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Abstract

A central problem in the analysis of motion capture (Mo-
Cap) data is how to decompose motion sequences into prim-
itives. Ideally, a description in terms of primitives should
facilitate the recognition, synthesis, and characterization of
actions. We propose an unsupervised learning algorithm
for automatically decomposing joint movements in human
motion capture (MoCap) sequences into shift-invariant ba-
sis functions. Our formulation models the time series data
of joint movements in actions as a sparse linear combina-
tion of short basis functions (snippets), which are executed
(or “activated”) at different positions in time. Given a set of
MoCap sequences of different actions, our algorithm finds
the decomposition of MoCap sequences in terms of basis
functions and their activations in time. Using the tools of
L1 minimization, the procedure alternately solves two large
convex minimizations: Given the basis functions, a vari-
ant of Orthogonal Matching Pursuit solves for the activa-
tions, and given the activations, the Split Bregman Algo-
rithm solves for the basis functions. Experiments demon-
strate the power of the decomposition in a number of ap-
plications, including action recognition, retrieval, MoCap
data compression, and as a tool for classification in the di-
agnosis of Parkinson (a motion disorder disease).

1. Introduction
Interpreting human behavior is a newly emerging area

that has attracted increasing attention in computer vision.
One of the intellectual challenges in modeling human mo-
tion is to come up with formalisms for describing and rec-
ognizing human actions in motion capture (MoCap) se-
quences. Fundamentally, the primitives should assist the
recognition, synthesis, and characterization of human ac-
tions. From this perspective, the formalism of the primitives
is essential to action representation.

Human actions by their nature are sparse both in action
space domain and time domain. They are sparse in action
space, because different actions share similar movements
on some joints, and also different joints share similar move-

ments. They are sparse in the time domain, because we do
not want much overlap of the individual movements on a
single joint. These observations make the concept of shift-
invariant sparse representation as the primitives of human
actions very attractive, where shift invariant means that the
output does not depend explicitly on time, e.g., the same
action can have multiple realizations at different times.

Let us get into more detail. We are given many MoCap
sequences. The data from a motion capture suit are time
series of three rotation angles each at a number of joints
on the human body. Each of these sequences consists of a
number of instances of different actions (where an instance
of an action could be a step of a “running” sequence, or a
single “kick”, or “jump”). Our goal is to obtain from these
action sequences a set of basis functions that could be used
for approximating the entire set of the actions.

Figure 1. Modeling human motion in MoCap sequences using
shift-invariant sparse representation. The short basis functions are
sparsely selected and linearly combined to create action units for
individual joints. The units may be shifted to different locations
where multiple instances of the movement are realized. The time
shift is modeled by the convolution (denoted by ?).

Our basis functions are chosen to be smooth functions
and about the length of an instance of an action (Fig. 1).
This enables us to achieve a useful underlying representa-
tion of different actions. The joint movements in an instance
of an action are approximated by a sparse linear combina-
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tion of basis functions (“Action Unit” in Fig. 1). To achieve
a meaningful behavioral interpretation the weights are de-
fined to be positive. Multiple instances of the same joint
movement are realized by executing (or “activating”) the
linear combination of basis functions at different instances
of time, but with different strength (“Activation” in Fig. 1).
That is, all basis functions involved in the representation
of a single joint are activated simultaneously. But different
joints are activated separately.

Our action representation then is the weights of the ba-
sis functions along with their activations. Once these shift-
invariant basis functions are learned, we can approximate
any novel action sequence using a weighted combination of
a number of these basis functions.

In our learning procedure, we solve for both the basis
functions of the actions and the times when these functions
are “activated”. Solving them together would amount to a
complicated non-convex optimization with a large number
of variables. However, the optimization problem is convex
in either the basis functions or the activations. Our method
thus solves alternately for the two set of parameters. Re-
cently developed L1 minimization techniques allow us to
solve these two problems effectively. Given a set of basis
functions, a variant of Orthogonal Matching Pursuit [25]
is used to obtain the activations by solving a non-negative
L1 minimization problem with a large number of variables.
Given the activations, the Split Bregman Algorithm [14] is
used to solve an L1 regularized liner least square problem.

The characteristics of our decomposition approach are:

1. Our unsupervised algorithm learns a high-level sparse
representation (the primitives) of action which allows
recognizing actions in MoCap sequences effectively.

2. The shift-invariant modeling naturally handles the Mo-
Cap sequence composed of multiple instances of dif-
ferent actions.

3. The sparse activations explicitly express the coordina-
tion among different joints.

The rest of the paper is organized as follows. Sec. 2
discusses related work. Sec. 3 presents the algorithm for
learning the basis functions. Sec. 4 summarizes an algo-
rithm used for normalizing the length of MoCap sequences.
Sec. 5 demonstrates the usefulness of our action represen-
tation on four applications, and Sec. 6 concludes the paper.

2. Related work
Finding motion primitives has been studied in a large

body of work. D’Avella et al. [11] discovered that the mus-
cles were activated together to perform actions. [9] applied
non-negative matrix factorization to study torque patterns.
[24] studied motion using a dynamical system. None of
these models uses shift-invariant primitives.

A decomposition into shift-invariant features has been
studied in acoustic signals classification ([3]). Shift invari-
ant sparse coding [23] further improved the performance of
classification. A major difference between their mathemat-
ical formulation and ours is that we enforce the weights to
be positive, and the basis functions of individual joints to be
be shifted coherently to realize an instance of an action.
L1 minimization recently gained much attention with

the emergence of compressive sensing [7] and has been ap-
plied frequently to image denoising [6], sparse represen-
tation of data [10], and for solving non-negative sparse-
related problems [13]. Our approach involves solving an L1

norm minimization in many variables. Although in princi-
ple, it is possible to solve an L1 minimization problem by
formulating it as a linear programming problem, such an
approach is not efficient when many variables are involved.
But recently a number of fast algorithms have been devel-
oped for approximating the optimal solution. For example,
Basis Pursuit [8] solves the L1 minimization by selecting
the best bases. Orthogonal Matching Pursuit (OMP) [25]
can reliably recover a signal with K nonzero entries given a
reasonable number of random linear measurements of that
signal. Alternatively, the Split Bregman Algorithm [14], ap-
proximates the optimal solution by iteratively solving effi-
ciently a few simple sub-problems.

Temporal segmentation of human motion. A few stud-
ies proposed methods for breaking MoCap sequences into
small action segments. Jenkins and Mataric [15] used a
heuristic algorithm to partition human motion. Vecchio et
al. [26], Bissacco [2] and Lu and Ferrier [19] assumed that
human motion is ruled by autoregressive (AR) processes or
state-space models and partitioned the sequences based on
different model parameters. A comparison of partitioning
algorithms in motor space can be found in [4].

Applications. The action basis could find direct appli-
cation in action embodiment [22]. The segments are useful
for action retrieval [12] and action classification [27], and
can be used for compressing human motion [18].

3. Shift-invariant sparse modeling of actions

A MoCap sequence consists of the time series of three
rotation angles each at a number of joints on the human
body. In our approach, we approximate each time series by
sparse linear combinations of shift-invariant sparse features.

For simplicity, we start our journey from the following
example. A body joint rotation s (1d time series) consists
of the movements of multiple instances of the same action.
GivenN short basis functions bi (i = 1, 2, ...N ) which have
the length about an instance of an action, we would like to
approximate s as follows:

s ≈
∑
i

a ? wibi, (1)
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where a is the sparse activation for s, and ? is the convo-
lution operator (Fig. 1). The variables a and wi are non-
negative. Eq. 1 is equivalent to

s ≈
∑
i

wia ? bi

=
∑

ai ? bi, (2)

where ai = wia. This means we can model the shift of
each individual basis function separately, with the addi-
tional constraint that all the activations ai (i = 1, 2, ...N )
must have non-zero values at the same time when used for
approximating s.

In the following formulation, we first discuss a solution
for Eq. 2 in Sec. 3.1 and 3.2. The additional constraint is
enforced when we solve the activations in Sec 3.3.1.

3.1. Problem formulation

Given a set of M 1d signals sj , j = 1, 2, ...M , each of
which is of length l and represents a time series of a joint
movement, we want to approximate all sj as the convolution
between the activations and the basis functions, i.e.,

sj =
∑
i

aji ? bi + nj , (3)

where aji (j = 1, 2, ...M , i = 1, 2, ...N ) are the sparse
non-negative activations for the ith basis function in the jth

signal, and nj is the noise.
We enforce that the activations are sparse, and the basis

functions are sparse in the Fourier domain. Therefore, the
modeling poses the following L1 regularized optimization
problem:

min
(aj

i ,bj)

∑
j

|sj−
∑
i

aji ?bj |2+µ1

∑
i,j

|aji |1+µ2

∑
i

|F b̂i|1,

(4)
where | · |p is the Lp norm of the vector, F is the Fourier
transform matrix, and b̂i are the zero-padded bi which are
of length l.

Solving the activations and the basis functions together
would amount to a non-convex optimization with a large
number of variables. In Sec. 3.2, we re-formulate the prob-
lem in the frequency domain.

3.2. Formulating the problem in frequency domain

We show that the optimization problem is convex in ei-
ther the basis functions or the activations. Therefore, a co-
ordinate descent algorithm is used to alternately solve two
large convex L1 regularized problems.

The convolution in time domain is equivalent to the dot
product in frequency domain. Therefore, Eq. 3 is equivalent
to:

Sj ≈
∑
i

Aj
i · B̂i (5)

where · is the pairwise multiplication operation, Aj
i = Faji ,

and B̂i = F b̂i, respectively.
Denoting X as the square matrix whose diagonal is X ,

we have:
Aj

i · B̂i = Aj
i B̂i = B̂iA

j
i (6)

Therefore, Eq. 5 is equivalent to

Sj ≈
[
B̂1 . . . B̂N

] Aj
1

...
Aj

N



=
[
B̂1 . . . B̂N

] F
. . .

F


 aj1

...
ajN


= Baj , (7)

where aj = [aj1; ...; a
j
N ]T , and

B =
[
B̂1 . . . B̂N

] F
. . .

F

 .
Similarly, Eq. 5 can be rewritten as:

Sj ≈
[
Aj

1 . . . Aj
N

] B̂1

...
B̂N



=
[
Aj

1 . . . Aj
N

] F
. . .

F


 b̂1

...
b̂N



=
[
Aj

1 . . . Aj
N

] Fl

. . .
Fl


 b1

...
bN


= AjFb, (8)

where Aj = [Aj
1, ..., A

j
N ], b = [b1; ...; bN ]T , the matrix

Fl as the first l columns of the F , and

F =

 Fl

. . .
Fl

 .
Let S, A, a and b denote the concatenations of all possi-

ble Sj , Aj , aj and bi in the column form. Eq. 4 is convex
in either a or b, so we solve it alternately as two convex
optimization problems.

Given the basis functions b in time domain, from Eq. 4
we obtain:

min
a
|S − Ba|2 + µ1|a|1 (9)
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Eq. 9 is the sum of M independent subproblems, all of
which are convex. We can approximate them separately.

Given the activations a, from Eq. 4 we obtain:

min
b
|S −AFb|2 + µ2|Fb|1 (10)

Both Eq. 9 and 10 are convex. Therefore, the objective
function Eq. 4 is always non-increasing using the updates.
Eq. 9 is solved using the Orthogonal Matching Pursuit, and
Eq. 10 is solved using the Split Bregman iterative algo-
rithm. To avoid trivial results, we normalize the basis func-
tion in amplitude in each iteration.

3.3. Solving the problem using L1 minimization

3.3.1 OMP for solving the activations

We use a variant of the Orthogonal Matching Pursuit (OMP)
to solve Eq. 9. The variant amounts to implementing Or-
thogonal Matching Pursuit in a batch mode.

Orthogonal Matching Pursuit is a greedy algorithm. It
progressively picks the new basis which minimizes the
residual. The major advantages of this algorithm are its
ease of implementation and its speed. This approach can
easily be extended to related problems, such as finding non-
negative bases [13].

In our modeling, a single body joint movement is a
sparse combination of the basis functions, with the weights
non-negative and the additional constraint that the activa-
tions must be coherent. This is solved as follows: Given the
movement (1d time series) of a joint, we progressively pick
the new basis at the locations found in the previous steps,
and minimize the residual of all the time series. We en-
force the solution to be positive by checking which basis to
choose and checking the weights found in the least-squares
minimization.

During the optimization, a sparse subset of basis func-
tions is automatically selected. In our implementation, we
allow a maximum of 4 basis functions at a single activation
at one joint, with the total number of basis functions being
15. This makes it easier to compare the weights of the same
joint in action retrieval and classification.

3.3.2 Split Bregman Algorithm for solving the bases

As defined in the literature, the Split Bregman Iterative Al-
gorithm is applied to the following problem

min
u
J(u) +H(u), (11)

with u ∈ Rn, J(u) is the L1 norm of a function of u and is
continuous but not differentiable function, and H(u) is the
L2 norm of a function of u and is continuous differentiable.
In our case, J(u) = |Fb|1 and H(u) is the L2 norm of the
approximation error.

By introducing |d − φu|2 and E(u, d) = |d|1 + H(u),
we rewrite Eq. 11 as

min
(u,d)

E(u, d) + λ/2|d− φu|2. (12)

The solution is given by iteratively updating the follow-
ing three equations:

uk+1 ← argmin
u
H(u) + λ/2|dk − φu− pk|2 (13)

dk+1 ← argmin
d
|d|1 + λ/2|d− φuk+1 − pk|2 (14)

pk+1 ← pk + φuk+1 − dk+1

This “splits” Eq. 12 into the subproblems. Eq. 13 is a
2nd order continuous differential function that can be solved
efficiently. Eq. 14 is solved by shrinkage operation1. By
the alternately update in the Split Bregman Algorithm, we
obtain the optimal sparse solution for Eq. 10.

4. Preprocessing: normalization for handing
actions with various speeds

It is important to handle action sequences of different
speeds. For this we use our action segmentation algorithm.
This algorithm breaks an action sequence into action seg-
ments. We then compute the average length of the action
segments and use it to normalize the sequence.

Our goal is to find the discontinuities in the 3rd order
derivative of the time series. Motivation for this approach
comes from the work of d’Avella et al. [11], who found that
the change of the muscle force indicates the time of action
change, and the change of muscle force is proportional to
the 3rd order derivative of the time series.

Our algorithm partitions a MoCap sequences by mini-
mizing the sum of the pairwise distances of the envelope
extrema of the different joints. In this algorithm, we use the
quaternion representation for rotation.

The quaternion series of a certain joint is a 4D vector

X(t) = [x1(t), x2(t), x3(t), x4(t)]
T (15)

The jerk of X(t) is computed as

J(t) = |d
3(X(t))

dt3
|2 (16)

To minimize the error in computing the derivative, we
smooth the data using a low pass filter.

To measure the jerk better, we compute the jerk envelope

Env(t) = |Hilbert(J(t))|2 (17)

for every joint, where Hilbert(·) is the Hilbert transform.
This is a standard approach for computing the signal enve-
lope [5]. Then we process Hilbert(·) using as a low pass
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Figure 2. Estimating the average action speed by measuring the
action discontinuities. A sequence “walking to running” from the
University of Bonn dataset [20] is shown.The poses corresponding
to the discontinuities are displayed as mannequin. The trajectories
of the head, the left elbow, and the right ankle are drawn in red.

filter a Butterworth filter, and compute the envelope’s ex-
trema of the filtered Env(t) for every joint.

Fig. 2 gives an example of the speed-varying action
“walking to running” from the University of Bonn dataset
[20]. Here, we show the jerk envelopes of the joints “Hip”,
“Knee”, and “Ankle” of both legs, respectively. The en-
velopes are color coded and normalized in magnitude. The
breaking poses (mannequins) can be selected by finding the
optimal “alignment” of the envelope extrema of the differ-
ent joints (the purple dash lines in Fig. 2).

The alignment can be solved as an optimization problem
using the envelope extrema of all joints. It is applied until
the average pairwise distances is larger than a threshold ε.

5. Experiments
The following four experiments demonstrate the useful-

ness of our representation: First, we present the basis func-
tions learned from our own dataset in Sec. 5.2. Second, we
show that our basis functions are well suited for approxi-
mating novel actions. This allows us to substantially com-
press novel MoCap data (Sec. 5.3). Third, the experiments
in Sec. 5.4 demonstrate that using only the magnitude of the
activations, action retrieval and classification can be solved
effectively. Finally, we show that the activations and the fit-
ting error alone are very useful for motion related disease
diagnosis, thus demonstrating the intuitive nature of the de-
scription (Sec. 5.5).

We used three datasets, our own, the Univ. Bonn dataset,
and the CMU MoCap dataset [16]. Our own dataset con-
sists of 55 different actions, which were captured with the
MOVEN motion capture suit [21] at 100 fps. Each action
sequence consists of at least 6 repetitions of the same action.
Fig. 3 shows some of the actions in our dataset.

The convergence speed primarily depends on OMP and
Bregamn algorithm. OMP is a greedy algorithm that takes

1shinkage(x, y) = sgn(x)max(|x| − y, 0).

Figure 3. 17 out of the 55 actions in our data set. The rendering
is as follows: poses corresponding to the discontinuities are dis-
played as mannequins; the transitions in between are illustrated by
wire-frames; the trajectories of some joints are drawn in red.

linear time, and Bregman is proved to be very efficient for
many problems that are difficult by other means [14]. Thus,
our algorithm is very efficient. It takes only 10-15 iterations
before convergence (≈5 mins in Matlab for our dataset).

5.1. Parameters

µ1 and µ2 in Eq. 4 determine the balance between the fi-
delity of the object function and the sparsity of the variables
in the optimization. In all the experiments, they were both
set to 1

2 . λ in the Split Bregman Algorithm (Eq. 12) is the
parameter for penalizing the auxiliary variable. It was set to
1000 in our experiments. The length of the basis function
was set to the frame rate of our MoCap suit (100). In our
experiments, the normalization speeds up the convergence
of the algorithm, therefore, MoCap sequences were also ap-
proximately normalized to 100 samples per action instance.

The initialization of Eq. 4 is randomly generated. This
optimization is a large non-convex problem, and a common
practice is to have a random guess at the beginning.

5.2. Learning the basis functions

Fig.3 visualizes 17 out of the 55 actions in our dataset.
First, we applied our normalization algorithm. As found by
visual inspection the discontinuities in the action sequences
estimated by this algorithm correspond to the intuitive poses
separating actions.

After normalization, the action decomposition algorithm
is applied to the action sequences. Fig 5a shows the fifteen
basis functions learned by the algorithm. Each column is
a color-coded basis function. In our modeling, individual
joints are described by four basis functions, from the above
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(a) (b)
Figure 4. Side by side comparison between original motion frames (a) and reconstructed motion (b) using the estimated basis functions,
demonstrated on two “salsa” sequences from the CMU dataset [16].

set of fifteen learned basis functions. Fig 5b shows the ba-
sis functions used by the individual joints. We can see that
different joints may share the same basis functions. Please
note that the combination of the basis functions that com-
poses joint movements. Different joints may have different
combinations for an action, therefore, it is better to plot the
functions individually.

Despite these very small numbers, the approximation is
very good. The first column in Table 1 shows that the error
residual in the approximation was very small. The resid-
ual was measured by the total fitting error divided by the
number of frames and the number of joints in the dataset.
On average, our representation approximates the training
sequences with only 2.36 degree per joint in every frame.

The result shows that the primitives are effective and
compact representations of the actions in the datasets.

Figure 5. The basis functions learned by the algorithm (a) and their
usage for individual joints (b) (denoted by the blue diamonds)

Table 1. Average fitting error for different MoCap sequences using
the basis functions learned in Sec. 5.2.

Seq Training Walking,Bonn Running, Bonn
Error 2.36◦ 3.18◦ 3.56◦

5.3. Motion approximation and compression

We use the basis functions to approximate novel actions.
This further leads to effective compression of MoCap data.
In this experiment, the novel sequences were first normal-
ized, and Eq. 9 is then used to compute the activations and
approximate the sequences. An averaging filter is used to
handle the possible discontinuities between actions.

A useful representation of action should have the gener-
alization capability of expressing unseen actions. First, we
used the basis function learned from our dataset to approx-
imate two sets of the sequences in the Bonn dataset, which
were captured by an optical motion capture suit by different
subjects. We then measured the fitting error. As shown in
the 2nd and 3nd columns in Table 1, they are very small.

Comparing lossy compression results objectively is very
difficult. As pointed out by [1], the fitting error may not be
a good predictor of visual quality. Therefore, the subjective
judgments were used. Fig. 4b visualizes the approxima-
tion using two “salsa” dances in the CMU dataset. We can
see that the poses of reconstructed movement (Fig. 4b) ap-
proximate those in the original sequences (Fig. 4b) very
well. This side by side comparison shows that the shift-
invariant decomposition effectively handles the complicated
novel actions.

Another advantage of our decomposition approach is
that it leads to high compression rate. To effectively com-
press MoCap sequences composed of arbitrary actions is
very useful both for storage and for visualization, but it
is also a challenging problem. In our approaches, a joint
movement that has 100 data samples can be described by
only four coefficients. Thus, we achieved approximately
25 : 1 compression rate by default2. Table 2 compares the
compression rate of some algorithms on CMU dataset.

Table 2. Comparison of different MoCap data compression algo-
rithms. (*): the compression rate without quantizing the weights.
(**): the compression rate with weight quantization. The ratios of
the other algorithms are copied from [1]

Algorithm Ours Arikan Wavelet Zip
Ratio 19:1(*) 37:1(**) 30:1 6:1 1.4:1

We archived competitive compression rate compared
to the state-of-the art algorithm. More importantly, the
primitive-based compression is fundamentally invariant to

2For complicated actions, we may use more activations to approximate
the time series, based on the normalization ratio. In addition, a small
amount of overhead is required (e.g., storing the scaling factor and the
basis functions).
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the frame rate. A major difference between the our ap-
proach and previous approaches is that we explicitly model
the human actions. Therefore, the change in frame rate only
changes the number of samples in the basis functions, but
not the activation positions in time.

5.4. Action retrieval and classification

In the following experiments, we demonstrate the use-
fulness of our description for action classification and re-
trieval. First, our preprocessing algorithm breaks the action
sequences into action segments. Each segment is treated
as one complete action. Then, we decompose every single
action using Eq. 9 allowing for only 1 activation. Finally,
action retrieval and classification can be solved effectively
using only the magnitude of the activations as the weights.

We considered it more helpful to provide the intuition
of the usefulness of the representation using simple Eu-
clidean distance and a neireast neighborhood classifier. This
demonstrates how much the representation contributes to
the retrieval and classification, without tuning parameters in
a sophisticated classifier. Therefore, we chose to compare
our representation to decomposition methods.

5.4.1 Segment-based action retrieval

We compared our algorithm with the Sparse Principal Com-
ponent Analysis [10] algorithm and the Principal Compo-
nent Analysis algorithm. For both algorithms the segments
are normalized to have the same length.

Retrieval is evaluated on our dataset using the so-called
Bullseye test [17]. 6 segments per action sequence were
selected3. A leave-one-out trial was performed for every
segment. The retrieval rate is ratios of the correct hits in top
12 candidates for all trials.

The performance of the three algorithms is shown in Ta-
ble 3. Our algorithms achieved higher accuracy (86.07%)
in the Bullseye test. This indicates that the repeated action
segments in an action sequence have similar representation.
The result demonstrates that our decomposition algorithm
has the power of finding the similar movements.

Table 3. Performance comparison (Bullseye) of action retrieval on
the segments of our dataset. Three algorithms, namely Sparse
PCA, PCA and our algorithm, were used in the comparison. The
segments were normalized for Sparse PCA and PCA.

Algorithm Ours Sparse PCA PCA
Accuracy 86.07% 82.64% 78.87%

5.4.2 Segment-based action classification

We classify actions performed by different subjects. Four
actions (“walking”, “marching”, “running”, and “salsa”)
from the CMU dataset, were used in the experiment.

3For action sequences which had a larger number of segments, we ran-
domly selected 6 segments

We compared our algorithm with the Sparse Principal
Component Analysis algorithm and the Principal Compo-
nent Analysis algorithm. To demonstrate the usefulness of
the weights, we chose a very simple k-nearest neighborhood
(kNN, k = 3) classifier. For each partitioning algorithm, we
randomly selected 50% of the estimated segments in each
action category as the training samples, and used the re-
maining as the test samples. Figs. 6a-c show the confusion
matrices of the classification using the coefficients obtained
by our algorithm, the Sparse PCA and the PCA algorithm.

Figure 6. Action classification. Four actions, “walking”, “march-
ing”, “running”, and “salsa” from the CMU dataset, were used
in the experiment. A very simple k-nearest neighborhood (kNN,
k = 3) classifier was chosen. (a)-(c) show the confusion matri-
ces of the classifier using the weights of the proposed algorithm,
the Sparse PCA algorith, and the PCA, respectively. For each al-
gorithm, 50% of the estimated segments in each action category
were randomly selected as the training samples and the remaining
as the test samples.

Results show that our representation gives the best clas-
sification performance. This demonstrate that our shift-
invariant representation models the nature of the human ac-
tion, and the sparse linear decomposition facilitates the per-
formance of classification.

5.5. Motion disorder diagnosis

The activations are a natural measurement for describing
body coordination. If the activations for different joints are
not well aligned, the subject might have a problem in con-
trolling her/his motions. Another measure is the approxi-
mation error.

We demonstrate the applicability of the basis functions
in modeling the Parkinson motion disorder, which is char-
acterized by degenerative muscle movements. The primary
symptoms are the results of decreased coordination caused
by insufficient control. This problem is highly difficult be-
cause the correct modeling for the coordination among dif-
ferent body parts is challenging.

In this experiment, we captured the MoCap data for four
patients diagnosed with the PD disease and four healthy
controls (Table. 4). Fig. 7 shows the scenario when the
experiments were performed. Subjects were asked to per-
form a number of actions repeatedly.

For this application, we learned the basis functions and
the activations for each subject individually. Three common
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actions, “Finger To Nose”, “Catching a Tennis Ball”, and
“Bread Cutting”, were recorded. Figs. 8a-c show the plot
of the activation alignment score and the average approxi-
mation error. The alignment score between two sequences
is the zero-mean standard deviation of the differences be-
tween corresponding elements. The activation alignment
score is defined as the largest value of the pairwise align-
ment scores.

Fig. 8d shows the chart for classifying the patients. As
can be seen the two measurements are sufficient to separate
controls from patients. Referring to 8a-c, the data points are
well separated.

The diagnosis shows that the activations in our decom-
position approach characterize the underlying rhythm in the
parts of the bodies. This suggests that our approach is well
suited for further understanding the principles of coordi-
nated actions.

Figure 7. Collecting Parkinson Disease data.

Table 4. Parkinson disease patients’ age information. The disease
level is measured by the Hoehn and Yahr scale which ranges from
1-5 (shown in parentheses).

Controls Patients
4 healthy subjects 63(2.5), 63(2.5), 60(2.5), 60(3)

Figure 8. Parkinson disease diagnosis by measuring the alignment
and the average approximation error. From left to right, the results
for “Finger To Nose”, “Catching a Tennis Ball”, “Bread Cutting”,
and the diagnosis chart, respectively. In a)-c), blue triangles de-
note the healthy controls, and red squares denote the patients. d)
suggests a chart for diagnosis. P: patient. H: healthy control.

6. Conclusion
This paper presented an algorithm for finding basic prim-

itives to represent human motion data. Body movements in
MoCap sequences are decomposed into the shift-invariant
basis functions and their activations. The decomposition is
solved by alternately updating two large convex problems

using L1 minimization techniques. Experiments show that
the compact representation is effective for motion approxi-
mation, MoCap data compression, action retrieval, and clas-
sification with application to disease diagnosis.
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