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Abstract

The grasp type provides crucial information about hu-
man action. However, recognizing the grasp type from un-
constrained scenes is challenging because of the large vari-
ations in appearance, occlusions and geometric distortions.
In this paper, first we present a convolutional neural net-
work to classify functional hand grasp types. Experiments
on a public static scene hand data set validate good perfor-
mance of the presented method. Then we present two appli-
cations utilizing grasp type classification: (a) inference of
human action intention and (b) fine level manipulation ac-
tion segmentation. Experiments on both tasks demonstrate
the usefulness of grasp type as a cognitive feature for com-
puter vision. This study shows that the grasp type is a pow-
erful symbolic representation for action understanding, and
thus opens new avenues for future research.

1. Introduction
The grasp type contains fine-grain information about hu-

man action. Consider the two scenes in Fig. 1 from the
VOC challenge. Current computer vision systems can eas-
ily detect that there is one bicycle and one cyclist (human
being) in the image. Through human pose estimation, the
system can further confirm that these two cyclists are rid-
ing the bike. But humans can tell that the cyclist on the left
side literally is not “riding” the bicycle since his hands are
posing in a “Rest or Extension” grasp next to the handle-
bar while the cyclist on the right side is racing because his
hands firmly hold the handlebar with a “Power Cylindrical”
grasp. In other words, the recognition of grasp type is es-
sential for a more detailed analysis of human action, beyond
the processes of current state-of-the-art vision systems.

Moreover, recognizing grasp type can help an intelligent
system predict the human action intention. Consider an in-
telligent agent looking at the two scenes in Fig. 2(a) and (b).
Current state-of-the-art computer vision techniques can ac-
curately recognize many visual aspects from both of these
scenes, such as the fact that there must be a human being

(a) (b)

Figure 1. (a) Rest or Extension on the handlebar vs. (b) Firmly
power cylindrical grasping the handlebar.

standing in the outdoor garden scene, with a knife in his/her
hand. However, we human beings will react dramatically
different when experiencing the two different scenes, be-
cause of our ability to recognize immediately the different
ways the person is handling the knife, i.e., the grasp type.
We can effectively infer the possible activity the man is go-
ing to do based on his way of grasping the knife. After
seeing scene Fig. 2(a), we could believe this man is going
to cut something hard, or even might be malicious, since
he is “Power Hook” grasping the knife. After seeing scene
Fig. 2(b), we may react with a movement to acquire the
knife (shown in Fig. 2(c)) since the man is “Precision Lum-
brical” grasping the knife indicating a passing action. From
this example we can see that the grasp type is a strong cue
for us to infer the human action intention.

(a) (b) (c)

Figure 2. (a) Power Hook Grasp a knife vs. (b) Precision Lumbri-
cal Grasp a knife. (c) A natural reaction when seeing scene (b) is
to open the hand to receive the knife.

These are two examples demonstrating how important it
is for us to be able to recognize grasp types. The grasp type
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is an essential component in the characterization of human
actions of manipulation ([26]). From the viewpoint of pro-
cessing videos, the grasp contains information about the ac-
tion itself, and it can be used for prediction or as a feature
for recognition. It also contains information about the be-
ginning and end of action segments, and thus it can be used
to segment videos in time. If we are to perform the action
with an intelligent agent, such as a humanoid robot, knowl-
edge about how to grasp the object is necessary so the robot
can arrange its effectors. For example, consider a humanoid
with one parallel gripper and one vacuum gripper. When a
power grasp is desired, the robot should select the vacuum
gripper for a stable grasp, but when a precision grasp is de-
sired, the parallel gripper is a better choice. Thus, knowing
the grasp type provides information for the robot to plan the
configuration of its effectors, or even the type of effector to
use ([27]).

Here we present a study centered around human grasp
type recognition and its applications in computer vision.
The goal of this research is to provide intelligent systems
with the capability to recognize the human grasp type from
unconstrained static or dynamic scenes. To be specific, our
system takes in an unconstrained image patch around the
human hand, and outputs which category of grasp type is
used (examples are shown in Fig. 3). In the rest of the paper,
we show that this capability 1) is very useful for predicting
human action intention and 2) helps to further understand
human action by introducing a finer layer of granularity.
Further experiments on two publicly available dataset em-
pirically support that we can 1) infer human action intention
in static scenes and 2) segment videos of human manipula-
tion actions into finer segments based on the grasp type evo-
lution. Additionally, we provide a labeled grasp type image
data set and a human intention data set for further research.

Figure 3. Sample outputs. PoC: Power Cylindrical; PoS: Power
Spherical; PoH: Power Hook; PrP: Precision Pinch; PrT: Precision
Tripod; PrL: Precision Lumbrical; RoE: Rest or Extension

2. Related Work
Human hand related: One way to recognize grasp

type is through model based hand detection and tracking
[17]. Based on the estimated articulated hand model, a set
of biologically plausible features such as the arches formed
by fingers [22] were used to infer the grasp type involved
[26]. These approaches normally use RGB Depth data and
require a calibration phase, which is not applicable or is
too fragile for real world situations. Also a lot of research
has been devoted to hand pose or gesture recognition with
promising experimental results [15, 28]. The goal of these
works is to recognize poses such as “POINT”, “STOP” or
“YES” and “NO”, not considering the interaction with ob-
jects. When it comes to recognizing grasp type from un-
constrained visual input, inevitably our system has to deal
with the additional challenges introduced by the interaction
with unknown objects. Later in the paper we will show that
the large variation in the scenery will not allow traditional
feature extraction and learning mechanism to work robustly
on public available hand patch testing beds.

The robotics community has been studying perception
and control problems of grasping for decades [20]. Re-
cently, several learning based systems were reported that
infer contact points or how to grasp an object from its ap-
pearance [19, 12]. However, the desired grasping type could
be different for the same target object, when used for differ-
ent action goals. The acquisition of grasp information from
natural static or dynamic scenes is still considered very dif-
ficult because of the large variation in appearance and the
occlusions of the hand from objects during manipulation.

Vision beyond appearance: The very small number
of works in computer vision, which aim to reason beyond
appearance models, are also related to this paper. [24]
proposed that beyond state-of-the-art computer vision tech-
niques, we could possibly infer implicit information (such
as functional objects) from video, and they call them “Dark
Matter” and “Dark Energy”. [25] used stochastic track-
ing and graph-cut based segmentation to infer manipula-
tion consequences beyond appearance. [9] used a rank-
ing SVM to predict the persuasive motivation (or the in-
tention) of the photographer who captured an image. More
recently, [18] seeks to infer the motivation of the person in
the image by mining knowledge stored in a large corpus us-
ing natural language processing techniques. Different from
these fairly general investigations about reasoning beyond
appearance, our paper seeks to infer human action intention
from a unique and specific point of view: the grasp type.

Convolutional neural networks: The recent develop-
ment of deep neural networks based approaches revolution-
ized visual recognition research. Different from the tra-
ditional hand-crafted features [13, 4], a multi-layer neural
network architecture efficiently captures sophisticated hier-
archies describing the raw data [1], which has shown su-
perior performance on standard object recognition bench-
marks [10, 2] while utilizing minimal domain knowledge.



The work presented in this paper shows that with the re-
cent developments of deep neural networks, we can learn
a model to recognize grasp type from unconstrained visual
inputs with robustness. We believe we are among the first
to apply deep learning on grasp type recognition.

3. Our Approach
First, we briefly summarize the basic concepts of Convo-

lutional Neural Networks (CNN), and then we present our
implementations for grasp type recognition, human action
intention prediction and fine level manipulation action seg-
mentation using the change of grasp type over time.

3.1. Human Grasp Types

A number of grasping taxonomies have been proposed in
several areas of research, including robotics, developmen-
tal medicine, and biomechanics, each focusing on different
aspects of action. In a recent survey, Feix et al. [6] re-
ported 45 grasp types in the literature, of which only 33
were found valid. In this work, we use a categorization
into seven grasp types. First we distinguish, according to
the most commonly used classification (based on function-
ality), into power and precision grasps [7]. Power grasping
is used when the object needs to be held firmly in order
to apply force, such as “grasping a knife to cut”; precision
grasping is used in order to do fine grain actions that require
accuracy, such as “pinch a needle”. We then further distin-
guish among the power grasps, whether they are cylindrical,
spherical, or hook. Similarly, we distinguish the precision
grasps into pinch, tripodal and lumbrical. Additionally, we
also consider a Rest or Extension position (no grasping per-
formed). Fig. 4 illustrates the grasp categories.

Figure 4. The grasp types considered. Grasps which can not be
categorized into the six types here are considered as the “Rest and
Extension” (no grasping performed).

Humans, when looking at a photograph, can more or less
tell what kind of grasp the person in the picture is using.

The question becomes, whether using the current state-of-
the-art computer vision technique, whether we can develop
a system that learns the pattern from human labeled data
and recognizes grasp type from a patch around each hand?
In the following section, we present our take and show that a
grasp type recognition model with decent robustness can be
learned using Convolutional Neural Network (CNN) tech-
niques.

3.2. CNN for Grasp Type Recognition

Convolutional Neural Network (CNN) is a multilayer
learning framework, which may consist of an input layer,
a few convolutional layers and an output layer. The goal
of CNN is to learn a hierarchy of feature representations.
Response maps in each layer are convolved with a number
of filters and further down-sampled by pooling operations.
These pooling operations aggregate values in a smaller re-
gion by down-sampling functions including max, min, and
average sampling. In this work we adopt the softmax loss
function which is given by:

L(t, y) = − 1
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where tnk is the n-th training example’s k-th ground truth
output, and ynk is the value of the k-th output layer unit in
response to the n-th input training sample. N is the number
of training samples, and since we consider 7 grasp type cat-
egories,C = 7. The learning in CNN is based on Stochastic
Gradient Descent (SGD), which includes two main opera-
tions: Forward and Back Propagation. The learning rate is
dynamically lowered as training progresses. Please refer to
[11] for details.

We used a five layer CNN (including the input layer and
one fully-connected perception layer for regression output).
The first convolutional layer has 32 filters of size 5× 5 with
max pooling, the second convolutional layer has 32 filters
of size 5 × 5 with average pooling, and the third convolu-
tional layer has 64 filters of size 5×5 with average pooling,
respectively. Convolutional layer convolves its input with
a bank of filters, then applies point-wise non-linearity and
max or average pooling operation.

The final fully-connected perception layer has 7 regres-
sion outputs. Fully-connected perception layer applies lin-
ear filters to its input, then applies point-wise non-linearity.
Our system considers 7 grasp type classes.

For testing, we pass each target hand patch to the trained
CNN model, and obtain an output of size 7×1: PGraspType.
In the action intention and segmentation experiments we use
the classification for both hands to obtain PGraspType1 for
the left hand, and PGraspType2 for the right hand, respec-
tively. To have a fully automatic fine level manipulation
segmentation approach, we need to localize the input hand



patches from videos and then recognize grasp types using
CNN. We use the hand detection method of [14] to detect
hands in the first frame, and then apply a meanshift algo-
rithm based tracking method [3] on both hands to continu-
ously extract the image patch around each hand.

3.3. Human Action Intention

Our ability to interpret other people’s actions hinges cru-
cially on predicting their intentionality. Even 18-month-old
infants behave altruistically when they observe an adult ac-
cidentally dropping a marker on the floor but out of his
reach, and they can predict his intention to pick up the
marker [23]. From the point view of machine learning for
intelligent systems and human-robot collaboration, due to
the differences in the embodiment of humans and robots,
a direct mapping of action signals is problematic. One so-
lution is that the robot predicts the intent of the observed
human activity and implements the same intention using its
own sensorimotor apparatus [21].

Previous studies showed that there are several key factors
that affect the grasp type [16]. One crucial deciding factor
for the selection of the grasp type to use is the intended
activity. We choose here a categorization into three human
action intentions, closely related to the functional classifica-
tion discussed above (Fig. 4). The first category reflects the
intention to apply force onto the physical world, such as for
example “cut down a tree with an ax”, and we refer to it as
“Force-oriented”. The second category reflects fine-grained
activity where sensitivity and dexterity are needed, such as
“tie shoelaces”, and we refer to it as “Skill-oriented”. The
third category has no intention of specific action, such as
“showcasing and posing”, and we call it “Casual”. Fig. 5
illustrates the action intention categories by showing one
typical example of each. We should note that the three cat-
egories: “force-oriented”, “skill-oriented” and “casual” are
closely related to the three functional categories “power”
“precision”, and “rest”, respectively (Fig. 4). We used a
different labeling, because we encounter a larger variety of
hand poses in the static images used for intention classifi-
cation than in the videos of human manipulation activities
used for functional categorization.

We investigate the causal relation between human grasp
type and action intention by training a classifier using grasp
types of both hands as input, and the category of action in-
tention as output. As shown next, our experiment demon-
strates a strong link. We want to point out that certainly
a finer categorization is possible. For example, “Force ori-
ented” intention can be further divided into sub classes such
as “Selfish” or “Altruistic” and so on. However, such a clas-
sification would require other dynamic observations. Here
we show that from the grasp type in a single image a classi-
fication into basic intentions (shown in Fig. 5) is possible.

Figure 5. Human action intention categories.

3.4. From Grasp Type to Action Intention

Our hypothesis is that the grasp type is a strong indi-
cator of human action intention. In order to validate this,
we train an additional classifier layer. The procedure is
as follows. For each training image, we first pass the tar-
get hand patches (left hand and right hand, if present) of
the main character in the image to the trained CNN model,
and we obtain two belief distributions: PGraspType1 and
PGraspType2. We concatenate these two distributions and
use them as our feature vector for training. We train a sup-
port vector machine (SVM) classifier f , which takes as in-
put the grasp type belief distributions and derives as output
an action intention distribution PInt of size 3× 1:

PInt = f(PGraspType1, PGraspType2|θ), (2)

where θ are the model parameters learned from labeled
pairs. Fig. 6 shows a diagram of the approach. We need
to point out that in the human action intention recognition
we use belief distributions instead of final class labels of
the two hands as input feature vectors. Thus, a certain cat-
egory of grasp type does not directly indicate a certain ac-
tion intention in our model. A further experiment using de-
tected grasp type labels of both hands (the grasp type with
the highest belief score) to infer action intention achieves a
slightly worse performance, which confirms our claim here.

3.5. Grasp Type Evolution

In manipulation actions involving tools and objects, the
details of the small sub actions contain rich semantics. Cur-
rent computer vision methods do not consider them. Con-
sider a typical kitchen action, as shown in Fig. 7. In most
approaches the whole sequence would be denoted as “sprin-
kle the steak”, and the whole segment would be considered
an atomic part for recognition or analysis. However, within
this around 15 second long action, there are several finer
segments. The gentleman first “Pinch” grasps the salt to



Figure 6. Inference of human action intention from grasp type
recognition.

sprinkle the beef, then he “Extends” to point at the oil bot-
tle, and later he “Power Spherical” grasps a pepper bottle
to further sprinkle black pepper onto the beef. Here we can
see that the dynamic changes of grasp type characterize the
start and end of these finer actions.

Figure 7. Grasp type evolution (right hand) in a manipulation ac-
tion.

In order to see if grasp type evolution actually can help
with a finer segmentation of manipulation actions, we first
recognize the grasp type of both hands, frame by frame, and
then output a segmentation at the points in time when any
of the hands has a change in grasp type. We design a third
experiment on a public cooking video dataset from Youtube
for validation.

3.6. Finer segment action using grasp type evolution

We adopt a straightforward approach. Let’s denote the
sets of grasp types along the time-line of an action of length
M as Gl = {G1

l , G
2
l ...G

M
l } for the left hand and as Gr =

{G1
r, G

2
r...G

M
r } for the right hand. Assuming that during

a manipulation action the grasp type evolves gradually, we
first apply a one dimensional mode filter to smooth tempo-
rally. Each grasp type detection at time t is replaced by its
most common neighbor in the window of [t− δ/2, t+ δ/2],
where δ is the window size.

Then, whenever at a time instance t ∈ [1,M ], if Gt
l 6=

Gt+1
l or Gt

r 6= Gt+1
r , our system outputs one segment at t,

denoted as St. The set St yields a finer segmentation of the

manipulation action clip.

4. Experiments
The theoretical framework we presented suggests three

hypotheses that deserve empirical tests: (a) the CNN based
grasp type recognition module can robustly classify input
frame patches around hands into correct categories; (b)
hand grasp type is a reliable cognitive feature to infer hu-
man action intention; (c) the evolution of hand grasp types
is useful for fine-grain segmentation of human manipulation
actions.

To test the three hypotheses empirically, we need to de-
fine a set of performance variables and how they relate to
our predicted results. The first hypothesis relates to visual
recognition, and we can empirically test it by comparing
the detected grasp type labels with the ground truth ones
using the precision and recall metrics. We further compare
the method with a traditional hand-crafted feature based ap-
proaches to show the advantage of our approach. The sec-
ond hypothesis relates to the inference of human action in-
tention, and we can also empirically test it by comparing the
predicted action intention with the ground truth ones on a
testing set. The third hypothesis relates to manipulation ac-
tion segmentation, and we can test it by comparing the com-
puted key segment frames with the ground-truth ones. We
used two publicly available datasets: (1) the Oxford hand
dataset [14] and (2) a unconstrained cooking video dataset
(YouCook) [5].

4.1. Grasp Type Recognition in Static Images

Dataset and Experimental protocol
The Oxford hand dataset is a comprehensive dataset of

hand images collected from various different public image
data set sources with a total of 13050 annotated hand in-
stances. Hand patches larger than a fixed area of (a bound-
ing box of 1500 sq. pixels) were considered sufficiently
‘large’ and were used for evaluation. This way we ob-
tained 4672 hand patches from the training set and 660 hand
patches from the testing set (VOC images). We then further
augmented the dataset with new annotations. We catego-
rized each patch into one of the seven classes by considering
its functionality given the image context and its appearance
following Fig. 4. We followed the training and testing pro-
tocol from the dataset.

For training the grasping type, the image patches were
resized to 64×64 pixels. The training set contains 4672 im-
age patches and was labeled with the seven grasping types.
We used a GPU based CNN implementation [8] to train
the neural network, following the structure described above
(Sec. 3.2).

We compared our approach with traditional hand-crafted
feature based approaches. One was the histogram of ori-
ented gradients (HoG) + Bag of Words (BoW) + SVM clas-



Methods PoC PoS PoH PrP PrT PrL RoE Overall
P R P R P R P R P R P R P R Accu

HoG+BoW+SVM .44 .46 0 NaN 0 NaN 0 0 0 NaN 0 NaN .81 .41 .42
HoG+BoW+RF .50 .40 0 NaN 0 NaN .03 .17 0 0 0 0 .62 .36 .36

CNN .59 .60 .38 .62 .38 .58 .62 .60 .56 .66 .36 .40 .69 .56 .59
Table 1. Precision (P) and Recall (R) for each grasp type category and overall accuracy.

sification, the other HoG + BoW + Random Forest. The
number of orientations we selected for HoG was 32, and
the number of dictionary entries for BoW was 100. The pa-
rameters for the baseline methods were tuned to have the
best performance.

Experimental results
We achieved an average of 59% classification accuracy

using the CNN based method. Table 1 shows the perfor-
mance metrics of each grasp type category and the overall
performance in comparison to baseline algorithms. It can be
seen that the CNN based approach has a decent advantage.
To provide a full picture of our CNN based classification
model, we also show the confusion matrix in Fig. 8. Our
system mainly confused “Power Cylindrical Grasp” with
“Rest or Extension”. We believe that this is mostly because
the fingers form natural curves when resting and this makes
the hand look very similar to a cylindrical grasp with large
diameter. Also our model does not perform well on “Pre-
cision Lumbrical” grasp due to the relatively small amount
of training samples in this category. Fig. 9 shows some cor-
rect grasp type predictions shown by black boxes, and some
failure examples denoted by red and blue bounding boxes.
Blue boxes denote a correct prediction of the underlying
high-level grasp type in either the “Power” or “Precision”
category, but incorrect recognition in finer categories. Red
box denotes a confusion between“Power” and “Precision”
grasp. Intuitively, the blue marked errors should be penal-
ized less than the red marked ones.

4.2. Inference of Action Intention from Grasp Type

Dataset and Experimental protocol
A subset of 200 images from the Oxford hand dataset

serves as testing bed for action intention classification.
Since not every image in the test set contains an action in-
tention that falls into one of the three major categories de-
scribed above, the subset was selected with the following
rules: (1) at least one hand of the main character can be
seen from the image and (2) the main character has a clear
action intention. For example, we can infer that the char-
acter from Fig. 10(a) is going to perform a skill-oriented
actions that requires accuracy, while this is not clear from
the character in Fig. 10(b) (pull the rope with force or just
posing casually?). We labeled the 200 images into the three
major action intention categories and used them as ground
truth. The grasp type CNN model was used to extract a 14
dimension belief distribution as grasp type feature (which

Figure 8. Category pairwise confusion matrix for grasp type clas-
sification using CNN.

Figure 9. Examples of correct and false classification. PoC: Power
Cylindrical; PoS: Power Spherical; PoH: Power Hook; PrP: Preci-
sion Pinch; PrT: Precision Tripod; PrL: Precision Lumbrical; RoE:
Rest or Extension.

is due to data from both hands of the main character). A 5
folds cross validation protocol was adopted and we trained
each fold using a linear SVM classifier.

Experimental results
We achieved an average 65% prediction accuracy. Ta-

ble 2 reports precision and recall metrics for each category
of action intention. We also run the same experiment using
grasp type labels instead of belief distributions (GL+SVM).



(a) (b)

Figure 10. Clear action intention vs. an ambigous one

Methods F-O S-O C Overall
P R P R P R Accu

GL+SVM .54 .35 .73 .59 .80 .89 .63
GT+SVM .61 .35 .82 .71 .82 .83 .65

Table 2. Precision (P) and Recall (R) for each intention category
and overall accuracy. GL: Grasp type Label; GT: Grasp Type be-
lief distribution.

Figure 11. Correct examples of predicting action intention.

We can see that it achieves slightly worse performance than
using belief distributions. Fig. 11 shows some interesting
correct cases, and Fig. 12 shows several failure predictions.
We believe that the failure cases are mostly due to the wrong
grasp type recognition inherited from the previous section.
Because of the small amount of pairs with ground truth, we
were not able to train for comparison a converging CNN
model, that would predict action intention directly from
hand patches.

Figure 12. Failure cases of predicting action intention. The label
at the bottom denotes the human labeling.

Figure 14. 1st row: sample hand localization on first frame us-
ing [14]. 2nd to 5th row: two sample sequences of hand patches
extracted using meanshift tracking [3].

4.3. Manipulation Action Fine Level Segmentation
using Grasp Type Evolution

In this section we want to demonstrate that the change of
grasp type is a good feature for fine grain level manipulation
action temporal segmentation.

Dataset and Experimental protocol
Cooking is an activity, requiring a variety of grasp types,

that intelligent agents most likely need to learn. We con-
ducted our experiments on a publicly available cooking
video dataset collected from the world wide web and fully
labeled, called the Youtube cooking dataset (YouCook) [5].
The data was prepared from 88 open-source Youtube cook-
ing videos with unconstrained third-person view. These fea-
tures make it a good empirical testing bed for our third hy-
pothesis.

We conducted the experiment using the following pro-
tocols: (1) 8 video clips, which contain at least two fine
grain activities, were reserved for testing; (2) all other video
frames were used for training; (3) we randomly reserved
10% of the training data as validation set for training the
CNNs. For training the grasp type recognition model, we
extended the dataset by annotating image patches contain-
ing hands in the training frames. The image patches were
resized to 64 × 64 pixels. The training set contains image
patches that was labeled with the seven grasp types. We
used the same GPU based CNN implementation [8] to train
the neural network, following the same structures described
above.

Action Fine Level Segmentation
For each testing clip, we first picked the top two hand

proposals using [14] in the first frame, and then we applied
a meanshift algorithm based tracking method [3] on both
hands to continuously extract an image patch around each
hand (Fig. 14). The image patches were further resized to
64 × 64 and pipelined to the trained CNN model. We then



Figure 13. Left and right hand grasp type recognition along timeline and video segmentation results compared with ground truth segments.

labeled each hand with the grasp type of highest belief score
in each frame. After applying a one dimensional mode fil-
tering for temporal smoothing, we computed the grasp type
evolution for each hand and segmented whenever one hand
changes grasp type, as described in Sec. 3.6.

Fig. 13 shows two examples of intermediate grasp type
recognition for the two hands and the detected segmenta-
tion. A key frame is considered correct, when a ground truth
key frame lies within 10 frames around it. In the first exam-
ple, the subject’s right hand at the beginning holds the tofu
using an Extension grasp, and then she cuts the tofu with
a Pinch grasp holding the blade. Then using a precision
Tripod grasp she separates one piece of tofu from the rest,
and at the end using a Lumbrical grasp she further cuts the
smaller piece of tofu. Using the grasp type evolution, our
system can successfully detect two key frames out of the
three ground truth ones. In the second video, the gentleman
using a Cylindrical grasp whisks the bowl at the beginning.
Then his left hand extends to reach a small cup, and then
using a Hook grasp he holds the cup. After that, his right
hand extends to reach a spatula and at the end his right hand
scoops food out of the small cup using a Cylindrical grasp.
Using the grasp type evolution, our system can successfully
detect three key frames out of the four ground truth ones.

In the 8 test clips, there are 18 ground truth segmentation
key frames, and 14 of them are successfully detected, which
yields a recall of 78%. Among the 20 detected segmentation
key frames, 16 are correct, which yields a precision of 80%.

5. Conclusion and Future Work
Our experiments produced three results: (i) we achieved

in average 59% accuracy using the CNN based method for

grasp type recognition from unconstrained image patches;
(ii) we achieved in average 65% prediction accuracy in in-
ferring human intention using the grasp type only; (iii) us-
ing the grasp type temporal evolution, we achieved 78%
recall and 80% precision in fine grain manipulation action
segmentation tasks. Overall, the empirical results support
our hypotheses (a-c) respectively.

Recognizing grasp type to infer human action intention
or to do fine level segmentation of human manipulation ac-
tions are novel problems in computer vision. We have pro-
posed a CNN based learning framework to address these
problems with decent success. We hope our contributions
can help advance the field of static scene understanding and
human action fine level analysis, and we hope that they can
be useful to other researchers in other applications. Addi-
tionally, we augmented a currently available hand data set
and a cooking data set with grasp type labels, and provided
human action intention labels for a subset of them. We will
make this augmented data sets available for future research.

Our experiments indicate that there is still significant
space for improving the recognition of grasp type and in-
ference of human intention. We believe that advances in
understanding high-level cognitive structure underlying hu-
man intention can help improve the performance. With the
development of deep learning systems and more data, we
can also expect a robust grasp type recognition system be-
yond the seven categories used in this paper. Moreover, we
believe that progress in natural language processing, such as
mining the relationship between grasp type and actions, can
advance high-level reasoning about human action intention
to improve computer vision methods.
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