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Abstract. Developing effective content recognition methods for diverse
imagery continues to challenge computer vision researchers. We present
a new approach for document image content categorization using a lex-
icon of shape features. Each lexical word corresponds to a scale and
rotation invariant shape feature that is generic enough to be detected re-
peatably and segmentation free. We learn a concise, structurally indexed
shape lexicon from training by clustering and partitioning feature types
through graph cuts. We demonstrate our approach on two challenging
document image content recognition problems: 1) The classification of
4, 500 Web images crawled from Google Image Search into three content
categories — pure image, image with text, and document image, and 2)
Language identification of 8 languages (Arabic, Chinese, English, Hindi,
Japanese, Korean, Russian, and Thai) on a 1, 512 complex document im-
age database composed of mixed machine printed text and handwriting.
Our approach is capable to handle high intra-class variability and shows
results that exceed other state-of-the-art approaches, allowing it to be
used as a content recognizer in image indexing and retrieval systems.

1 Introduction

Image content categorization has become a pressing problem in computer vision
as we are facing phenomenal increase in the diversity of visual content. Content
category recognition aims to reduce the semantic gap for ensuing tasks by pro-
viding usage-oriented content description that can be exploitable in individual
applications. For vision systems involving high-volume, complex, and hetero-
geneous multimedia data, effective high-level content interpretation is essential
prior to object detection or object category recognition at a finer level.

One pervasive form of information content is text. Once text content and
the language are recognized, images containing text can be processed by an
optical character recognition (OCR) system and indexed. Text-oriented content
recognition provides a reliable alternative to object detection and recognition in
a wide range of applications. Towards this end, however, there are a number of
challenges to image content category recognition that are largely unsolved. In
this paper, we focus on two important problems that are central to heterogeneous
document image collections.

First, we consider the recognition of primary content of a general image as one
of three content categories — pure image (e.g.natural image and human photos),
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Fig. 1. Examples of images returned by Google Image using the keyword “CD cover”

image with text (see examples in Fig. 1), or document image. Automated content
categorization like this has a big impact in image search, and content-based
image indexing and retrieval.

Second, we address the problem of recognizing the primary language of a
document image in an unconstrained setting. This is a fundamental research
challenge currently facing systems that need to automatically process diverse
multilingual document images, such as Google Book Search [30] or an automated
global expense reimbursement application [32], because almost all existing work
on OCR requires that the script and/or language of the processed document
be known [23]. The performance of language identification is crucial for the
success of a broad range of tasks — from determining the correct OCR engine
for text extraction to document indexing, translation, and search [33]. Progress
in the field of language identification has focused almost exclusively on machine
printed text. Document collections, however, often contain a diverse and complex
mixture of machine printed and unconstrained handwritten content, and vary
tremendously in font and style. Language identification on document images
involving diverse content types, including unconstrained handwriting, is still an
open research area [22] and to our best knowledge, no reasonable solutions have
been presented in the literature.

We propose a novel approach for document image content recognition using
image descriptors built from a lexicon of generic low-level shape features that
are translation, scale, and rotation invariant. To construct a structural index
among large number of features extracted from diverse content, we dynamically
partition the space of shape primitives by clustering similar feature types. We for-
mulate feature partitioning as a graph cuts problem with the objective to obtain
a concise and globally balanced lexicon index by sampling from training data.
Each cluster in the lexicon is represented by an exemplary lexical word, making
association of feature type efficient. We obtain very competitive document image
content categorization performance using a multi-class SVM classifier.

The structure of this paper is as follows. Section 2 reviews related work. In
Section 3, we describe the algorithm for learning the shape lexicon and present
a document image content recognition approach using the shape lexicon. We
discuss experimental results in Section 4 and conclude in Section 5.
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2 Related Work

In this following, we first review contour learning approaches, and then point out
work related to us on whole-image categorization. We present a comprehensive
overview of existing on script and language identification techniques and discuss
their limitations on document images with unconstrained content.

2.1 Contour-Based Learning

Topological relationships among adjacent contours is an important aspect in many
vision problems and have been exploited in work on object detection [1,9,24], and
on perceptual grouping [12,17]. Ferrari et al . [8] proposed scale-invariant adjacent
segments (kAS) features extracted from the contour segment network of image
tiles, and use them in a sliding window scheme for object detection. By explic-
itly encoding both geometric and spatial arrangement among the segments, kAS
descriptor demonstrates state-of-the-art performance in shape-based object de-
tection, and outperforms descriptors based on interest points and histograms of
gradient orientations [6]. However, kAS descriptor is not rotation invariant, be-
cause segments are rigidly ordered from left to right. This limits the repeatability
of high-order kAS, and the best performance in [8] is reported when using 2AS.

2.2 Image Content Categorization

There has been little computer vision and image processing literature directly ad-
dressing the problem of content recognition for heterogeneous image repositories.
However, several approaches based on different motivations have demonstrated
good performance in tasks that involve diverse objects. Oliva and Torralba [21]
developed a holistic image representation called Spatial Envelope for scene recog-
nition using a set of discriminative energy spectrum templates that characterizes
the dominant spatial structure of a scene. Another fairly intuitive approach is to
treat blocks of text as texture [29]. One widely used rotation invariant feature
for texture analysis is the Local Binary Patterns (LBP) proposed by Ojala et
al . [20], which effectively captures spatial structure of local image texture in
circular neighborhoods across angular space and resolution.

2.3 Language Identification

Prior research on script and language identification has largely focused on the
domain of machine printed document images. These works can be broadly clas-
sified into three categories — statistical analysis of text lines [7, 14, 18, 27, 28],
texture analysis [4, 29], and template matching [11].

Statistical analysis using discriminating features extracted from text lines,
including distribution of upward concavities [14, 27], horizontal projection pro-
file [7, 28], and vertical cuts of connected components [18], has shown to be
effective on homogeneous collection of printed documents. These approaches,
however, do have a few major limitations. First, they are based on the assump-
tion of uniformity among printed text, and require precise baseline alignment
and word segmentation. Freestyle handwritten text lines are curvilinear, and in
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general, there are no well-defined baselines, even by linear or piecewise-linear
approximation [15]. Second, it is difficult to extend these methods to a new lan-
guage, because they employ a combination of hand-picked and trainable features
and a variety of decision rules. In fact, most of these approaches require effective
script identification to discriminate between selected subset of languages, and
use different feature sets for script and language identification, respectively.

Script identification using rotation invariant multi-channel Gabor filters [29]
and wavelet log co-occurrence features [4] were demonstrated on small blocks of
printed text with similar characteristics. However, no results were reported on
full-page documents that involve variations in layouts and fonts.

The current state-of-the-art script/language identification system was devel-
oped by Hochberg et al . [11] at Los Alamos National Laboratory, and is able to
process 13 machine printed scripts without explicit assumptions of distinguish-
ing characteristics for a selected subset of languages. The system determines the
most likely script on a document page by probabilistic voting on matched tem-
plates. Each template pattern is of fixed size and is rescaled from a cluster of
connected components. Template matching is intuitive and delivers impressive
performance when the content is constrained (i.e.printed text in similar fonts).
However, templates are not flexible enough to generalize across large variations
in fonts or handwriting styles that are typical in diverse datasets [11]. From a
practical point of view, the system also has to learn the discriminability of each
template through labor-intensive training to achieve the best performance. This
requires tremendous amount of supervision and further limits applicability.

3 Recognizing Image Content Using Shape Lexicon

Recognition of diverse visual content needs to account for large variations, be-
cause content appears in many forms and in many different contexts today. The
scope of the problem is intuitively in favor of low-level shape primitives that
can be detected repeatably. Rather than focusing on selection of class-specific
features, our approach aims to distinguish intricate differences between content
types collectively using the statistics of a large variety of generic, geometrically
invariant feature types (lexical words) that are structurally indexed. Our em-
phasis on the generic nature of lexical words provide a different perspective to
recognition that has traditionally focused on finding sophisticated features or
visual selection models, which may limit generalization performance.

We explore the kAS contour feature recently introduced by Ferrari et al . [8],
which consists of a chain of k roughly straight, connected contour segments.
Specifically, we focus on the case of triple contour segments, which strike a
balance between lower-order contour features that are not discriminative enough
and higher-order ones that are less likely to be detected robustly.

3.1 Extraction of Contour Feature

Feature detection in our approach is very efficient since we perform computa-
tion locally. First, we compute edges using the Canny edge detector [5], which
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Visual shape differences are captured locally by a large variety of neighboring
contour features. (a)-(d) Examples of handwriting from four different languages. (e)-(h)
Detected contour features by our approach, each shown in a random color.

consistently demonstrates good performance on text content and gives precise
localization and unique response. Second, we group contour segments by con-
nected components and fit them locally into line segments. Then, within each
connected component, every triplet of connected line segments that starts from
the current segment is extracted. Fig. 2 provides visualization of the quality of
detected contour features by our approach using random colors.

Our feature detection scheme requires only linear time and space in the num-
ber of contour fragments n, and is highly parallelizable. It is much more efficient
and stable than [8], which requires construction of contour segment network and
depth first search from each segment, leading to O(n log(n)) time on average
and O(n2) in the worst case.

We encode object contours in a translation, scale, and rotation invariant fash-
ion by computing orientations and lengths with reference to the first detected
line segment. A contour feature C can be compactly represented by an ordered
set of lengths and orientations of ci for i ∈ {1, 2, 3}, where ci denotes line segment
i in C. This is distinct from the motivation of kAS descriptor that attempts to
enumerate spatial arrangements of contours within local regions. Furthermore,
kAS descriptor does not take into account of rotation invariance.

3.2 Measure of Dissimilarity

The overall dissimilarity between two contour features can be quantified by the
weighted sum of the distances in lengths and orientations. We use the following
generalized measure of dissimilarity between two contour features Ca and Cb

d(Ca,Cb,λ) = λT
lengthdlength + λT

orientdorient, (1)
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where vectors dlength and dorient are composed of the distances between contour
lengths and orientations, respectively. λlength and λorient are their corresponding
weight vectors, providing sensitivity control over the tolerance of line fitting.
One natural measure of dissimilarity in lengths between two contour segments
is their log ratio. We compute orientation difference between two segments by
normalizing their absolute value of angle difference to π. In our experiments, we
use a larger weighting factor for orientation to de-emphasize the difference in
the lengths because they may be less accurate due to line fitting.

3.3 Learning the Shape Lexicon

We extract a large number of lexical words by sampling from training images,
and construct an indexed shape lexicon by clustering and partitioning the lexical
words. A lexicon provides a concise structural organization for associating large
varieties of low-level features, and is efficient because it enables comparison to
much fewer feature types.

Clustering Lexical Words. Prior to clustering, we compute the distance be-
tween each pair of lexical words and construct a weighted undirected graph
G = (V, E), in which each node on the graph represents a word. The weight
on an edge connecting two nodes Ca and Cb is defined as a function of their
distance

w(Ca, Cb) = exp(−d(Ca, Cb)2

σ2
d

), (2)

where we set parameter σd to 20 percent of the maximum distance among all
pairs of nodes.

We formulate feature clustering as a spectral graph partitioning problem, for
which we seek to group the set of vertices V into disjoint sets {V1, V2, . . . , VK},
such that by the measure defined in (1) the similarity among the vertices in a
set is high and that across different sets is low.

More concretely, let the N × N symmetric weight matrix for all the vertices be
W , where N = |V |. We define the degree matrix D as an N × N diagonal matrix,
whose i-th element d(i) along the diagonal satisfies d(i) =

∑
j w(i, j). We use

an N × K matrix X to represent a graph partition, i.e.X = [X1, X2, . . . , XK ],
where each element of matrix X is either 0 or 1. We can show that the feature
clustering formulation that seeks globally balanced graph partitions is equivalent
to the normalized cuts criterion [26], and can be written as

maximize ε(X) =
1
K

K∑

l=1

XT
l WXl

XT
l DXl

, (3)

subject to X ∈ {0, 1}N×K, and
∑

j

X(i, j) = 1. (4)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The 25 most frequent exemplary lexical words in (a) Arabic, (b) Chinese, (c)
English, and (d) Hindi document images, which very well capture the distinct features
between languages. (e)-(h) show lexical words in the same cluster as the top 5 exemplary
lexical words for each language, ordered by ascending distances to the center of their
clusters. Scaled and rotated versions of feature types are clustered together.

Minimizing normalized cuts exactly is NP-complete. We use a fast algo-
rithm [31] for finding its discrete near-global optima, which is robust to random
initialization and converges faster than other clustering methods.

Organizing Features in the Lexicon. For each cluster, we select the feature
instance closest to the center of the cluster as the exemplary lexical word. This
ensures that an exemplary word has the smallest sum of squares distance to the
other features within the cluster. In addition, each exemplary word is associated
with a cluster radius, which is defined as the maximum distance from the cluster
center to all the other features within the cluster. The constructed shape lexicon
L is composed of all exemplary lexical words.

Fig. 3 shows the 25 most frequent exemplary lexical words for Arabic, Chinese,
English, and Hindi, which are learned from 10 documents of each language.
Distinguishing features between languages, including cursive style in Arabic, 45
and 90-degree transitions in Chinese, and various configurations due to long
horizontal lines in Hindi, are learned automatically. Each row in Fig. 3(e)-(h)
lists examples of lexical words in the same cluster, ordered by ascending distances
to the center of their associated clusters. Through clustering, translated, scaled
and rotated versions of feature types are grouped together.

Since each lexical word represents a generic local shape feature, intuitively a
majority of lexical words should appear in images across content categories, even
though their frequencies of occurrence deviate significantly. In our experiments,
we find that 95.1% and 92.6% of lexical words in natural images also appear
in images with text and document images, respectively. In addition, 86.3% of
lexical word instances appear in document images across all 8 languages.
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3.4 Constructing the Image Descriptor

We construct a shape descriptor for each image, which provides statistics of the
frequency at which each feature type occurs. For each detected lexical word W
from the test image, we compute the nearest exemplary word Ck in the shape
lexicon. We increment the descriptor entry corresponding to Ck only if

d(W, Ck) < rk, (5)

where rk is the cluster radius associated with the exemplary lexicon word Ck.
This quantization step ensures that unseen features that deviate considerably
from training features are not used for image description. In our experiments,
we found that only less than 2% of the contour features cannot be found in the
shape lexicon learned from the training data.

4 Experimental Results

Before we demonstrate our approach in image content categorization and lan-
guage identification, we first quantitatively evaluate the discriminative power
and geometrical invariance of shape lexicon in two object category recognition
experiments using public shape databases.

4.1 Shape-Based Object Recognition

Kimia Database. One widely used shape database is the Kimia dataset [25],
which contains 25 images from 6 categories. Several categories require rotation
invariant matching for effective recognition. It has been tested in [25,10,2,16]. In
this experiment, we use the χ2 statistic as the measure of dissimilarity between
two image descriptors, and the distance Dχ2(ha, hb) between two normalized
K-bin image descriptors ha and hb is defined as

Dχ2(ha, hb) =
1
2

K∑

k=1

[ha(k) − hb(k)]2

ha(k) − hb(k)
. (6)

Historically, results on Kimia database are reported as the number of 1st, 2nd,
and 3rd nearest-neighbors that fall into the correct category. Our result is 25/25,
25/25, 24/25, which outperforms four other approaches shown in Table 1. This
experiment demonstrates the discriminative power of shape lexicon descriptor,
in addition to its rotation invariance.

MPEG-7 Shape Database. Our next experiment involves the MPEG-7 CE-
Shape-1 database [13], which consists of 1,400 silhouette images: 70 shape cat-
egories, 20 images per category. The retrieval performance is measured using
the “bullseye test”, in which each image is used as a query and one counts the
number of correct images in the top 40 matches. The retrieval score is the ratio
of the number of correct hits to the best possible number of hits.
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Table 1. Summary of results on Kimia database

Method Top 1 Top 2 Top 3

Sharvit et al . [25] 23/25 21/25 20/25
Gdalyahu and Weinshall [10] 25/25 21/25 19/25
Belongie et al . [2] 25/25 24/25 22/25
Ling and Jacobs [16] 25/25 24/25 25/25
Our approach 25/25 25/25 24/25

It is important to note that most well-known shape descriptors [2,16] and geo-
metric hashing schemes [3] tested on MPEG-7 database have much higher com-
plexity than the shape lexicon descriptor. For instance, shape contexts (SC) [2]
and the articulation-invariant inner-distance shape contexts (IDSC) [16] both re-
quire attaching a spatial histogram for every point on the shape, which describes
the distribution of the relative positions of all remaining points. The correspon-
dences between two point sets are solved among O(n2) descriptor pairs, where n
is the number of points sampled on object contours. The O(n3) complexity for
each matching can be prohibitively expensive in most practical problems unless
the object has been precisely localized and effectively segmented.

We quantitatively evaluate the discriminability of different descriptors, as this
understanding is fundamental for image indexing and retrieval problems when it
comes to the choice of either a local or global representation. In our experiment,
the shape lexicon descriptor obtains a retrieval score of 62.10%. The bullseye
score with SC is 64.59%, and the IDSC has the highest score of 68.83% as inner-
distance can more robustly handle articulation than Euclidean distance.

To help understand the performance, we further verify the results and discover
that a large number of errors by the shape lexicon descriptor come from object
categories with low complexity, where the discriminative shape parts have been
smoothed away after line fitting. This is less a problem for SC and IDSC as
they directly sample along the object contour. The performance of the shape
lexicon descriptor is comparable with SC and IDSC for object categories that
involve complex local part structures. This demonstrates that a descriptor using
nonparametric distribution of a set of indexed local shape primitives can have
discriminability fairly close to a competitive global descriptor, such as shape
contexts. In addition, our approach runs efficiently in linear time and space,
which is critical in high-volume image indexing and retrieval.

4.2 Image Content Category Recognition

To evaluate our approach for image content category recognition, we construct
a 4, 500-image dataset by crawling Web images from the Google Image search
engine using a wide variety of keywords. Fig. 1 shows some examples of images
with text returned by using the text keyword “CD cover”. All the images are
automatically downloaded by a script. Duplicate and junk images are manually
inspected and removed to reduce the proportion of unrelated images.
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(a) Mean diagonal = 78.9% (b) Mean diagonal = 77.6% (c) Mean diagonal = 83.3% (d) Mean diagonal = 89.6%

Fig. 4. Confusion tables for image content category recognition using (a) Spatial enve-
lope [21], (b) LBP [20], (c) kAS [8], (d) Our approach. (P: Pure image, T: Image with
text, D: Document image).

We compare our approach with spatial envelope [21], local binary patterns
(LBP) [20], and the state-of-the-art kAS descriptor [8], which are well-known
approaches based on different views of whole-image characterization. Spatial
envelope uses a holistic image representation without attempting to exploit lo-
calized information such as shape, whereas LBP is based on rotation-invariant
texture analysis. Since 2AS gives the best performance among different kAS [8],
we use it as the benchmark for kAS.

We use a multi-class SVM classifier trained with LIBSVM. The SVM classifier
is trained using only 100 randomly selected images from each category, and
used to test the rest images in the collection. For easy comparison, we set the
dimensions of the image descriptor to 90 for both kAS and our approach in the
following experiments.

The confusion tables for spatial envelope, LBP, kAS, and our approach are
shown in Fig. 4. Spatial envelope demonstrates good performance in recognizing
pure images, but it is not very effective for text content. Texture-based LBP
gives balanced results for all the three content types. Our approach obtains
the best performances for recognizing each content class, with a respectable
mean diagonal of 89.6%. The only notable confusion occurs when distinguishing
between image with text and pure image.

4.3 Language Identification

We use 1, 512 document images of 8 languages (Arabic, Chinese, English, Hindi,
Japanese, Korean, Russian, and Thai) from the University of Maryland multi-
lingual database [15] and the IAM handwriting database DB3.0 [19] (see Fig. 7)
for evaluation on language identification. Both databases are large public real-
world collections, containing the source identity of each image in the ground
truth. This enables us to construct a diverse dataset that closely mirrors the
true complexities of heterogeneous document image repositories in practice.

We compare our approach with the state-of-the-art language identification
system [11], which is based on template matching. We also include LBP and
kAS in this experiment since they have demonstrated reasonable performance on
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(a) Mean diagonal = 55.1% (b) Mean diagonal = 68.1% (c) Mean diagonal = 88.2% (d) Mean diagonal = 95.6%

Fig. 5. Confusion tables for language identification using (a) LBP [20], (b) Template
matching [11], (c) kAS [8], (d) Our approach. (A: Arabic, C: Chinese, E: English, H:
Hindi, J: Japanese, K: Korean, R: Russian, T: Thai, U: Unknown).

Table 2. Confusion table of our approach for the 8 languages

A C E H J K R T

A 99.7 0.3 0 0 0 0 0 0
C 1.4 85.0 4.0 1.0 6.7 1.0 0.7 0.2
E 1.6 0 95.9 0.2 0 1.1 0.6 0.6
H 0.2 0.2 0 98.8 0.8 0 0 0
J 0 1.3 1.0 0.2 96.2 1.3 0 0
K 0 0.8 0.1 1.9 0.5 96.0 0.5 0.1
R 0.5 0 2.0 0 0 0 97.1 0.4
T 0 0.3 1.6 0.9 0.6 0.3 0 96.3

diverse text contents. In this experiment, the SVM classifier is trained using the
same pool of 50 randomly selected images from each category.

The confusion tables for LBP, template matching, kAS, and our approach
are shown in Fig. 5. The performance of template matching varies significantly
across languages. One significant confusion of template matching is between
Japanese and Chinese since a document in Japanese may contain varying amount
of Kanji (Chinese characters). Rigid templates are not flexible for identifying
discriminative partial features, and the bias in voting decision towards the dom-
inant candidate causes less frequently matched templates to be ignored. Another
source of error that lowers the performance of template matching (mean diagonal
= 68.1%) is undetermined cases (see the unknown column in Fig. 5(b)), where
probabilistic voting cannot decide between languages with roughly equal votes.
Texture-based LBP could not effectively recognize differences between languages
on a diverse dataset because distinctive layouts and unconstrained handwriting
exhibit irregularities that are difficult to capture using texture, and its mean
diagonal is only 55.1%.

Our approach gives excellent results on all 8 languages, with an impressive
mean diagonal of 95.6% (see Table 2 for all entries in the confusion table of
our approach). kAS, with a mean diagonal of 88.2%, is also shown to be very
effective. Neither method has difficulty generalizing across large variations such
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Fig. 6. Recognition rates of our approach for different languages as the size of training
data varies. Our approach achieves excellent performance even using a small number
of document images per language for training.

Fig. 7. Examples from the Maryland multilingual database [15] and the IAM hand-
writing DB3.0 database [19]. Languages in the top row are Arabic, Chinese, English,
and Hindi, and those in the second row are Japanese, Korean, Russian, and Thai.

as font types or handwriting styles, which greatly impact the performances of
LBP and template matching. This demonstrates the effectiveness of using generic
low-level shape features when mid or high-level vision representations may not
generalized or flexible enough for the task.

Fig. 6 shows the recognition rates of our approach as the size of training set
varies. We observe very competitive language identification performance on this
challenging dataset even when a small amount of training data per language
class is used. In addition, our results on language identification are very encour-
aging from a practical point of view, as the training in our approach requires
considerably less supervision than template matching. Our approach only needs
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the class label of each training image, and does not require skew correction, scale
normalization, or segmentation.

5 Conclusion

In this paper, we proposed a novel approach for document image content cat-
egorization using a lexicon composed of a wide variety of local shape features.
Each lexical word represents a characteristic structure that is generic enough
to be detected repeatably and segmentation free. The lexicon provides a princi-
pled approach to structurally indexing and associating a vast number of feature
types, and is learned from training data with little supervision. Our approach is
fully extensible and does not require constructing explicit content models. In two
challenging real world document image content recognition problems involving
large-scale, highly variable image collections, our approach demonstrated ex-
cellent results and outperformed other state-of-the-art approaches. Our future
work will be directed towards refining and evaluating the approach by further
incorporating spatial co-occurrences of lexical words using a secondary lexicon.
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