SNR lower bound ρLB

ave in (4.11) and the markers indicate the values of β
that maximize the ergodic capacity C in (4.29) found via Monte-Carlo simulations.

e.g .,Pr = 20 dB. Similar to the first scenario, we see that forward training should

not be used when Pfd is low. As Pfd increases the optimal value of β converges to

the value given in (4.19), e.g .,β = 0.739 and 0.874 for L = 10 and 50, respectively,

and the value is independent of the reverse training SNR Pr.

Fig. 4.11 shows the ergodic capacity C in (4.29) versus forward average SNR

Pfd. For comparison, we use the values of β found by maximizing C as well as the

closed-form high SNR approximation given in (4.19). We see that the closed-form

solution for β can be used to achieve near maximum capacity over a wide range of

SNR, e.g ., when Pfd > 5 dB for L = 10 and Pfd > 0 dB for L = 50. We also include

the ergodic capacity achieved using fixed power transmission, i.e.,Pf = Pd = Pfd.

We observe that power optimization provides 5% - 9% capacity gain over fixed

power transmission at L = 50 and Pfd > 5 dB.



4.7 Ergodic Capacity Performance 97

−5 0 5 10 15 20 25

1

2

3

4

5

6

7

8

9

10

Forward average SNR in dB

E
rg

od
ic

 c
ap

ac
ity

, b
its

/c
h 

us
e

 

 
P

r
 = 20 dB, L = 50, β maximizes capacity

P
r
 = 20 dB, L = 50, β given by (4.19)

P
r
 = 20 dB, L = 50, fixed power

P
r
 = 20 dB, L = 10, β maximizes capacity

P
r
 = 20 dB, L = 10, β given by (4.19)

P
r
 = 20 dB, L = 10, fixed power

Figure 4.11: The ergodic capacity C in (4.29) vs. forward average SNR Pfd for
systems with Nt = 4 transmit antennas, reverse training SNR of Pr = 20 dB, and
block length of L = 10 and L = 50. The values of β used are found from Monte-
Carlo simulations by maximizing C, as well as the high SNR approximation given
in (4.19). The ergodic capacity with fixed power transmission, i.e.,Pf = Pd = Pfd,
is also included for comparison.

4.7.3 Optimal Power Allocation for Overall Transmission

Fig. 4.12 shows the optimal power ratio to forward transmission γ versus the aver-

age SNR P for different block lengths L.3 Similar to the previous two scenarios, we

see that the values of γ which maximize the average SNR lower bound ρLB
ave in (4.11)

are close to the values of γ that maximize the ergodic capacity C in (4.29). We also

include the closed-form solution of γ given in (4.23) which is asymptotically optimal

at high SNR. We see in Fig. 4.12 that the values of γ given in (4.23) is reasonably

accurate at moderate SNR, especially at large block lengths, e.g .,L = 50.

Fig. 4.13 shows the ergodic capacity C in (4.29) versus the average SNR P
for different block lengths L. The values of β and γ used in this plot are found

both from maximizing C and from the closed-form high SNR approximations in

3For brevity, we omit the results on the optimal values of β as they are very similar to those
shown in Fig. 4.10.
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L = 50, γ given by (4.23)
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L = 10, γ given by (4.23)

L = 10, γ maximizes ρ
ave
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Figure 4.12: Optimal power ratio to forward transmission γ vs. average SNR P for
systems with Nt = 4 transmit antennas and block length of L = 10 and L = 50.
The values of γ which maximize the ergodic capacity C in (4.29) found via Monte-
Carlo simulations as well as those maximizing the average SNR lower bound ρLB

ave

in (4.11) are shown. The closed-form solutions for the optimal γ derived from high
SNR approximation in (4.23) are also included.

(4.19) and (4.23). We see that the closed-form solutions for β and γ can be used

to achieve near maximum capacity over a wide range of SNR, e.g .,P > 3 dB.

For comparison with two-way training based transmission, Fig. 4.13 also in-

cludes the ergodic capacity C in (4.30) achieved using reverse training only with γ

given in (4.27). It is clear that the systems with two-way training do not achieve

better performance than those with only reverse training at low SNR and small

block lengths, e.g ., when P < 5 dB and L = 10. This result shows that forward

training should not be used at low operating SNR and small block lengths.

4.8 Summary of Contributions

In this chapter we have investigated the optimal transmit power allocation in MISO

systems with two-way training. Depending on the degrees of freedom in the system
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Figure 4.13: The ergodic capacity C in (4.29) vs. average SNR P for systems with
Nt = 4 transmit antennas and block length of L = 10 and L = 50. The values of
β and γ used are found from Monte-Carlo simulations by maximizing the ergodic
capacity C in (4.29) as well as the high SNR approximation given in (4.19) and
(4.23). The ergodic capacity with only reverse training, i.e.,β = 1 and γ given in
(4.27), is also included for comparison.

design, we have solved the power optimization problem in three different scenarios.

Some specific contributions made in this chapter are as follows.

Addressing Q1 in Section 4.1:

• We have considered a four-stage transmission scheme and derived the LMMSE

channel estimation for the forward training. We have found that the forward

channel estimation error is almost independent of the number of transmit

antennas.

Addressing Q2 in Section 4.1:

• An average SNR lower bound has been used to obtain closed-form solutions

to the optimal power allocation at high SNR in three different scenarios. The
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derived power allocation strategies are independent of the number of transmit

antennas.

• We have carried out Monte-Carlo simulations to obtain both SER and ergodic

capacity performance. For both performance metrics, we have verified the

near optimality of the derived power allocation strategies over a wide range

of SNR values.

Addressing Q3 in Section 4.1:

• We have derived the optimal power allocation for systems with reverse train-

ing only. Our numerical results have shown that two-way training provides

no or marginal performance gain over reverse training only, at low SNR or

when low-order modulations are used.



Chapter 5

Physical-Layer

Security-Constrained Systems

5.1 Introduction

Recently, information-theoretic security has drawn considerable attention [71–74,

79, 80]. Various physical-layer techniques were proposed to achieve secure com-

munication in the presence of eavesdroppers [81–86]. When multiple antennas are

available at the transmitter, it is possible to simultaneously transmit both the

information bearing signal and artificial noise to achieve secrecy in a fading en-

vironment [24, 109]. Without knowing the eavesdroppers’ channels, the artificial

noise is radiated isotropically to mask the transmission of the information signal

to the intended receiver. In the design of this multi-antenna technique, the trans-

mit power allocation between the information signal and the artificial noise is an

important parameter, which has not been investigated in [24, 109]. A sub-optimal

power allocation strategy was considered in [110,111], which aims to meet a target

signal to interference and noise ratio (SINR) at the intended receiver to satisfy a

QoS requirement.

In this chapter, we study the problem of secure communication in fading chan-

nels with a multi-antenna transmitter capable of simultaneous transmission of both

the information signal and the artificial noise. We assume that the transmitter does

not have any knowledge about the eavesdroppers’ channels. The following impor-

tant questions are addressed:

Q1. What is the achievable rate for secure communication with artificial noise

transmission?

Q2. How should the system designer optimally allocate the transmit power be-

101
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tween the information signal and the artificial noise?

Q3. What is the minimum SNR above which secure communication can be made

possible?

Q4. What is the effect of channel estimation errors on the optimal power allocation

strategy?

In Section 5.3, we derive a closed-form expression for an average secrecy capacity

lower bound for fading channels, which is an achievable rate without knowing the

noise levels at the eavesdroppers. The availability of a closed-form secrecy rate

expression greatly reduces the complexity of obtaining the optimal power allocation

between transmission of the information signal and the artificial noise which is

studied in Section 5.4.

Without the knowledge of the eavesdropper’s channel, the secrecy rate can

quickly drop to zero at low to moderate SNR. This is an important problem in

wideband communications in which a higher throughput is achieved by reducing

the SNR per hertz while increasing the bandwidth [112]. Therefore, we study the

critical SNR above which the secrecy rate is positive in Section 5.5.

Furthermore, perfect CSI at both the transmitter and the receiver is usually

assumed in the existing studies on secrecy rate. With this assumption, the infor-

mation signal is accurately transmitted into the intended receiver’s channel and

the artificial noise is accurately transmitted into the null space of the intended

receiver’s channel. When practical channel estimation is considered, the CSI is not

perfectly known at both the receiver and the transmitter, and hence the artificial

noise leaks into the receiver’s channel. The effects of channel estimation errors

on the secrecy rate and the aforementioned design parameters are investigated in

Section 5.6.

5.2 System Model

We consider secure communication between a transmitter (Alice) and a receiver

(Bob) in the presence of eavesdroppers (Eves). Alice has NA antennas (NA > 1)

and Bob has a single antenna. This scenario is representative, for example, of

downlink transmission in cellular systems and WLAN. In addition, each Eve is

equipped with a single antenna. We consider two cases, namely non-colluding

and colluding eavesdroppers. In the former case, Eves individually overhear the

communication between Alice and Bob without any centralized processing. While

in the latter case, there are NE Eves capable of jointly processing their received
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information. Therefore, the non-colluding case can be seen as a special colluding

case where NE = 1. We assume that NA > NE for which the reason will become

clear in the next section. We also assume that Eves are passive, hence they cannot

transmit jamming signals.

The channel between Alice and Bob is denoted as h, which is a 1×NA vector.

The channel between Alice and multiple colluding Eves is denoted as G, which

is an NE × NA matrix. The elements of h and G are independent ZMCSCG

random variables. We first assume that h is accurately estimated by Bob and is

also known by Alice using a noiseless feedback link from Bob1. The impact of

channel estimation errors will be studied in Section 5.6. Similar to [24], we assume

that the knowledge of both h and G is available at Eve, which makes the secrecy

of communication independent of the secrecy of CSI. Note that Alice does not have

any knowledge about G.

The key idea of guaranteeing secure communication using artificial noise pro-

posed in [24] is described as follows. Alice utilizes multiple antennas to transmit

the information bearing signal into Bob’s channel, at the same time generating a

noise-like signal into the null space of Bob’s channel. We let an NA × NA matrix

W = [w1 W 2] be an orthonormal basis of CNA , where w1 = h†/‖h‖. The NA× 1

transmitted symbol vector at Alice is given by x = w1u + W 2v, where the vari-

ance of u is σ2
u and the NA − 1 elements of v are i.i.d. complex Gaussian random

variables each with variance σ2
v .

The received symbol at Bob is given by

yB = hx + n

= hw1u + hW 2v + n

= ‖h‖u + n, (5.1)

where n is the AWGN at Bob. Without loss of generality, we normalize the variance

of n to unity. We see that W 2 spans the null space of h, hence the artificial noise

v does not affect the received signal at Bob.

The received symbol vector at the multiple colluding Eves is given by

yE = Gx + e

= Gw1u + GW 2v + e

= g1u + G2v + e, (5.2)

1A reliable feedback link could be achieved by using low rate transmission with appropriate
quantization schemes. The design of high-quality feedback link and the effect of noisy feedback
is beyond the scope of this work.
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where we have defined that g1 = Gw1 and G2 = GW 2, and e is the AWGN at

Eves.

We consider a total power per transmission denoted by P , that is, P = σ2
u +

(NA − 1)σ2
v . Due to the normalization of the noise variance at Bob, we also refer

to P as the transmit SNR. One important design parameter is the ratio of power

allocated to the information bearing signal and the artificial noise. We denote the

fraction of total power allocated to the information signal as φ. Hence, we have

the following relationships:

σ2
u = φP , (5.3)

σ2
v = (1− φ)P/(NA − 1). (5.4)

Since h is known by Alice, she can adaptively change the value of φ according to

the instantaneous realization of h. We refer to this strategy as the adaptive power

allocation strategy. Alternatively, Alice can choose a fixed value for φ regardless of

the instantaneous channel realization, which we refer to as the non-adaptive power

allocation strategy. Due to the uncertainty in the outgoing channel to Eves, i.e.,G,

Alice equally distributes the transmit power amongst the artificial noise signal, as

given by (5.4).

5.3 Secrecy Capacity Lower Bound

The secrecy capacity is the maximum transmission rate at which the intended

receiver can decode the data with arbitrarily small error while the mutual informa-

tion between the transmitted message and the received signal at the eavesdropper

is arbitrarily small. It is bounded from below by the difference in the capacity of

the channel between Alice and Bob and that between Alice and Eve [70]. In this

section, we derive a closed-form expression for an average secrecy capacity lower

bound with the transmission of artificial noise.

The capacity of the channel between Alice and Bob is given by

C1 = Eh{log2(1 + σ2
u‖h‖2)}

= Eh{log2(1 + φP‖h‖2)}. (5.5)

Without loss of generality, we normalize the variance of each element of h

to unity. It is then easy to see that ‖h‖2 follows a Gamma distribution with

parameters (NA, 1). Therefore, for systems with non-adaptive power allocation
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strategy, we can rewrite (5.5) in an integral form as

C1 =
1

ln 2

∫ ∞

0

ln(1 + φPx)xNA−1 exp(−x)

Γ(NA)
dx

=
1

ln 2
exp

( z

P
) NA∑

k=1

Ek

( z

P
)
, (5.6)

where Γ(·) is the Gamma function, En(·) is the generalized exponential integral,

(5.6) is obtained using an integral identity given in [113], and we have defined

z = φ−1.

Next we study the capacity of the channel between Alice and multiple colluding

Eves. When multiple Eves are present, the noise at each Eve may be different.

In addition, the receiver noise levels at Eves may not be known by Alice and

Bob. To guarantee secure communication, it is therefore reasonable to consider the

worst case scenario where the noises at Eves are arbitrarily small. Note that this

approach was also taken in [109]. In this case, the capacity between Alice and each

Eve is determined from the signal-to-artificial-noise ratio. Considering the signal

reception at a particular Eve, both the information signal and the artificial noise

are generated from the same source (Alice), and hence their ratio is independent of

the large scale fading from Alice to Eve. That is to say, the signal-to-artificial-noise

ratios are i.i.d. random variables for all Eves, regardless of their distances from

Alice. Therefore, we can normalize the distance of each Eve to make the variance

of the elements of G equal to unity without loss of generality.

The noiseless eavesdropper assumption effectively gives an upper bound on the

capacity of the channel between Alice and multiple colluding Eves as [109]

C2 = Eh,g1,G2

{
log2

∣∣∣I + σ2
ug1g1

†(σ2
vG2G2

†)−1
∣∣∣
}

= Eh,g1,G2

{
log2

(
1 +

NA − 1

z − 1
g1
†(G2G2

†)−1g1

)}
, (5.7)

where we have again used z = φ−1. The expectation over h in (5.7) is due to

the fact that z may be dependent on h (which happens when adaptive power

allocation strategy is used). It is required in (5.7) that G2G2
† is invertible, which

is guaranteed with the assumption of NA > NE. If the assumption is violated, the

colluding eavesdroppers are able to eliminate the artificial noise, resulting C2 = ∞.

Hence, We assume NA > NE for guaranteeing positive secrecy capacity.

Since G has i.i.d. complex Gaussian entries and W is a unitary matrix, GW =

[g1 G2] also has i.i.d. complex Gaussian entries. Therefore, the elements of g1 and

G2 are independent. As a result, the quantity g1
†(G2G2

†)−1g1 is equivalent to the
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signal-to-interference ratio (SIR) of a NE-branch MMSE diversity combiner with

NA − 1 interferers. The complementary cumulative distribution function (CCDF)

of X = g1
†(G2G2

†)−1g1 is given in [114] as

RX(x) =

∑NE−1
k=0

(
NA−1

k

)
xk

(1 + x)NA−1
. (5.8)

Therefore, we can rewrite (5.7) in an integral form as

C2 = Eh

{ ∫ ∞

0

log2

(
1 +

NA − 1

z − 1
x
)
fX(x)dx

}

= Eh

{ 1

ln 2

∫ ∞

0

NA − 1

z − 1

(
1 +

NA − 1

z − 1
x
)−1

RX(x)dx
}

(5.9)

= Eh

{ 1

ln 2

NE−1∑

k=0

(
NA−1

k

) ∫ ∞

0

( z − 1

NA − 1
+ x

)−1

(1 + x)1−NAxkdx
}

= Eh

{ 1

ln 2

NE−1∑

k=0

(
NA−1

k

)
NA−1

z−1
B(k+1, NA−1−k) 2F1

(
1, k+1; NA;

z−NA

z−1

)}
,

(5.10)

where fX(x) denotes the probability density function (PDF) of X, B(α, β) =
Γ(α)Γ(β)
Γ(α+β)

is the Beta function and 2F1(·) is the Gauss hypergeometric function. Note

that (5.9) is obtained using integration by parts, and (5.10) is obtained using an

integration identity given in [115].

After deriving expressions for C1 and C2, a lower bound on the average secrecy

capacity can now be obtained as CS = [C1 − C2]
+, where [α]+ = max{0, α}. This

is the maximum data rate that can be always guaranteed for the secure communi-

cation (without knowing the noise level at Eves). For systems with adaptive power

allocation, the average secrecy capacity lower bound is given as

CS =
1

ln 2

[
Eh

{
ln

(
1 +

P
z
‖h‖2

)

−
NE−1∑

k=0

(
NA−1

k

)
NA − 1

z − 1
B(k + 1, NA − 1− k) 2F1

(
1, k + 1; NA;

z −NA

z − 1

)}]+

,

(5.11)

where z is a function of h. For systems with non-adaptive power allocation, the

average secrecy capacity lower bound is given as

CS =
1

ln 2

[
exp

( z

P
) NA∑

k=1

Ek

( z

P
)
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Figure 5.1: Average secrecy capacity lower bound CS in (5.12) versus SNR P for
systems with different numbers of antennas. The ratio of power allocation is set to
φ = 0.5.

−
NE−1∑

k=0

(
NA−1

k

)
NA − 1

z − 1
B(k + 1, NA − 1− k) 2F1

(
1, k + 1; NA;

z −NA

z − 1

)]+

,

(5.12)

where z is a constant independent of h.

Fig. 5.1 shows the average secrecy capacity lower bound CS in (5.12) for systems

with different numbers of antennas. We see that the presence of multiple colluding

Eves dramatically reduces the secrecy rate, compared with the case of non-colluding

Eves. Furthermore, the secrecy rate quickly reduces to zero at low to moderate

SNR values.

In the following subsections, we aim to give simplified or approximated expres-

sions of the secrecy capacity lower bound in two special scenarios. These expressions

will be used to obtain analytical results and useful insights on the optimal power

allocation in Section 5.4. Note that the derived approximations may not be an

achievable secrecy rate, although they are useful for the design of power allocation.
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5.3.1 Non-colluding Eavesdroppers

In the case where Eves cannot collude, we have NE = 1. Then C2 in (5.10) reduces

to

C2 = Eh

{ 1

ln 2

1

z − 1
2F1

(
1, 1; NA;

z −NA

z − 1

)}

= Eh

{
1

ln 2

(NA − 1

NA − z

)NA−1
(

ln
(NA − 1

z − 1

)
−

NA−2∑

l=1

1

l

(NA − z

NA − 1

)l
)}

,(5.13)

where (5.13) is obtained using an identity for the Gauss hypergeometric function

derived in Appendix C.1. This can then be substituted into CS = [C1 − C2]
+ to

yield simplified expressions for the average secrecy capacity lower bound.

5.3.2 Large Transmit Antenna Approximation

When the number of antennas at Alice goes large, the law of large numbers implies

that limNA→∞ ‖h‖2/NA = 1 and limNA→∞ G2G2
†/(NA − 1) = I. Therefore, for

sufficiently large NA, we can approximate C1 in (5.5) as

C1 ≈ log2

(
1 +

NAP
z

)
. (5.14)

It is clear from (5.14) that the optimal power allocation is independent of the

channel from Alice to Bob, h, when NA becomes large. Also, C2 in (5.7) can be

approximated as

C2 ≈ Eg1

{
log2

(
1 +

1

z − 1
‖g1‖2

)}

=
1

ln 2
exp(z − 1)

NE∑

k=1

Ek(z − 1), (5.15)

where ‖g1‖2 has a Gamma distribution with parameters (NE, 1). It can be seen

from (5.15) that C2 is independent of NA. Therefore, altering the number of anten-

nas at Alice only affects the channel capacity between Alice and Bob but not the

capacity between Alice and Eves, when NA is large. The average secrecy capacity

lower bound for large NA is then approximated by

CS ≈ 1

ln 2

[
ln

(
1 +

NAP
z

)
− exp(z − 1)

NE∑

k=1

Ek(z − 1)
]+

. (5.16)
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5.4 Optimal Power Allocation

In this section, we study the optimal power allocation between the information

bearing signal and the artificial noise. As we have discussed, the power allocation

strategy can be either adaptive or non-adaptive. The former depends on every

realization of the channel gain while the latter is fixed for all channel realizations.

The objective function for this optimization problem is the average secrecy capacity

lower bound. The closed-form expressions derived in the previous section greatly

reduce the computational complexity of the optimization process. In the following,

we first study the case of non-colluding eavesdroppers and then look at the case of

colluding eavesdroppers.

5.4.1 Non-colluding Eavesdroppers Case

The optimal value of φ or z can be easily found numerically using the capacity lower

bound expressions derived in Section 5.3. Moveover, these expressions enable us

to analytically obtain useful insights into the optimal z in the high SNR regime as

follows.

In the high SNR regime, C1 in (5.5) can be approximated as

C1 ≈ Eh

{
log2

(P

z
‖h‖2

)}

= Eh{log2(P‖h‖2)} − Eh{log2 z}. (5.17)

We see in (5.17) that Eh{log2(P‖h‖2)} is a constant and Eh{log2 z} does not

directly depend on h although z may be a function of h. Therefore, the high

SNR approximation of the secrecy capacity lower bound does not have h in its

expression (except for the expectation over h). Consequently, for any value of h,

the optimal z that maximizes the high SNR approximation of the secrecy capacity

lower bound is the same. In other words, the value of h is irrelevant in finding the

optimal power allocation. Therefore, the adaptive power allocation strategy does

not need to be considered at high SNR.

The optimal value of z in the high SNR regime satisfies

dCS

dz
=

dC1

dz
− dC2

dz
= − 1

z ln 2
− dC2

dz
= 0, (5.18)

where the derivative of C2 w.r.t. z can be computed in closed-form using (5.13).



110 Physical-Layer Security-Constrained Systems

In the special case of NA = 2, (5.18) is reduces to

−1

z
− 1

(z − 2)(z − 1)
+

ln(z − 1)

(z − 2)2
= 0. (5.19)

The solution to the above equation is given by z = 2. It can be shown that

limz→2
d2CS

dz2 < 0. Hence the optimal ratio of power allocation is given by φ =

0.5, that is to say, equal power allocation between the information signal and the

artificial noise is the optimal strategy in the high SNR regime for NA = 2.

For large NA, using (5.15) with NE = 1, we have

dC2

dz
=

1

ln 2

(
exp(z − 1)E1(z − 1)− exp(z − 1)E0(z − 1)

)

=
1

ln 2

(
exp(z − 1)E1(z − 1)− (z − 1)−1

)
. (5.20)

Hence the optimal value of z satisfies

−1

z
− ez−1E1(z − 1) +

1

z − 1
= 0, (5.21)

which gives z = 1.80. It can be shown that at z = 1.80, d2CS

dz2 < 0. Hence the

optimal ratio of power allocation is given by φ = 0.55 in the high SNR regime for

sufficiently large NA. We see that the difference between the optimal values of φ

for the smallest NA (i.e.,NA = 2) and asymptotically large NA is very small. This

observation suggests that the optimal power allocation is insensitive to the number

of transmit antennas at high SNR.

Fig. 5.2 shows the optimal values of φ using the non-adaptive power allocation

strategy for systems with different numbers of antennas at Alice NA. The values of

φ are shown for SNRs at which the average secrecy capacity lower bound is positive.

The general trend is that more power needs to be allocated to the information signal

as SNR or NA increases. In the high SNR regime, we see that the optimal values

of φ converge to constant values. For NA = 2, the optimal value of φ converges to

0.5, which agrees with our analytical result. Furthermore, this constant value only

increases slightly with NA, and the maximum value is 0.55 which agrees with our

large NA analysis. These observations suggest that a near-optimal yet simple power

allocation strategy at moderate to high SNR values is the equal power allocation

between the information signal and the artificial noise.

Fig. 5.3 shows the average secrecy capacity lower bound CS in (5.12) with nu-

merically optimized φ using the non-adaptive power allocation strategy, indicated

by the markers. For comparison, we also include the capacity lower bound with
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Figure 5.2: Optimal ratio of power allocation φ versus SNR P for different numbers
of antennas at Alice NA. The non-adaptive power allocation strategy is used. The
values of φ are shown for SNRs at which the average secrecy capacity lower bound
is positive.

equal power allocation, i.e.,φ = 0.5, indicated by the solid lines. We see that the

equal power allocation strategy achieves nearly the same secrecy rate as the opti-

mal non-adaptive power allocation in all cases over a wide range of SNR values.

This confirms that equal power allocation is a simple and generic strategy which

yields close to optimal performance in terms of the derived achievable secrecy rate.

Fig. 5.4 shows the average secrecy capacity lower bound CS in (5.11) and (5.12)

with the optimized φ, using both the adaptive and non-adaptive power allocation

strategies. We see that there is no difference between CS achieved by the adaptive

and non-adaptive strategies over a wide range of SNR values. The adaptive strategy

only gives marginal advantage when the secrecy rate is close to zero. This result

suggests that the non-adaptive power allocation strategy is sufficient to achieve

almost the best possible secrecy rate performance.2 For this reason, we will only

focus on the non-adaptive scheme in the rest of this chapter.

2The same result is found for the colluding Eves case. The numerical results are omitted for
brevity.
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Figure 5.3: Average secrecy capacity lower bound CS in (5.12) versus SNR P for
different numbers of antennas at Alice NA. The non-adaptive power allocation
strategy with numerically optimized φ is used. The average capacity lower bound
with equal power allocation for each case, indicated by the solid line, is also shown
for comparison.

5.4.2 Colluding Eavesdroppers Case

As we have seen in Fig. 5.1, the presence of multiple colluding Eves severely de-

grades the secrecy rate. Therefore, it is essential for Alice to have a relatively

large number of antennas to maintain a good secure communication link. For any

value of NE, the optimal value of φ or z can be easily found numerically using the

closed-form capacity lower bound expression given in Section 5.3. As the number

of antennas at Alice is desired to be large, we carry out large NA analysis to obtain

an asymptotic result on optimal z in the high SNR regime as follows.

In the high SNR regime with large NA, CS in (5.16) can be approximated as

CS ≈ 1

ln 2

[
ln(NAP)− ln z − exp(z − 1)

NE∑

k=1

Ek(z − 1)
]
. (5.22)



5.4 Optimal Power Allocation 113

−10 −5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

SNR in dB

A
ve

ra
ge

 s
ec

re
cy

 c
ap

ac
ity

 lo
w

er
 b

ou
nd

, b
its

/c
h 

us
e

 

 
N

A
 = 16, adaptive power allocation

N
A
 = 8, adaptive power allocation

N
A
 = 4, adaptive power allocation

N
A
 = 2, adaptive power allocation

non−adaptive power allocation

Figure 5.4: Average secrecy capacity lower bound CS in (5.11) and (5.12) versus
SNR P for different numbers of antennas at Alice NA. Both the adaptive and
non-adaptive power allocation strategies are used, indicated by the markers and
the lines, respectively.

By taking the derivative of CS w.r.t. z, the optimal z satisfies

−1

z
− ez−1ENE

(z − 1) +
1

z − 1
= 0. (5.23)

Using ez−1ENE
(z − 1) ≈ (z − 1 + NE)−1 from [116], which is accurate when either

NE or z is large, (5.23) reduces to

−1

z
− 1

z − 1 + NE

+
1

z − 1
= 0. (5.24)

And hence the optimal z is given by

z∗ = 1 +
√

NE. (5.25)

From (5.25) we see that the optimal value of z only depends on NE in the high

SNR and large antenna regime. Moreover, (5.25) suggests that more power should

be used to generate artificial noise when the number of Eves increases.
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Figure 5.5: Optimal ratio of power allocation φ versus SNR P for systems with
different numbers of colluding Eves NE. The values of φ are shown for SNRs at
which the average secrecy capacity lower bound is positive.

Fig. 5.5 shows the optimal value of φ for systems with different numbers of

colluding Eves NE. Similar to the non-colluding Eves case, we see that more power

should be used to transmit the information signal as SNR increases. The optimal

value of φ stays constant in the high SNR regime. Furthermore, the optimal value

of φ for colluding Eves case is usually much smaller than 0.5, i.e., equal power

allocation, which is near optimal for non-colluding Eves case. In particular, the

optimal φ reduces as NE grows, which implies that more power should be allocated

to generate the artificial noise as the number of colluding Eves increases. This

observation agrees with our analytical insight and intuition.

Fig. 5.6 shows the average secrecy capacity lower bound CS in (5.12) for systems

with different NE. Here, we investigate the sensitivity in the secrecy rate to the

design of power allocation. Consider a scenario where the total number of Eves

that can collude is 8, and hence Alice has optimized φ for NE = 8. When NE

changes, the power allocation parameter φ does not need to be optimized again as

long as NE stays reasonably close to 8, e.g .,NE = 6, since the value of φ optimized

for NE = 8 still works well for NE = 6 (with a power loss of 0.2 dB) as shown in
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Figure 5.6: Average secrecy capacity lower bound CS in (5.12) versus SNR P
for systems with different numbers of colluding Eves NE. The solid lines with
markers indicate CS achieved with optimal values of φ for the corresponding system.
The dashed lines indicate CS achieved with value of φ optimized for NE = 8,
which represents the case where the power allocation was initially designed for
NE = 8, but the current value of NE reduces from 8 and the power allocation is
not redesigned.

Fig. 5.6. However, redesigning of φ becomes important when NE is considerably

different from 8, e.g .,NE = 2 to 4. For example, if NE changes from 8 to 4, a power

loss of approximately 1 dB will incur if Alice still uses the value of φ optimized for

NE = 8, as shown in Fig. 5.6.

We also provide numerical verification of the optimal power allocation obtained

from the large antenna approximation in the high SNR regime. Fig. 5.7 shows

the ratio of power allocation φ at P = 20 dB versus the number of antennas at

Alice NA for systems with different numbers of colluding Eves NE. For a fixed

NE, we see that the optimal value of φ increases with NA and reaches a constant

value when NA is sufficiently large. This agrees with our analytical insight that the

optimal power allocation does not depend on NA when NA is large. The asymptotic

constant value of φ is close to the analytical value given in (5.25) obtained from
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Figure 5.7: The ratio of power allocation φ at P = 20 dB versus the number of
antennas at Alice NA for systems with different numbers of colluding Eves NE.
The solid lines with markers indicate the optimal values of φ, while the dashed
lines indicate the values of φ from the large antenna approximation given in (5.25).

the large antenna approximation.

5.5 Critical SNR for Secure Communications

Another important aspect of secure communication is the minimum SNR required

for positive secrecy rate, which is a critical parameter in wideband communications.

With the closed-form expression of the secrecy capacity lower bound derived in

Section 5.3, one can numerically find the critical SNR with low computational

complexity. In this section, we derive a closed-form upper bound on the critical

SNR which is useful in the design of wideband secure communications.

Using properties of the exponential integral function in [116], (5.6) can be

bounded from below as

C1 >
1

ln 2

NA∑

k=1

1
z
P + k

, (5.26)
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which is asymptotically tight as the SNR approaches zero, i.e.,P → 0. Using the

convexity of (5.26) in k, we can further bound C1 as

C1 >
1

ln 2

NA

z
P + NA+1

2

, (5.27)

which is also asymptotically tight as the SNR approaches zero. Using the lower

bound on C1 in (5.27) and C2 in (5.10), the average secrecy capacity lower bound

can be further bounded from below as

CS >
1

ln 2

NA

z
P + NA+1

2

− 1

ln 2

NE−1∑

k=0

(
NA−1

k

)
NA−1

z−1
B(k+1, NA−1−k) 2F1

(
1, k+1; NA;

z−NA

z−1

)
.

(5.28)

The critical SNR, denoted by PC , is the SNR at which CS drops to zero. With

the lower bound on CS given in (5.28), an upper bound on PC can be found as

PC <z


 NA∑NE−1

k=0

(
NA−1

k

)
NA−1
z−1

B(k+1, NA−1−k) 2F1

(
1, k+1; NA; z−NA

z−1

)−NA+1

2



−1

.

(5.29)

In the case of non-colluding eavesdroppers, i.e.,NE = 1, (5.29) reduces to

PC < z




NA(
NA−1
NA−z

)NA−1
(

ln
(

NA−1
z−1

)
−∑NA−2

l=1
1
l

(
NA−z
NA−1

)l
) − NA + 1

2




−1

. (5.30)

The upper bound in (5.29) or (5.30) indicates a minimum SNR that guarantees

positive secrecy rate. Since (5.29) and (5.30) are asymptotically tight at low SNR,

they can be used to fine tune the power allocation parameter z to minimize PC .

Fig. 5.8 shows the critical SNR PC versus number of antennas at Alice NA for

systems with different numbers of colluding Eves NE. The power allocation is set to

φ = 0.2 in all cases. The general trend is that PC decreases as NA increases, and a

higher PC is required when NE increases. These observations agree with intuition.

Furthermore, we see that the analytical upper bound on PC is very accurate for

the case of non-colluding Eves. For the case of colluding Eves, the upper bound

is reasonably accurate when PC < 0 dB. The difference between the exact value
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Figure 5.8: The critical SNR PC versus number of antennas at Alice NA for systems
with different numbers of colluding Eves NE. The ratio of power allocation is set
to φ = 0.2. The solid lines with markers indicate the exact value of PC , while the
dashed lines indicate the analytical upper bound given in (5.29).

of PC and its upper bound gradually increases as NE increases, which is mainly

due to the increase in PC . When NE is relatively large, e.g .,NE = 6, one should

allocate more power to generate the artificial noise (i.e., reduce φ), as suggested in

Fig. 5.5, in order to achieve a lower PC , which in turn makes the bound tighter.

5.6 Effect of Imperfect Channel State Informa-

tion

So far, we have assumed that the CSI can be perfectly obtained at Alice and Bob.

In this section, we investigate the effect of imperfect CSI by considering channel

estimation errors. With imperfect CSI, the beamforming transmission from Alice to

Bob is designed based on the estimated channel gains rather than the true channel

gains. Therefore, the artificial noise leaks into Bob’s channel.

To incorporate channel estimation errors, we consider that Bob performs the
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LMMSE channel estimation. Therefore, we have

h = ĥ + h̃, (5.31)

σ2
h = σ2

ĥ
+ σ2

h̃
, (5.32)

where ĥ denotes the channel estimate and h̃ denotes the estimation error. σ2
h

denotes the variance of each element in h. σ2
ĥ

and σ2
h̃

denote the variance of each

element in ĥ and h̃, respectively. As a general property of the LMMSE estimator

for Gaussian signals [117], ĥ and h̃ are uncorrelated, each having i.i.d. complex

Gaussian entries.

Similar to our system model in Section 5.2, we assume that the knowledge

of ĥ is available at Alice and Eves. Therefore, the beamforming vector becomes

w1 = ĥ
†
/‖ĥ‖, and the received symbol at Bob is given by

yB = hx + n

= ĥx + h̃x + n

= ‖ĥ‖u + h̃W [u vT ]T + n. (5.33)

A capacity lower bound for the channel between Alice and Bob can be obtained

by considering h̃W [u vT ]T +n as the worst case Gaussian noise. Note that W is a

unitary matrix, hence h̃W has the same distribution as h̃. Therefore, the average

capacity lower bound for the channel between Alice and Bob is given by

Ĉ1 = Eĥ

{
log2

(
1 +

σ2
u‖ĥ‖2

σ2
h̃
P + 1

)}
. (5.34)

With σ2
h normalized to unity, we have σ2

Ĥ
= 1 − σ2

H̃
. Since the elements

of ĥ is i.i.d. complex Gaussian, ‖ĥ‖2 is a sum of i.i.d. exponential distributed

random variables, which follows a Gamma distribution with parameter (NA, 1 −
σ2

H̃
). Therefore, we obtain a closed-form expression for Ĉ1 as

Ĉ1 =
1

ln 2
exp

(
z
σ2

h̃
+ P−1

1− σ2
h̃

) NA∑

k=1

Ek

(
z
σ2

h̃
+ P−1

1− σ2
h̃

)
. (5.35)

The presence of channel estimation errors at Bob does not affect the signal

reception at Eves given in (5.2). Therefore, the average secrecy capacity lower
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bound can be obtained by subtracting C2 from Ĉ1 as

CS =
1

ln 2

[
exp

(
z
σ2

h̃
+ P−1

1− σ2
h̃

) NA∑

k=1

Ek

(
z
σ2

h̃
+ P−1

1− σ2
h̃

)

−
NE−1∑

k=0

(
NA−1

k

)
NA−1

z−1
B(k+1, NA−1−k) 2F1

(
1, k+1; NA;

z−NA

z−1

)]+

.

(5.36)

Following the steps in Section 5.5, we can also bound CS from below in order to

obtain an upper bound on the critical SNR for secure communication with channel

estimation errors as

CS >
1

ln 2

NA

z
σ2

h̃
+P−1

1−σ2
h̃

+ NA+1
2

− 1

ln 2

NE−1∑

k=0

(
NA−1

k

)
NA−1

z−1
B(k+1, NA−1−k) 2F1

(
1, k+1; NA;

z−NA

z−1

)
.

(5.37)

And the upper bound on the critical SNR is then given by

PC <
[1− σ2

h̃

z

( NA∑NE−1
k=0

(
NA−1

k

)
NA−1
z−1

B(k + 1, NA − 1− k) 2F1

(
1, k + 1; NA; z−NA

z−1

)

−NA + 1

2

)
− σ2

h̃

]−1

, (5.38)

which is asymptotically tight at low SNR.

We now present numerical results on the optimal power allocation as well as

critical SNR in the presence of the channel estimation errors. For brevity, we focus

on the case of non-colluding eavesdroppers. The trends on the effect of channel

estimation errors observed in the following results also apply to the case of colluding

eavesdroppers.

Fig. 5.9 shows the optimal ratio of power allocation φ with different channel

estimation error variances σ2
h̃
. We see that the channel estimation error has no-

ticeable impact on the value of φ, especially for small number of antennas at Alice,

e.g .,NA = 2. The general trend is that less power should be allocated to informa-

tion signal as channel estimation error increases. This is mainly due to the fact

that the efficiency of improving Bob’s signal reception by boosting the transmit

power of the information signal reduces as the channel estimation error increases.
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Figure 5.9: Optimal ratio of power allocation φ versus SNR P for different numbers
of antennas at Alice NA and different variances of the channel estimation errors σ2

h̃
.

The values of φ are shown for SNRs at which the average secrecy capacity lower
bound is positive.

On the other hand, the efficiency of degrading Eve’s signal reception by boosting

the transmit power of the artificial noise stays the same regardless of the channel

estimation error. Hence, it is better to create more noise for Eves than to increase

the signal strength for Bob if the CSI is not accurately obtained.

In practical systems, the channel estimation error usually reduces as the SNR

increases, although their exact relationship depends on the training design. From

Fig. 5.9, we can expect that at low to moderate SNR where the channel estimation

error is usually noticeable, the optimal power allocation between the transmission

of information signal and artificial noise is very different from that in the perfect

CSI case. While at high SNR where the channel estimation error is usually small,

the optimal power allocation is expected to be very close to that of the perfect CSI

case. Therefore, in practical systems it is important to take channel estimation

error into account when designing the power allocation at relatively low SNR.

Table 5.1 lists the exact values of the critical SNR PC as well as the closed-

form upper bound given in (5.38) with φ = 0.5. The general trend is that the



122 Physical-Layer Security-Constrained Systems

Table 5.1: Critical SNR (in dB) for Secure Communications with Equal Power
Allocation

Error variance Number of antennas NA

σ2
h̃

2 4 6 8 10

Exact 0 3.01 -2.62 -4.89 -6.36 -7.45
Upper bound 0 6.02 -1.97 -4.46 -6.01 -7.14

Exact 0.1 4.56 -1.88 -4.27 -5.79 -6.90
Upper bound 0.1 9.03 -1.20 -3.83 -5.43 -6.59

Exact 0.2 6.99 -1.01 -3.55 -5.13 -6.28
Upper bound 0.2 ∞ -0.26 -3.08 -4.76 -5.96

critical SNR increases as the channel estimation error increases, which agrees with

intuition. The upper bound gets tighter as PC reduces (or NA increases), and is

accurate for NA ≥ 4 with an error of less than 1 dB.

5.7 Summary of Contributions

In this chapter we have considered secure communication in the wireless fading en-

vironment in the presence of non-colluding or colluding eavesdroppers. The trans-

mitter is equipped with multiple antennas and is able to simultaneously transmit

an information signal to the intended receiver and artificial noise to confuse the

eavesdroppers. Some specific contributions made in this chapter are as follows.

Addressing Q1 in Section 5.1:

• We have obtained a closed-form expression for the average secrecy capacity

lower bound, which is the maximum data rate that can be guaranteed for

secure communication without knowing the noise level at the eavesdroppers.

Addressing Q2 in Section 5.1:

• We have studied the optimal power allocation between transmission of the

information signal and the artificial noise. In particular, equal power allo-

cation is shown to be a near optimal strategy in the case of non-colluding

eavesdroppers. When the number of colluding eavesdroppers increases, more

power should be used to generate artificial noise.

Addressing Q3 in Section 5.1:

• We have also derived an upper bound on the critical SNR above which the

secrecy rate is positive and this bound is shown to be tight at low SNR.
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Addressing Q4 in Section 5.1:

• When imperfect CSI is considered in the form of channel estimation errors,

we have found that it is wise to create more artificial noise to confuse the

eavesdroppers than to increase the signal strength for the intended receiver.





Chapter 6

Conclusions and Future Research

Directions

In this chapter we state the general conclusions drawn from this thesis. The sum-

mary of specific contributions can be found at the end of each chapter and are not

repeated here. We also outline some future research directions arising from this

work.

6.1 Conclusions

This thesis has been primarily concerned with multi-antenna wireless communica-

tion systems. With limited amount of resource available for transmission, we have

obtained practical design guidelines on efficient resource allocation for systems with

channel uncertainty and/or security constraints.

In training-based transmission schemes, pilot symbols are periodically inserted

into data blocks to facilitate channel estimation. We have extended the exist-

ing results on the optimal transmission resource allocation for systems with no

transmitter-side channel knowledge to systems with various forms of transmitter-

side channel knowledge. Simple closed-form solutions were obtained for transmit

energy allocation between pilot and data symbols that achieve (near) optimal ca-

pacity performance for both spatially i.i.d. and correlated channels. The optimal

training was shown to be at most as large as the number of transmit antennas for

generally correlated channels. We have also found that the channel spatial corre-

lation improves the information capacity at low SNR due to the reduction in the

channel estimation errors.

We have extended our study on the optimal transmission resource allocation

from traditional one-way training-based schemes to two-way training-based schemes,

125
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where the transmitter and receiver channel state information is obtained from a re-

verse training and a forward training prior to the data transmission. Near optimal

solutions on the transmit power distribution between the different training phases

and the data transmission phase were obtained. Compared with systems with only

reverse training, we have shown that the use of two-way training can provide notice-

able performance improvement when the system is operating at moderate to high

SNR and using high-order modulations. While this improvement from two-way

training is insignificant at low SNR or when low-order modulations are used.

For multi-antenna transmission in the presence of eavesdroppers, we have con-

sidered the use of artificial noise for guaranteeing physical-layer wireless security.

We have obtained an achievable secrecy rate and studied the optimal transmit

power allocation between the information-bearing signal and the artificial noise.

We have shown that equal power allocation performs well when the eavesdroppers

cannot collude, while less power should be assigned to the information signal when

either the eavesdroppers collude or the channel estimation error increases.

6.2 Future Research Directions

A number of future research directions arise from the work presented in this thesis.

Optimal Transmit Resource Allocation with Channel Estimation Errors

and Finite-Rate Feedback: In Chapter 3 of this thesis, we assumed that the

feedback link from the receiver to the transmitter is noiseless. In practical systems,

however, finite-rate feedback is used and hence, feedback errors always exist. The

optimal transmission resource allocation which takes into account both the channel

estimation errors and feedback errors becomes an interesting and important design

problem. Initial results can be found in [118,119] where beamforming transmission

is considered.

Optimal Transmit Resource Allocation in Training-Based Systems in the

Wideband Regime: In wideband communications, it is desirable to reduce the

transmit power to improve the spectral efficiency. Hence, the system operates in

the low SNR regime. Flash signalling was shown to be the optimal transmission

scheme, in which only a portion of the transmit time is used [120]. In the training-

based system, the portion of total available time to be used for transmission is an

important design parameter. We have obtained initial results for systems with no

transmitter-side channel knowledge and fixed power transmission in [121], while

this problem remains challenging for systems with any forms of transmitter-side
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channel knowledge.

Optimizing Two-Way Training-Based Multi-User MIMO Systems: In

Chapter 4 of this thesis, we only considered the single-user case. When multiple

users are considered, the precoding and scheduling come into the design problem.

One starting point for future research is the case of single-user beamforming with

user selection, where the analytical approach in studying the transmit power dis-

tribution in this thesis is applicable.

Physical-Layer Security in Wireless Random Networks: Very few results on

information-theoretic security are concerned with large-scale wireless networks [122–

125]. Unlike point-to-point communications, security in wireless networks strongly

depends on the spatial distribution of both the legitimate nodes and the eavesdrop-

pers. We have obtained initial results on secrecy outage constrained connectivity

performance with different eavesdropping strategies [126]. The use of artificial noise

or interference for improving wireless network secrecy is still an open problem.





Appendix A

A.1 Proof of Theorem 2.1

Finding the bounds on L∗d and L∗p involves two steps. First we find the optimal Lp

for any given Ld. We then find the range of values in which L∗d lies. For any given

Ld, the capacity lower bound (2.13) is maximized when the effective SNR (2.14) is

maximized. Letting the first derivative of ρeff w.r.t.Lp be zero, we obtain only one

positive root for Lp given by

L0
p = argLp

{dρeff

dLp

= 0
}

=

√
NtLd(Ld + LP)

Nt + LP . (A.1)

Note that the training length must satisfy Nt ≤ Lp ≤ L − Ld. Therefore, for a

given Ld the optimal training length is given by

L∗p =





Nt, for L0
p ≤ Nt

L0
p, for Nt ≤ L0

p ≤ L− Ld

L− Ld, for L− Ld ≤ L0
p,

(A.2)

which by referring to (A.1) is equivalent to

L∗p =





Nt, for 1 ≤ Ld ≤ Nt

L0
p, for Nt ≤ Ld ≤ ζ

L− Ld, for ζ ≤ Ld ≤ L−Nt,

(A.3)

where

ζ =
2LP+NtP+2Nt−

√
Nt(NtP2+4NtP+4Nt+4LP2+4LP)

2P (A.4)

is the value of Ld at which
√

NtLd(Ld+LP)
Nt+LP + Ld = L.

In order to find the range of values in which L∗d lies, we consider two different

129
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cases, i.e.,L ≤ 2Nt and L > 2Nt.

When L ≤ 2Nt, using (A.4) it can be shown that L−Nt ≤ ζ ≤ Nt. Therefore,

only the first range of Ld in (A.3) is feasible and L∗p = Nt. In order to show the

optimal data length takes the maximum possible value, i.e.,L∗d = L−L∗p = L−Nt,

we need to show that the derivative of CLB w.r.t.Ld is positive at L∗p = Nt. Using

(2.13) we have

dCLB

dLd

=
n

L ln 2
Eλ

{
ln(1 + ρeffλ) +

λLd

1 + ρeffλ

dρeff

dLd

}

=
n

L ln 2
Eλ

{
ln(1 + ρeffλ)− ρeffλ

1 + ρeffλ
Ldρeff

dρ−1
eff

dLd

}
.

Since both ρeff and λ are non-negative, it can be shown that

ln(1 + ρeffλ)− ρeffλ

1 + ρeffλ
≥ 0.

Therefore, Ldρeff
d

dLd
ρ−1

eff < 1 implies d
dLd

CLB > 0. Using (2.14) it is then easy to

show that Ldρeff
d

dLd
ρ−1

eff < 1 at L∗p = Nt. Hence we obtain L∗d = L−Nt.

When L > 2Nt, we aim to show that the optimal data length resides in the last

range in (A.3), i.e., ζ ≤ L∗d ≤ L − Nt. This is proved by showing that L∗d cannot

reside in 1 ≤ Ld < Nt and Nt ≤ Ld < ζ. When 1 ≤ Ld < Nt, it is easy to show

that Ldρeff
d

dLd
ρ−1

eff < 1 at L∗p = Nt given by (A.3). This implies d
dLd

CLB > 0 and

hence L∗d is not in 1 ≤ Ld < Nt. When Nt ≤ Ld < ζ, it is easy to show that

Ldρeff
d

dLd
ρ−1

eff < 1 at L∗p = L0
p given by (A.3). This implies d

dLd
CLB > 0 and hence

L∗d is not in Nt ≤ Ld < ζ. Therefore, we have shown that ζ ≤ L∗d ≤ L−Nt, which

also gives L∗p = L− L∗d from (A.3). ¤

A.2 Proof of Lemma 2.2

We need to show that for all SNR values above Pth, we have dCLB

dLd
> 0 for 0 ≤ Ld ≤

L − Lp. To find such a Pth, we use the result in Appendix A.1 which states that

Ldρeff
dρ−1

eff

dLd
< 1 implies dCLB

dLd
> 0. For any given Lp, we use ρeff in (2.14) to obtain

Ldρeff
dρ−1

eff

dLd

=
Ld(NtLP + 2NtLd + 2NtLp + LpLP)

(Lp + Ld)(NtLP + NtLp + NtLd + LpLP)

=
τ + NtL

2
d

τ + L2
pLP + NtLpLP + NtL2

p

,
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where τ = NtLdLP+NtL
2
d+2NtLpLd+LpLdLP . We see that Ldρeff

dρ−1
eff

dLd
< 1 reduces

to L2
pLP + NtLpLP + NtL

2
p > NtL

2
d, which needs to hold for 0 ≤ Ld ≤ L − Lp.

Therefore, we need to find the values of P which satisfy L2
pLP+NtLpLP+NtL

2
p >

Nt(L− Lp)
2, given by

P >
NtL− 2NtLp

Lp(Lp + Nt)
. (A.5)

Therefore, a threshold SNR value, above which we have dCLB

dLd
> 0, is found as in

(2.18). ¤

A.3 Proof of Theorem 2.2

This is a max-min problem where the mean square error (MSE) of the channel

estimates is to be minimized by XpXp
† and to be maximized by RH . With the

constraint of tr{XpXp
†} = PpLp, we need to show that infXpXp

† supRH
tr{RH̃}

is achieved by an orthogonal pilot sequence with equal power allocated among the

transmit antennas, i.e.,XpXp
† = PpLp

Nt
INt , assuming Lp ≥ Nt.

From (2.5) we see that

supRH
tr{RH̃} ≥ tr{(INt + XpXp

†)−1}

=
Nt∑
i=1

(1 + pi)
−1, (A.6)

where p = [p1 p2 . . . pNt ]
T are the eigenvalues of XpXp

†. Since the sum of a

convex function of pi is Schur-convex in p [93], we conclude that (A.6) is Schur-

convex in p. Consequently, we have

supRH
tr{RH̃} ≥

Nt∑
i=1

(1 + pi)
−1 ≥

Nt∑
i=1

(
1 +

PpLp

Nt

)−1

, (A.7)

where
∑Nt

i=1(1 + pi)
−1 =

∑Nt

i=1

(
1 + PpLp

Nt

)−1

when XpXp
† = PpLp

Nt
INt . Note that

(A.7) holds for any XpXp
†. On the other hand

infXpXp
† supRH

tr{RH̃} ≤ supRH
tr

{(
R−1

H +
PpLp

Nt

INt

)−1}

= supRH

Nt∑
i=1

(
g−1

i +
PpLp

Nt

)−1
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≤
Nt∑
i=1

(
1+

PpLp

Nt

)−1

, (A.8)

where (A.8) is obtained using the Schur-concavity of
∑Nt

i=1

(
g−1

i + PpLp

Nt

)−1

in g, and

g = [g1 g2 . . . gNt ]
T denote the eigenvalues of RH . The equality in (A.8) holds

when RH = INt . From (A.7) and (A.8), we conclude that

infXpXp
† supRH

tr{RH̃} =
Nt∑
i=1

(
1 +

PpLp

Nt

)−1

,

which can be obtained by choosing XpXp
† = PpLp

Nt
INt . ¤

A.4 Proof of Theorem 2.3

The proof of part (a) of the theorem is a max-min problem where the capacity

lower bound is to be maximized by Q and to be minimized by RH or effectively

RĤ . We need to show that supQ infR
Ĥ

CLB is achieved by Q = Pd/NtINt . At

sufficiently low SNR, the ergodic capacity lower bound per channel use in (2.8) can

be approximated as

CLB =
1

ln 2
EĤtr

{
ln

(
INt +(1+tr{RH̃Q})−1Ĥ

†
ĤQ

)}
(A.9)

≈ 1

ln 2
EĤ tr

{
ln

(
INt + Ĥ

†
ĤQ

)}
(A.10)

≈ 1

ln 2
EĤ tr

{
Ĥ

†
ĤQ

}
(A.11)

=
Nr

ln 2
tr{RĤQ}, (A.12)

where (A.9) is obtained using ln |·| = tr{ln(·)}, (A.10) uses low SNR approximation,

and (A.11) is obtained using Taylor’s series expansion of ln(·) together with low

SNR approximation.

From (A.12) we see that

infR
Ĥ

CLB ≤ NrκPd

ln 2
, (A.13)

where we have chosen RĤ = κINt for some κ. Therefore,

supQ infR
Ĥ

CLB ≤ NrκPd

ln 2
. (A.14)
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On the other hand,

supQ infR
Ĥ

CLB ≥ infR
Ĥ

CLB(Q = Pd/NtINt). (A.15)

Using (A.12), CLB(Q = Pd/NtINt) reduces to

CLB ≈ NrPd

Nt ln 2
tr{RĤ}

=
NrPd

Nt ln 2

(
Nt − tr{RH̃}

)

=
NrPd

Nt ln 2

(
Nt −

Nt∑
i=1

(
g−1

i +
PpLp

Nt

)−1
)

. (A.16)

It can be shown that f(g) = (g−1 + PpLp

Nt
)−1 is a concave function of g. Therefore,

tr{RH̃} =
∑Nt

i=1 f(gi) is Schur-concave in g [93]. And the ergodic capacity lower

bound in (A.16) is Schur-convex in g.

As a result, infR
Ĥ

CLB(Q = Pd/NtINt) is achieved by RH = gINt , or effectively

RĤ = κINt . Hence,

supQ infR
Ĥ

CLB ≥ NrκPd

ln 2
. (A.17)

From (A.14) and (A.17), we have supQ infR
Ĥ

CLB = NrκPd

ln 2
which is achieved by

equal power transmission of data among the transmit antennas.

Part (b) of the theorem deals with the high SNR regime, in which the covariance

matrix of the channel estimation error in (2.5) can be approximated as RH̃ ≈
(PpLp

Nt
)−1INt . Note that RH̃ is independent of the channel spatial correlation in

the high SNR regime. Therefore, the ergodic capacity lower bound per channel use

in (2.8) can be approximated as

CLB ≈ EĤ

{
log2

∣∣∣
(
1 +

NtPd

LpPp

)−1

Ĥ
†
ĤQ

∣∣∣
}

= EĤ

{
log2 τ |Ĥ†

ĤQ|
}

= EĤ0

{
log2 τ |Ĥ†

0Ĥ0|
}

+log2 |RĤ |+log2 |Q|, (A.18)

where τ =
(
1 + NtPd

LpPp

)−Nt

. It is then clear that the optimal data transmission

scheme at high SNR is equal power transmission, i.e. Q = Pd/NtINt . ¤
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A.5 Proof of Theorem 2.4

The proof follows from the low and high SNR approximations of the ergodic ca-

pacity lower bound derived in Appendix A.4. At sufficiently low SNR, CLB is given

by (A.16) which is shown to be Schur-convex in g.

At sufficiently high SNR, the ergodic capacity lower bound is given in (A.18).

Denote the eigenvalues of RĤ as ĝ = [ĝ1 ĝ2 . . . ĝNt ]
T . One can show that CLB in

(A.18) is Schur-concave in ĝ due to the Schur-concavity of ΠNt
i=1ĝi [93]. Also with

RH̃ ≈ (PpLp

Nt
)−1INt at high SNR, it can be shown that ĝ is an affine function of g,

hence the concavity is preserved. Therefore, CLB is Schur-concave in g. ¤



Appendix B

B.1 Proof of Theorem 3.1

To prove Theorem 3.1, we begin with the following set of results.

• R1. From the property of water-filling solution [99], m is discrete and non-

decreasing on α ∈ [0, 1] as the number of non-zero qi in (3.10) cannot decrease

as the data transmission power increases.

• R2. With σ2
H̃

=
(
1 + PpLp

Nt

)−1

, σ2
Ĥ

= 1− σ2
H̃

and (3.2), it can be shown that

ρeff , σ2
Ĥ
Pd

1+σ2
H̃
Pd

is a concave function of α ∈ [0, 1].

• R3. For any fixed m, we see from (3.13) that CLB is maximized when ρeff

reaches its maximum.

• R4. From the property of water-filling solution [99], we know that qi in (3.10)

is continuous on Pd and hence, is continuous on α ∈ [0, 1].

In Fig. B.1, we show a sketch plot of ρeff versus α. This figure helps to visualize

the following proof. Basically, the main objective here is to show that the optimal

α is not affected by the number of active eigen-channels.

From R1, we can divide all values of α into a finite number of regions in which

m is constant.

From R2, there exist a unique local optimal point of α in each of the afore-

mentioned regions, denoted by α∗1, α
∗
2, α

∗
3 and so on. And these optimal points of

α occur on the boundaries of these regions except for at most one of them which

is the global optimal point of α, denoted by α∗. (Note that α∗ may occur on the

boundary of some region as well.)

From R3, we know that the local optimal point of α for ρeff is also the local

optimal point for CLB in each of the aforementioned regions. That is to say, α∗1,

α∗2, ... maximize CLB in the corresponding regions where m is fixed.
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m = 1 m = 2 m = 3 m = 4

α
∗

4

α

α
∗

1

α
∗

2

α
∗

3
= α

∗

ρeff

Figure B.1: A sketch example of ρeff v.s. α. The vertical dashed lines indicates
the values of α at which m changes its value. α∗1, α∗2, α∗3 and α∗4 indicate the local
optimal values of α which give local maxima of ρeff.

From R4, the continuity of qi on α ∈ [0, 1] implies the continuity of CLB in

(3.11) on α ∈ [0, 1]. This implies that CLB is continuous across the boundaries of

two different regions of α. For example in Fig. B.1, CLB(m = 1) = CLB(m = 2) at

α = α∗1 and CLB(m = 2) = CLB(m = 3) at α = α∗2, etc .

Therefore, we can show that CLB at α∗ is larger than CLB at α∗1, α∗2, ... That

is to say, the global optimal point of α for ρeff is also the global optimal point for

CLB. Therefore, the objective function for optimizing α is reduced from CLB to

ρeff. It is noted that the objective function ρeff is the same as that in non-feedback

systems given in [54]. Therefore, the solution of α∗ coincides with the solution for

non-feedback systems given in Section 2.4.1. ¤

B.2 Proof of Theorem 3.2

We aim to show that dCLB

dLd
> 0 (treating Ld as a positive real-valued variable) for

any given α. First of all, it can be shown that CLB is continuous on Ld regardless

of the value of m, which implies that there is no discontinuity in CLB. Therefore,

it suffices to show that dCLB

dLd
> 0 for any fixed m and α.

We let ρeff =
σ2

Ĥ
Pd

1+σ2
H̃
Pd

=
σ2

Ĥ
αPL

Ld+σ2
H̃

αPL
, y =

∑m
i=1 ln λi

m
, and z =

∑m
i=1 λ−1

i . Then the
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average capacity lower bound in (3.8) can be rewritten using (3.13) as

CLB =
Ld

L

1

ln 2
Eλ{m ln(ρeff + z) + y}.

For any given α, we know from (3.2) that PpLp is constant. Therefore, σ2
H̃

=(
1 + PpLp

Nt

)−1

and σ2
Ĥ

= 1− σ2
H̃

are also constant. Differentiating CLB w.r.t.Ld for

any fixed m gives

dCLB

dLd

=
1

ln 2

m

L

(
Eλ

{
ln(ρeff+z)+

Ld

ρeff+z

dρeff

dLd

+
y

m

})
, (B.1)

where

dρeff

dLd

= −
σ2

Ĥ
αPL

(Ld + σ2
H̃

αPL)2
= − ρeff

Ld + σ2
H̃

αPL
. (B.2)

Substituting (B.2) into (B.1), we get

dCLB

dLd

=
1

ln 2

m

L
Eλ

{
ln(ρeff+z)− ρeff

ρeff+z

Ld

Ld+σ2
H̃

αPL
+

y

m

}
.

Since Ld

Ld+σ2
H̃

αPL
< 1, it suffices to show that

Eλ

{
ln(ρeff + z)− ρeff

ρeff + z
+

y

m

}
≥ 0. (B.3)

Furthermore, one can show that

d

dρeff

Eλ

{
ln(ρeff + z)− ρeff

ρeff + z
+

y

m

}
=

ρeff

(ρeff + z)2
≥ 0

for any fixed m. Since Eλ

{
ln(ρeff + z) − ρeff

ρeff+z
+ y

m

}
is an increasing function of

ρeff, we only need to show (B.3) holds at ρeff = 0, that is

Eλ

{
ln z+

y

m

}
= Eλ

{
ln

m∑
i=1

λ−1
i +

1

m

m∑
i=1

ln
λi

m

}

≥ Eλ

{ 1

m

m∑
i=1

ln
(λi

m

)−1

+
1

m

m∑
i=1

ln
λi

m

}
(B.4)

= Eλ

{ 1

m

m∑
i=1

ln
(λi

m

)−1 λi

m

}

= 0,
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where (B.4) is obtained using the concavity of ln(·). Therefore, we conclude that
dCLB

dLd
> 0 for any given α, which implies that Ld should be kept at its maximum.

Hence, Lp should be kept at its minimum. With the assumption of Lp ≥ Nt the

optimal training length is given by L∗p = Nt. ¤

B.3 Proof of Corollary 3.1

Among all possible values of α ∈ [0, 1], there exists an optimal α that maximizes

the capacity lower bound for any given Lp. We denote α∗(k) to be the optimal α

for Lp = k and denote CLB

(
a, l

)
to be the capacity lower bound at α = a and

Lp = l. From the definition of α∗(Nt) we have

CLB

(
α∗(Nt), Nt

)
≥ CLB

(
α,Nt

)
, ∀ α ∈ [0, 1].

From Theorem 3.2 we know that when k ≥ Nt,

CLB

(
α, Nt

)
≥ CLB

(
α, k

)
, ∀ α ∈ [0, 1].

Combining the two inequalities and choosing α = α∗(k), we have

CLB

(
α∗(Nt), Nt

)
≥ CLB

(
α∗(k), k

)
,

that is, the capacity at Lp = Nt is greater than or equal to the capacity at Lp =

k ≥ Nt where the corresponding α∗ is used in both cases. ¤

B.4 Proof of Theorem 3.3

Assuming Lp ≥ Nt, we have Q̂ = Pd/NtINt . We let θ = [θ1 θ2 . . . θr]
T be the

non-zero eigenvalues of Ĥ
†
0Ĥ0Ĝ/Nt, where r = rank{Ĥ†

0Ĥ0Ĝ} = min{Nt, Nr}.
CLB in (3.22) is reduced to

CLB = Eθ{
r∑

i=1

log2(1 + ρ̂eff,i)},

where ρ̂eff,i = θiPd(1 + µ−1Pd)
−1. Note that θi > 0 ∀ i and they are independent of

Ld for any fixed α. Following the proof of Theorem 3.2 in Appendix B.2, one can

show that dCLB

dLd
> 0 for any given α. Therefore, CLB reaches its maximum when Ld

is maximized, which implies that L∗p = Nt under the constraint of Lp ≥ Nt. Hence,

in general we have L∗p ≤ Nt. ¤
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B.5 Proof of Theorem 3.4

For any positive definite matrix A, log2 |A| is increasing in A [93]. Also, for any

positive semi-definite matrix B, I+Ĥ
†
0Ĥ0B is a positive definite matrix [6]. Since

ĜQ̂(1 + µ−1Pd)
−1 is a positive semi-definite matrix, the capacity lower bound in

(3.22) is maximized when the diagonal entries of ĜQ̂(1+µ−1Pd)
−1 are maximized.

The ith non-zero diagonal entry of ĜQ̂(1 + µ−1Pd)
−1 is given by

ρeff,i =
(gi − µ−1)Pd

(1 + µ−1Pd)Lp

=
gi

Lp

PpPd + Pd(y − g−1
i )

Pp + Pd + y
, (B.5)

where we have used (3.20) and let y = µ−Pp = 1
Lp

∑Lp

i=1 g−1
i . Substituting α from

(3.2) into (B.5) with some algebraic manipulations, we get

ρeff,i =
giPL

Lp(Ld − Lp)

α(1− α) + α Lp

PL
(y − g−1

i )

−α + PL+Lpy

PL(1−Lp/Ld)

. (B.6)

Here we consider the case where Ld > Lp and omit the cases Ld = Lp and

Ld < Lp which can be handled similarly. It can be shown that ρeff,i in (B.6) is

concave in α ∈ (0, 1). Therefore, the optimal α occurs at
dρeff,i

dα
= 0, which is the

root to

α2 − 2αγ + γ + γz = 0,

where γ = PL+Lpy

PL(1−Lp/Ld)
and z = Lp

PL
(y − g−1

i ). It is clear that α depends on gi

through z. Therefore, there is no unique α which maximizes all ρeff,i. However,

this dependence disappears when PL À Lpy =
∑Lp

i=1 g−1
i . Under this condition,

one can show that γ ≈ Ld

Ld−Lp
and z ≈ 0. And there exists a unique solution of α∗

which maximizes all the diagonal entries of ĜQ̂(1 + µ−1Pd)
−1, given by

α∗ = γ −
√

γ(γ − 1), where γ =
Ld

Ld − Lp

. ¤

B.6 Proof of Theorem 3.6

The proof consists of two steps.

Firstly, we show that the optimal data structure can be written as Q = UQ̂U †
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with

Q̂ =

(
Q̂a 0n×(Nt−n)

0(Nt−n)×n 0(Nt−n)×(Nt−n)

)
.

The proof is trivial when Lp ≥ Nt in which case we have Q̂ = Q̂a. In the following

we consider Lp < Nt. In this case, we have n = Lp. From (3.5) and the optimal

pilot structure in Section 3.4.1, we have

RH̃ =
(
(UGU †)−1 + UPU †

)−1

= U (G−1 + P )−1U †

= UG̃U †, (B.7)

where (B.7) is indeed the EVD of RH̃ . From (3.6) and (B.7), it is easy to show

that the EVD of RĤ is given by RĤ = UĜU †. Substituting pi from (3.20) into

(B.7), we have

Ĝ = G− G̃ =

(
Ĝa 0Lp×(Nt−Lp)

0(Nt−Lp)×Lp 0(Nt−Lp)×(Nt−Lp)

)
, (B.8)

where Ĝa = diag{g1 − µ−1, . . . , gLp − µ−1}, and µ > 0.

We let Q = UQ̂U †. It can be shown that Q̂ is also a positive semi-definite

matrix with tr{Q̂} = tr{Q}. The optimization problem in (3.24) reduces to

max
Q̂ : tr{Q̂}≤Pd

log2

∣∣∣INt + (1 + tr{G̃Q̂})−1(ĤU )
†
ĤUQ̂

∣∣∣. (B.9)

Using Ĥ = Ĥ0R
1/2

Ĥ
= Ĥ0Ĝ

1/2
U †, where Ĥ0 has i.i.d. ZMCSCG entries with unit

variance, the optimization problem becomes

max
Q̂:tr{Q̂}≤Pd

log2

∣∣∣INt +(1+tr{G̃Q̂})−1̂H
†
0Ĥ0Ĝ

1/2
Q̂Ĝ

1/2
∣∣∣. (B.10)

We express Ĝ
1/2

Q̂Ĝ
1/2

in block matrix from as

Ĝ
1/2

Q̂Ĝ
1/2

=

(
Ĝ

1/2

a 0

0 0

)(
Q̂a Q̂b

Q̂c Q̂d

)(
Ĝ

1/2

a 0

0 0

)

=

(
Ĝ

1/2

a Q̂aĜ
1/2

a 0

0 0

)
, (B.11)
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where Q̂a is an Lp ×Lp matrix. From (B.11) we can see that Q̂b, Q̂c and Q̂d have

no effect on Ĝ
1/2

Q̂Ĝ
1/2

. Also, it can be shown from the property of trace that

tr{G̃Q̂} =

Lp∑
i=1

µ−1q̂ii +
Nt∑

i=Lp+1

giq̂ii, (B.12)

where q̂ii ≥ 0 is the ith diagonal entry of Q̂. We see that (B.12) does not depend

on Q̂b or Q̂c. Therefore, (B.10) is independent of Q̂b and Q̂c. For any given Q̂a,

(B.10) is achieved by minimizing (B.12), which can be done by letting Q̂d = 0. We

conclude that (B.10) can be achieved by letting Q̂b, Q̂c and Q̂d be 0.

Secondly, we derive the solution for optimal Q̂a as follows. Using the optimal

structure of Q, the objective function in (B.10) reduces to

max
Q̂ : tr{Q̂}≤Pd

log2

∣∣∣INt +
1

1+tr{Q̂}/µ
Ĥ

†
0Ĥ0Ĝ

1/2
Q̂Ĝ

1/2
∣∣∣. (B.13)

We denote Ĥ0 in a block matrix form as Ĥ0 = [Ĥa Ĥb], where Ĥa is a Nr×n

matrix. With some algebraic manipulations, the optimization problem in (B.13)

reduces to

max
Q̂a:tr{Q̂a}≤Pd

log2

∣∣∣In+
1

1+tr{Q̂a}/µ
(ĤaĜ

1/2

a )
†
ĤaĜ

1/2

a Q̂a

∣∣∣. (B.14)

Since Ĥ = Ĥ0Ĝ
1/2

U †, it is easy to show that ĤaĜ
1/2

a contains the first n columns

of ĤU . We denote the first n columns of ĤU as F , i.e.,F = ĤaĜ
1/2

a , then the

optimization problem in (B.14) can be rewritten as

max
Q̂a : tr{Q̂a}≤Pd

log2

∣∣∣In +
1

1 + tr{Q̂a}/µ
F †FQ̂a

∣∣∣. (B.15)

It is a well-known result that the optimal Q̂a in (B.15) has the same eigenvectors

as F †F [6]. For a given tr{Q̂a}, the eigenvalues of Q̂a can be found via the standard

water-filling algorithm given by

ai =
[
η̂ −

( χi

1 + µ−1P̂d

)−1]+

with
n∑

i=1

ai = P̂d, (B.16)

where η̂ represents the water level and P̂d = tr{Q̂a}.

The remaining part is to show that P̂d = Pd. From (B.16), we can solve the
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water level as

η̂ =
1

m
P̂d + (1 + µ−1P̂d)

1

m

m∑
i=1

χ−1
i , (B.17)

where m denotes the number of non-zero ai in (B.16). Therefore, (B.15) reduces

to

max
P̂d : P̂d≤Pd

n∑
i=1

log2

(
1 +

χiai

1 + µ−1P̂d

)
(B.18)

= max
P̂d : P̂d≤Pd

m∑
i=1

log2

( χiη̂

1 + µ−1P̂d

)
(B.19)

= max
P̂d:P̂d≤Pd

m∑
i=1

log2

( P̂d

1+µ−1P̂d

+
m∑

i=1

χ−1
i

)
+

m∑
i=1

log2

χi

m
, (B.20)

where (B.20) is obtained by substituting η̂ from (B.17) into (B.19). It is easy to

show that the first derivative of P̂d

1+µ−1P̂d
w.r.t. P̂d is positive. Therefore, the objec-

tive function in (B.20) is an increasing function of P̂d for any fixed m. From the

property of water-filling solution [99], we know that ai, ∀ i in (B.16) are continuous

on P̂d. Therefore, the objective function in (B.18) is also continuous on P̂d. We

can conclude that the objective function is an increasing function of P̂d regardless

of the value of m. Hence, the objective function is maximized by letting P̂d = Pd.

¤



Appendix C

C.1 Identity for a Special Class of Gauss Hyper-

geometric Function

Here we obtain a simplified expression for the Gauss hypergeometric function in

the form of 2F1(1, 1; N +1; x) or 2F1(N, N ; N +1; x) for integer N ≥ 1. From [116],

we know that these two forms of the Gauss hypergeometric function are related to

each other by

2F1(1, 1; N + 1; x) = (1− x)N−1
2F1(N,N ; N + 1; x). (C.1)

Also, we know from [116] that

dN−1

dxN−1 2F1(1, 1; 2; x) =
(1)N−1(1)N−1

(2)N−1
2F1(N, N ; N + 1; x), (C.2)

where (a)b is the rising factorial. Therefore, we have

2F1(N, N ; N + 1; x) =
(2)N−1

(1)N−1(1)N−1

dN−1

dxN−1 2F1(1, 1; 2; x)

= − N

(N − 1)!

N−1∑

l=0

(
N−1

l

)
dl

dxl
ln(1− x)

dN−1−l

dxN−1−l
x−1, (C.3)

where we have used the identity 2F1(1, 1; 2; x) = − ln(1 − x)/x from [116]. It is

easy to show that

dk

dxk
ln(1− x) = − dk−1

dxk−1
(1− x)−1 = − (k − 1)!

(1− x)k
, k = 1, 2, 3, ... (C.4)

dk

dxk
x−1 =

(−1)kk!

xk+1
, k = 0, 1, 2, 3, ... (C.5)
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Substituting the above expressions for the derivatives into (C.3), we obtain an

identity expression as

2F1(N, N ; N + 1; x) = − N

(N − 1)!

(
ln(1− x)

(−1)N−1(N − 1)!

xN

−
N−1∑

l=1

(N − 1)!

l!(N − 1− l)!

(l − 1)!

(1− x)l

(−1)N−1−l(N − 1− l)!

xN−l

)

=
(−1)NN

xN

(
ln(1− x)−

N−1∑

l=1

1

l

xl

(x− 1)l

)
. (C.6)

Using (C.1), we also have

2F1(1, 1; N + 1; x) =
(−1)NN(1− x)N−1

xN

(
ln(1− x)−

N−1∑

l=1

1

l

xl

(x− 1)l

)
. (C.7)
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