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Abstract

This paper presents a method for detecting categories of objects in real-world
images. Given training images of an object category, our goal is to recognize
and localize instances of those objects in a candidate image.

The main contribution of this work is a novel structure of the shape code-
book for object detection. A shape codebook entry consists of two compo-
nents: a shape codeword and a group of associated vectors that specify the
object centroids. Like their counterpart in language, the shape codewords are
simple and generic such that they can be easily extracted from most object
categories. The associated vectors store the geometrical relationships be-
tween the shape codewords, which specify the characteristics of a particular
object category. Thus they can be considered as the “grammar” of the shape
codebook.

In this paper, we use Triple-Adjacent-Segments (TAS) extracted from im-
age edges as the shape codewords. Object detection is performed in a prob-
abilistic voting framework. Experimental results on public datasets show
performance similiar to the state-of-the-art, yet our method has significantly
lower complexity and requires considerably less supervision in the training
(We only need bounding boxes for a few training samples, do not need fig-
ure/ground segmentation and do not need a validation dataset).

1 Introduction
Recently, detecting object classes in real-world images using shape features has been ex-
plored in several papers. Compared to local features such as SIFT [10], shape features
are attractive for two reasons: first, many object categories are better described by their
shape than texture, such as cows, horses or cups; second, for objects with wiry compo-
nents, such as bikes, chairs or ladders, local features unavoidably contain large amount
of background clutter [1, 13]. Thus shape features are often used as a replacement of, or
complement to local features [2, 6, 17].



One practical challenge for shape features is that they are less discriminative than local
features . To overcome this limitation, several methods have been proposed to use a shape
codebook for object detection [4, 16, 21]. Inspired by these works, we propose a new
structure of the shape codebook for object detection in this paper. In the shape codebook,
the shape codewords should be simple and generic such that they can be reused in different
object categories. The geometrical relationships between the shape codewords specify the
characteristics of a particular object category. Thus they can be viewed as the “grammar”
of the shape codebook.

In this paper, we explore a local shape feature proposed by Ferrari et al, [4] as the
shape codeword and use the Implicit Shape Model [7, 8] to define the shape grammar.
The shape feature is formed by chains of k connected, roughly straight contour segments
(kAS). In particular, we use k = 3, which is called Triple-Adjacent-Segments (TAS). A
TAS codebook entry consists of two components. (1) A prototype TAS that represents a
group of similiar TASs, which is called TAS codeword. (2) a group of vectors specifying
the associated object centroids, and encode the shape grammar. During detection, we
match each TAS from the test image to the codebook. When an entry in the codebook is
activated, it casts votes for all possible object centroids based on the associated vectors.
Finally, candidate object centroids are detected as maxima in the continuous voting space
using Mean-Shift Mode Estimation. The object boundary is then refined as the enclosure
of the matched TASs associated to the detected object centroid.

The main contributions of this work are:

1. We propose a two-layer structure of the shape codebook for object detection. Sim-
ple and generic shape features are used as shape codewords and geometrical con-
straints are used as the shape grammar. Since the shape codewords are not designed
for specific object classes (e.g., cows, horses, cars), they only need to be learned
once. Then they can be used in all object categories.

2. We seperate the procedures of learning shape codewords and building shape gram-
mar. With a set of learned shape codewords, shape grammar can be learned for a
new object category using a simple nearest neighbor rule. This method significantly
reduces the complexity of the codebook and makes our algorithm more flexible.

The paper is structured as follows. The next section reviews related work. The proposed
algorithm is described and evaluated in Section 3 and Section 4 respectively. Finally,
Section 5 presents conclusions and future work.

2 Related Work
Codebook of local features for object categorization and detection: The idea of learn-
ing a codebook for object categorization and detection has widely been used in approaches
using local features in recent years [2, 3, 5, 11, 15, 19, 22, 24]. One of the key differences
between these algorithms lies in the way the geometric configuration of parts in an object
being exploited. The simple “bag-of-words” model is used in [5, 15, 24], where geomet-
rical constraints among visual words are discarded. Loose spatial constraints are used in
[22] to detect the co-occurence of pairs of visual words within a local spatial neighbor-
hood. A slightly tighter spatial constraint called “spatial weighting” is decribed in [11],
where the features that agree on the position and shape of the object are boosted and the



background features are suppressed. Russell et al [19] encode the spatial relationship
among visual words from the same object using segmentation information. Fergus et al
[2] adopt a parameterized geometric model consisting of a joint Gaussian over the cen-
troid position of all the parts. Translation and scale information is explicitly built in a
pLSA model in [3], and clear improvement using this model is demonstrated on object
classes with great pose variability.

Codebook of shape features for object categorization and detection: The idea
of learning a codebook has also been explored for shape features [4, 6, 9, 14, 16, 18,
21]. The different approaches employ diverse methods for building the shape codebook
and using the geometrical constraints. Mori et al [14] quantize shape context vectors
into a small number of canonical shape pieces, called shapemes. Liu et al [9] apply
the “bag-of-words” model to 3D shape retrieval. Neither algorithm stores the spatial
information. Kumar et al cluster outlines of object parts into a set of exemplar curves to
handle variability in shape among members of an object class [6]. A pictorial structure
is employed to represent the spatial relationship between parts of an object. Opelt et al
[16, 18] build a codebook for class-discriminative boundary fragments and use boosting
to select discriminative combinations of boundary fragments to form strong detectors.
Similarly, a fragment dictionary is built by Shotton et al [21]. The differences between
them are: the former requires no segmentation mask while the latter does; the former
uses the spatial relationship between the boundary segments in a model similar to Leibe’s
approach [7], while the latter uses grids. Ferrari et al [4] build a codebook of kAS using
the clique-partioning approximation algorithm. Compared to the codebooks used in [6,
16, 18, 21], the kAS codebook is generic and not designed for specific object classes (e.g.,
cows, horses, cars). Thus, once a codebook for a particular k has been learned, it can be
used in all object classes.

3 The Algorithm
In this section, we present the details of the proposed algorithm (Figure 1). First, the pre-
processing steps are described in Section 3.1. Then we discuss the approach for building
the TAS codebook in Section 3.2. Finally, Section 3.3 explains how to detect objects in a
test image.

3.1 Detecting and Comparing TASs
The TAS is used as the shape feature in our work. It is a special case of the kAS, which is
formed by a chain of k connected, roughly straight contour segments. It has been shown
that kAS is very robust to edge clutter. Since only a small number (k ≤ 5) of connected
segments are used, kAS can tolerate the errors in edge detection to some extent. Thus kAS
is an attractive feature compromising between information content and repeatability. In
the work of [4], object class detection is implemented using a sliding window mechanism
and the best performance is achieved when k = 2.

We choose k = 3 in this work. As k grows, kAS can present more complex local shape
structures and becomes more discriminative but less repeatable. Ferrari et al [4] point out
that kAS of higher complexity are attractive when the localization constraints are weaker,
and hence the discriminative power of individual features becomes more important. In



(a) Training

(a) Object Category Detection

Figure 1: An overview flowchart of the proposed algorithm.

this work, since we do not apply explicit spatial contraints, such as dividing the sliding
window into a set of tiles, it is appropriate to use a kAS of higher degree.

The procedure to detect TASs is summarized as follows: first, we detect image edges
using the Berkeley Segmentation Engine (BSE) [12]. The BSE supresses spurious edges
and has a better performance than the Canny edge detector. Second, small gaps on the
contours are completed as follows: every edgel chain c1 is linked to another edgel chain
c2, if c1 would meet c2 after extending n pixels. Contour segments are fit to straight lines.
Finally, starting from each segment, every triplet of line segments is detected as a TAS.

Let θi, li = ‖si‖ be the orientation and the length of si, where si for i = 1,2,3 denote
the three segments in a TAS P. Two TASs Pa and Pb are compared using the following
measure D(a,b)

D(a,b) = wθ
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i ,θ b

i )+
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∑
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|log(la

i /lb
i )|, (1)

where Dθ ∈ [0,1] is the difference between segment orientation normalized by π . Thus
the first term measures the difference in orientation and the second term measures the
difference in length. A weight wθ = 2 is used to emphasize the difference in orientation
because the length of the segment is often inaccurate.

3.2 Building the TAS codebook
Building the TAS codebook consists of two stages: learning TAS codewords and learning
TAS grammar. They are discussed in Section 3.2.1 and Section 3.2.2 respectively.

3.2.1 Learning TAS codewords

The TAS codewords are learned from TASs in a training image set. First, we compute
the distance of each pair of training TASs. Then, we obtain a weighted graph G = (V,E),
where the nodes of the graph are the training TASs, and an edge is formed between every
pair of TASs. The weight on each edge, w(a,b) = exp(−D(a,b)2/σ2

D) is a function of the



distance between two TASs Pa and Pb, where σD is set to 20 percent of the maximum of
all D(a,b). Then clustering the training TASs is formulated as a graph partition problem,
which can efficiently be solved using the Normalized Cut algorithm [20].

After obtaining the clustering results from the Normalized Cut algorithm, we select a
TAS codeword, Ji, from each cluster i. The TAS codeword is selected as the TAS closest
to the cluster center (i.e., it has the smallest sum of distances to all the other TASs in this
cluster). Each codeword Ji is associated with a cluster radius ri, which is the maximum
distance from the cluster center to all the other TASs within this cluster.

Figure 2.a shows the 40 most frequent TAS codewords in the codebooks learned from
10 images in the Caltech motorbike dataset. We can observe that the most frequent TAS
codewords have generic configurations of three line segments. Quantitatively, we com-
pared the codewords from variant datasets and found 90% to 95% of the TAS codewords
are similiar. This confirms that the TAS codebooks are generic. In the following experi-
ments, we apply the codewords learned from the Caltech motorbike dataset to all datasets.

(a) (b) (c)

Figure 2: Examples of TAS codewords. (a) shows the 40 most frequent TAS codewords
learned from 10 images in the Caltech motorbike dataset. (b) and (c) illustrate the 5 most
frequent TAS codewords (the first column) and their associated members in the clusters
for the Caltech motorbikes dataset and the cows dataset respectively.

3.2.2 Learning TAS Grammar

To learn the TAS grammar, we need training images with the object delineated by a
bounding boxes. First, we apply the nearest neighbor rule to quantize the TASs within
the bounding boxes using the TAS codewords. Let’s denote ek a TAS and Ji the nearest
neighbor in the codebook. The TAS ek is quantized as Ji if D(Ji,ek) < ri. Figure 2.b and
2.c show the 5 most frequent TAS codewords in two datasets and their associated mem-
bers in the cluster. We found that only less than 2% of the TASs in all datasets can not be
found in the TAS codewords learned from the motorbike dataset. This further confirms
the generality of the TAS codebook.

The TAS grammar is defined using the Implicit Shape Model [7]. For the member
TASs in cluster i of size Mi, we store their positions relative to the object center (vm,m =
1, ...,Mi). Thus, a codebook entry records the following information: {Ji;(vm,m = 1, ...,Mi)}.
For simplicity, we might also use Ji to denote the codebook entry.

3.3 Detecting Object Category by Probabilistic Voting
The procedure for detecting object category is illustrated in Figure 1.b. First, we match
each test image TAS ek located at lk to the codebook. A codebook entry Ji is declared



to be matched (activated) if D(Ji,ek) < ri. For each matched codebook entry Ji, we cast
votes for possible locations of the object centers (ym,m = 1, ...,Mi), where ym can be
obtained from lk and vm. Then, object category detection is accomplished by searching for
local maxima in the probabilistic voting space after applying Parzen window probability
density estimation. Formally, let xn be a candidate position in the test image and p(xn) be
the probability that object appears at position xn. Candidate object centers x∗ defined as
follows,

x∗ = argmax
x ∑

xn∈W (x)
p(xn), (2)

where W (x) is a circular window centered at x. The probability p(xn) is obtained by
observing evidence ek in the test image. Thus, conditioned on ek, we marginalize p(xn)
as follows

p(xn) = ∑
k

p(xn|ek)p(ek). (3)

Without any prior knowledge on p(ek), we assume it is uniformly distributed, i.e., p(ek) =
1/K, where K is the number of TASs in the test image.

Let S be the set of matched codewords, p(xn|ek) can be marginalized on Ji ∈ S

p(xn|ek) = ∑
Ji∈S

p(xn|Ji,ek)p(Ji|ek) (4)

= ∑
Ji∈S

p(xn|Ji)p(Ji|ek). (5)

After matching ek to Ji, the voting will be performed by members within Ji. Thus
p(xn|Ji,ek) is independent of ek and Equation 4 can be reduced to Equation 5. In Equation
5, the first term is the probabilistic vote for an object position given an activated codebook
entry Ji, and the second term measures the matching quality between Ji and ek. We use
p(Ji|ek) ∝ exp(−D(ek,Ji)2/r2

i ) to evaluate the matching quality.
For an activated codebook entry, we cast votes for all possible locations of the object

centers ym. Thus p(xn|Ji) can be marginalized as

p(xn|Ji) = ∑
m

p(xn|ym,Ji)p(ym|Ji) (6)

= ∑
m

p(xn|ym)p(ym|Ji). (7)

Since the voting is casted from each individual member in Ji, the first term in Equation 6
can be treated as independent of Ji. Then Equation 6 is reduced to Equation 7. Without
prior knowledge of ym, we treat them equally and assume p(ym|Ji) is a uniform distribu-
tion, i.e., p(ym|Ji) = 1/Mi.

The term p(xn|ym) measures the vote obtained at location xn given an object center
ym. Since we only vote at the location of possible object centers, we have p(xn|ym) =
δ (xn− ym), where δ (t) is the Dirac delta function.

Combining the above equations, we can compute p(xn) from the evidence ek located
at lk. In order to detect instances of the object category, we search for the local maxima
x∗ in the voting space after applying Parzen window probability density estimation. The
score of these candidates is defined as ∑xn∈W (x∗) p(xn). If this score is greater than a
threshold tscore, we classify this image belonging to the training object category. To obtain



a segmentation of the object instance, we find the test TASs voting within W (x∗) for an
x∗. Then we obtain a smooth contour from these TASs using the Gradient Vector Flow
snake algorithm [23]. Also a bounding box is obtained in this procedure for each object
instance. Figure 3 shows some detection examples for the Caltech motorbikes dataset and
the cows dataset.

(a) (b) (c) (d) (e) (f)

Figure 3: Example detection results for the Caltech motorbikes dataset and the cows
dataset. (a) The originial images. (b) The edge maps. (c) The voting spaces and detected
centroids. (d) The backprojected TASs. (e) The bounding box of the detected objects. (f)
The segmentation

4 Experimental Results
In this section, we evaluate the performance of the proposed algorithm and compare it
to the state-of-the-art algorithms that detect object categories using shape features. If a
test image has a detection score greater than the threshold tscore and the overlap between
the detected bounding boxes and the ground truth is greater than 50%, we consider the
detection (localization) correct. By varying tscore we can obtain different recall/precision
values. The performance is evaluated in terms of the Recall-Precision Equal Error Rate
(RPC EER). All parameters are kept constant for different experiments.

The training data includes training images with bounding boxes annotating instances
of the object class. Compared to the state-of-the-art, we require the least supervision.
[16, 18] uses training image with bounding boxes and validation image sets that include
both positive and negative images. [4] also requires negative images to train the SVM
classifier. [21] requires segmentation masks for 10 positive training images plus a large
amount of positive and negative images to train a discriminative classifier.

Cows Dataset: We use the same cow dataset as in [16] and compare to their results:
20 training images and 80 test images, with half belonging to the category cows and half
to negative images (Caltech airplanes/faces). But we do not use the validation dataset
while [16] uses a validation set with 25 positive/25 negative.

The performance is shown in Table 1. We also shows the variation in performance
with the number of training images. The results show that our approach outperforms or



Table 1: Performance (RPC EER) depending on the number of training images with
bounding boxes (NBB) on the cows dataset and comparison to other published results.

NBB=5 NBB=10 NBB=20
Ours 0.93 0.95 0.96

Opelt [16] 0.91 0.95 1.00

Table 2: Performance (RPC EER) on the cups dataset and comparison to other publised
results. NBB is the number of training images with bounding boxes; NV is the numbers of
validation images.

NBB NV RPC EER
Ours 16 - 0.841

Opelt [16] 16 30 0.812

performs as well as Opelt’s when the number of training images is small (NBB = 5,10)
but is outperformed when the number of training image is large (NBB = 20). It shows that
our approach is favorable when there are small number of training images available. The
reason is that the TAS feature is very simple and generic. Thus only a few training images
is sufficient to discover the statistical patterns in the training images. In comparison,
Opelt’s features are more complex and have more discriminative power for a particular
object. Hence more training images are needed to fully exploit their advantages.

Cup Dataset: In this test, we evaluate our approach on the cup dataset used in [18].
We use 16 training images and test on 16 cup images and 16 background images. We do
not use the validation set with 15 positive/15 negative, which is used in [18].

The performance is summarized in Table 2. It shows that we can achieve slightly
better performance than Opelt’s algorithm even we use less supervision in the training.

Caltech Motorbikes Dataset: In this test, we evaluate our algorithm using the Cal-
tech motorbikes dataset [2]. Training is conducted on the first 10 images in this dataset.
Testing is conducted on 400 novel motorbike images and 400 negative images from Cal-
tech airplane/face/car rear/background images.

The experimental results are compared to other publised results on object localization
in Table 3. We also compared the degree of supervision in the training in terms of the
number of variant types of training images. It is shown that we can achieve performance
compariable to Shotton’s method but are slightly worse than Opelt’s. This should be
attributed to the class-discriminative contour segments used by Opelt et al.

Table 3: Comparison of the proposed algorithm to other publised results on the Caltech
motorbikes dataset. Column 2 through 5 are the numbers of variant types of training
images: NS for images with segmentations; NU for images without segmentations; NBB
for images with bounding boxes; NV for validation images.

NS NU NBB NV RPC EER
Ours - - 10 - 0.921

Shotton [21] 10 40 - 50 0.924
Opelt [16] - - 50 100 0.956



Discussion: The advantage of the proposed method lies in its low complexity. The
TAS codewords only need to be learned once. Thus the learning procedure for a new
object category can be reduced to a simple nearest neighbor search for the training TASs
and the time-consuming clustering can be skipped. Furthermore, There are a limited
number of possible configurations of three line segments. In our experiments, the TAS
codebook has 190 entries. Ferrari et al [4] reported a TAS codebook with 255 entries
because they used more complex descriptors. Nevertheless, the number of the shape
codewords is bounded, rather than increasing linearly with the number of class categories
as in the codebook used in [18, 16].

5 Conclusion
We have presented a two-layer structure of the shape codebook for detecting instances of
object categories. We proposed to use simple and generic shape codewords in the code-
book, and to learn shape grammar for individual object category in a seperate procedure.
This method is more flexible than the approaches using class-specified shape codewords.
It achieves similiar performance with considerable lower complexity and less supervision
in the training. And thus it is favorable when there is a small number of training images
available or the training time is crucial.

Currently we are investigating methods to combine several shape codewords in the
voting. We will also try other clustering methods, e.g., k-means, aggolomerative cluster-
ing, etc., and compare the TAS codebooks to those used in this paper. Finally we plan
further evaluation of the proposed method in more challenging datasets and over more
categories.
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