
Bregman Divergence and Mirror Descent

1 Bregman Divergence

Motivation

• Generalize squared Euclidean distance to a class of distances that all share similar properties

• Lots of applications in machine learning, clustering, exponential family

Definition 1 (Bregman divergence) Let ψ : Ω→ R be a function that is: a) strictly convex, b) continuously
differentiable, c) defined on a closed convex set Ω. Then the Bregman divergence is defined as

∆ψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 , ∀ x, y ∈ Ω. (1)

That is, the difference between the value of ψ at x and the first order Taylor expansion of ψ around y evaluated
at point x.

Examples

• Euclidean distance. Let ψ(x) = 1
2 ‖x‖

2. Then ∆ψ(x, y) = 1
2 ‖x− y‖

2.

• Ω =
{
x ∈ Rn+ :

∑
i xi = 1

}
, and ψ(x) =

∑
i xi log xi. Then ∆ψ(x, y) =

∑
i xi log xi

yi
for x, y ∈ Ω.

This is called relative entropy, or Kullback–Leibler divergence between probability distributions x and
y.

• `p norm. Let p ≥ 1 and 1
p + 1

q = 1. ψ(x) = 1
2 ‖x‖

2
q . Then ∆ψ(x, y) = 1

2 ‖x‖
2
q + 1

2 ‖y‖
2
q −〈

x,∇ 1
2 ‖y‖

2
q

〉
. Note 1

2 ‖y‖
2
q is not necessarily continuously differentiable, which makes this case not

precisely consistent with our definition.

Properties of Bregman divergence

• Strict convexity in the first argument x. Trivial by the strict convexity of ψ.

• Nonnegativity: ∆ψ(x, y) ≥ 0 for all x, y. ∆ψ(x, y) = 0 if and only if x = y. Trivial by strict convexity.

• Asymmetry: in general, ∆ψ(x, y) 6= ∆ψ(y, x). Eg, KL-divergence. Symmetrization not always useful.

• Non-convexity in the second argument. Let Ω = [1,∞), ψ(x) = − log x. Then ∆ψ(x, y) = − log x+

log y + x−y
y . One can check its second order derivative in y is 1

y2 (2x
y − 1), which is negative when

2x < y.

• Linearity in ψ. For any a > 0, ∆ψ+aϕ(x, y) = ∆ψ(x, y) + a∆ϕ(x, y).

• Gradient in x: ∂
∂x∆ψ(x, y) = ∇ψ(x)−∇ψ(y). Gradient in y is trickier, and not commonly used.

• Generalized triangle inequality:

∆ψ(x, y) + ∆ψ(y, z) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉+ ψ(y)− ψ(z)− 〈∇ψ(z), y − z〉 (2)
= ∆ψ(x, z) + 〈x− y,∇ψ(z)−∇ψ(y)〉 . (3)

• Special case: ψ is called strongly convex with respect to some norm with modulus σ if

ψ(x) ≥ ψ(y) + 〈∇ψ(y), x− y〉+
σ

2
‖x− y‖2 . (4)

Note the norm here is not necessarily Euclidean norm. When the norm is Euclidean, this condition is
equivalent toψ(x)−σ2 ‖x‖

2 being convex. For example, theψ(x) =
∑
i xi log xi used in KL-divergence

is 1-strongly convex over the simplex Ω =
{
x ∈ Rn+ :

∑
i xi = 1

}
, with respect to the `1 norm. When

ψ is σ strong convex, we have

∆ψ(x, y) ≥ σ

2
‖x− y‖2 . (5)

Proof: By definition ∆ψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉 ≥ σ
2 ‖x− y‖

2.

• Duality. Suppose ψ is strongly convex. Then

(∇ψ∗)(∇ψ(x)) = x, ∆ψ(x, y) = ∆ψ∗ (∇ψ(y),∇ψ(x)) . (6)

Proof: (for the first equality only) Recall

ψ∗(y) = sup
z∈Ω
{〈z, y〉 − ψ(z)} . (7)

sup must be attainable because ψ is strongly convex and Ω is closed. x is a maximizer if and only if
y = ∇ψ(x). So

ψ∗(y) + ψ(x) = 〈x, y〉 ⇔ y = ∇ψ(x). (8)

Since ψ = ψ∗∗, so ψ∗(y) + ψ∗∗(x) = 〈x, y〉, which means y is the maximizer in

ψ∗∗(x) = sup
z
{〈x, z〉 − ψ∗(z)} . (9)

This means x = ∇ψ∗(y). To summarize, (∇ψ∗)(∇ψ(x)) = x.

• Mean of distribution. Suppose U is a random variable over an open set S with distribution µ. Then

min
x∈S

EU∼µ[∆ψ(U, x)] (10)

is optimized at ū := Eµ[U] =
∫
u∈S uµ(u).

Proof: For any x ∈ S, we have

EU∼µ[∆ψ(U, x)]− EU∼µ[∆ψ(U, ū)] (11)

= Eµ[ψ(U)− ψ(x)− (U − x)′∇ψ(x)− ψ(U) + ψ(ū) + (U − ū)′∇ψ(ū)] (12)

= ψ(ū)− ψ(x) + x′∇ψ(x)− ū′∇ψ(ū) + Eµ[−U ′∇ψ(x) + U ′∇ψ(ū)] (13)

= ψ(ū)− ψ(x)− (ū− x)′∇ψ(x) (14)
= ∆ψ(ū, x). (15)

This must be nonnegative, and is 0 if and only if x = ū.

• Pythagorean Theorem. If x∗ is the projection of x0 onto a convex set C ∈ Ω:

x∗ = argmin
x∈C

∆ψ(x, x0). (16)

Then

∆ψ(y, x0) ≥ ∆ψ(y, x∗) + ∆ψ(x∗, x0). (17)

In Euclidean case, it means the angle ∠yx∗x0 is obtuse. More generally

Lemma 2 Suppose L is a proper convex function whose domain is an open set containing C. L is not
necessarily differentiable. Let x∗ be

x∗ = argmin
x∈C

{L(x) + ∆ψ(x∗, x0)} . (18)

Then for any y ∈ C we have

L(y) + ∆ψ(y, x0) ≥ L(x∗) + ∆ψ(x∗, x0) + ∆ψ(y, x∗). (19)

2

The projection in (16) is just a special case of L = 0. This property is the key to the analysis of many
optimization algorithms using Bregman divergence.
Proof: Denote J(x) = L(x)+∆ψ(x, x0). Since x∗ minimizes J over C, there must exist a subgradient
d ∈ ∂J(x∗) such that

〈d, x− x∗〉 ≥ 0, ∀ x ∈ C. (20)

Since ∂J(x∗) = {g +∇x=x∗∆ψ(x, x0) : g ∈ ∂L(x∗)} = {g +∇ψ(x∗)−∇ψ(x0) : g ∈ ∂L(x∗)}.
So there must be a subgradient g ∈ L(x∗) such that

〈g +∇ψ(x∗)−∇ψ(x0), x− x∗〉 ≥ 0, ∀ x ∈ C. (21)

Therefore using the property of subgradient, we have for all y ∈ C that

L(y) ≥ L(x∗) + 〈g, y − x∗〉 (22)
≥ L(x∗) + 〈∇ψ(x0)−∇ψ(x∗), y − x∗〉 (23)
= L(x∗)− 〈∇ψ(x0), x∗ − x0〉+ ψ(x∗)− ψ(x0) (24)

+ 〈∇ψ(x0), y − x0〉 − ψ(y) + ψ(x0) (25)
− 〈∇ψ(x∗), y − x∗〉+ ψ(y)− ψ(x∗) (26)

= L(x∗) + ∆ψ(x∗, x0)−∆ψ(y, x0) + ∆ψ(y, x∗). (27)

Rearranging completes the proof.

2 Mirror Descent
Why bother? Because the rate of convergence of subgradient descent often depends on the dimension of the
problem.

Suppose we want to minimize a function f over a set C. Recall the subgradient descent rule

xk+ 1
2

= xk − αkgk, where gk ∈ ∂f(xk) (28)

xk+1 = argmin
x∈C

1

2

∥∥∥x− xk+ 1
2

∥∥∥2

= argmin
x∈C

1

2
‖x− (xk − αkgk)‖2 . (29)

This can be interpreted as follows. First approximate f around xk by a first-order Taylor expansion

f(x) ≈ f(xk) + 〈gk, x− xk〉 . (30)

Then penalize the displacement by 1
2αk
‖x− xk‖2. So the update rule is to find a regularized minimizer of

the model

xk+1 = argmin
x∈C

{
f(xk) + 〈gk, x− xk〉+

1

2αk
‖x− xk‖2

}
. (31)

It is trivial to see this is exactly equivalent to (29). To generalize the method beyond Euclidean distance, it is
straightforward to use the Bregman divergence as a measure of displacement:

xk+1 = argmin
x∈C

{
f(xk) + 〈gk, x− xk〉+

1

αk
∆ψ(x, xk)

}
(32)

= argmin
x∈C

{αkf(xk) + αk 〈gk, x− xk〉+ ∆ψ(x, xk)} . (33)

Mirror descent interpretation. Suppose the constraint setC is the whole space (i.e. no constraint). Then
we can take gradient with respect to x and find the optimality condition

gk +
1

αk
(∇ψ(xk+1)−∇ψ(xk)) = 0 (34)

⇔ ∇ψ(xk+1) = ∇ψ(xk)− αkgk (35)

⇔ xk+1 = (∇ψ)−1(∇ψ(xk)− αkgk) = (∇ψ∗)(∇ψ(xk)− αkgk). (36)

For example, in KL-divergence over simplex, the update rule becomes

xk+1(i) = xk(i) exp(−αkgk(i)). (37)

Rate of convergence. Recall in unconstrained subgradient descent we followed 4 steps.

3

1. Bound on single update

‖xk+1 − x∗‖22 = ‖xk − αkgk − x∗‖22 (38)

= ‖xk − x∗‖22 − 2αk 〈gk, xk − x∗〉+ α2
k ‖gk‖

2
2 (39)

≤ ‖xk − x∗‖22 − 2αk (f(xk)− f(x∗)) + α2
k ‖gk‖

2
2 . (40)

2. Telescope

‖xT+1 − x∗‖22 ≤ ‖x1 − x∗‖22 − 2

T∑
k=1

αk (f(xk)− f(x∗)) +

T∑
k=1

α2
k ‖gk‖

2
2 . (41)

3. Bounding by ‖x1 − x∗‖22 ≤ R2 and ‖gk‖22 ≤ G2:

2

T∑
k=1

αk (f(xk)− f(x∗)) ≤ R2 +G2
T∑
k=1

α2
k. (42)

4. Denote εk = f(xk)− f(x∗) and rearrange

min
k∈{1,...,T}

εk ≤
R2 +G2

∑T
k=1 α

2
k

2
∑T
k=1 αk

. (43)

By setting the step size αk judiciously, we can achieve

min
k∈{1,...,T}

εk ≤
RG√
T
. (44)

Suppose C is the simplex. Then R ≤
√

2. If each coordinate of each gradient gi is upper bounded by M ,
then G can be at most M

√
n, i.e. depends on the dimension.

Clearly the step 2 to 4 can be easily extended by replacing ‖xk+1 − x∗‖22 with ∆ψ(x∗, xk+1). So the
only challenge left is to extend step 1. This is actually possible via Lemma 2.

We further assume ψ is σ strongly convex. In (33), consider αk(f(xk) + 〈gk, x− xk〉) as the L in
Lemma 2. Then

αk (f(xk) + 〈gk, x∗ − xk〉) + ∆ψ(x∗, xk) ≥ αk (f(xk) + 〈gk, xk+1 − xk〉) + ∆ψ(xk+1, xk) + ∆ψ(x∗, xk+1)
(45)

Canceling some terms can rearranging, we obtain

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk) + αk 〈gk, x∗ − xk+1〉 −∆ψ(xk+1, xk) (46)
= ∆ψ(x∗, xk) + αk 〈gk, x∗ − xk〉+ αk 〈gk, xk − xk+1〉 −∆ψ(xk+1, xk) (47)

≤ ∆ψ(x∗, xk)− αk (f(xk)− f(x∗)) + αk 〈gk, xk − xk+1〉 −
σ

2
‖xk − xk+1‖2 (48)

≤ ∆ψ(x∗, xk)− αk (f(xk)− f(x∗)) + αk ‖gk‖∗ ‖xk − xk+1‖ −
σ

2
‖xk − xk+1‖2 (49)

≤ ∆ψ(x∗, xk)− αk (f(xk)− f(x∗)) +
α2
k

2σ
‖gk‖2∗ (50)

Now compare with (40), we have successfully replaced ‖xk+1 − x∗‖22 with ∆ψ(x∗, xi). Again upper
bound ∆ψ(x∗, x1) by R2 and ‖gk‖∗ by G. Note the norm on gk is the dual norm. To see the advantage of
mirror descent, suppose C is the n dimensional simplex, and we use KL-divergence for which ψ is 1 strongly
convex with respect to the `1 norm. The dual norm of the `1 norm is the `∞ norm. Then we can bound
∆ψ(x∗, x1) by using KL-divergence, and it is at most log n. G can be upper bounded by M . So as for the
value of RG, mirror descent is smaller than subgradient descent by an order of O(

√
n

logn).

Acceleration 1: f is strongly convex. We say f is strongly convex with respect to another convex function
ψ with modulus λ if

f(x) ≥ f(y) + 〈g, x− y〉+ λ∆ψ(x, y) ∀ g ∈ ∂f(y). (51)

4

Note we do not assume f is differentiable. Now in the step from (47) to (48), we can plug in the definition of
strong convexity:

∆ψ(x∗, xk+1) = . . .+ αk 〈gk, x∗ − xk〉+ . . . (copy of (47)) (52)
≤ . . .− αk (f(xk)− f(x∗) + λ∆ψ(x∗, xk)) + . . . (53)
≤ . . . (54)

≤ (1− λαk)∆ψ(x∗, xk)− αk (f(xk)− f(x∗)) +
α2
k

2σ
‖gk‖2∗ (55)

Denote δk = ∆ψ(x∗, xk). Set αk = 1
λk . Then

δk+1 ≤
k − 1

k
δk −

1

λk
εk +

G2

2σλ2k2
⇒ kδk+1 ≤ (k − 1)δk −

1

λ
εk +

G2

2σλ2k
(56)

Now telescope (sum up both sides from k = 1 to T)

TδT+1 ≤ −
1

λ

T∑
k=1

εk +
G2

2σλ2

T∑
k=1

1

k
⇒ min

i∈{1,...,T}
εk ≤

G2

2σλ

1

T

T∑
k=1

1

k
≤ G2

2σλ

O(log T)

T
. (57)

Acceleration 2: f has Lipschitz continuous gradient. If the gradient of f is Lipschitz continuous, there
exists L > 0 such that

‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖ , ∀ x, y. (58)

Sometimes we just directly say f is smooth. It is also known that this is equivalent to

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2 . (59)

We bound the 〈gk, x∗ − xk+1〉 term in (46) as follows

〈gk, x∗ − xk+1〉 = 〈gk, x∗ − xk〉+ 〈gk, xk − xk+1〉 (60)

≤ f(x∗)− f(xk) + f(xk)− f(xk+1) +
L

2
‖xk − xk+1‖2 (61)

= f(x∗)− f(xk+1) +
L

2
‖xk − xk+1‖2 . (62)

Plug into (46), we get

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk) + αk

(
f(x∗)− f(xk+1) +

L

2
‖xk − xk+1‖2

)
− σ

2
‖xk − xk+1‖2 . (63)

Set αk = σ
L , we get

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk)− σ

L
(f(xk+1)− f(x∗)) . (64)

Telescope we get

min
k∈{2,...,T+1}

f(xk)− f(x∗) ≤ L∆(x∗, x1)

σT
≤ LR2

σT
. (65)

This gives O(1
T) convergence rate. But if we are smarter, like Nesterov, the rate can be improved to O(1

T 2).
We will not go into the details but the algorithm and proof are again based on Lemma 2. This is often called
accelerated proximal gradient method.

2.1 Composite Objective
Suppose the objective function is h(x) = f(x)+r(x), where f is smooth and r(x) is simple, like ‖x‖1. If we
directly apply the above rates for optimizing h, we get O(1√

T
) rate of convergence because h is not smooth.

It will be nice if we can enjoy the O(1
T) rate as in smooth optimization. Fortunately this is possible thanks to

the simplicity of r(x), and we only need to extend the proximal operator (33) as follows:

xk+1 = argmin
x∈C

{
f(xk) + 〈gk, x− xk〉+ r(x) +

1

αk
∆ψ(x, xk)

}
(66)

= argmin
x∈C

{αkf(xk) + αk 〈gk, x− xk〉+ αkr(x) + ∆ψ(x, xk)} . (67)

5

Algorithm 1: Protocol of online learning
1 The player initializes a model x1.
2 for k = 1, 2, . . . do
3 The player proposes a model xk.
4 The rival picks a function fk.
5 The player suffers a loss fk(xk).
6 The player gets access to fk and use it to update its model to xk+1.

Here we use a first-order Taylor approximation of f around xk, but keep r(x) exact. Assuming this proximal
operator can be computed efficiently, then we can show all the above rates carry over. We here only show the
case of general f (not necessarily smooth or strongly convex), and leave the rest two cases as an exercise. In
fact we can again achieve O(1

T 2) rate when f has Lipschitz continuous gradient.
Consider αk(f(xk) + 〈gk, x− xk〉+ r(x)) as the L in Lemma 2. Then

αk (f(xk) + 〈gk, x∗ − xk〉+ r(x∗)) + ∆ψ(x∗, xk) (68)
≥ αk (f(xk) + 〈gk, xk+1 − xk〉+ r(xk+1)) + ∆ψ(xk+1, xk) + ∆ψ(x∗, xk+1). (69)

Following exactly the derivations from (46) to (50), we obtain

∆ψ(x∗, xk+1) ≤ ∆ψ(x∗, xk) + αk 〈gk, x∗ − xk+1〉+ αk(r(x∗)− r(xk+1))−∆ψ(xk+1, xk) (70)
≤ . . . (71)

≤ ∆ψ(x∗, xk)− αk (f(xk) + r(xk+1)− f(x∗)− r(x∗)) +
α2
k

2σ
‖gk‖2∗ . (72)

This is almost the same as (50), except that we want to have r(xk) here, not r(xk+1). Fortunately this is not
a problem as long as we use a slightly different way of telescoping. Denote δk = ∆ψ(x∗, xk) and then

f(xk) + r(xk+1)− f(x∗)− r(x∗) ≤ 1

αk
(δk − δk+1) +

αk
2σ
‖gk‖2∗ . (73)

Summing up from k = 1 to T we obtain

r(xT+1)− r(x1) +

T∑
k=1

(h(xk)− h(x∗)) ≤ δ1
α1

+

T∑
k=2

δk

(
1

αk
− 1

αk−1

)
− δT+1

αT
+
G2

2σ

T∑
k=1

αk (74)

≤ R2

(
1

α1
+

T∑
k=2

(
1

αk
− 1

αk−1

))
+
G2

2σ

T∑
k=1

αk (75)

=
R2

αT
+
G2

2σ

T∑
k=1

αk. (76)

Suppose we choose x1 = argminx r(x), which ensures r(xT+1)− r(x1) ≥ 0. Setting αk = R
G

√
σ
k , we get

T∑
k=1

(h(xk)− h(x∗)) ≤ RG√
σ

(
√
T +

1

2

T∑
k=1

1√
k

)
=
RG√
σ
O(
√
T). (77)

Therefore mink=1,...,T {h(xk)− h(x∗)} decays at the rate of O(RG√
σT

).

2.2 Online learning
The protocol of online learning is shown in Algorithm 1. The player’s goal of online learning is to minimize
the regret, the minimal possible loss

∑
k fk(x) over all possible x:

Regret =

T∑
k=1

fk(xk)−min
x

T∑
k=1

fk(x). (78)

Note there is no assumption made on how the rival picks fk, and it can adversarial. After obtaining fk at
iteration k, let us update the model into xk+1 by using the mirror descent rule on function fk only:

xk+1 = argmin
x∈C

{
fk(xk) + 〈gk, x− xk〉+

1

αk
∆ψ(x, xk)

}
, where gk ∈ ∂fk(xk). (79)

6

Then it is easy to derive the regret bound. Using fk in step (50), we have

fk(xk)− fk(x∗) ≤ 1

αk
(∆ψ(x∗, xk)−∆ψ(x∗, xk+1)) +

αk
2σ
‖gk‖2∗ . (80)

Summing up from k = 1 to n and using the same process as in (74) to (77), we get

T∑
k=1

(fk(xk)− fk(x∗)) ≤ RG√
σ
O(
√
T). (81)

So the regret grows in the order of O(
√
T).

f is strongly convex. Exactly use (55) with fk in place of f , and we can derive the O(log T) regret bound
immediately.

f has Lipschitz continuous gradient. The result in (64) can NOT be extended to the online setting because
if we replace f by fk we will get fk(xk+1)−fk(x∗) on the right-hand side. Telescoping will not give a regret
bound. In fact, it is known that in the online setting, having a Lipschitz continuous gradient itself cannot
reduce the regret bound from O(

√
T) (as in nonsmooth objective) to O(log T).

Composite objective. In the online setting, both the player and the rival know r(x), and the rival changes
fk(x) at each iteration. The loss incurred at each iteration is hk(xk) = fk(xk) + r(xk). The update rule is

xk+1 = argmin
x∈C

{
fk(xk) + 〈gk, x− xk〉+ r(x) +

1

αk
∆ψ(x, xk)

}
, where gk ∈ ∂fk(xk). (82)

Note in this setting, (73) becomes

fk(xk) + r(xk+1)− fk(x∗)− r(x∗) ≤ 1

αk
(δk − δk+1) +

αk
2σ
‖gk‖2∗ . (83)

Although we have r(xk+1) here rather than r(xk), it is fine because r does not change through iterations.
Choosing x1 = argminx r(x) and telescoping in the same way as from (74) to (77), we immediately obtain

T∑
k=1

(hk(xk)− hk(x∗)) ≤ G√
σ
O(
√
T). (84)

So the regret grows at O(
√
T).

When fk are strongly convex, we can getO(log T) regret for the composite case. But as expected, having
Lipschitz continuity of∇fk alone cannot reduce the regret from O(

√
T) to O(log T).

2.3 Stochastic optimization
Let us consider optimizing a function which takes a form of expectation

min
x

F (x) := E
ω∼p

[f(x;ω)], (85)

where p is a distribution of ω. This subsumes a lot of machine learning models. For example, the SVM
objective is

F (x) =
1

m

m∑
i=1

max{0, 1− ci 〈ai, x〉}+
λ

2
‖x‖2 . (86)

It can be interpreted as (85) where ω is uniformly distributed in {1, 2, . . . ,m} (i.e. p(ω = i) = 1
m), and

f(x; i) = max{0, 1− ci 〈ai, x〉}+
λ

2
‖x‖2 . (87)

When m is large, it can be costly to calculate F and its subgradient. So a simple idea is to base the
updates on a single randomly chosen data point. It can be considered as a special case of online learning in
Algorithm 1, where the rival in step 4 now randomly picks fk as f(x;ωk) with ωk being drawn independently
from p. Ideally we hope that by using the mirror descent updates, xk will gradually approach the minimizer

7

Algorithm 2: Protocol of online learning
1 The player initializes a model x1.
2 for k = 1, 2, . . . do
3 The player proposes a model xk.
4 The rival randomly draws a ωk from p, which defines a function fk(x) := f(x;ωk).
5 The player suffers a loss fk(xk).
6 The player gets access to fk and use it to update its model to xk+1 by, e.g., mirror descent (79).

of F (x). Intuitively this is quite reasonable, and by using fk we can compute an unbiased estimate of F (xk)
and a subgradient of F (xk) (because ωk are sampled iid from p). This is a particular case of stochastic
optimization, and we recap it in Algorithm 2.

In fact, the method is valid in a more general setting. For simplicity, let us just say the rival plays ωk
at iteration k. Then an online learning algorithm A is simply a deterministic mapping from an ordered set
{ω1, . . . , ωk} to xk+1. Denote as A(ω0) the initial model x1. Then the following theorem is the key for
online to batch conversion.

Theorem 3 Suppose an online learning algorithm A has regret bound Rk after running Algorithm 1 for k
iterations. Suppose ω1, . . . , ωT+1 are drawn iid from p. Define x̂ = A(ωj+1, . . . , ωT) where j is drawn
uniformly random from {0, . . . , T}. Then

E[F (x̂)]−min
x
F (x) ≤ RT+1

T + 1
, (88)

where the expectation is with respect to the randomness of ω1, . . . , ωT , and j.

Similarly we can have high probability bounds, which can be stated in the form like (not exactly true)

F (x̂)−min
x
F (x) ≤ RT+1

T + 1
log

1

δ
(89)

with probability 1− δ, where the probability is with respect to the randomness of ω1, . . . , ωT , and j.

Proof of Theorem 3.

E[F (x̂)] = E
j,ω1,...,ωT+1

[f(x̂;ωT+1)] = E
j,ω1,...,ωT+1

[f(A(ωj+1, . . . , ωT);ωT+1)] (90)

= E
ω1,...,ωT+1

 1

T + 1

T∑
j=0

f(A(ωj+1, . . . , ωT);ωT+1)

 (as j is drawn uniformly random) (91)

=
1

T + 1
E

ω1,...,ωT+1

 T∑
j=0

f(A(ω1, . . . , ωT−j);ωT+1−j)

 (shift iteration index by iid of wi)

(92)

=
1

T + 1
E

ω1,...,ωT+1

[
T+1∑
s=1

f(A(ω1, . . . , ωs−1);ωs)

]
(change of variable s = T − j + 1) (93)

≤ 1

T + 1
E

ω1,...,ωT+1

[
min
x

T+1∑
s=1

f(x;ωs) +RT+1

]
(apply regret bound) (94)

≤ min
x

E
ω

[f(x;ω] +
RT+1

T + 1
(expectation of min is smaller than min of expectation) (95)

= min
x
F (x) +

RT+1

T + 1
. (96)

8

	Bregman Divergence
	Mirror Descent
	Composite Objective
	Online learning
	Stochastic optimization

