Compressive Sensing, Low Rank models, and Low Rank Submatrix

 NICTA Computer Vision Short Course 2012
Yi Li

yi.li@nicta.com.au
http://users.cecs.anu.edu.au/~yili

> Sep 12, 2012 ver. 1.8
> http://tinyurl.com/brl89pk

Outline

(1) Introduction

- Cameras, images, and pixels
(2) Prerequisites
- Linear algebra
(3) Nonnegative matrix factorization (NMF)
(4) L_{1} minimization
(5) Low Rank models
- Low Rank Approximation
- Low Rank Submatrix
(6) Conclusion

Traditional camera

Pinhole model

- Geometry
- Image formation
- Pixelated images

http://chestofbooks.com/arts/photography/Telephotographic-Lens/images/The-Formation-Of-Images-By-The-Pinhole-
Camera-And-4.jpg

Single pixel camera

Experimental setting

- Random sampling
- Reconstruction
- \# of samples
- Reconstruction algorithm
- http://dsp.rice.edu/cscamera

How does it work?

Principles

- Random basis

$$
\left(y_{i}=\operatorname{sum}\left(R_{i}(:) . * u(:)\right)\right)
$$

- .* is a componentwise multiplication
- Linear operation $y=R u$
- Each row of R is random

- if $u=D x$ for some D
- Reconstruct x from $y=R D x$

Food for thought

Optical illusion

- Error in reconstruction
- Can it be used for explaining illusion?
- Does the explanation fit into
 human model?
- Implication to visual
neuroscience?
- X. Tang and Y. Li, ICIP 2012

Introduction

Important concepts

- Linear equations
- Rank, trace, and norms
- Eigenvalues/Eigenvectors and Singular Value Decomposition

$y=A x$

$\%$ solve $y=A x$
$\mathrm{A}=\operatorname{rand}(3) ; \quad \%$ creating a random matrix. $r=\operatorname{rank}(A) ; \quad \%$ full rank?
$y=\operatorname{rand}(3,1) ;$
$x=A \backslash y$;
\% one way of solving this: least square
$x=\operatorname{inv}(A) * y$;
$y-A x$
$\%$ unique solution if A is full rank
\% verify the correctness

Introduction

Underdetermined and overdetermined

\%\% solve $y=A x$	\%\% solve $y=A x$	
$\begin{aligned} A & =\operatorname{rand}(3,4) ; \\ r & =\operatorname{rank}(A) ; \end{aligned}$	$\begin{aligned} A & =\operatorname{rand}(4 ; 3) \\ r & =\operatorname{rank}(A) ; \end{aligned}$	
$y=\operatorname{rand}(3,1)$;	$y=\operatorname{rand}(4,1)$;	
$\begin{aligned} & x=A \backslash y ; \\ & x=\operatorname{inv}(A) * y ; \quad \% \% ? ? \end{aligned}$	$\begin{aligned} & x=A \backslash y ; \\ & x=\operatorname{inv}(A) * y ; \end{aligned}$	$\%$? ?
$y-A * x$	$y-A * x$	

Rank: the concept

- Matrix $A_{m \times n}$
- Column rank
- the maximum number of linearly independent column vectors of A
- Row rank
- the maximum number of linearly independent row vectors of A
- Column rank $==$ row rank
- $\leq \min (m, n)$

Properties

Two matrices A and B

- $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$
- $\operatorname{rank}(\mathrm{A}+\mathrm{B}) \leq \operatorname{rank}(\mathrm{A})+\operatorname{rank}(\mathrm{B})$
- $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
- row-echelon forms
- $A e=\operatorname{rref}(A)$ in matlab

Introduction

Questions

Implication in computer vision

- Background pixels over time
- Multiple part tracking
- Image matching
- Your nomination?

Eigenvalue and Eigenvector

- Matrix $A_{n \times n}$
- $A v=\lambda v$
- Same eigenvalue may have multiple eigen vectors
- zero eigenvalue?
- Matlab
- eig(A)
- Each column in A can be represented by a linear combination of eigenvectors

Introduction

PCA in computer vision

Eigenface

- Each face is a linear vector
- Concatenate columns
- Faces are usually aligned
- Eigenvector = basis
- http://www.umiacs.umd.edu/~knkim/

Singular vector decomposition

- Matrix $A_{m \times n}$
- Factorize A to $A=U \sum V^{T}$, where
- U is $m \times m$ unitary matrix
- \sum is a $m \times n$ diagonal matrix
- V is $n \times n$ unitary matrix
- Matlab

$$
\text { - }[\mathrm{ud} \mathrm{~d}]=\operatorname{svd}(\mathrm{A})
$$

- Why we need Singular Value, if we already have Eigenvalue?

SVD

- SVD works for arbitrary matrix $A_{m \times n}$
- $A=U \sum V^{T}$ means:
- U and V are orthonormal basis
- \sum is the singular value of A
- Can be used for pseudo-inverse: proof $A^{-1}=V \sum^{-1} U^{T}$
- Proof columns of V are the eigen vector of $A^{T} A$ (homework)
- Consequently, \sum is the eigenvalue of $A^{T} A$
- How about U ?
- Low rank approximation

Trace

- Matrix $A_{n \times n}$
- Simple definition
- $\operatorname{tr}(A)=a_{11}+. .+a_{i i}+\ldots+a_{n n}$
- Linkage to Eigenvalue
- $\operatorname{tr}(A)=\operatorname{sum}(e i g(A))$
- Invariant to the change of basis!

Properties

- $\operatorname{tr}(A+B) \leq \operatorname{tr}(A)+\operatorname{tr}(B)$
- $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$
- $\operatorname{tr}\left(A^{T} B\right)=\operatorname{tr}\left(B A^{T}\right)$
- $\operatorname{tr}\left(A^{T} B\right)$, "inner product" of A and B
- $\operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C B A)$

L_{2} norm

"Least square"

- Case 1: Line fitting
- a few pairs $\left(x_{i}, y_{i}\right)$, or simply (x, y)
- $\beta=\left(x^{\top} x\right)^{-1} x^{\top} y$
- Case 2: Signal-to-noise rate in signal processing
- decibel (dB)
- Matlab: norm $(x, 2)$

L_{1} norm

Sum of absolute values

- In many cases: Dist $=\sum|x|$
- Example: Dist $=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ ("Manhattan Distance")
- Why are the differences?:

(a)

(b)

L_{1} norm

Sum of absolute values

- In many cases: Dist $=\sum|x|$
- Example: Dist $=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ ("Manhattan Distance")
- Why are the differences?:

(a)

(b)

L_{1} norm

Sum of absolute values

- In many cases: Dist $=\sum|x|$
- Example: Dist $=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ ("Manhattan Distance")
- Why are the differences?:

$-$
(a)

(b)
- online figure

Introduction

L_{0} norm

"Count of non-zero values"

- Ideal definition for measuring the sparseness of a vector
- Problem:
- Very difficult optimization, NP complete
- Card (x) in constraints, or minimize the set size of the non-zero variable
- Need approximation in many practical problems

Introduction

Matlab practice (and Q/A)

Practice

- Generate two 2×2 random matrices A and B
- Use bilinear interpolation to resize them to 10×10
- Calculate the $\operatorname{rank}(A)$
- $\operatorname{trace}\left(A^{T} B\right)=\operatorname{trace}\left(B^{T} A\right)=\operatorname{sum}$ of A.*B
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

Introduction

Matlab practice (and Q/A)

Practice

- Generate two 2×2 random matrices A and B
- Use bilinear interpolation to resize them to 10×10
- Calculate the rank(A)
- $\operatorname{trace}\left(A^{T} B\right)=\operatorname{trace}\left(B^{T} A\right)=$ sum of $A . * B$
- show norm(A(:), 2), norm(A(:), 1), and norm(A(:), 0)
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

Introduction

Matlab practice (and Q/A)

Practice

- Generate two 2×2 random matrices A and B
- Use bilinear interpolation to resize them to 10×10
- Calculate the rank(A)
- $\operatorname{trace}\left(A^{\top} B\right)=\operatorname{trace}\left(B^{\top} A\right)=$ sum of A. ${ }^{*} B$
- show norm $(A(:), 2)$, $\operatorname{norm}(A(:), 1)$, and $\operatorname{norm}(A(:), 0)$
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

Matlab practice (and Q/A)

Practice

- Generate two 2×2 random matrices A and B
- Use bilinear interpolation to resize them to 10×10
- Calculate the $\operatorname{rank}(A)$
- $\operatorname{trace}\left(A^{T} B\right)=\operatorname{trace}\left(B^{T} A\right)=$ sum of A.*B
- show $\operatorname{norm}(A(:), 2)$, $\operatorname{norm}(A(:), 1)$, and $\operatorname{norm}(A(:), 0)$
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

Matlab practice (and Q/A)

Practice

- Generate two 2×2 random matrices A and B
- Use bilinear interpolation to resize them to 10×10
- Calculate the $\operatorname{rank}(A)$
- $\operatorname{trace}\left(A^{T} B\right)=\operatorname{trace}\left(B^{T} A\right)=$ sum of A.*B
- show norm $(A(:), 2)$, norm $(A(:), 1)$, and norm $(A(:), 0)$
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

Matlab practice (and Q/A)

Practice

- Generate two 2×2 random matrices A and B
- Use bilinear interpolation to resize them to 10×10
- Calculate the $\operatorname{rank}(A)$
- $\operatorname{trace}\left(A^{T} B\right)=\operatorname{trace}\left(B^{T} A\right)=$ sum of $A . * B$
- show norm $(A(:), 2)$, norm $(A(:), 1)$, and norm $(A(:), 0)$
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)

Matlab practice (and Q/A)

Practice

- Generate two 2×2 random matrices A and B
- Use bilinear interpolation to resize them to 10×10
- Calculate the $\operatorname{rank}(A)$
- $\operatorname{trace}\left(A^{T} B\right)=\operatorname{trace}\left(B^{T} A\right)=$ sum of A.*B
- show norm $(A(:), 2)$, norm $(A(:), 1)$, and norm $(A(:), 0)$
- Generate a 10×10 random matrix C
- Compare eig(A) and eig(C)
- Goal: $X=W H$
- If $k \ll \min (m, n)$
- Extreme case: $\operatorname{rank}(\mathrm{W})=1$
- Meaning?
- Constraints:

$n \times k$
-

$k \times m$

Interpretation

- Rewrite $X=W H$ as $X_{:, i}=\sum_{j=1}^{n} H_{j i} W_{:, j}$
- $W_{i, j}$ can be considered as a basis function
- $X_{i, i}$ is in the space spanned by W
- Columns of W are not necessarily orthogonal
- Recall PCA
- What are the similarities?
- What are the differences?

Application

Face recognition

- Decomposing faces into parts
- Basis of objects

Original

- Orthogonal (Eigenface)
- non-orthogonal (NMF)
- W can be regarded as face parts
- H can be regarded as weights for combing basis functions

Approach

- L_{2} norm between X and $W H$
- $\min |X-W H|_{2}$
- Subject to?
- $W \geq 0, H \geq 0$
- Non-convex

Quick detour

Coordinated Descent

- $z=f(x) g(y)$
- maybe non-convex -> local minima
- Fix $x=x_{0}, z=f\left(x_{0}\right) g(y)=\bar{g}(y)$
- If $z=\bar{g}(y)$ is convex, unique solution y_{1}
- Do the same thing for $z=g\left(y_{1}\right) f(x)$ until converge or after certain number of iterations.

Solution

Coordinated Descent

- Random initialize W and H
- Iteratively solve $|X-W H|_{2}$
- $|X-W H|_{2}$ given H
- $|X-W H|_{2}$ given W
- Update until converge

Iterative Update Rules

Coordinated Descent

- Random initialize W and H
- The Euclidean distance $|X-W H|_{2}$ is nonincreasing under the update rules
- $W_{i a}=W_{i a} \sum \frac{X_{i \mu}}{(W H)_{i \mu}} H_{a \mu}$ and normalize W for each column.
- $H_{a \mu}=H_{a \mu} \sum W_{i a} \frac{X_{i \mu}}{(W H)_{i \mu}}$
- Update until converge

Interpretation

- L_{2} norm between X and $W H$
- Gaussian distribution.
- KL divergence $\left(D(p \| q)=\sum p_{i} \ln \frac{p_{i}}{q_{i}}\right)$
- L_{1} distance
- Basis functions (W) are not orthogonal
- Good or not?
- Variations
- $X=$ WSH, where S can be used for controlling smoothness

Matlab experiments (15 mins)

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10 \times 3}$ and $H_{10 \times 3}$
- Use iterative update rule $W_{i a}=W_{i g} \sum \frac{x_{i \mu}}{(14+1)_{i \mu}} H_{a \mu}$ and
$H_{a \mu}=H_{a \mu} \sum W_{i a} \frac{X_{i \mu}}{(W H)_{i \mu}}$
- Define your convergence criteria

Matlab experiments (15 mins)

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10 \times 3}$ and $H_{10 \times 3}$
- Use iterative update rule $W_{i a}=W_{i a} \sum \frac{X_{i \mu}}{(W H)_{i \mu}} H_{a \mu}$ and
$H_{a \mu}=H_{a \mu} \sum W_{i a} \frac{X_{i \mu}}{(W H)_{i \mu}}$
- Define your convergence criteria

Matlab experiments (15 mins)

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10 \times 3}$ and $H_{10 \times 3}$
- Use iterative update rule $W_{i a}=W_{i a} \sum \frac{x_{i \mu}}{(W H)_{i \mu}} H_{a \mu}$ and $H_{a \mu}=H_{a \mu} \sum W_{i a} \frac{X_{i \mu}}{(W H)_{i \mu}}$
- Define your convergence criteria

Matlab experiments (15 mins)

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10 \times 3}$ and $H_{10 \times 3}$
- Use iterative update rule $W_{i a}=W_{i a} \sum \frac{x_{i \mu}}{(W H)_{i \mu}} H_{a \mu}$ and $H_{a \mu}=H_{a \mu} \sum W_{i a} \frac{X_{i \mu}}{(W H)_{i \mu}}$
- Define your convergence criteria.

Matlab experiments (15 mins)

Practice

- Generate a 2×2 random matrices A
- Resize it to 10×10
- Random initialize matrix $W_{10 \times 3}$ and $H_{10 \times 3}$
- Use iterative update rule $W_{i a}=W_{i a} \sum \frac{x_{i \mu}}{(W H)_{i \mu}} H_{a \mu}$ and $H_{a \mu}=H_{a \mu} \sum W_{i a} \frac{X_{i \mu}}{(W H)_{i \mu}}$
- Define your convergence criteria.

Discussion

- How to use NMF in your projects?
- Do you buy it?
- Yes or No, what did you learn?

Recall $y=A x$

Detail matters

- If A is orthonormal (e.g., in PCA)
- if A is full rank, $x=A^{-1} y$
- However, $y=A x$ can be underdetermined
- Well known in undergrad studies: many solutions
- Less known: minimizing $\sum|x|_{2}$
- What happens if we minimizing $\sum|x|_{0}$ or $\sum|x|_{1}$?
- Discussion: meaning?

Dictionary: the concept

- In sparse representation, we call A a "dictionary"
- Assume A is given
- We further call x as coefficients
- Now we want to solve $y=A x$ s.t. minimizing $\sum|x|_{0}$

Minimizing the cardinality of coefs

Discussion

- What are the advantages?
- An ideal solution of many problems
- Problems?
- NP complete
- We need approximation

Approximation: Minimizing L_{1} norm

- Sparseness
- Convex problem
- Recall

- Stable and accurate results (for cases where coefs are sparse)

Solver 0: Orthogonal Matching Persuit (OMP)

OMP

- Idea: sequentially pick the basis.
- Greedy algorithm
- For each basis function, calculate the error
- $v_{i}=\arg \min y-A_{; ;}, v_{i}$ for each i, where v_{i} denotes an all zero vector except the $i^{\text {th }}$ element
- Pick the coefs with minimal fitting error
- let $y=y-A_{:, j} v_{j}$ repeat the procedure for the remaining basis

Solver 1: Softthresholding

- Solve $y=A x$ in L_{2} norm
- Soft thresholding

$$
\begin{aligned}
& \text { - } S_{\lambda}(x)=x-0.5 \lambda \text { if } x>0.5 \lambda \\
& \text { - } S_{\lambda}(x)=x+0.5 \lambda \text { if } x<-0.5 \lambda \\
& \text { - } S_{\lambda}(x)=0 \text {, o.w. }
\end{aligned}
$$

Solver 1: Pros and Cons

Does it solve all problems?

- Very efficient
- Only solves $\sum|x|_{1}+\lambda|y-A x|_{2}$
- How about $\sum|B x|_{1}+\lambda|y-A x|_{2}$?

Solver 2: Bregman iteration

- $\min J(x)+H(x)$
- $J(x)$ is continuous but not differentiable
- $H(x)$ is continuous and differentiable
- Introduce $|d-B x|_{2}$ and $E(x, d)=|d|_{1}+H(x)$
- $\min E(x, d)+\frac{\lambda}{2}|d-B x|_{2}$

Solver 2: Iterative update

- $x^{k+1}=\arg \min H(x)+\lambda / 2\left|d^{k}-B x-p^{k}\right|_{2}$
- L_{2} norm: least square
- $d^{k+1}=\arg \min |d|_{1}+\lambda / 2\left|d-B x^{k+1}-p^{k}\right|_{2}$
- Soft thresholding
- $p^{k+1}=p^{k}+B x^{k+1}-d^{k+1}$
- Simple numerical operation

Matlab experiment (20 minutes)

- Randomly generate an orthonormal matrix $A_{10 \times 10}$ (how?)
- Randomly generate $y_{10 \times 1}$
- hint: each column of A is a basis function
- Assuming we want x that has only 3 non-zero coefs to approximate $y=A x$
- Use OMP
- Use soft thresholding

How about unknown A ?

Sparse coding

- $Y=A X$, where both A and X are unknown.
- Y is a matrix, because we need more than one observation to learn the underlying dictionary
- Coordinated descent
- Given A, solve X (we know!)
- Given X, solve A

What does Low Rank mean?

Idea: correlation

- Redundancy
- Accurate representation
- Reduce the problems caused by noise

Modeling

Matrix A can be approximated by $\mathrm{X}+\mathrm{E}$

- Low rank X
- Example: human motion capture data
- Sparse noise E
- Example: occlusion
- Formulation
- min $\operatorname{rank}(L)+\lambda|E|_{1}$
- s.t. $A=L+E$

Introduction
Prerequisites

Norm: trace norm

Definition

- Recall: trace is the sum of eigenvalue
- minimizing trace norm
- $|A|_{*}=\operatorname{tr}\left(\left(A^{T} A\right)^{1 / 2}\right)$

Putting everything together

Formulation

- min $\operatorname{tr}\left(\left(L^{T} L\right)^{1 / 2}\right)+\lambda|E|_{1}$
- s.t. $A=L+E$

Solver: Alternating Direction Method of Multiplier (ADMM)

Method of multipliers

- $\min f(x)$ s.t. $A x=b$
- Lagrangian: $L(x, y)=f(x)+y^{\top}(A x-b)$
- Augmented $L_{\rho}(x, y)=f(x)+y^{T}(A x-b)+\frac{\rho}{2}|A x-b|_{2}$

$$
\begin{aligned}
& \text { - } x^{k+1}=\arg \min L_{\rho}\left(x, y^{k}\right) \\
& \text { - } y^{k+1}=y^{k}+\rho\left(A x^{k+1}-b\right)
\end{aligned}
$$

- Problem: how about $f(x)=\sum|B x|_{1}+\lambda|y-A x|_{2}$?

ADMM

ADMM

- $\min f(x)+g(z)$ s.t. $A x+B z=c$
- Augmented

$$
\begin{aligned}
& L_{\rho}(x, z, y)=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}|A x+B z-c|_{2} \\
& \quad \text { - } x^{k+1}=\arg \min L_{\rho}\left(x, z^{k}, y^{k}\right) \\
& \text { - } z^{k+1}=\arg \min L_{\rho}\left(x^{k+1}, z, y^{k}\right) \\
& \text { - } y^{k+1}=y^{k}+\rho\left(A x^{k+1}+B z^{k+1}-c\right)
\end{aligned}
$$

- Key idea: separate x and z
- Problem: This is a so called "two term admm". It is not clear any separation higher than 2 terms will converge
- empirically yes!

Problem of Low Rank matrix?

X is the low rank version of A

- Only a subset of features correlated
- DNA
- Data mining
- Noise is not sparse

Introduction
Prerequisites

Solution: finding LR submatrix directly

Random projection

- "Binarization" of a matrix A
- $B=\operatorname{sign}(A-\operatorname{mean}(A(:)))$

An (extremely fast) method for detecting Ir submatrix

Loop: the concept

- Take any 2×2 submatrix $\left[B_{i j}, B_{i j^{\prime}} ; B_{i^{\prime} j}, B_{i^{\prime} j^{\prime}}\right]$ of B
- Take the product $p=B_{i j} B_{i j^{\prime}} B_{i^{\prime} j} B_{i^{\prime} j^{\prime}}$
- $\mathrm{p}=-1$ if $\left[B_{i j}, B_{i j^{\prime}} ; B_{i^{\prime} j}, B_{i^{\prime} j^{\prime}}\right]$ is rank 2
- $p=1$ if $\left[B_{i j}, B_{i j^{\prime}} ; B_{i^{\prime} j}, B_{i^{\prime} j^{\prime}}\right]$ is rank 1
- Fix i, and test its "similarity" with other rows
- Sum all loops $Z=\sum_{j} \sum_{j^{\prime}} \sum_{i^{\prime}} B_{i j} B_{i j^{\prime}} B_{i^{\prime} j} B_{i^{\prime} j^{\prime}}=\left[B B^{T} B B^{T}\right]_{i i}$
- Practice: verify $\sum_{j} \sum_{j^{\prime}} \sum_{i^{\prime}} B_{i j} B_{i j^{\prime}} B_{i^{\prime} j} B_{i^{\prime} j^{\prime}}=\left[B B^{\top} B B^{\top}\right]_{i i}$

Procedure

Algorithm

- Calculate $Z_{\text {row }}=\left[B B^{T} B B^{T}\right]_{i i}$
- Sort $Z_{\text {row }}$
- Truncate the bottom $p \%$ rows
- Calculate $Z_{c o l}=\left[B^{T} B B^{T} B\right]_{j j}$
- Sort $Z_{c o l}$
- Truncate the bottom $p \%$ cols
- until max number of iterations

Does it work? Matlab experiments (20 mins)

LR Submatrix

- Generate a 2×2 random matrices A_{1}
- Use bilinear interpolation to resize it to 20×20
- Generate a 50×50 random matrices A_{2}
- Randomly embed A_{1} to A_{2}
- binarize A_{2} to $1 /-1$ and run the procedure
- Visualize the results for each iteration

Discussion: multiple submatrix?

- How can we find multiple submatrices?

Take home message

Take home message

- Linear algebra is important
- Sparseness is useful
- Low rank models are effective

Homework

－Download a face dataset from http：／／tinyurl．com／bpdduaj
－Each column is a face (165×120) ，and each row is a pixel location
－Visualize the first 10 faces in this dataset（hint：reshape（））．
－Problem 1：Use all the faces to compute the Eigenfaces of this dataset
－You define the number of eigenvectors
－You must visualize all the eigenfaces and the reconstruction errors
－Problem 2：Use the eigenfaces as the dictionary，use L_{1} minimization to approximate each face
－You define the number of non－zero coefs
－You must visualize the reconstruction errors and compare them to the errors in the Problem 1
－Problem 3：Find the first low rank submatrix in this dataset
－Truncate rows only，for simplicity
－Recall that each row is a pixel location，visualize the submatrix in the original image space for the first 10 faces
－Explain what is the common feature in this dataset －三人 引 三

Requirement

- You must use MATLAB and / or C++
- No team work
- You must hand in a zip file that has
- Your code and a readme file, explaining how to run it
- a report that
- 1) describes your experiments comprehensively;
- 2) presents your results neatly; and
- 3) must include reasonable discussion;

