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Abstract

This paper aims to extract salient closed contours from
an image. For this vision task, both region segmenta-
tion cues (e.g. color/texture homogeneity) and boundary
detection cues (e.g. local contrast, edge continuity and
contour closure) play important and complementary roles.
In this paper we show how to combine both cues in a
unified framework. The main focus is given to how to
maintain the consistency (compatibility) between the re-
gion cues and the boundary cues. To this ends, we intro-
duce the use of winding number–a well-known concept in
topology–as a powerful mathematical device. By this de-
vice, the region-boundary consistency is represented as a
set of simple linear relationships. Our method is applied to
the figure-ground segmentation problem. The experiments
show clearly improved results.

1. Introduction
Salient contours in an image play a central and important

role in object perception and scene understanding. Often
these salient contours correspond to semantically meaning-
ful contents in the image, such as object boundaries. There-
fore, extracting a few clean and meaningful contours may
simplifies subsequent high-level image understanding tasks.
However, salient contour extraction is a challenging task as
it involves both region and boundary information, requiring
integration of bottom-up image cues and top-down semantic
priors. In particular, many perceptual grouping laws such as
proximity, continuity, closure and symmetry, etc. have been
shown to be critical in such process.

Contour extraction has been approached through two
complementary directions: one is to treat the problem as
a (2D) region segmentation task [18, 23, 7], and the other
focuses on the intrinsic 1D contour detection aspect of the
problem (such as snake/level-set methods). There has been
a trend of jointly using, or combining both contour cues
and region cues. In the continuous domain, active con-
tour model was adapted to use both region and contour

cues [20] [25]. In the discrete domain, contour cues (such
as curvature) have been introduced to region-segmentation
methods (e.g., [19], intervening contour approach in [10],
SC [11]). However, many of these methods either lack ex-
plicit region-contour interaction, or rely on heuristic or an
unduly complicated model [27].

This paper aims to develop a more consistent approach
to salient contour extraction that tightly integrates both re-
gion cues and boundary cues. Our insight is that, to achieve
jointly utilizing both aspects of image cues, using a simple
linear combination of a region objective function and a con-
tour objective function is not sufficient. A key issue, that
must be taken into account, is the conditions under which
the consistency (or compatibility) between the region vari-
ables and the edge variables is satisfied. Otherwise, mean-
ingless solutions (such as an object with fragmented bound-
ary) may occur. However, it is recognized that, enforcing
such consistency is not a trivial task. Paper [2] argued that
in order to ensure the closedness condition, exponentially
many constraints are needed. A recent work [16] gave a
linear programming framework for enforcing the boundary-
region consistency, again, relying on a large number of lin-
ear inequality constraints.

In this work, we propose a novel and simpler method to
describe the region-contour consistency relationship, bor-
rowing “winding number” as a handy concept from the
mathematical field of topology. Our key intuition that moti-
vates this model is a well-known fact: contour and region
form certain kind of “duality” relationship. Being dual,
the property of one can be converted into the property of
the other. A well-established example is the application of
Green’s theorem in the plane. Draw a simple Jordan curve
(i.e. closed and non-self-intersecting contour) in the plane.
Many quantities (such as its areas) defined on the 2D region
can be computed efficiently via 1D line integral along the
contour.

The above observation motivates our winding number
approach of this paper. By definition, winding number,
which involves a set of closed ( but not necessarily simple)
planar curves and a point in the plane, refers to the number
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of times the curves revolves around this point. The key idea
of this paper is that if the region labels are restricted to be
the winding numbers of the curves, then the region-contour
consistency condition can be effectively captured by a very
small set of linear constraints.

Using the winding number concept, we present a new
salient contour detection model, integrating the region seg-
mentation cue into the ratio-based contour detection frame-
work [22][19]. In particular, we focus on the foreground
segmentation task, in which the winding number can be
transformed to region label exactly. Our objective function
includes constraints from contour saliency, region similar-
ity and contour smoothness, and can be efficiently solve by
linear programming approximately.

Our method is evaluated on the Weizmann horse im-
ages and Berkeley segmentation dataset, showing advan-
tages over pure contour or region based approaches. Al-
though this paper focuses on middle-level perceptual group-
ing, we believe that our method is applicable too for higher
level tasks such as object detection where contour cues and
region cues are both helpful.

The paper is organized as follows. Section 2 discusses
relevant methods in the literature. Section 3 presents the
winding number method in detail. In Section 4, our method
is used for integrating region cue and contour cues to
achieve salient contour extraction. Experimental results are
shown in Section 6, and the conclusion is in Section 7.

2. Related work
Our work is closely related to contour grouping and im-

age segmentation. Most of the contour grouping methods
start with local edge detection e.g. [13]. Then various mid-
level to high-level cues are used to improve the accuracy.
For example, contour smoothness prior is popularly em-
ployed as a prominent contour cue [12] [24]. Contour clo-
sure prior has been addressed in [2] [14].

We will demonstrate our winding number method un-
der the graph partition framework. The general idea of
this framework is to model image pixels as a set of cou-
pled graph nodes. Image segmentation problem is trans-
formed into a graph partition problem. Notable methods
under this framework include the max-flow [7], normal-
ized cuts [18] and the ratio cut [23]. Moreover, spectral K-
means [4], Felzenszwalb et al.’s graph-based method [9],
SWA method [1] also fall under a general graph partition
framework.

There are several previous works which attempted to in-
corporate both region cues and contour cues. Intervening-
contour [10] is one of the early efforts to use local contour
strength for region segmentation. This method is built into
the state of the art segmentation algorithm [3]. Yu et al. [26]
also incorporated edge information in a framework based on
Markov random field. Tabb and Ahuja integrated both cues

for low level structure detection [21]. GPAC method [20]
has shown the flexibility to accommodate both region and
contour cues in one energy function. However gradient
descend inference method is susceptible to local minimal.
Stahl and Wang [19] modified the ratio contour method [22]
by replacing the total length with total area as the denomi-
nator which resulted in segmentation of more regular shape.
Recently, [11] applied the method of [19] to superpixel
grouping problem. In setting of interactive segmentation,
[16] used a set of local consistency constraints to achieve
the boundary region consistency. In contrast, the winding
number constraints used by our method is a set of global
constraints. The winding number concept not only leads to
smaller number of constraints, but also makes the frame-
work potentially applicable to multiple-label segmentation,
although not demonstrated in this paper.

Finally, the concept of winding number (rotation index)
has been used for ensuring contour topology in [8]. Dif-
ferent from their method, our method use this concept to
ensure the region/contour consistency.

3. Winding number representation

This section first presents our salient contour extrac-
tion problem setting, which is based on superpixel over-
segmentation. Section 3.2 gives a high level description of
our method. Section 3.3 presents the main idea of our wind-
ing number-based method.

3.1. Basic edge and region hypotheses

We formulate the salient contour extraction problem as
an energy minimization problem defined on both region and
edge hypotheses. We choose superpixel over-segmentation
as a means to provide sufficient edge and region hypothe-
ses. Each superpixel provides an atom region hypothesis.
We fit the boundary of each superpixel into a number of
edge-elements. For each element, two oppositely directed
(bi-directional) edge hypotheses called conjugate edges are
introduced. It is important to note that our winding num-
ber formulation is not restricted to the superpixel setup, but
applies to general boundary-region graph as well.

3.2. High-level description of our method

let x = {xi|i = 1...Nr} denote the labels of Nr atom
regions, and y = {yj |j = 1...Ne} denote the labels of
Ne edges. Each region can have one of the integer labels
from a predefined label set. The label space of all region
variables is denoted as X . The edge label space is denoted
as Y = {0, 1}Ne . Generally, the salient contour detection is
formulated as the following energy-minimization problem:



min
x,y

E(x,y) (1)

s.t. ΦW (x,y) = 0 (2)
ΦC(x,y) = 0 (3)
x ∈ X ,y ∈ Y (4)

where the energy function E captures various region priors
and contour priors. Particular form of the energy function
is not the concern of this work.

Our main contribution of this paper is the introduction
and construction of a compact set of “winding number con-
straints”, Eq (2) in the above formulation, which captures
the consistency relationship between edge variables and re-
gion variables. The edge continuity constraints Eq (3) is
necessary for ensuring the edges forms cycles in the graph.
These constraints together ensure that the obtained edge and
region labeling result to be topologically valid and seman-
tically meaningful. The specific consistency condition used
in this paper requires that:

If an edge is active, its adjacent (i.e. incident) regions
must have different region labels; if two adjacent regions
have different labels, one of the edge elements in-between
must be active.

This condition guarantees that every edge must be a part
of a closed region boundary, and every region is enclosed by
a boundary (or contour). Conversely, violating this condi-
tion will lead to the break of contour connectedness/closure
condition, as shown in work [2]. Next section will show that
this condition is guaranteed by our constraint sets based on
the winding number concept.

3.3. Winding number and its fast computation

We realize that the winding number concept, from topo-
logical study, provides an elegant and effective means to pa-
rameterize the region-contour consistency constraint in im-
age segmentation.

The winding number of a point induced by a closed curve
is defined as the number of times this curve travels around
the point counterclockwise [15]. For a set of contour, the
induced winding number can be defined as the sum of wind-
ing numbers induced by every contour. Provable by the cel-
ebrate Residue Theorem [15], the winding number of all
the image points inside an atom region must be all equal.
Based on this remarkable result, we reach our winding num-
ber constraint, viz.

The label of a region can be identified by its winding
number induced by contour.

Winding numbers in region segmentation are not unique.
Different partitions lead to different winding numbers.
Figure-2 illustrates how different contour labels result in
different segmentations. We emphasize that the winding
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Figure 1. Winding numbers induced by a set of closed contours.
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Figure 2. The top row shows an image of two circles. The rest
of the figure shows different segmentations induced by different
contour orientation. The winding numbers are shown in respective
regions. Regions with the same winding number are considered as
in the same region.

number constraints, unique or not, guarantee the consis-
tency between region labels and the corresponding contour
labels. First of all, the winding numbers of adjacent re-
gions will be different if one of the conjugate edges be-
tween them is active.1 Secondly, the Residue Theorem also
suggests that two regions which are not separated by any
edges must have the same winding number. In other words,
these two regions cannot have different labels. In conclu-
sion, this winding number scheme does encode the region-
contour consistency condition compactly and efficiently.

The benefit of such winding number scheme also lies
in that: it leads to a set of linear constraints. This can be
made evident by examining the fast computation procedure
of winding number computation (c.f. [15]). Given an im-
age, consider everything outside the image frame (image
border) is void. We assign a label of zero (0) to that part.
Then we draw an arbitrary path starting from inside a region
to outside of the image frame, then the winding number of
the region equals to the number of edges crossing the path
from the right side minus the number of edges crossing from
the left side. This fast computation procedure is illustrated

1If both of the conjugate edges are active, the two regions must share
the same label in the same way as when both edges are inactive.
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Figure 3. Fast winding number computation. Draw an arbitrary
path to outside of the image frame, the winding number of a point
equals the number of edges crossing from right (red dot) minus the
number of edges crossing from the left (green dot).

in Figure 3. Formally, the winding number of the region i
is computed as:

xi =
∑
α∈Pi

yα −
∑
β∈Ni

yβ , ∀i (5)

where Pi and Ni are the edges crossing from right to left,
and edges crossing from left to right, respectively. Eq (5) for
all atom regions together can be represented as the follow-
ing winding number constraint, denoted as ΦW in Eq (2):

x = My, (6)

where M is a matrix whose entries are 0, 1, or −1.
To ensure that the extracted contour form cycles, we in-

troduce the edge-continuity constraint:∑
i∈jin

yi =
∑
i∈jout

yi, ∀j ∈ V, (7)

where j is one index of the vertex index set V . jin and
jout denote the edges indices heading into and moving out
of the vertex j, respectively. These edge continuity con-
straints for all vertices are denoted as ΦC(y) = 0. These
constraints say that the net flow at every vertex is zero. For
a network without source and sink, it can be shown that all
the flows can be decomposed into a set of cycles and the
winding number can be computed. 2

For a general K-way cut problem, the winding num-
ber constraint may restrict the feasible set of region la-
bels. However, for the figure-ground segmentation problem,
which is of interest to this paper, the following proposition
shows that the winding number constraints do not restrict
the solution of segmentation at all.

Proposition 1. For any segmentation in which the regional
labels can only be zero and one, there always exists a set of
oriented boundaries such that the regional labels equal the
winding numbers induced by the set of boundaries.

2The degenerate cycle formed by conjugate edges cannot be excluded
by these constraints. However, they do not affect correctness of the wind-
ing number computation.

Proof. First of all, we assume that edges do not overlap and
each edge is only adjacent to two regions. If the assumption
is not valid, the edges can be divided into smaller segments
to satisfy the assumption. Then, for an atom region whose
label is one, we set a cycle of its adjacent edges in counter-
clockwise direction to be active. This cycle of edges will
induce a winding number one to this region, and a winding
number zero to other regions. Since edges are not shared by
more than two regions, this operation can be done to every
atom region without conflict. Consequently, every atom re-
gion in the foreground has a winding number one. Last, the
conjugate edges which are both active can be removed with-
out affecting the winding number of any region. Therefore,
the resulted contour is the one consistent with the given seg-
mentation.

4. Ratio-Contour with region cue
The rest of the paper is focused on solving the figure-

ground segmentation problem as a special case of Eq (1).
Ratio-based contour detection and segmentation methods
have been studied in [22] [19] [11] [17]. Using the con-
tour cue, the objective function can be the ratio of contour
gap over total contour length or figural areas. Here, we use
ratio-based method as an example to demonstrate the effec-
tiveness of our winding number scheme. In Section 4.1,
we will show how the contour gap information is integrated
with the region similarity cue. Section 4.2 will explain how
curvature cue is integrated.

4.1. Incorporation of region similarity cue

The contour-based energy function our method adopts is
a ratio between the contour gap and the areas of foreground,
defined as ([19]):

EB(y)

A(x)
(8)

The boundary term measures the gap in the contour:

EB(y) = αb
∑
i

viyi (9)

where vi is the gap length in edge i. The parameter αb con-
trols the strength of the boundary term. This term will favor
the foreground with a salient boundary. The denominator is
the total areas of the foreground:

A(x) =
∑
i

aixi (10)

where ai is the areas of region i. In their work, the areas are
converted into second edge weights of a graph, and the op-
timal solution is obtained by solving a graph cycle-finding
problem. The problem with objective function Eq (8) is that
there may be strong distracting contours inside the object or
in the background. Here region similarity term is added to



increase the accuracy of segmentation. The new objective
function is defined as:

E(x,y) =
ER(x) + EB(y)

A(x)
(11)

The new addition is the region term, defined as the sum of
the affinity between figure and ground superpixels:

ER(x) = αr
∑

(i,j)∈PR

wij |xi − xj | (12)

where PR denotes the set of pairs of region whose distance
is smaller than a threshold. The weight wij of the cut of re-
gion i and j encodes the color difference of the two regions.
αr is a parameter to control the strength of the region term
as a whole. This term favors large figure-ground contrast.

To ensure region-contour consistency, we use three sets
of constraints. The first two sets of constraints are the con-
tinuity constraints Eq (3) and winding number constraints
Eq (2). They have been discussed in Section 3. For the
figure-ground segmentation problem, it is necessary to limit
any region and edge label to be zero and one. In sum, our
ratio-based segmentation model is as follows:

min
x,y

ER(x) + EB(y)

A(x)
(13)

s.t. ΦW (x,y) = 0

ΦC(y) = 0

x ∈ X ,y ∈ Y

where the label spaces are defined as X = {0, 1}Nr and
Y = {0, 1}Ne . Although Eq (13) is good enough for en-
suring the region-contour consistency, the formulation can
be further simplified by replacing region labels with edge
labels using Eq (6). As a result, our problem formulation
depends on edge variables only.

min
y

ER(My) + EB(y)

A(My)
(14)

s.t. ΦC(y) = 0

My ∈ X
y ∈ Y

4.2. Incorporation of curvature cue

Recognized as the Gestalt law of good continuity, hu-
man vision systems have the preference for grouping the
smooth contours together. Our method can be extended to
encode such curvature prior. The smoothness of contour is
traditionally measured by integral of squared curvature of
all the contour points. Let PE denote the indices of all pairs
of edges sharing one vertex. The binary junction variable
zij is associated with the junction formed by edge yi and
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Figure 4. Our junction model. The first figure shows one junction
detected in the image. The second figure shows the 6 variables
representing the associated edges. The third and forth figures show
two possible L-junctions if edge y2 is active.

yj . Let z = {zij |(i, j) ∈ PE} denote all Nj junctions
variables, and Z = {0, 1}Nj is the label space of junction
variables. In our model, the total curvature cost is defined
as:

EC(z) = αc
∑

(i,j)∈PE

uijzij (15)

where the parameter αc controls the strength of the curva-
ture term as a whole.The curvature weight uij is the sum of
squared curvature along both edges. In [11], only the cur-
vature cost within the edge fragments is taken into account.
However, our curvature term also penalizes the sharp turns
at the junctions.

Our junction model is illustrated in Figure 4. To ensure
correct junction configuration, a set of junction constraints
are devised, denoted as ΦJ(y, z) ≤ 0. These constraints are
adapted from the connectedness constraints for undirected
edges [14]. These constrains consist of two parts. First,
every active edge should form transition to at least one edge
whose tail connects to the head of the current edge. Second,
every junction variable can be active only when both of its
associated edges are active. The junction constraints are
translated into the following linear inequities:∑

j|(i,j)∈PE

zij ≥ yi, ∀i (16)

zij ≤ yi, ∀(i, j) ∈ PE (17)
zij ≤ yj , ∀(i, j) ∈ PE (18)

The inequities (16) correspond the first part of junction con-
straint. The inequities (17) (18) correspond to the second
part of junction constraints. In sum, our ratio-based seg-
mentation model is as follows:

min
x,y,z

ER(x) + EB(y) + EC(z)

A(x)
(19)

s.t. ΦW (x,y) = 0

ΦC(y) = 0

ΦJ(y, z) ≤ 0

x ∈ Y,y ∈ Y, z ∈ Z



Figure 5. An example in which the curvature term affects our
model’s output. The first image is the input image. The second
image shows the output without curvature term. Last image shows
the output using curvature term. (Better viewed in color.)

The effectiveness of adding curvature term is illustrated
by the example in Figure 5. The left is the input image.
Two shapes have comparable sizes. The star is favored by
the boundary term and the region term due to its stronger
contrast to background. Therefore, the model without the
curvature term chooses the star as the figure as shown in
the middle of Figure 5. When curvature term is added, the
smoother disk is extracted as shown in the right of Figure 5.

4.3. Inference by linear relaxation

The energy minimization problems Eq (13) and Eq (19)
of our model are nonlinear integer programming. In the
following, they are relaxed into linear programs which can
solved in polynomial time. First, the domain of all the labels
is relaxed to be interval [0, 1]. Second, note that all the terms
in the objective function are linear except for ER which is
the sum of the absolute values according to Eq (12). Each
absolute value |xi − xj | is replaced by a variable tij , and
two constraints which are tij > xi − xj , and tij > xj −
xi. Then our model becomes a standard linear fractional
program (20). Since the denominator representing the total
areas is the strictly positive, the fractional program can be
transformed into a linear program [6]. In general, the linear
fractional program is written as follows:

min
ξ

cT ξ + d

eT ξ + f
(20)

Aξ = b

ξ ≥ 0

where the real-valued vector ξ here refers to all the vari-
ables, and A to f are constants. The denominator is posi-
tive, i.e. eT ξ+ f > 0. Let η = ξ

eT ξ+f
,τ = 1

eT ξ+f
, then the

equivalent linear program is:

min
η,τ

cT η + dτ (21)

Aη = bτ

η ≥ 0

eT η + fτ = 1

The solution of the fractional program can be obtained as
ξ = η/τ . The ξ is not necessarily integral in general. How-
ever, in our experiments the solutions are usually very close
to be integral.

4.4. Implementation details

The boundary gap measure vi in Eq. (9) equals to the
number of edge pixels in the segment minus the sum of the
probability of each edge pixel being a true contour point.
The probability is estimated according to [11]. The re-
gion affinity wij measure in Eq. (12) is the sum of the
similarity of all pairs of pixels in these two regions, i.e.
wij =

∑
pq|p∈i,q∈j w(p, q). The pixelwise weight w(p, q)

is computed based on the similarity of pixel color and loca-
tions using a RBF kernel.

We use the LP SOLVE library to solve the linear pro-
gramming problem. An image is usually oversegmented
into 300 to 400 superpixels, and our algorithm consists of
ten to twenty thousand variables and thirty to forty thou-
sands of constraints. LP SOLVE solves the problem in
about twenty seconds on a modest laptop with Intel 2G Cen-
trino 2 core processor/3G RAM.

5. Extension to other objective functions
Other well established objective function such as nor-

malized cuts can also be transformed into a function based
on the edge labels. Although this objective function is more
difficult to optimize, it is included in this paper for com-
pleteness. The objective function of normalized cuts [18] is
defined as:

min
x∈X

∑
ij wij |xi − xj |

(
∑
i wixi)(

∑
i wi(1− xi))

(22)

where wij are affinity between superpixel i and j. The la-
bels xi and xj are binary. The parameter wi =

∑
j wij

denotes the volume of xi. x denotes all the region labels.
The transformation leads to the following problem:

min
y

∑
ij wij |mT

i y −mT
j y|

(
∑
i wim

T
i y)(

∑
i wi(1−mT

i y))
(23)

s.t. ΦC(y) = 0

My ∈ X
y ∈ Y

6. Experiments
To demonstrate the effectiveness of combining region

and contour information, our method is compared with
the superpixel closure method (SC for short) [11] and
the normalized cuts [18] (Ncuts) on the Weizmann horse
dataset [5]. Then we show sample results on BSDS 300
dataset. These results show that our method achieves better
results than methods only using region or contour cue.

6.1. Comparison with the SC and Ncuts methods

The normalized cuts is a popular segmentation method
based on pairwise regional affinities. Similar region cue is



used in our region term. Paper [19] proposes a cost func-
tion which is the ratio of contour gap over areas. The SC
method, in the standard form, optimize this cost function on
superpixels edges. The cost function in [19] is used as the
boundary term in our model, and our method used the same
set of input superpixels as SC. In this experiment, the cur-
vature term is not used and the weight between the region
term and boundary term is fixed by a validation set.

The image set contains salient unoccluded horses in the
middle of image. However, obtaining a complete contour
of horses is still challenging due to several reasons. For
example, there are strong distracting contours in the back-
ground and inside the horse region. True contours on the
other hand may be faint or missing because of low contrast
with the background region. Since the horses usually are
not camouflaged, we expect the incorporation of region cue
will be helpful in obtaining cleaner contour.

Both SC and our method was initialized on the Pb
detection results. The Ncuts implementation is obtained
from [18]. The results are shown in Figure 6. SC method
outputs ten solutions for each image, the best one is shown
in the figure. We can see that the our model’s outputs better
separate the horse region from the background. In the SC’s
outputs, the legs are often connected as a single blob re-
gion. However, the region similarity cue used in our model
helps distinguish background region from the foreground
horse region. The two-way Ncuts method often cuts out
a homogeneous background area. The ten-way segmenta-
tion results, however, tend to produce spurious edges (e.g.
those in the sky and grass). This results show that region
homogeneity cue alone is not enough for segmenting salient
foreground region. Note that our results in Figure 6 appear
to be a single contour due to the property of the objective
function. The winding number constraints, however, do not
require the solution to be a Jordan curve.

We qualitatively evaluate our method and SC using the
F-measure on 100 horse dataset images. Their model pro-
duces up to 10 solutions for each image. According to [11],
the F-value of each solution is computed by comparing the
segmentation mask with the groundtruth mask. The F-value
of an image is the best F-value of all the solutions. The av-
eraged F-value of test set converges to 76.48%. However,
as shown in [11], the performance is much worse when the
number of solution is small. Our model outputs only one
solution for each image and achieves an F-value of 74.12%.

6.2. Tests on BSDS300 dataset

Our method is also tested on the BSDS 300 dataset which
contains images of a variety of urban and natural scenes.
Our method, which aims to extract salient closed contours
is not successful for detecting occluded, obscured, or cam-
ouflaged figural objects in this dataset. However, it works
very well for images in which the foreground object/region

Image Contour Directed edges

Figure 7. Sample results on BSDS300 dataset. The first column is
the input images. The second column is the output contour over-
laid on the input images. The third column shows the directed
active edges. (Better viewed in color.)

is evident. Some sample results are shown in Figure 7. The
first column shows the original image, the second column
shows the results of contour overlaid on the image. The
third column shows the found directed active edges. These
results match our perception of salient region.

7. Conclusion and future work

A winding number based method, is introduced in this
paper for enforcing the region-contour consistency con-
straints. This model is simple and appealing, as it natu-
rally leads to a more compact set of linear constraints, and
thus is more efficient than previous methods. Our exper-
iments show that evident improvements can be made for
the task of salient contour extraction when both region cue
and contour cue are employed. In future, we are interested
in finding efficient optimization methods for more complex
objective functions and extend this method to multiple-label
segmentation.
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Our method
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Figure 6. Comparison with superpixel closure method (SC) and the normalized cuts method (Ncuts). The first row shows the input images.
The second row shows our results. The third row shows the SC results. Only the best solution of each image is shown out of 10 solutions.
The fourth row shows the 2-way segmentation result by Ncuts. The last row shows 10-way segmentation results by Ncuts. (Better viewed
in color.)
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