Graphical Models: Modeling,
Optimization, and Hilbert Space
Embedding

Xinhua Zhang

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

March 2010

Declaration

Except where otherwise indicated, this thesis is my own original work.

g Yoo

Xinhua Zhang
March 2010

The following table gives the collaborators of each chapter, and the publications.

Chapter H Collaborators Publication
1 Douglas Aberdeen and SVN Vishwanthan | ICML 2007, (Zhang et al., 2007)
2 Thore Graepel and Ralf Herbrich AISTATS 2010, (Zhang et al., 2010a)
3 Alex Smola, Le Song, and Arthur Gretton | NIPS 2008, (Zhang et al., 2009)
4 SVN Vishwanthan and Ankan Saha NIPS 2010, (Zhang et al., 2010b)

Two other papers published but not included in this thesis are (Song, Zhang, Smola,
Gretton, & Scholkopf, 2008b) and (Cheng, Vishwanathan, & Zhang, 2008).

To my parents for their love and support.

Acknowledgements

It is finally the time to summarize my four years’ PhD research in a single coherent
document, and I would like to take this opportunity to thank all the people who helped
me along the way.

First of all, I wish to express my utmost gratitude to S. V. N. Vishwanthan, known
to all as Vishy, for his long time guidance in my research and life. Being energetic
and enthusiastic with research, Vishy has given me most valuable hand-on guidance
in both theoretical and practical problems. I still remember those long discussions
into late night, both in Vishy’s office and at his home. After becoming a faculty at
Purdue University, Vishy kindly offered me a visiting scholar position and I considerably
benefited from this visit at Purdue.

My gratitude goes to Alex Smola, who showed me how to perform creative research
and impressed me with his novel ideas. Despite the pain of following and digesting his
thoughts, it is almost always fruitful to explore in the directions Alex suggested and
this high level supervision greatly helped improve my ability to conduct independent
research.

Thank you to Douglas Aberdeen for introducing reinforcement learning to me, and
guiding me through the project of conditional random fields for reinforcement learning.
It was really a pity that Doug left NICTA after the project grew into a good shape.

Many thanks to Microsoft Research Cambridge (MSRC), who offered me a 12-week
internship from September 2008. My mentors Thore Graepel and Ralf Herbrich are
especially creative, knowledgeable and friendly to help me in both theory and practice.

Thank you to Wray Buntine for teaching me nonparametric Bayesian, and chairing
my supervisory panel after Alex and Vishy left NICTA.

My gratitude goes to the CSL/RSISE/CECS administration staff, especially Michelle
Moravec, Di Kossatz, and Deb Pioch for creating a friendly and efficient environment
for learning and research, keeping me on track, and helping me focus on research. Also
thank you to Norma Lucas at Purdue University for all the administrative help.

I have also greatly benefited from discussions with other researchers, students and
visitors of NICTA, of the Computer Sciences Lab of ANU, and of the Department of
Statistics at Purdue University. The following list is absolutely not complete: Marconi
Barbosa, Justin Bedo, Olivier Buffet, Tiberio Caetano, Dmitry Kamenetsky, Li Cheng,
Nan Ding, Markus Hegland, Jiayuan Huang, Knut Hiiper, Marcus Hutter, Quoc Viet

v

vi

Le, Novi Quadrianto, Mark Reed, Scott Sanner, Nic Schraudolph, Hao Shen, Javen
(Qinfeng) Shi, Le Song, Owen Thomas, Choon Hui Teo, Tao Wang, Chris Webers, and
Jin Yu.

I gratefully acknowledge the scholarship from NICTA, fellowship from Microsoft Re-
search Asia, Vice-Chancellor’s grant from ANU for attending conferences and visiting
Purdue University, and travel grants from Pascal, Pascal 2, ICML, and NIPS.

Xinhua Zhang
March 2010

Abstract

Over the past two decades graphical models have been widely used as powerful tools
for compactly representing distributions. On the other hand, kernel methods have been
used extensively to come up with rich representations. This thesis aims to combine
graphical models with kernels to produce compact models with rich representational
abilities.

Graphical models are a powerful underlying formalism in machine learning. Their
graph theoretic properties provide both an intuitive modular interface to model the
interacting factors, and a data structure facilitating efficient learning and inference.
The probabilistic nature ensures the global consistency of the whole framework, and
allows convenient interface of models to data.

Kernel methods, on the other hand, provide an effective means of representing rich
classes of features for general objects, and at the same time allow efficient search for
the optimal model. Recently, kernels have been used to characterize distributions by
embedding them into high dimensional feature space. Interestingly, graphical models
again decompose this characterization and lead to novel and direct ways of comparing
distributions based on samples.

Among the many uses of graphical models and kernels, this thesis is devoted to the

following four areas:

Conditional random fields for multi-agent reinforcement learning Condi-
tional random fields (CRF's) are graphical models for modeling the probability of la-
bels given the observations. They have traditionally been trained with using a set of
observation and label pairs. Underlying all CRF's is the assumption that, conditioned
on the training data, the label sequences of different training examples are independent
and identically distributed (iid). We extended the use of CRFs to a class of tempo-
ral learning algorithms, namely policy gradient reinforcement learning (RL). Now the
labels are no longer iid. They are actions that update the environment and affect the
next observation. From an RL point of view, CRFs provide a natural way to model
joint actions in a decentralized Markov decision process. They define how agents can
communicate with each other to choose the optimal joint action. We tested our frame-
work on a synthetic network alignment problem, a distributed sensor network, and a
road traffic control system. Using tree sampling by Hamze & de Freitas (2004) for
inference, the RL methods employing CRFs clearly outperform those which do not

vii

viii

model the proper joint policy.

Bayesian online multi-label classification Gaussian density filtering (GDF) pro-
vides fast and effective inference for graphical models (Maybeck, 1982). Based on this
natural online learner, we propose a Bayesian online multi-label classification (BOMC)
framework which learns a probabilistic model of the linear classifier. The training la-
bels are incorporated to update the posterior of the classifiers via a graphical model
similar to TrueSkill (Herbrich et al., 2007), and inference is based on GDF with ex-
pectation propagation. Using samples from the posterior, we label the test data by
maximizing the expected F-score. Our experiments on Reutersl-v2 dataset show that
BOMC delivers significantly higher macro-averaged F-score than the state-of-the-art
online maximum margin learners such as LaSVM (Bordes et al., 2005) and passive-
aggressive online learning (Crammer et al., 2006). The online nature of BOMC also

allows us to efficiently use a large amount of training data.

Hilbert space embedment of distributions Graphical models are also an essen-
tial tool in kernel measures of independence for non-7id data. Traditional information
theory often requires density estimation, which makes it unideal for statistical esti-
mation. Motivated by the fact that distributions often appear in machine learning
via expectations, we can characterize the distance between distributions in terms of
distances between means, especially means in reproducing kernel Hilbert spaces which
are called kernel embedment. Under this framework, the undirected graphical models
further allow us to factorize the kernel embedment onto cliques, which yields efficient
measures of independence for non-iid data (Zhang et al., 2009). We show the effective-
ness of this framework for ICA and sequence segmentation, and a number of further

applications and research questions are identified.

Optimization in maximum margin models for structured data Maximum
margin estimation for structured data, e.g. (Taskar et al., 2004), is an important task in
machine learning where graphical models also play a key role. They are special cases of
regularized risk minimization, for which bundle methods (BMRM, Teo et al., 2007) and
the closely related SVMSt*u¢t (Tsochantaridis et al., 2005) are state-of-the-art general
purpose solvers. Smola et al. (2007b) proved that BMRM requires O(1/¢) iterations to
converge to an € accurate solution, and we further show that this rate hits the lower
bound. By utilizing the structure of the objective function, we devised an algorithm
for the structured loss which converges to an e accurate solution in O(1/+/€) iterations.
This algorithm originates from Nesterov’s optimal first order methods (Nesterov, 2003,
2005b).

Contents

Acknowledgements v
Abstract vii
List of Symbols xix
1 Introduction 1
1.1 Exponential families 3

1.2 Graphical models and factorization 6
1.2.1 Markov random fields L. 6

1.3 Conditional random fields 8
1.3.1 Factorization of conditional distributions 9

1.4 Reproducing kernel Hilbert spaces for exponential families 10
1.4.1 Positive semi-definite kernels 11

1.4.2 Reproducing kernel Hilbert spaces 13

1.4.3 Kernel exponential families and decomposition 15

1.5 Learning and inference o o o 17
1.5.1 Exact methods 19

1.5.2 Message passing oo e e e 20

1.5.3 Sampling 23

1.5.4 Variational inference 23

1.6 Regularized risk estimation and optimizations 27
1.6.1 Regularized risk minimization 0. . 28

1.6.2 Survey of existing optimization algorithms 32

1.6.3 Cutting plane L 35

1.6.4 Bundle methods for regularized risk minimization 37

1.7 Outline L e 39

2 Conditional Random Fields for Multi-agent Reinforcement Learning 41

2.1

Conditional random fields and inference 42
2.1.1 Conditional exponential families 43
2.1.2 Inference and gradient computations 43
2.1.3 Tree MCMC sampler for CRFs 44

ix

Contents

2.2 Reinforcement learning L L Lo
2.2.1 Policy-gradient algorithms
2.2.2 Decentralized multi-agent RL

2.3 Conditional random fields for RL

2.4 Experimental results L Lo L
2.4.1 Grid alignment L
2.4.2 Sensor networks
2.4.3 Traffic light control oo

2.5 Conclusions e e

Bayesian Online Learning for Multi-label and Multi-variate Measures
3.1 A Bayesian model for multi-label classification
3.1.1 Multi-class classification 0oL
3.1.2 Multi-label classification 0oL
3.2 Online learning and inference
3.2.1 A Bayesian view of learning
3.2.2 Inference on the graph of a given training example with EP . . .
3.2.3 Dynamic models L
3.3 Generalization for multi-variate performance measure
3.3.1 Formulation of expected F-score
3.3.2 Algorithms for maximizing expected F-score
3.3.3 Soundness of approximate Bayesian labeling criteria
3.3.4 Efficient calculation of empirical expected F-score
3.4 Empirical evaluation oL
3.4.1 Dataset
3.4.2 Algorithms L
3.4.3 Performance measure 0oL
344 Results L

3.5 Conclusion and future directions

Kernel Measures of Independence for non-iid Data

4.1 Preliminaries of RKHS embeddings of probabilities
4.1.1 Distance between distributions L.
4.1.2 Hilbert-Schmidt independence criteria
4.1.3 Applications of HSIC

4.2 Embedding distributions with graphical models
4.2.1 Factorization of mean operators.
4.2.2 Factorization of RKHS for factorized kernels

4.2.3 Injectivity of factored mean operators

57
60
60
63
65
65
66
67
68
69
72
75
76
79
79
81
84
84
90

Contents xi

4.2.4 Factorization of independence criteria 108

4.3 Estimates for special structures Lo oL 109
4.3.1 Independent and identically distributed data 109
4.3.2 Sequence data Lo 110
4.3.3 TD-SEP as aspecial case 111
4.34 Grid structured datao oL oo 112

4.4 Experiments. e e e e e e e e e e 112
4.4.1 Independence test 113
4.4.2 Independent component analysis 115
4.4.3 Time series clustering and segmentation 116

4.5 Conclusion 120
Lower Bounds for BMRM and Faster Rates for Training SVMs 125
5.1 Preliminaries 127
5.2 Lower bounds 128
5.2.1 Concepts and notations, 129
5.2.2 Strong lower bounds Lo 131
5.2.3 Weak lower bounds Lo oL 132

5.3 A new algorithm with convergence rates O(1/y/€) 134
5.3.1 Convergence rates it e 136
5.3.2 A linear time algorithm for simple QP 137
5.3.3 Other versions of Neseterov’s algorithms 140

5.4 Structured output space 141
5.4.1 Margin scaled maximum margin Markov network 142
5.4.2 Efficient projection onto factorized simplex 144

5.5 Experimental resultso L Lo 147
5.6 Discussion and conclusions Lo Lo 149
Fundamentals of Convex Analysis 155
A.1 Convex set and convex function oL L. 155
A.2 Fenchel conjugate 157
A.3 Convex analysis for the log partition function 160
Message Update Formulae of Expectation Propagation 167
B.1 Preliminaries: canonical parametrization of multi-variate Gaussians . . . 167
B.2 EP updates for all factors in Figure 3.1 168
B.3 Message passing for the max factor 172
B.3.1 Mathematical formulation of messages 172
B.3.2 Moments of the maximum of multiple Gaussians 175

xii Contents

C Detailed Result of Empirical Optimal Threshold 183
D Modeling Hierarchies in Labels 189
E Statistical Estimation and Concentration of Measure 191
E.1 Desirable statistical properties of estimators 191
E.2 U-Statistics for #d observations 0oL 193
E.3 Statistics for non-iid observations Lo 195
E.4 Mixing coefficients using Markov properties 198
E.4.1 Bounds on |A,||,, using Markov property 199

E.5 Concentration of measure with function space 202
E.5.1 Rademacher averages, 203

E.5.2 Extension to non-itd observations. 204

F Proof for Proposition 44 205
F.1 Finite linear combination, 205
F.2 Limit of linear combination 206
F.3 Proofof Lemma 92 207

G Incomplete Cholesky Decomposition for HSIC-Struct 211
H Detailed proof for Theorem 57 213
H.1 Example Dataset and Initial Few Steps. 213
H.2 Asymptotic Rates. 215

H.3 Proof of Theorem 93 s 216

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

1.7

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1
3.2

3.3
3.4

3.5

3.6

Structure of introduction.o 3
2-D Grid CRF. X;; are observations and Y;; are latent states. 10
Example factor graph o o oo 20
Simple break of injectivity oo o 25
Imaginary break of injectivityo oL 25
0-1 loss, hinge loss, logistic loss and exponential loss for binary classifi-

cation. L e e e e 30
Slack rescaling and margin rescaling. 0L 31
Four different partitions of a 5-by-6 CRF. Nodes in shaded and white

regions are the two trees and the small black circles represent observations. 44
Abstract grid alignment domain. 50
Average reward over the last 1000 steps, and iterations to optimality. . . 51
Sensor network domain with 8 sensors, 2 targets, and 3 cells. 52
Results over 100 runs of the Sensor Network scenario, varying the num-

ber of targets.o 53
Results over 100 runs of the Sensor Network scenario, varying the num-

berof cells. 53
Results over 50 runs of the road traffic offset scenario. The X-axis is

intersections. The left Y-axis is the travel time. 55
Convergence of NAC on the independent agents (upper curve) and on

CRF model (lower curve). The number of controllable intersections is 14. 56
A factor graph for multi-class classification. Class 2 is the true label. . . 61
A factor graph for multi-label classification via pairwise comparison.

Here class 2 and 4 are the relevant labels. 63
A factor graph for multi-label classification using max and min factors. . 64
A factor graph for multi-label classification via total ordering and a

global bias. See text for explanation. 65
A dynamic graphical model with factors between the model of two ad-

jacent examples. L Lo Lo 67
Example curves of Egﬁs(l(G)) (blue) and F-score(1(0),y*) (red) v.s. 6. 76

xiii

xiv LIST OF FIGURES

3.7 Total number of features in the training set versus the number of training
examples. L e e e
3.8 Average number of non-zero features per example versus the number of
training examples.
3.9 F-score for the category group industries.
3.10 F-score for the category group regions.
3.11 F-score for the category group topics.
3.12 industrieso e e
313 regions oL
3.14 topics
3.15 CPU time for training. L .

4.1 Graphical model for the XOR problem vy =z @ 41,
4.2 From left to right: (a) a graphical model representing iid observations,
(b) a graphical model for first order sequential data, and (c) a graphical
model for dependency on a two dimensional mesh.
4.3 Independence test for a Gaussian process.
4.4 Tllustration of error calculation. Red lines denote the ground truth and
blues line are the segmentation results. The error introduced for segment
Ry to R} is a + b, while that for segment Ry to R is ¢ + d. The overall
error in this example is then (a +b+c+d)/4.
4.5 Segmentation results of BCI dataset produced by (a) structured HSIC,
(b) spectral clustering and (¢) HMM. In (c), we did specify 4 hidden
states, but the Viterbi decoding showed only two states were used.
4.6 Segmentation results of swimming dataset 1 produced by (a) structured
HSIC, (b) spectral clustering and (¢c) HMM.
4.7 Segmentation results of swimming dataset 2 produced by (a) structured
HSIC, (b) spectral clustering and (¢) HMM.
4.8 Segmentation results of swimming dataset 3 produced by (a) structured
HSIC, (b) spectral clustering and (¢) HMM.

5.1 hi(A) « o o o
5.2 Primal function error versus number of iterations..
5.3 Primal function error versus time.
5.4 Test accuracy versus number of iterations.

5.5 Test accuracy versus time. L. Lo oo

B.1 Recursively apply the max of two Gaussians in a chain structure to

compute the max of n Gaussians.

85
86

LIST OF FIGURES XV

B.2 Recursively apply the max of two Gaussians in a tree structure to com-
pute the max of n Gaussians. 176

B.3 Relationship among symbols. Those without inbound arrows can be
computed directly from @ and X. L. 180
C.1 Example curves of Egﬂ?s(l(ﬁ)) (blue) and F-score(1(0),y*) (red) v.s. 6. 183
C.2 Example curves of E;(ﬁs(l(G)) (blue) and F-score(1(f),y*) (red) v.s. 6. 184
C.3 Example curves of E;p/Fs(l(Q)) (blue) and F-score(1(6),y™) (red) v.s. 6. 185
C.4 Example curves of E;};FS(I(Q)) (blue) and F-score(1(0),y*) (red) v.s. 6. 186
C.5 Example curves of Egﬂ?s(l(ﬁ)) (blue) and F-score(1(6),y*) (red) v.s. 6. 187

List of Tables

1.1
1.2
1.3

2.1

3.1

4.1

4.2

4.3

5.1
5.2

B.1

Example kernelson R™o
Loss for multi-class classification

Loss for binary classification

Learning algorithm parameters. Lower § and ~ give lower variance but
higher bias in the gradient estimation. Too small « leads to slow learn-
ing, but too large o causes zigzag which also slows down the learning.

Qnode 18 N/A for Traffic because it does not use node features.
Number of features under different sizes of idf set.

The number of times HSIC and structured HSIC rejected the null hy-
pothesis. L L
Median performance of ICA on music using HSIC, TDSEP, and struc-
tured HSIC. In the top row, the number m of sources and n of sam-
ples are given. In the second row, the number of time lags 7 used by
TDSEP and structured HSIC are given: thus the observation vectors
Tt, Ti—1,- .., Tty were compared. The remaining rows contain the me-
dian Amari divergence (multiplied by 100) for the three methods tested.
The original HSIC method does not take into account time dependence
(t = 0), and returns a single performance number. Results are in all
cases averaged over 136 repetitions: for two sources, this represents all
possible pairings, whereas for larger m the sources are chosen at random
without replacement. e

Segmentation errors by various methods on the four studied time series.

Dataset statistics. n: #examples, d: #features, s: feature density.
Afordatasets.

Correspondence Between Symbols in This Report and in (Afonja, 1972).

xvii

List of Symbols

AFPE

§®T & D 4O

qe
3

MRF¢q
X1Y|Z

KL(p, q)

Index set {1,2, ..o e 3
Set of positive real numbers (0,00) 3
Set of non-negative real numbers [0,00)ol 3
Vector of sufficient statistics ... 3
Transpose of Matrix or VveCtoriiiiii ... 3
Sample space, or space of feature vectors 3
Natural parameter e 3
Number of features i 3
Base measure of exponential family of distributions 3
The set of @ for which g(0) < 400 ... 4
Exponential family generated by ¢ 4
Log partition function i 3
Infinitely differentiable 4
Markov random field corresponding to graph G 6
Random variable X is independent of Y given Z 6
Set of maximal cliquesc.. i 7
Kernel function ... 11
Set of natural numbers: {1,2,...} 12
NULO = {0,1,2, .} oo 12
d(-) = 11if - is true, and 0 otherwise, 12
Reproducing kernel Hilbert space (RKHS)cocoiiiiiiin... 14
Convergence in RKHS norm i 14
Uniform convergence of functions i, 14
Space of continuous bounded functions X 14
Exponential family generated by kernel & 16
Number of data pointso 17
Cartesian product of Y for m times i 18
KL divergence from density p to density ¢: [p(m)%dm 21
Fenchel dual of function fo i 23
Marginal polytope for sufficient statistics ¢ 24
Mapping from 6 € © to the mean Eg[¢p(x)] ...t 24
Relative Interiorooiiiii e 24

xix

XX

LIST OF TABLES

d(x)
ExpFs(1)
ExpFs(1)
u[P]
MMD(P, Q)
R, (H,P)
HSIC(X,Y)
HSICy(Z})
HSIC, (2})
ks(zg,2)
Hs

CE

CCE

ke

[

R

L-l.c.qg
0-S.C.
af(w)
Aly,y")

Differential entropy of density povviiiriiiii . 24
Empirical risk of weight vector w 28
Regularizerooi 28
Ly norm, ||[Wily =D, [We| oo 28
Error at step k: J(wg) — J(W*) oo 32
BMRM with full inner solver i i 38
BMRM with line search inner solver 38
Expected long term reward under policy @ 46
Eligibility traceooo i 47
Label (sequence) for example &oviiiiiiiiiiiiiiii 60
Dirac function: §(z) =0 for all z # 0 and [po(x)dz =1 61
Expected F-score of outputting label 1 70
Empirical estimate of ExpFs(1) based on samples 74
Mean element of distribution P 94
Maximum mean discrepancy between P and Q 96
Rademacher average of H wrt P ... 96
Hilbert-Schmidt independence criteriao oo, 97
Biased estimator of HSIC 98
Unbiased estimator of HSIC i .. 99
Kernel on the subset S ... i 101
Reproducing kernel Hilbert space on subset S 101
Constant-exclusive kernel 107
Coordinate Constant-exclusive kernel 107
Ground kernel on the cliques of X 109
Hinge function [z]; :=max{0,x}o 126
RU {400} e 127
Lipschitz continuous gradient with modulus L 127
Strongly convex with modulus ol 127
The set of all subgradients of fatw 128

Discrepancy between y and y°o 141

Chapter 1

Introduction

Exponential family distributions are one of the most versatile unifying frameworks for
statistical modeling and inference. By representing probability densities as generalized
linear models, they play a key role in graphical models and conditional random fields,
and allow us to conveniently make use of rich sufficient statistics via kernelization.
Also contributing to their popularity is the ease in parameter estimation which can be
boiled down to convex optimization, and therefore a large body of existing research
results can be immediately applied.

At the very high level, this thesis is composed of the following four chapters under
the framework of exponential families. Chapter 2 studies how to use conditional expo-
nential families to learn optimal joint policies for multi-agent reinforcement learning.
Chapter 3 shows how graphical models can be used for multi-label data, and how to
learn Bayesian models from large datasets via online density filtering, based on which
multi-variate performance measures can be optimized. Chapter 4 extends the kernel
embeddings of distributions to non-7#id data, and uses graphical models to factorize
the kernel measure of independence for efficient estimation. Finally, Chapter 5 ex-
plores maximum margin estimation for exponential families, including lower bounds
for optimization and a new optimal first-order method based on Nesterov’s algorithms
(Nesterov, 2003, 2005b).

One of the key advantages of exponential families is their natural connection with
graphical models, partly thanks to the Hammersley-Clifford theorem (Hammersley &
Clifford, 1971). Over the past two decades graphical models have been widely used as
powerful tools for compactly representing distributions, and have become a powerful
underlying formalism in machine learning. Their graph theoretic properties provide
both an intuitive modular interface to model the interacting factors, and a data struc-
ture facilitating efficient learning and inference. The probabilistic nature ensures the
global consistency of the whole framework, and allows convenient interface of models
to data. Extensions to conditional models are also straightforward, e.g. conditional
random fields (Lafferty et al., 2001) which, among other applications, can be used to

coordinate multiple agents in reinforcement learning, as we will show in Chapter 3.

1

2 Introduction

In addition, exponential families also benefit from describing densities as linear
models, which paves way to kernelization and easy utilization of rich feature spaces. In
machine learning, kernel methods have been used extensively to represent rich classes
of features for general objects, and at the same time allow efficient search for the
optimal model. Interestingly, the new family of kernelized distributions can again be
factorized using graphical models. In the same spirit, kernels are recently extended to
characterizing distributions by embedding them into high dimensional feature spaces,
which leads to novel and direct ways of comparing distributions based on samples.

Chapter 4 will study its application to independence measures for non-iid data.

Besides flexibility in modeling, exponential family distributions also admit conve-
nient parameter estimation, e.g. maximum likelihood for regression. In the case of
graphical model distributions, this usually requires various operations of inference. As
exact inference is proved to be NP-hard in general, efficient approximate inference
algorithms have been extensively studied and applied with satisfactory empirical per-
formance. Chapter 3 shows an online inference algorithm for optimizing multi-label
and multi-variate performance measures. On the other hand, classification problems
usually call for a different estimator because here the probability of the true label is
only required to be the highest among all labels. This principle has led to a number of
non-logistic losses in the framework of regularized risk minimization, for which many
convex non-smooth optimizers are available. Of particular interest to the research

community is the convergence rate, which will be studied in Chapter 5.

The structure of this chapter is illustrated in Figure 1.1. We first introduce the
exponential family of distributions in Section 1.1, which will serve as a unifying frame-
work for the rest of the thesis. Then three extensions are given in the subsequent three
sections: Section 1.2 discusses graphical model decomposition using Markov random
fields, Section 1.3 describes conditional random fields, and Section 1.4 shows how to use
features from reproducing kernel Hilbert spaces for exponential families, and how the
kernelized distributions can be again factorized by graphical models. Then we move on
to parameter estimation for exponential families, and Section 1.5 shows the maximum
likelihood estimation for which various approximate inference algorithms are discussed.
Finally, we introduce regularized risk minimization framework in Section 1.6 where a
brief overview of optimization techniques is given, especially the bundle method for

machine learning.

Convex analysis will be extensively used in all parts of the thesis, and we include a

brief summary of the relevant results in Appendix A.

§1.1 Exponential families 3

— —_
Exponential family Parameter . .
L i Regularized risk
From regression
mod_els > estimation and » minimization
Section inference to classification Section 1.6
11-14 Section 1.5 :

Exponential
family
Section 1.1

Maximum
likelihood
estimator

Non-logistic
losses for
classification

Approximate Optimization
inference techniques

-

Factorization by
graphical models
Section 1.2

Conditional
models
Section 1.3

Using features
from
Hilbert space
Section 1.4

- o —

Figure 1.1: Structure of introduction.

1.1 Exponential families

Exponential families of distributions (henceforth abbreviated as exponential family)
play a key role in machine learning, and have been widely used as a general formalism
for graphical models and kernel methods. Suppose we have a random variable X
whose sample space is X. Using any arbitrary function h : X + Ry := [0, +00), one
can endow X with a measure v: dv = h(z)dz, where dz is a counting measure if X is
a discrete space, or the Lebesgue measure if X is a continuous.

An exponential family is a parametric class of probability densities with respect to
measure v. Let ¢; : X — R (i € [d] := {1,...,d}) be real valued Borel measurable
functions, and assemble ¢(x) := (¢1(x),...,¢q(x))". ¢ is also known as sufficient
statistics or features. Using any vector @ € RY which is called natural parameter, we

can define a probability density function (pdf !)with respect to dv:

p(z;8) := exp ((¢(x),0) — g(0)), (1.1)

where (-,-) denotes the inner product, and

9(8) = log / exp ((¢(x), 0)) v(da)

1Strictly speaking, when the sample space is discrete, e.g. the measure dv is a counting measure,
the p(z) is called probability mass function. Here and from now on, we will always simply use the term
pdf with slight sacrifice of mathematical rigor.

4 Introduction

ensures [p(x;0)v(dz) = 1, and is called log-partition function. Of course, this def-
inition is valid only if g(@) < oo, and we denote the set of all such 8 as O :=
{0 : g(0) < ©}. Now we define the ezponential family generated by ¢ as the set of pdf
induced by 8 € O:

Py :={p(x;0) := exp ((¢(x),0) — g(0)) : 6 € O} .

With a fixed ¢(x), each 6 indexes a particular distribution of the family Pg. Many
classes of distribution are exponential families, e.g., Gaussian, Poisson, multinomial,
x2, and Dirichlet. The statement “a class of distributions belongs to the exponential
family” is implicitly with respect to (wrt) a particular parametrization or choice of
natural parameter. For example, the 1-d Laplace distribution p(z) = 2% exp (_‘x;b#'>
(b > 0) is an exponential family with respect to % for any fixed u, and the sufficient

statistics are |z — pl:

2 1
p(xz;0) = exp ((— |z — | ,0) —log 9) , where 6 := 5
and © = Ry. But p(z) is clearly not an exponential family wrt u or (u,b) jointly. By

the same token, Cauchy, uniform, and t-distribution are not exponential families.

Exponential families have a number of desirable properties. We just list a few and
the proof can be found in any related textbook, e.g. (Brown, 1986; Dobson & Barnett,
2008). Many properties are related to convex analysis, a brief introduction to which is

provided in Appendix A.

First of all, the exponential family is closed under multiplication and division, i.e.
pq and p/q are in Py up to a normalization constant if p,q € Py, and they correspond
to addition and subtraction of natural parameters respectively?. This lends a lot of
convenience to some inference algorithms such as expectation propagation. However,

Py is not closed under addition or subtraction, and is not a convex set in general.

The log partition function g(@) is very important to exponential families. It is a
lower semi-continuous convex function (see Proposition 71 in Appendix A), hence its
domain © must also be convex. ©® may not necessarily be open, but we only deal with
open ©. Then ¢(0) is C* on O (see Proposition 74 in Appendix A), and ¢(0) is a

2As long as the resulting natural parameter is still in ©.

§1.1 Exponential families 5

cumulant generating function, i.e. for any 8 € © we have

Vo [exp(((2),0))v(dx) . | Voexp((@(r),0))v(dr)

[exp((@(z).6)v(da) — [exp((@(z),6))v(da)

_ [o) esp((9@) O)wdn)
Jexp((@(2),0))v(dr)

L)

z~p(z;0)

Vog(0) =

2
8 (0) by_** 6729(9)

90,00, (¢
- [o el 0w [6,0 exp<<¢<x>,0>>u<dx>)
= B 6@~ E (6@ E (o)

z~p(z;0) x~p(z;0) x~p(z;0)

90) [¢;(2)¢;(x) exp((¢p(x), 8))v(dz)

= COVyrp(a:0)[0i(2) D5 ()]

The step (*) where differentiation is interchanged with integral can be proven using
the dominated convergence theorem, and the detailed proof is available in Appendix
A Proposition 73.

As the covariance matrix of the random vector ¢(x) must be positive semi-definite,
the Hessian of g(@) must be positive semi-definite on the open set ©, and hence g() is
convex (Hiriart-Urruty & Lemaréchal, 1993a, Theorem 4.3.1). To further ensure strong

convexity, we need the minimality of sufficient statistics.

Definition 1 (Minimality of sufficient statistics) The sufficient statistics ¢(z) €
R? is called minimal if there does not exist a nonzero vector @ € R?, such that (¢(x), 6)

is a constant v-almost everywhere>.

Notice that the @ in this definition is not required to be in ©.

Proposition 2 (Wainwright € Jordan, 2008, Proposition 3.1) g(0) is convez in 6,

and strongly convez if, and only if, ¢ is minimal.

Proof is available in Proposition 70 in Appendix A.
In the next three sections, we will introduce three specializations and generalizations
of exponential families, namely structural factorization according to graphical models,

conditioning, and using sufficient statistics from Hilbert spaces.

3This means that the set {0 : (¢(x),0) is not constant} has measure 0 under v.

6 Introduction

1.2 Graphical models and factorization

The random variable in the previous section can be multi-variate in general, and in

such cases, two new challenges arise:

1. How to characterize the relationship between individual random variables. For

example, one key relationship is the conditional independence.

2. In the case of discrete random variables, the joint state space grows exponentially
fast with the number of variables. This poses considerable difficulty for the

computations such as marginalization and log partition function.

It turns out that conditional independence can be compactly modeled by graphical
models (Lauritzen, 1996), which also lend significant savings to the computational
tasks via factorizing the joint distribution. In this section, we will introduce one such
tool called Markov random fields.

Given a joint pdf p of multi-variate random variable (mrv) (X, Y, Z), X is said to be
independent of Y conditioned on Z (denoted as X 1l Y|Z) if p(x,y|z) = p(x|2)p(y|2).
Here the lowercase letters stand for the instantiations of the corresponding random
variable. For convenience, we will collect all the random variables in question into a
mrv X, and identify individual random variables by X;. For a subset of indices A, we
denote as X 4 the mrv consisting of all the corresponding random variables, and its
instantiation as x4 (x4 is a vector if A has more than one element, but we prefer not

to write x4).

1.2.1 Markov random fields

This section formally introduces Markov random fields as a tool for modeling condi-

tional independence.

Definition 3 (Graph separation) Given an undirected graph G = (V, E) where V
and E are the set of nodes and edges respectively, let A, B, C be disjoint subsets of
nodes. If every path from A to B includes at least one node from C, then C is said to

separate A from B in G.

Definition 4 (Markov random field) Given an undirected graph G, a Markov ran-
dom field (MRF) is defined as a set of probability distributions MRF¢ := {p(x) : p(x) >
0, Vp,x} such that for all p € MRF g and for any three disjoint subsets A, B, C' of G,
if C separates A from B then p satisfies X4 L Xp|Xc. If p € MRFq, we often say p
respects G.

§1.2 Graphical models and factorization 7

Like exponential families, MRF's are also a class of distributions. With this definition,
naturally we ask two questions: a) given a pdf, how to determine whether it is in MRF¢,
i.e. how to efficiently check all the conditional independence relationships encoded in
G; b) for all distributions in MRF¢, how their pdf should look like. It turns out
that strong results are available, and a formal description calls for the following graph

theoretic definition.

Definition 5 (Cliques and maximal cliques) A clique of a graph is a subgraph of
it where each pair of nodes is connected by an edge. The maximal clique of a graph is

a clique which is not a proper subset of another clique.
We usually denote the set of maximal cliques by C.

Definition 6 (Factorization wrt an undirected graph) A pdf p(x) is said to fac-

torize wrt a given undirected graph G if it can be written as:

px) = o [el (12)

ceC

where Y. is an arbitrary non-negative real valued function called potential functions,

and the constant Z ensures [p(x)dx = 1.

This definition gives a clear form of pdf based on the maximal cliques, which seems
to have nothing to do with the conditional independence relationships in G. However,

they are almost equivalent as stated by the next two theorems.

Theorem 7 (Factorization implies conditional independence) If a pdf p fac-
torizes according to an undirected graph G, then p € MRFgq, ie., if A, B, and C
are disjoint subsets of nodes such that C separates A from B in G, then p satisfies
X4l Xp|Xc.

This theorem is actually not hard to prove, but the converse result is more involved

and is well known as the Hammersley-Clifford theorem.

Theorem 8 (Hammersley-Clifford theorem) (Hammersley & Clifford, 1971) If
a pdf p(x) € MRFg, then p(z) must also factorize according to G, i.e., there exist
functions ¢.(x) on ¢ € C, such that

1

p(x) = exp (Z %(%)) . (1.3)
ceC

In addition to undirected graphs, the directed graphs are also widely used, but in

a different class of probabilistic models called Bayesian networks. In this thesis, most

of our attention is restricted to MRFs.

8 Introduction

Decomposed exponential families

Theorem 7 shows that if the sufficient statistics ¢ and natural parameters 6 of an

exponential family factorize onto the cliques by {¢c},cc and {0} . respectively:

p(x: 6) = exp (Z (De(ae). 0c) - g<9>) ,

ceC

then all the distributions in Py must respect G. We will write 8 = vec.ec {0.} and
¢(x) = veceee {Pe(xc)} where the operator vec concatenates vectors. The converse
does not immediately hold because the sufficient statistics ¢ are fixed, while Eq. (1.3)

allows very general log-potential functions .. However, there is a nontrivial result.

Theorem 9 (Lauritzen, 1996) If all distributions in Py respect graph G, then ¢ and
0 must factorize onto the cliques by {¢c}occ and {0c} o respectively.

In machine learning, we often need to use the data to find a distribution respecting
a known graph G. If we restrict ourselves to the exponential family with some pre-
specified sufficient statistics that factorize along the maximal cliques of G, then the
distribution is guaranteed to respect G and we only need to estimate the clique-wise

natural parameters. This gives a parametric model since ¢. are fixed.

1.3 Conditional random fields

Conditional probability plays an important role in probability and statistics. In this
section, we will show that it can also be effectively modeled by exponential families,
where factorization by graphical models is again applicable. In particular, we introduce
one such tool called conditional random fields (CRF's).

CRFs are a probabilistic framework proposed by Lafferty et al. (2001) for labeling
and segmenting data. It can be interpreted as a conditional MRF, which consists of two
types of nodes: observations X and latent states Y. MRFs model the joint distribution
p(z,y). However, in many applications, we only need a conditional model p(y|z), and
p(z) is not important. For example, in the sequence tagging problem, we are only
interested in the probability of the tags given the tokens, and we do not care about
how the tokens are generated. In other words, CRFs are a discriminative model.

By this token, CRFs can be equivalently viewed as an MRF on Y, deleting all
the nodes of X and their associated edges. As a result, the parameter estimation and
inference algorithms in the normal MRFs directly carry over without change. The
clique-wise potential functions ¢.(y.;x) are parameterized by z, allowing ¢. to be

influenced by the whole observations instead of merely local observations.

§1.3 Conditional random fields 9

This interpretation further allows us to study CRF's in the framework of exponential
family, and we begin with y being a univariate random variable. Given observation
x € X, we define a conditional distribution over label y €) parameterized by 6 € R¢

and it can be written in its canonical form as

p(y[x; 0) := exp((¢(x,y),0) — g(6]x)). (1.4)

Here, vector ¢(x,y) is the sufficient statistics and 6 is the natural parameter. g(0|x)

is the log-partition function for normalization:

9(61%) = log [expl((x.1).6))dy (1.5
y

To make the definition Eq. (1.4) valid, we require that g(8|x) < oo, and hence define

the admissible region O(x) := {6 : g(0|x) < co}. So now with a given x, we can define

a conditional exponential family (CEF) as

Pyix = {exp((@(x,y),0) — g(0]x)) : 0 € O(x)}. (1.6)

The sufficient statistics ¢(x, y) are problem specific and represent salient features of the
input observations. Of fundamental importance is that @ does not depend on x, which
gives a discriminative model (otherwise the model is essentially the same as MRFs).

In Pys, it is known that the log-partition function is also the cumulant generating
function of the CEF, e.g.:

%g(HIX) = Eypyixio) @, 9)]- (1.7)

1.3.1 Factorization of conditional distributions

More generally, we consider the case of structured output where y € Y™ (m nodes).
Then we get a counter-part of Theorem 9 for CEF, which states that for any fixed
x if the conditional density p(y|x;0) factorizes according to a graph G on y, then
the sufficient statistics ¢(x,y) decompose into terms over the maximal cliques C of G
(Altun et al., 2004b):

d(x,y) = vec{p.(x,y.)|c € C} (1.8)
p(y[x;6) = exp (Z (Pe(%,¥e), 0c) — 9(9\X)> : (1.9)
ceC

where 7. is the configuration for nodes in clique c.
CRF's are examples of CEFs with special graphs. For 1-D CRF's, the graph is a
chain, so the edge features are ¢;;1(x, i, yi+1). For 2-D grid CRFs shown in Fig-

10 Introduction

._.
I
X
N
R
X
()]
&

Tox
5
S
S

v\ 1
oaligaligaliali o
e algaligalioaliy g

Xig | Xoa Xsg

.
=
(\
(\
C‘%

<
IS

Ys4

Figure 1.2: 2-D Grid CRF. X;; are observations and Yj; are latent states.

ure 1.2, the edge features are ¢y (X, ¥ij, yirj») where nodes are indexed by double
coordinates and |i — 4’| + |j — j'| = 1. In this case, all maximal cliques have size two,
i.e., an edge between nodes has a feature associated with it. We can also associate
potentials ¢;; to single nodes Y;;. Node features represent the observation of state
available at each node, while the edge features encode the communication or consis-
tency between nodes about their features and states.

Historically, CRFs were motivated from the so-called label bias problem that was
first observed by Bottou (1991). This problem occurs when the graphical model em-
ploys local (or per state) normalization like in hidden Markov models, where at each
state the transition only compete among the possibilities from that state, without tak-
ing into account the transition probabilities in other parts of the model. Therefore,
paths whose states have fewer outgoing transitions receive improper preference. CRF's
circumvent this problem by introducing a global normalization to incorporate global
interactions, and replacing the local (normalized) transition probability with local (un-

normalized) potentials for proper scaling.

1.4 Reproducing kernel Hilbert spaces for exponential fam-
ilies

So far, we have restricted the sufficient statistics ¢(z) and the natural parameters 0
of the exponential families to be from the Euclidean space. As the pdf just requires
the inner product between ¢(z) and 6, they only need to be from an inner product
space. To facilitate convenient learning and inference (see Section 1.5), this space
needs to be endowed with richer structure, and in this section we introduce a practical
extension: complete inner product spaces where point-wise evaluation is a continuous
linear functional, i.e. reproducing kernel Hilbert space (RKHSs).

RKHSs have been used extensively in machine learning, with the following key

§1.4 Reproducing kernel Hilbert spaces for exponential families 11

advantages: a) this space of functions can be very rich which provides considerable
modeling flexibility, b) only inner product between objects needs to be defined, and
this allows us to deal with much more general objects than real vectors, such as strings,
graphs, images, and gene sequences, ¢) searching in this function space to optimize some
objective functionals can be conveniently reduced to optimization in Euclidean space.

The objective of this section is to show how RKHSs can be used to define expressive
distributions on generic object spaces via exponential families, and how they can be
decomposed wrt graphical models. Most results will be given in Section 1.4.3. To
this end, we first introduce the necessary building blocks such as positive semi-definite

kernels in Section 1.4.1, based on which we rigorously define the RKHS in Section 1.4.2.

1.4.1 Positive semi-definite kernels

Widely used in machine learning, kernel methods first gained their popularity in maxi-
mum margin based supervised learning, especially support vector machines. Then they
were extended to unsupervised learning such as kernel principal component analysis
(Scholkopf et al., 1996), and statistical inferences on probabilities (Smola et al., 2007¢).

Intuitively, a kernel is simply a similarity measure between two objects from any
arbitrary space. Boser et al. (1992) observed that many supervised learning algorithms
depend on training examples only via the inner product of their features, which es-
sentially characterizes their similarity. Based on this insight, they proposed using the
kernels directly as a similarity measure, i.e. kernels implicitly induce a feature map.
The resulting feature space may be extremely rich for some kernels, and surprisingly
search in this space is tractable thanks to the representer theorem. This rich feature
space has recently been used by Smola et al. (2007¢c) to embed distributions, with the
advantage that statistical properties can be estimated by directly evaluating kernels
on samples. We will show in Chapter 4 that the feature space can be factorized wrt
graphical models, which leads to novel statistical inference tools for complex domains.

Given a nonempty space of objects X, suppose we have a map ¢ from X to a
feature space H which is Hilbert but not necessarily Euclidean. The inner product
(d(x1), p(x2)) describes somehow the similarity between z; and z3. Now our moti-
vation is to work the other way round: directly define a similarity measure k(x1, z2)

which is the inner product of some unknown and implicit feature map ¢:

k(x1,12) = (P(21), d(72))y - (1.10)

The benefit of doing so is to directly measure the similarities on complex domains (e.g.,
genes, images), which is considerably more convenient than indirectly through a feature

map ¢. The question then is what property is needed from k in order to guarantee the

12 Introduction

Table 1.1: Example kernels on R"

Name Form of k(z, ')

linear kernel (x,2))

polynomial kernel | ((z,') +)%, ¢>0,d € N

Gaussian kernel exp <—02 |z — x’HQ)

Laplace kernel exp (—o? ||z — 2'|])

Delta kernel d(z =2') (6(-) = 1if - is true, and 0 otherwise)

existence of such a ¢. Clearly, the following conditions are necessary for k:
1. Finite valued, i.e., k(x1,22) < oo for all z1,z9 € X.
2. Symmetric. k(z1,z2) = k(z2,21).

3. Positive semi-definite. For any x1,...,z, € X, letting M := (¢(z1),...,d(zn))
and K :== M "M = (k(xi,x}))ij=1,.,n, K must be positive semi-definite (PSD).

This motivates the definition of PSD kernel.

Definition 10 (Positive semi-definite kernel) A function k : X x X — R is a
positive semi-definite kernel if it is finite valued and symmetric, and for any finite set

x1,..., Ty € X, the Gram matriz K := (k(x4,2;))i j=1,..n 15 positive semi-definite.

Table 1.1 gives some examples of kernel on R™. More examples on graphs, trees, and
strings can be found in (Vishwanathan et al., 2009; Collins & Duffy, 2001; Moschitti,
2006; Haussler, 1999; Teo & Vishwanathan, 2006).

It is surprising that these necessary conditions are indeed sufficient as well. Given
a PSD kernel k, we can explicitly construct a feature map ¢ together with an inner
product in the image space, such that Eq. (1.10) is satisfied. Below we give two
examples of construction: the first example maps to a possibly infinite dimensional
Euclidean space with the normal inner product (sum of element-wise product); the
second example maps to a space of functions where the inner product is more involved.
The second example will be detailed in Section 1.4.2, and the first construction is

formally stated by Mercer’s theorem.

Theorem 11 (Simplified Mercer’s theorem) (Mercer, 1909) Let X be a compact
Hausdorff space, and let k be a continuous symmetric PSD kernel on X. Then there
must exist a sequence of functions {e;};, with e; : X — R, and a sequence of nonneg-

ative real numbers {\;};°,, such that k can be represented as:

k(xy,x9) = Z Aiei(z1)ei(z2), for all 1,29 € X, (1.11)
i=1

§1.4 Reproducing kernel Hilbert spaces for exponential families 13

where the convergence is absolute and uniform.

Remark 12 1. Eq. (1.11) implies that to satisfy Eq. (1.10) we can construct the

feature map as

p(x) = (Ve (@), Vgea (), ..,
with the inner product defined as sum of element-wise product.
2. In fact, ¢ does map to H = {3 since k(z,r) = (¢p(), d(x)),, < oc.
3. The full version of Mercer’s theorem also gives the construction of e; and \;.

4. The theorem does not cover the uniqueness and surjectivity of these maps.

In general, we can also drop the PSD condition and have indefinite kernels (Ong
et al., 2004). This thesis is restricted to PSD kernels.

1.4.2 Reproducing kernel Hilbert spaces

Associated with a PSD kernel & is a reproducing kernel Hilbert space H. It is a set of
functions which is constructed in the following three steps. First include the span of
E(z,-)* for all z € X:

H

1
2

= {Zaik‘(:ni,') :n<oo,aiER,a:i€X}. (1.12)
i=1
Second, define an inner product between f = >"" | a;k(x;,-) and g = Z;”Zl Bik (%, -):

(fg) =D ik(wiaf) = Bif(@}) = aigl(as). (1.13)
j=1 i=1

i=1 j=1

Note that although the definition depends on the specific expansion of f and g
which may not be unique, it is still well defined because the last two equalities show
that the value is independent of the coefficients «;, x;, f;, x; given f and g. The
other properties required by inner product are clearly satisfied, including symmetry,
bilinearity, and positive-definiteness ((f, f) > 0). Since (f,k(x,-)) = f(x) for all f, k
is called reproducing kernel by Aronszajn (1950).

This inner product and its induced metric further allow us to complete the space

H1. We define the completed space as the RKHS induced by k:

1.
2

H= Hi% = span {k(x;,-) : z; € X'}. (1.14)

4This is a function in - parameterized by .

14 Introduction

and the inner product defined on H: is also extended to H. So H is a Hilbert space.
2

. . H . .
In the sequel, we will write f, — f if f,, converges to f in the RKHS norm. One
key consequence of converging in RKHS norm is the point-wise convergence of function

sequence, and even uniform convergence “=3” if the kernel is bounded.

Proposition 13 If f, L1 [, then fy, converges to f point-wise. If in addition sup,cy k(z,x)
< 400, then f, converges to f uniformly: f, = f.

Proof The point-wise convergence is straightforward due to the continuity of inner

product in Hilbert space:

n—oo n—oo

lim fo() = T (fu k(@) = (Timfu k(z,2)) = (F, k2, 2) = ().

If we further have B := sup,cy k(z,z) < +00, then

sup [fn(z) = flz)| = Sup [(fn = [k()] < sup [fr = FIHIECE,)]
= /o =1l Sup Vk(z,z) <VB|fa— [l

So limy, 0 || fr. — f|l = 0 implies sup,, |fn(x) — f(x)]| > 0asn — oo, e, fp =2 f. M

Proposition 13 provides a useful way to evaluation the limit function.

There are other ways to define the RKHS associated with kernel k, see e.g., (Aron-
szajn, 1950) which motivates from operators and invoke Rietz representor theorem?
(Moore-Aronszajn theorem). Also note that H can be an infinite dimensional Hilbert
space where some “obvious” operations in finite dimensional spaces may not carry over.

Henceforth, we will use ¢(z) and k(z,-) interchangeably with the inner product
defined by Eq. 1.13 (and its extension to the closure in Eq. (1.14)). When it is clear

from context, we will also abbreviate (-,-),, and ||-||,, as (-, -) and ||-|| respectively.

Properties of RKHS

Theorem 14 (Continuous kernels) (Steinwart, 2001) Let k be a kernel on a metric
space X, and ¢ : X — H be the feature map to the RKHS of k, i.e., ¢(x) = k(x,-).

Then k is called a continuous kernel if ¢ is continuous.

Definition 15 (Universal kernels) (Steinwart, 2001) Let C(X) be a space of con-
tinuous bounded functions on a compact domain X. A continuous kernel k on X is
called universal if the RKHS H induced by k is dense in C(X) in Lo sense, i.e., for

5In fact, this style of construction will be used in Section 4.1 later.

§1.4 Reproducing kernel Hilbert spaces for exponential families 15

every function f € C(X) and every € > 0, there exists a function g € H such that
Hf - g”oo <€

Gaussian and Laplace kernels are universal, while linear and polynomial kernels
are not. Delta kernel is not continuous, so not universal. Some characterizations of
universality are available in (Steinwart, 2001) which are useful for checking whether
a kernel is universal. Many kernel based algorithms demonstrate desirable properties
when using a universal kernel.

As RKHS is an infinite dimensional space of functions, it appears hard to optimize
a functional over an RKHS. Fortunately, the representer theorem converts this search

to Euclidean space, which offers substantial convenience for machine learning.

Theorem 16 (Representer theorem) (Kimeldorf & Wahba, 1971), (Schélkopf &
Smola, 2002, Section 4.2) Denote by Q : [0,00) — R a strictly monotonic increasing
function, by X a set, and by ¢ : X" — R U {+oc} an arbitrary function. Then each

minimazer of f € H of the functional:

c(f(x1), .., flzn)) + QIFI3,)

admits a representation of the form

fla) = aik(wi, x).
=1

1.4.3 Kernel exponential families and decomposition

Combining kernels and graphical models in the framework of exponential families re-
sults in very powerful probabilistic models. On the one hand, kernels induce a very
rich feature space, which can be used to generate expressive exponential families. On
the other, the factorization of distributions by graphical models has strong connections
with the factorization of kernels (Altun et al., 2004b). This section will review their
results.

Section 1.2.1 demonstrated the connection between conditional independence and
the factorization of the density formula. Now we can extend the Hammersley-Clifford

theorem to the exponential families generated by kernels.

Definition 17 (Exponential family generated by a kernel) Let k be a kernel on
a domain X which is measurable with respect to the Lebesgue measure. Let its associated
RKHS be H. The kernelized exponential family generated by k is then defined as the

16 Introduction

following set of distributions:

Py = {p(x) =exp(f(z) —g(f)): f € H,9(f) := log/exp(f(fv))dw < OO} - (1.15)

Since f(z) = (Pp(x), f), we can view ¢(x) as the sufficient statistics, and f as the

natural parameter. k is called the generator of Py.

The benefit of kernel exponential family lies in its rich feature space. Indeed, when

the kernel k is universal, Py, must be dense in the space of “smooth bounded densities”:

Theorem 18 (Dense distribution) (Altun et al., 2004b, Proposition 3) If the kernel
k is universal, then Py is dense in the space of distributions on X whose density is con-
tinuous and whose infinity norm is finite, i.e., P(Cp) := {p € C(X) : maxzex p(x) < co}.
Moreover, for any p € P(Co) with [logp| < C and € < 1, we have |[logp — f||,, < im-
plies D(p||py) < 2e and ||p — ps| < 4ee®.

This theorem essentially says that the exponential family with universal kernels is
rich and can approximate a large class of distributions arbitrarily well in both L., and
KL divergence sense. So restricting our attention to the kernel exponential families
will not sacrifice much generality.

Now suppose the multi-variate random variable X is endowed with a graphical
model G, then for this family of distributions, we also have a result similar to the
Hammersley-Clifford theorem. Before stating the result, we define the notion of fac-

torization for kernels:

Definition 19 (Factorization of kernels) Suppose a kernel k is defined on a do-
main X, and an undirected graph G is also associated with it. Let C be the maximal
clique set of G. Then k is said to factorize wrt G if for any clique ¢ € C there is a
kernel k. on X, such that

k(x,x') = ke(xe, 20). (1.16)

ceC

It is important to contrast the meaning of “factorization” for densities and for kernels.
The former means expressing the pdf as the product of potential functions on the
cliques (see Eq. (1.2) in Definition 6). In contrast, the notion of “factorization” for
kernels is defined by the additive decomposition of kernels onto cliques. Now we can
state the key result on the equivalence between kernel factorization and conditional

independence.

§1.5 Learning and inference 17

Theorem 20 (Hammersley-Clifford Theorem for kernelized exponential families)
(Altun et al., 2004b, Lemma 5) Suppose a graph G has a mazimum clique set C. If the
kernel k defined on X factorizes according to G in the sense of Definition 19, then any
density p € Py, must respect G, i.e., for any three disjoint subsets of node A, B, C' such

that C separates A from B in G, p must satisfy X4 1L Xp|Xc.

Conversely, if all distributions in Py, respect G, then the kernel k must factorize.

Both the Hammersley-Clifford Theorem 7, 8 and the kernelized version Theorem
20 discuss the equivalence between factorization of kernels/densities and conditional

independence on a graph. However, they differ in two important ways:

1. The Hammersley-Clifford Theorem is concerned with the conditional indepen-
dence of a given distribution with respect to graph G, while Theorem 20 dis-
cusses the conditional independence for a family of distributions Pg. Both the
assumption and the conclusion are stronger in Theorem 20 than in Theorem 7, 8.
This stronger property is useful, because we usually need to search for a function
in ‘H (i.e., the natural parameter) in order to optimize some functional. This is
also the case for vanilla exponential families in Euclidean spaces without using

kernels.

2. It is clear that kernel factorization Eq. (1.16) implies density factorization Eq. (1.3).
However, the opposite is not trivial: although each all densities in P, must as-
sume the form of Eq. (1.3), the potentials ¢, can depend on the particular den-
sity. Hence, it is not obvious that there must exist a common set of clique-wise

sufficient statistics and natural parameters shared by all densities in Py.

Altun et al. (2004b) proved Theorem 20 based on the key observation that H, as a
Hilbert space, must have a set of basis (Banach spaces may not have a basis in general
(Enflo, 1973)). Note the second part of Theorem 20 only gives the existence of {k.}

while the uniqueness may not hold.

ceC?

1.5 Learning and inference

The previous three sections focused on modeling in the framework of exponential fami-
lies, and treated the natural parameters 8 as given. However, in practice, 8 is unknown

and we are only given some observations x!

, ..., X" which are “related” to the underly-
ing distribution. For the time being, we assume these observations are independent and
identically-distributed (iid) according to the underlying distribution, and extension to

non-iid observations will be discussed in Chapter 4.

18 Introduction

Our objective in this section is to estimate/infer from the observations a single 0
or a distribution of @ which best “explains” the data. The former is point estima-
tion and the latter is Bayesian estimation. Similarly for CEFs, we are given a set of
observations/label pairs {(xi,yi)}i and the task of point estimation is to find a sin-
gle conditional distribution from Py, that best explains how y depends on x. The
most straightforward schemes of point estimation are maximum likelihood or maximal

aposterior if some prior of 8 is considered. Below, we use CRF learning as an example.

A commonly used point estimator is maximum likelihood, which finds the max-
imizer of the likelihood. For exponential families with #id observations, it enjoys
asymptotic unbiasedness and normality, and is asymptotically efficient in the sense of

Cramér-Rao bound (Rao, 1973). Technically, it requires evaluating the log-likelihood:

logp ({y'}, [{x'}1,:0) = D logp(y'[x':0) = > {Z (delat, y), 0c) — g<e|xi>}
=1 =1

ceC
(1.17)
_z<z¢c L) > > oo
ceC
This formula necessitates the computation of the log-partition function:
9(61%) = log /y TT exp((6ex,), 6)dy- (1.18)

ceC

Second, to maximize the log-likelihood, many optimization algorithms require the

gradient of log-likelihood, which in our case is

gglogp({y i 1‘{X i1) Zrﬁx y') Z E [o(x,y)]

—1 y~p(y[x40)
= Zvec be(xt,yl) — E [be (X", ye)]
5 <€ Yer~vp(yelx?;0)
(1.19)

where the first step utilized Eq. (1.7) and the second step utilized Eq. (1.8). Therefore

we need to compute the mean of the sufficient statistics.

Finally, once a point estimate 8* is obtained and a new instance x is given, a
natural way of labeling is via argmax,, p(x, y; 6*). This is called decoding, or maximum

aposterior inference (MAP).

Now we summarize what operations are need from the graphical models in order to

perform parameter estimation and decoding. Given the clique-wise natural parameters

§1.5 Learning and inference 19

0. and potential functions ¢.(z.) for all ¢ € C, which implicitly determine the joint

joint pdf p(y|x), inference in CRF refers to the following four tasks:

1. Marginalization and expectations. Given a particular x, query the marginal
distribution of p(y.|x;0) for all ¢ € C. Or more generally, query the marginal
distribution of p(ys|x; @) for any index subset S. Closely related is the moments

on the cliques, i.e. the expectation of features ¢c: Ey p(y.|x:0)[@c(X; Ye)]-
2. Maximum aposterior (MAP). Query the mode argmax,, p(y|x;0).
3. Partition function. Compute Z := [}, exp (3. (¢c(X, Ye), 0c)) v(dy).

4. Sampling. Draw samples from p(y|x;).

Similar operations for unconditioned MRFs can be defined correspondingly.

Cooper (1990) proved that the problem of exact inference is NP-hard in general,
unless some assumptions on the topology are made. Roth (1996) further showed that it
is NP-hard even to approximate it in the sense that for any algorithm, there exists an
example structure for which approximate inference has to take super-polynomial time
in the scale of the topology. The complexity of exact inference often grows exponentially
with how much the graph is more densely connected than a tree (more details later),
therefore approximate inference algorithms are essential for many practical problems.
Roughly speaking, approximate inference fall into three categories: message passing,

sampling and variational inference. This section will briefly overview these methods.

1.5.1 Exact methods

Exact methods are usually based on dynamic programming and the distributive law:
Doy 2ty aiby = (300 a;) (ZTZI bj>, where the left hand side incurs mn multiplica-
tions and mn — 1 additions, while the right hand side takes only one multiplication and
n + m — 2 additions. Instead of showing the exact formula, we draw some intuitions
from computing the feature expectation in Eq. 1.19.

Letting Z be the constant normalization term exp(g(0|x)), the expected sufficient

statistics for a fixed clique c is®

IlE’p(y|x;9) [QSC(Xa yc)] = ym ¢C(X7yc)p(Y|X; O)dy
= Z_l c\ &5 Ye! c\&y Je ,05 d
R Jexp 3 (010) dy
—Z_l/ Hég(xa yz) exp (9a(x, yz), 0c) dy, (1.20)
Y™ eec

SFor notational convenience we assume componentwise multiplication of vectors in the last step of
Eq. (1.20).

20 Introduction

Figure 1.3: Example factor graph

where ¢S(x,ye) := de(x,y.) if ¢ = ¢ and a vector of ones otherwise. Note that both
(1.18) and (1.20) are in the sum-product form, which can be computed exactly by
belief propagation (BP) (e.g., MacKay, 2003, Chapter 26). Important data structures
such as junction trees (Lauritzen, 1996) and factor graphs (Kschischang et al., 2001)
have been proposed to formalize the dynamic programming based on the sum-product
form, and to apply the generalized distributive law (Kschischang et al., 2001). These
algorithms usually have time complexity O(m |y|w+1), where m is the number of nodes
and w is the tree width of the graph, i.e., the size of its largest clique minus 1 after
the graph is optimally triangulated. For trees and 1-D CRFs (chains), w = 1, so that
calculating (1.20) directly is feasible. However, for more general cases like 2-D grid
CRFs, the tree width w is prohibitively high, and one has to resort to approximate

approaches.

1.5.2 Message passing

Message passing schemes essentially propagate local factor information to the other
factors and try to achieve global consistency via enforcing local consistency. These

algorithms can be most conveniently described by using factor graphs.

Definition 21 (Factor graph) (Kschischang et al., 2001) Given a pdf which fac-
torizes onto groups of nodes: p(x) = %Hcec ve(xe), its factor graph is defined as a
bipartite graph, where one side consists the original nodes and the other side consists
of the factors given by the prescribed factorization of p. A node i is linked with a factor

c if, and only if, i is involved in the factor ¢ (i € c).

For example, given a joint distribution:

p(z1,...,w5) = fa(z1)fB(22) fo(x1, 2, 23) fp (23, 24) fE(73, 25),

the corresponding factor graph is Figure 1.3. It is clear that all graphical models can
be represented by a factor graph, whose factors are subsets of the maximal cliques.
Interpreting c as the set of nodes associated with factor ¢, one can define the scheme

called belief propagation (BP) which consists of two types of message passing on the

§1.5 Learning and inference 21

factor graph:

variable i € ¢ to factor ¢: m;_.(z;) = [T me—i(z),
cied ,d#c

factor c to variable i € ¢: mei(x;) = f(xi,xc\{i}) II mj%c(xj)> ,
Te\{i} jee\{i}
and the final marginal distribution can be obtained by p(z.) := [[;c. mi—c(xi) up to
a normalization constant. By replacing the above sum-product with max-product, the
same scheme can be used for MAP inference. This is the idea of generalized distributive

law with different semi-rings (Kschischang et al., 2001).

BP is guaranteed to converge on graphs with at most one loop (Weiss, 2000) or when
the joint distribution is Gaussian with arbitrary topology (Weiss, 2001). Unfortunately,
when there is more than one loop, no guarantee can be made on convergence, or
convergence to the true marginal. Thler et al. (2005) provided some convergence analysis
and conditions using contraction of dynamic range. In general, it is still an open issue

although loopy BP often performs well in practice.

A major progress in message passing inference was made by Minka (2001), called
expectation propagation (EP). In a nutshell, it approximates all the factors f.(x.) with
some restricted (simple) forms f.(z.) such as product of independent Gaussians, so that
the inference on the joint approximation { fc(xc)}c is tractable. The approximation
criteria is to optimize the KL divergence between the given pdf ¢ o«], fe(x.) and the
approximant p o [], fc(xc). If the approximant is restricted to exponential families,
this is equivalent to moment matching. For computational tractability, a cavity update
scheme is employed, i.e., cycle through all the factors and each time optimize the
factor’s approximation in the context of other factors’ current approximation. Here we
sketch some technical details because EP will be used extensively in Chapter 3, and

the full details can be found in (Minka, 2001).

Suppose we have a pre-specified exponential family Py for which efficient inference
is available. Now we are given an arbitrary pdf ¢ and inference is intractable on it. A
natural idea is to approximate ¢ by some distribution p(x;0) € Py, and then simply
use the marginals and partition functions etc of p(x; @) as the surrogate of those of g.

The above approximation can be in the sense of projecting ¢ to Py in KL divergence:
min KL(qg|[p(x; 0)) < min KL(q|| exp({¢(x), 0) — g(6))).
0co 6co

Taking gradient wrt 8 and equating to 0 yield the optimality condition:

EXN(] [¢(X)] = Ex~p(x;9) [¢(X)]7

22 Introduction

which means matching the expectation of features.

Now suppose the distributions have graphical model structures, and ¢ factorizes as

1
q(x) = 7 H fe(xe),
ceC
and now we naturally wish to project into Py where ¢ factorizes into veceee {de(e)}:

exp (Z (ge(c).) — g<e>>> .

ceC

. : 1
min KL(q|[p(x; 8)) ¢ minKL (ngc(@“c)
(1.21)

Although the result of moment matching still holds, it is now intractable to compute
the moment in general and in fact this is the problem we want to tackle in the first
place. This obstacle also precludes clique-wise block coordinate descent. Despite the
computational feasibility of matching the moment clique by clique independently, it
does not give good approximations unless all the cliques are disjoint.

Let us first ignore the normalizer and write f.(z.;6,) := exp((¢e(zc), 0.). EP takes
a cavity approach (Opper & Winther, 2000): cycle through all the cliques, and for each
clique ¢, find the best approximant fc of f. keeping the other current approximants fC/
(¢ # ¢) fixed, i.e.

fc($c§ 60) H fc’ (xc’§ 90’)

i KL c\&e ~c’ c’;ec’
min felae) [fo(zesb0) 33

c#c

Since only one factor from g, f., is involved, this optimization over 6, is feasible via
moment matching. Different algorithms can be derived by further assuming different
forms of the exponential family. For example, loopy belief propagation can be recovered
when each ¢, completely decomposes onto individual nodes: ¢.(z.) = veciee ¢c,i(T;).
The normalization factor can be obtained by matching the zero-th order moment, and
is usually done after the above cyclic procedure terminates.

Unfortunately, EP still has no convergence guarantee and even when it converges,
there is no guarantee that it will give the correct inference results. Again it works
pretty well in practice, and a theoretical analysis is available in (Minka, 2005) which
also provides unified comparisons with some other inference algorithms.

A simplified version of EP takes only one pass through the factors in ¢q. This is
known as assumed density filtering (ADF) (Maybeck, 1982; Opper, 1998), and is useful
for online learning where factors are revealed in a sequence and must be discarded before
the next factor arrives (for privacy or storage constraint). In general, the accuracy of

ADF is inferior to EP and is susceptible to the order in which the factors are revealed.

§1.5 Learning and inference 23

1.5.3 Sampling

In many applications, the probability p is used to compute the expectation of some
function f. Sampling tries to obtain a set of samples {xz} (typically 4id from p) to
approximate E,[f] := [f(x)p(x)dx by %sz\; f(xY). In many cases, iid samples
are hard or expensive to draw, hence Markov chain Monte Carlo (MCMC) methods
were introduced which asymptotically approach #id samples, e.g., Metropolis-Hastings
and Gibbs sampling. There is a large volume of literature on sampling methods for
machine learning such as (Doucet et al., 2001) and (Andrieu et al., 2003) and the
references therein.

Sampling from an undirected graphical model is not easy except for tree structured
graphs, and one general purpose inference engine is Gibbs sampling. After randomly
initializing the state of all the nodes to X{O), ... ,X,(lo), one randomly picks a node
X; and sample its next state conditioned on the current state of all the other nodes
Xi(l) ~ p(Xi|{XJ(O);j #i}). Keep the state X](l) = X](O) for all j # i. Next we randomly
pick a node again and sample its next state conditioned on the rest nodes’ current state.
This procedure can be run for ever and will give asymptotically independent samples
of the joint distribution. Gibbs sampling has been implemented in the the BUGS
(Bayesian inference Using Gibbs Sampling) package, which provides MCMC inference

engines for complex statistical models with significant flexibility.

1.5.4 Variational inference

Variational methods refer to the technique of posing some quantities hard to compute
as the minimal value of some functions, and then apply optimization algorithms to
it. For example, the solution of the linear system Ax = b is exactly the minimizer of
%XTAX — (b, x) if A is positive definite. For unconstrained quadratics, algorithms such
as conjugate gradient (Hestenes & Stiefel, 1952) can optimize it very efficiently.

In the same spirit, Wainwright (2002) formulated the log partition function as the
minimum of a certain function with some constraints, and its minimizer is exactly
the feature mean. This new framework allows direct application of a large body of
optimization techniques, which can be further accelerated by utilizing the structure of
the graph (e.g., Wainwright et al., 2003, 2005; Sontag & Jaakkola, 2007). Intuitively,
the key idea is the Fenchel-Young equality

g(0) = sup (0,) — g* (1)
I

where g* is the Fenchel dual of g. Now three questions arise: a) what is the domain of
g*, b) how to compute ¢g*, ¢) how to carry out the optimization. We will answer the

first two questions in the next part, and then survey some approximate algorithms for

24 Introduction

optimization.

Marginal polytope and g*

Wainwright & Jordan (2008, Theorem 3.4) showed that the domain of ¢g* is related to
the range of the expectation of ¢(x) wrt all distributions that are absolutely continuous

wrt v.

Definition 22 (Marginal polytope) Define the marginal polytope of ¢ as

My = {uwe RS 3p0, 50 [pleploman) =}

Note that the pdf p in the definition is not required to be in the exponential family
Py, however, adding this restriction is straightforward. Given 8 € ©, we are interested
in the expectation of ¢(z) under p(z; @), and formally we define a mapping Ag : © —
M as

Aamrﬁmw@n—/¢@mwwwmm.

And then we have the range of Ay mapping from ©, i.e. the space of mean parameters
wrt 7)(;5:

ro(0) = { [$lalpteian) spe P}

M is obviously convex, while Ag(©) is not necessarily convex. Hence we call Mgy
marginal polytope. Also, neither M nor Ay(©) is guaranteed to be closed. When ¢ is
clear from context, we omit the subscript ¢ in My, Ag(0), and Ag(©). A(O©) and M

are related as follows.

Proposition 23 (Wainwright & Jordan, 2003, Theorem 1) The mean parameter map-
ping A is onto the relative interior of M, i.e., A(©) = riM.

The mean parameter u = E,.,[¢p(z)] can be roughly considered as a signature of
the density p. The following is an important theorem which provides an explicit form

of the Fenchel dual of log partition function, in terms of the entropy of the distribution.

Theorem 24 (Fenchel dual of ¢(6) and entropy) (Wainwright € Jordan, 2003,
Theorem 2) For any p € 1iM, let O(u) denote an element in A='(pu). Denote as
H(p) the entropy of pdf p. The Fenchel-Legendre dual of g(€) has the form

—H(p(z;0(p)) if p € riM

9" (1) = . :
~+00 if p ¢ clM

§1.5 Learning and inference 25

01 \ 01 —> P \
#IP1 = ulQ]
R e

Figure 1.4: Simple break of injectivity Figure 1.5: Imaginary break of injectivity

For any boundary point pp € bdM := cIM\riM, we have g*(p) = lim, oo —H (p(z;6(p™))

taken over a sequence {u"} C riM converging to p.

This theorem also implies that given the mean parameter wp, the entropy of the
distribution is independent of which natural parameter is used from A~!(u). Consid-
ering that both @ and p can serve as a signature of the distribution, it is natural to
investigate their relationship which turns out to hinge on the minimality of sufficient

statistics.

Theorem 25 (Injectivity of mean mapping) (Wainwright & Jordan, 2008, Propo-

sition 3.2) The mean map A is one-to-one if, and only if, ¢(x) is minimal.

Since 6 is mapped to the marginal polytope M via the pdf p(z;0), injectivity
can break in two different ways: a) two different natural parameters giving the same
distribution, see Figure 1.4; and b) different distributions in the exponential family
giving the same mean, see Figure 1.5. The minimality assumption seems to preclude
only the first case. Fortunately, it turns out that this second map Py +— M is injective

irrespective of whether the sufficient statistics are minimal.

Theorem 26 Using the same notation as in Theorem 25, the mapping from distribu-

tion p € Py to the mean Eyp[@(x)] is injective regardless of whether ¢(x) is minimal.

Proof The proof is based on the maximum entropy interpretation of exponential
families. Suppose two pdfs p,q € Py have the same mean p. Let the pdf p* (not

necessarily in Pg) be the optimal solution of the following optimization problem:

maxi)mize H(p), s.t. Egplep(z)] = . (1.22)

Note the optimization is not restricted to Py, and the feasible region must be nonempty
since p and ¢ satisfy the constraint. Since entropy is a strictly convex functional and
the linear constraints form a convex set, the optimal solution p* is unique and is well
known to be in Pg. As the entropy of exponential family distributions can be fully
determined by its mean (Theorem 24), p and ¢ must have the same entropy as p*.

Hence they are also the optimal solutions to the problem 1.22. Then the uniqueness of

26 Introduction

solution implies p = q = p*. |

The significance of this theorem is that the mean of sufficient statistics uniquely
identifies the distribution in the exponential family, and furthermore if the sufficient

statistics are minimal, the natural parameter can also be uniquely identified.

Optimization techniques for variational inference

By Theorem 24, g*() is just the negative entropy of the distribution corresponding to
. However, the hardness of the optimization problem g(8) = sup,,c (6, 1) — g* (1)
is exhibited in two folds: a) the constraint set M is extremely difficult to characterize
explicitly; b) the negative entropy ¢* is defined indirectly, hence it lacks explicit form
in p. Therefore, one resorts to outer or inner bounds of M and upper or lower bounds

of g*. This leads to various algorithms (Wainwright & Jordan, 2008), such as

e Naive mean field. It only considers a subset (inner approximation) of M where
the mean parameter of the edges is fixed to be the product of the mean of the
two end points. This essentially assumes that all the nodes are independent, and
yields a lower bound on ¢(@). In this case, the entropy factorizes and becomes

easy to compute.

e Tree-reweighted sum-product. By noticing that the entropy of trees can be com-
puted efficiently, Wainwright et al. (2005) studied the restriction of any mean
parameter g to a spanning tree T: p(7T'). Since this restriction removes those
constrains corresponding to ignored edges, the entropy of w(7') is higher than
that of p, hence the restriction leads to a concave upper bound of (6, u) — g*(p).
Moreover, as convex combination of upper bounds is still an upper bound, it
can be tightened by further optimizing over the convex combination, e.g., the

distribution over spanning trees called spanning tree polytope.

e Log-determinant relaxation. Observing that M can be characterized by con-
straining the moments to be positive semi-definite to any order, Wainwright &

Jordan (2006) proposed a relaxation based on Gaussian approximation.

e Cutting plane. Sontag & Jaakkola (2007) proposed a new class of outer bounds on
the marginal polytope, by drawing its equivalence with the cut polytope (Bara-
hona & Mahjoub, 1986). Different from most previous methods which fix the
outer bound a priori, Sontag & Jaakkola (2007) progressively tightens the outer
bound according to the current infeasible solution. This is done by efficiently

finding a violated constraint via a series of projections onto the cut polytope.

§1.6 Regularized risk estimation and optimizations 27

1.6 Regularized risk estimation and optimizations

Parameter estimation is a key task in machine learning. Eq. (1.17) shows the max-
imum likelihood estimation for CRFs. Suppose we have a set of feature/label pairs
{(xi,yi)};, drawn iid from some underlying joint distribution. If we endow a Gaus-
sian prior on the parameter & ~ A(0,\7!'Y), then we get a maximum aposterior

estimation:

argmax logp ({yi}iq | {xi}iey:6) p(6)

A
<~ argmin—logp ({yi}/_, | {x:}7,;0) + 5aTz—la
0

VLN argminz —log p(yi|xi; @) + é07—21_10 (1.23)
o =1 2
where — log p(yilxi; 0) = — (¢(xi, 1i), 0) +log > _exp ((p(xi,7:),0)). (1.24)
Yi

Although p(y;|x;;0) is a reasonable likelihood for regression problems, reconsid-
eration is needed for classification tasks. The objective in Eq. (1.23) is essentially a
trade-off between the prior and the likelihood. However for classification, the label is
determined by argmaxp(y|x;;0). Therefore, it is no longer the case that the higher
the likelihood p(y;i|xi; @) the better: we only need p(y;|xi; @) to exceed the probability
of all other labelings, and the effort saved from increasing p(y;|x;; @) can be used for
optimizing the prior. Technically, we only need to redefine the negative log likelihood

into:

—6(y; = argznaxp(ylxi; 0)) = —(p(yilxi; 0) > p(y|xi; 0) Yy # yi) (1.25)

and the maximum a posterior estimator becomes:
= A
arg;ninz 0 (p(yilxi;0) > p(ylx;: 0) Yy # y:) + 507 57'6. (1.26)
i=1

Unfortunately, this objective function is not continuous which makes the optimization
hard. One common bypass is to replace the negative log likelihood by a convex upper

bound, e.g.

i|%i; 0)
mex {o, 1~ min m} — max {o, 1 i () ~ 9(0xi,0), e>} (1.27)

which, intuitively speaking, encourages that the odd ratio between the true label and

28 Introduction

all other labels be greater than 1. Otherwise a penalty is incurred. Now the estimator

argmianaX {O, 1 — min (¢(xi,yi) — ¢(x4,7), 0)} 4 597’2—10 (1.28)
6 Y7Yi 2

becomes a continuous and convex optimization problem in 6.
In summary, different from regression, classification problems need redefinitions of
likelihood. From Eq. (1.23), (1.26) and (1.28), we can see that the estimation becomes

an optimization problem whose objective takes the form of:
Remp(0) + AUO) = > 1(xi, 5 0) + A(6),
i=1

where Q(0) = 30"Y710, and I(x;,y;;0) can have different forms such as Eq. (1.24),
(1.25), and (1.27). Theoretically, this formulation can be as well interpreted from
the statistical learning perspective (Vapnik, 1995), where (0) is the reqularizer and
Remp(0) = >0 U(x4,y4; 0) is the empirical risk. Intuitively, the empirical risk quan-
tifies the discrepancy between the true label y; and the prediction for example x;
using the model parameter 6. The regularizer, on the other hand, measures how
compler the model is, and simple models are preferred. This intuition was known
as Occam’s razor (among other names), and has been solidly justified in theory, e.g.
Tikhonov regularization (Tikhonov, 1943, 1963), Vapnik-Chervonenkis dimension and
structural /regularized risk minimization (Vapnik, 1995), entropy or covering numbers
(Guo et al., 1999), and minimum description length (Griinwald, 2007).

This decomposition of empirical risk and regularization will motivate the general
framework of regularized risk minimization in Section 1.6.1, and we will demonstrate
how it encompasses many important machine learning algorithms. Section 1.6.2 will
survey various algorithms which optimize this functional. A specific general purpose
solver, cutting plane method, will be introduced in Section 1.6.3, and some major im-
provements will be detailed in Section 1.6.4, especially the bundle method for machine
learning (BMRM). To comply with the common notations in statistical learning theory,
we will change @ to w, meaning weight vector which also makes sense for exponential

families because the natural parameter does specify a weight on the sufficient statistics.

1.6.1 Regularized risk minimization

Besides the quadratic regularizer in Eq. (1.23), many other measures of model complex-
ity exist. For example the L; norm ||w||; := >, |w;| encourages sparse solution where
many w; are zero meaning the corresponding features are unimportant (Tibshirani,

1996; Candes & Tao, 2005). Entropy or relative entropy is also commonly used when

§1.6 Regularized risk estimation and optimizations 29

Table 1.2: Loss for multi-class classification

Name ‘ Definition

“0-1” loss 5(argmaxy€y (P(x4,y), W)) # yi)

max {0, 1 — miny2,, (d(x;,y;) — d(xi,y), W)}
= maxyey {(P(xi,y) — d(xi, ¥i), W) +(y = vi)}
logistic loss | — (p(x4, yi), W) + 10%2 ; 6XP (& (xi, 5i), W)

hinge loss

Table 1.3: Loss for binary classification

Name ‘ Definition

“0-17 loss d(sign({p(xi), W) # yi)
hinge loss max {0, 1 — y; (d(x;), W)
logistic loss log(1 + exp(i (P(x;), w)))
exponential loss | exp(—y; (p(x;), W))

w corresponds to a distribution on the features, and this prior encourages a uniform
distribution. It is noteworthy that the Lo norm and entropy are strongly convex and
smooth while L; norm is just convex but not strongly convex or differentiable.

On the other hand, empirical risk also admits a wide range of choice. In the simplest
case of the statistical query model (Kearns, 1998), it can be decomposed additively to

the loss on individual training examples I(x;, y;; w). Examples include
e Logistic loss as in Eq. (1.24) named in analogy to logistic regression,
e (-1 loss as in Eq. (1.25) which simply checks whether the output label is correct,

e Hinge loss as in Eq. (1.27) which looks at all the incorrect labels and encourages
their discriminant values to be less than the correct label’s value by at least 1

(margin).

We summarize these losses in Table 1.2.

When specialized to binary classification with y € {—1,1}, the above definitions
can be simplified by letting ¢(x;,y) := y¢p(x;)/2, and are summarized in Table 1.3.

All the four losses in Table 1.3 for binary classification are plotted in Figure 1.6.
Exponential loss is used in boosting (Hastie et al., 2009, Section 10.4). Hinge loss leads
to maximum margin models, and the commonly used support vector machine (SVM) for
binary classification is simply a combination of hinge loss and Lo regularization. Notice
that “0-1” loss is neither convex nor continuous. Hinge loss is convex and continuous

but not differentiable at one point. Logistic loss and exponential loss are both smooth,

30 Introduction

—0-1 loss
---hinge loss
27 - log loss
s exp loss
1 KN *<"~':"" 7
Ot ‘ ‘
-2) O 1 2

Figure 1.6: 0-1 loss, hinge loss, logistic loss and exponential loss for binary classification.

strongly convex, and have Lipschitz continuous gradient on any compact subset of R.
Historically, although 0-1 loss was the real objective that one wants to minimize, its
discontinuity and nonconvexity prompted people to use other convex upper bounds as
surrogates for easier optimization. The statistical consequences of these surrogates are
under research, e.g. (Bartlett et al., 2006).

More general loss functions can be defined for regression, ranking, novelty detection,
etc.. In the case of multi-class classification, the hinge loss defined above can be

generalized in two ways which can be summarized by
max {o(y,y:) (@(xi,y) — (xi, yi), W) + Ay, yi)]} -

Here A(y,y;) gives a more refined comparison between the proposed label y and the
correct label y;, characterizing to what extent the proposed label is wrong. This is much
more informative than 6(y = y;) which merely checks whether the labeling is correct.
For instance, when the output space is a sequence, A(y,y;) can be the Hamming
distance. Path distances (Dekel et al., 2004) or H-loss (Cesa-Bianchi et al., 2006) can
also be used when the output space has hierarchies or ontology. p(y,y;) yields a similar
effect of penalizing different mistakes differently, but in a different way from A(y,y;).
This can be best illustrated by using two concrete examples: a) margin rescaling where

p(y,yi) =1 and A(y,y;) = 2, and b) slack rescaling where p(y,y;) = 2 and A(y,y;) = 1:

§1.6 Regularized risk estimation and optimizations 31

A - .
4 loss margin rescaling

\
\ - -~ slack rescaling

<d(X;, ¥i) — D(Xi, y), w>

-
>

O 1 2

Figure 1.7: Slack rescaling and margin rescaling.

Name ‘ Example ‘ Proposed by

margin rescaling | max {0,2 — (¢ (xi,yi) — ¢(xi,y),w)} | (Taskar et al., 2004)
slack rescaling 2max {0,1 — (d(x;,v;) — d(xi,y),w)} | (Tsochantaridis et al., 2005)

Plotting these two rescalings in Figure 1.7, we can see that the margin rescaling
starts to penalize early but mildly: once (¢(x;, ;) — d(xi,y), w) falls below 2, it starts
to incur a unit loss for each unit gap. In contrast, slack rescaling starts to penalize only
after (¢(x;,v:) — ¢(x;,y), w) falls below 1, but once it kicks in, the penalty is severe:

two units for each unit gap.

When the output space) is equipped with a graphical model, the sufficient statistics

¢ decomposes, and furthermore Taskar et al. (2004) assumed the same factorization of
Ay, y'):

Ay, y) = Aclye, yl)-

ceC

This factorization is crucial for efficient maximum margin estimation for structured

data with margin rescaling. We will revisit it in Section 5.4.1.

Finally, non-decomposable loss functions are also common, especially in applica-
tions like information retrieval. For example, the F-score and area under ROC curve
(Joachims, 2005). Optimization for these multivariate performance measures is noncon-
vex and harder, and we will introduce an approximate method for optimizing F-score
in Chapter 3.

To summarize, from the examples above we can abstract out the reqularized risk

32 Introduction

estimation framework (RRM):

n
m“i,n J(w) = MUW) + Remp(W), where Remp(W) := 7112; U(%4,yi; W).
=

Here Q(w) is the regularizer and Remp(W) is the empirical risk. [is a loss function
measuring the discrepancy between the true label y; and the output of model w. We will
consider the optimization for this framework of problems, with special focus on strongly
convex (w) and convex (nonsmooth) Remp. This makes optimization relatively simple
(Boyd & Vandenberghe, 2004), and allows one to focus on modeling without being
entangled with numerical stability or suboptimal solutions due to local minima. In
addition, this assumption is not too restrictive as we have shown above that a large

number of machine learning models do fit in this framework.

1.6.2 Survey of existing optimization algorithms

With the RRM model well established, the next challenge is to find the optimizer
w* := argminy, J(w). Most existing solvers are iterative: generate a trace of weights
W1, Wo, ... which approaches the solution w*.

In general, a solver is evaluated against the following criteria:

1. Rate of convergence. Each wy incurs a gap in function value € := J(wy) —
J(w*). For any given precision/tolerance e > 0, we are interested in how many

steps/iterations are needed before €, can be reduced to less than e:
e = J(wg) — J(W") <e.

Typical rates include k = O (£) (p > 0) and k = O (log) (called linear conver-
gence’), and k = O (log log %) (called quadratic convergence). Different variants
of linear convergence also exist such as @-linear and R-linear (Nocedal & Wright,
2006, pp. 619-620).

2. Cost per iteration. This cost includes all types of computing and storage
resources, such as CPU time, memory, bus or hard drive 10, etc.. Comparison in
this aspect is very case specific because different computing environments may

have different resource bottlenecks, which may also vary with time.

3. Generality. Ideally a general solver is useful which can be applied to a wide
range of problems, without being restricted to the form of the objective function

or constraints. Granted that special purpose solvers can often perform better

"Not to be confused with O (%) rate.

§1.6 Regularized risk estimation and optimizations 33

by exploiting the structure of the problem, generic solvers provide a reasonable

off-the-shelf baseline which allows fast prototyping.

4. Parallelization. This could be subsumed in the above point 2. However we
highlight it because the recent revolutionary development in parallel computing
has ushered in a new era of multi-core. As the scale of machine learning applica-
tions is also growing rapidly, it will be crucial and interesting to develop learning

algorithms which make full use of parallel facilities.

Using traditional optimizers

In theory, any general solver can be used for RRM. For example, linear programming
(Vanderbei, 2008) can be used to solve L; regularized hinge loss. Interior point (IP)
has been used by Koh et al. (2006) to solve Li-Regularized logistic regression and by
Ferris & Munson (2000) to train large scale SVMs. Andrew & Gao (2007) applied
quasi-Newton methods for L; regularized log-linear models. Coordinate descent can
also be used to train SVMs with linear convergence (Tseng & Yun, 2008). The main
challenge in these methods is scalability: high dimension, highly nonsmooth objective,
and a large number of constraints, resulting from the large number of data points and
features. Therefore, they must be customized somehow to utilize the structures in the

problem.

Using mild composite structure of machine learning objectives

Instead of directly applying general optimization methods which treat the objective
function as a black box, one can slightly assume some general structure such as RRM.
The bundle method for machine learning (BMRM) by Teo et al. (2007) is one effec-
tive algorithm that progressively builds a piecewise linear lower bound of the empirical
risk, and solve the regularized model at each iteration. SVMPerf by Joachims (2005);
Joachims et al. (2009) employs a similar cutting plane scheme, and can optimize mul-
tivariate performance measures which may not be decomposable. Tsochantaridis et al.
(2005) finds the most violating constraints in each iteration for structured output data,

and this greedy update also guarantees convergence at reasonable rate.

Solvers tailored for decomposable risk

If we further specialize to decomposable risk, then a lot of decomposition methods have
been proposed in the past decade, most of which work for a specific loss/regularizer.
Sequential minimal optimization (SMO) for binary nonlinear SVM optimizes two dual
variables analytically in each iteration, and common ways of choosing the two vari-
ables implicitly require visiting the whole dataset (Platt, 1998; Keerthi & Gilbert,

34 Introduction

2002). When training structured output data with decomposable loss, exponentiated
gradient (Kivinen & Warmuth, 1995) is efficient and allows implicit clique-wise updates
(Collins et al., 2008). Primal methods are also popular, often in the form of projected
subgradient descent (Shor, 1985; Nedic, 2002; Bertsekas, 1976; Duchi & Singer, 2009).

(Stochastic) online learning. A direct consequence of decomposed risk is the possi-
bility of learning sample by sample, called online learning as opposed to the traditional
batch learning which visits the whole dataset in each iteration. When the dataset is
large and the computing facility is relatively limited, a simple idea is to sample a subset
of the dataset to train, and as a result all theoretical guarantees must be probabilis-
tic. One extreme is that each update of the model uses only one training example.
This scheme is also the only choice when the data points come in stream, and must
be discarded before the next data point becomes available (due to privacy or storage
constraints). Not surprisingly, as proved by Shalev-Shwartz et al. (2007) and Bottou
& Bousquet (2007), stochastic online learning can reduce the regularized risk of binary
SVM to any precision with reasonable confidence at a cost independent of the training
set size. Shalev-Schwartz & Srebro (2008) further proved that in order to achieve any
fixed generalization error, the runtime can be inversely proportional to the number of
data points.

Online learning for binary SVM is a particularly fruitful research area. Online
dual optimizers rely on the natural duality relationship between data points and dual
variables, hence the well known convergence analyses of coordinate descent can be
immediately applied (Luo & Tseng, 1992; Tseng & Yun, 2008, 2009). Hsieh et al.
(2008a) proposed liblinear which performs dual coordinate Newton descent and enjoys
linear convergence (Luo & Tseng, 1992). In fact, this method is closely related to
Hildreth’s QP algorithm (Hildreth, 1957; Tusem & Pierro, 1990), passive-aggressive
method (Crammer et al., 2003), and implicit updates (Cheng et al., 2006). Primal
methods such as SGD (Bottou & LeCun, 2004; Bordes et al., 2009) typically perform
projected subgradient descent using approximate (stochastic) subgradients calculated
from a random subset of the dataset. Its convergence (in probability) usually originates
from the standard stochastic approximation theory (Tsypkin, 1971; Robbins & Monro,
1951). Another efficient primal stochastic gradient solver is pegasos proposed by Shalev-
Shwartz et al. (2007), which guarantees that by drawing a constant number (can be 1) of
random samples at each iteration, with probability 1—¢, f(wy)—miny f(w) < O (%)
i.e. O(1/e) rate.

Online learning is often susceptible to the order of the samples, and rely heavily
on randomization. Despite its popularity and effectiveness when data overwhelms

computing power, the latest development of parallel computing is making it possible

§1.6 Regularized risk estimation and optimizations 35

to efficiently visit the whole dataset. With the change of bottleneck, batch methods
are projected to regain popularity, and now the key challenge in algorithm design
becomes minimizing the sequential part of computation according to the Amdahl’s law
(Amdahl, 1967). Most existing parallel machine learning algorithms require additive
decomposition of empirical risk, i.e. data parallelization. Examples include (Teo et al.,
2007; Chu et al., 2007; Catanzaro et al., 2008; Graf et al., 2004).

Outlook

In Chapter 5, we will consider a new middle ground lying between RRM and decom-

posable loss:
J(w) = M2(w) + g*(Aw), where A := (x1,...,x,) .

We assume (2 is strongly convex and g is convex with Lipschitz continuous gradient.
Intuitively, we are assuming a linear predictor, 7.e. the prediction for each example x;
is (x;,w) and in such a case data parallelization is again straightforward. However,
the overall empirical risk is now allowed to depend on the prediction of the examples
via a general convex function ¢*. In terms of optimization, this class of objectives
admit direct application of Nesterov’s first-order methods which yield optimal rate of
convergence (Nesterov, 1983, 2003, 2005a,b, 2007). Most closely related optimizers are
the cutting plane methods and bundle methods, which we will detail in the next two

sections. Lower bounds for these methods will be a central topic of Chapter 5.

1.6.3 Cutting plane

Cutting plane algorithms are based on the key property of convex functions: any closed
convex function f can be written as the upper envelope of infinitely many minorizing

affine functions:

f(w) =sup{(a,w) +b:(a,w)+b< f(w) for all w' € domf}.

a,b

Suppose somehow we have ¢ points in dom f: {Wi}ﬁ;(l], and subgradients a; 1 € 0 f(w;)

(t > 0). Let bjy1 = f(w;) — (a;+1, w;) such that the hyperplane (w, (a;+1, W) + bi+1)
is tangent to f at w;. Then we obtain a piecewise linear lower bound approximation

of f which is exact at {wi}f;(l):

£ 0 (W) = max f(w;_1) + (a;, w — W;_1) = max (a;, w) + b;.

ic[t] i€t]

Then we optimize this piecewise linear approximant f;* as a surrogate of f. Intu-

36 Introduction

itively when one gets more and more w; as ¢ increases, f;* will approximate f better
and better, and miny f;"(w) will also approach miny, f(w). Obviously the key chal-
lenge is how to pick w; so that with as few {wi}ﬁzo as possible, fi¥ captures the nadir
of f as well as possible.

Kelley (1960) and Cheney & Goldstein (1959) proposed a greedy scheme to pro-

gressively pick the landmark points wy:

w; = argmin f;*(w) = argmin max (a;, w) + b;. (1.29)
wedom f w i€[t]

And f;* is then updated by:
ftC—EI(W) ‘= max {fth(W), (ag41, W) +biy1}.

The advantage of this algorithm is two folds. First, the optimization problem in

Eq. (1.29) is simply a linear programming (as long as domf is affine):

w; = argmin min & (1.30)
wedom f §eR

st (a,w)+b <& Viel]t.

Second, the whole scheme is guaranteed to converge in finite time. In particular, define

the gap

1= min f(wi) — [P (w),
1€[t]
then for any pre-specified tolerance € > 0, there must be a finite T" such that < € for
all t > T. & is observable (not requiring the knowledge of f* or w*), and it is easy to

see that & upper bounds the real gap because f,(w) < f(w) for all w:

& = min f(w;) — min f;¥(w) > min f(w;) — min f(w) =: ¢.
i€(t] w i€[t] w

However, cutting plane is also plagued with two major disadvantages. First, the
complexity of the inner problem Eq. (1.30) grows with iterations as the linear program-
ming gets more constraints. Second, and even worse, albeit the finite time convergence,
the rate of convergence can be extremely slow. Given any arbitrary tolerance €, (Hiriart-
Urruty & Lemaréchal, 1993a, Example 1.1.2 of Chapter XV) shows an example, due
to Nemirovski, where the cutting plane algorithm takes ¢ = O (e*”/ 2) steps to reduce
€; to less than e. The cause of this phenomenon is the instable zigzagging trace of wy:
the solution of the linear programming Eq. (1.30) is not unique, and w; can drift far

away from the previous wi,...,w;_1. Therefore stabilization techniques are desired,

§1.6 Regularized risk estimation and optimizations 37

Algorithm 1: BMRM
Input: Tolerance € > 0, initial guess wy.

1 Initialize: ¢+ 0.

2 repeat

3 tt+1

4 Compute a; € Ow Remp(Wi—1), bt < Remp(Wi—1) — (Wi—1,ay).

5 | Update model R;”(w) := max;cpy (a;, w) + b;.

6 Define regularized model Jy(w) := A\Q(w) + RP(w).

7 Update wy < argmin,, J;(w) using some inner solver like Algorithm 2 and 3.
8 Check € < ming<i<t J(W;) — Je(Wy).

9 until ¢ <e¢

10 return wy

and the next section will introduce two different remedies.

1.6.4 Bundle methods for regularized risk minimization

A natural heuristic for stabilization is to penalize the displacement of w; from w;_1:
w; == argmin A |w — w1 || + [P (w).
w

This idea is called proximal bundle method (Kiwiel, 1990) as the cutting planes {a;, b; }
are deemed as bundles, and wy is attracted to the proximity of w;_1. A large volume
of work has been done in this area for decades, e.g., (Kiwiel, 1985) and (Hiriart-Urruty
& Lemaréchal, 1993a, Chapter XIII to XV). The underlying idea is Moreau-Yosida
regularization (Moreau, 1965; Yosida, 1964), and it guarantees to find a € approximate
solution in O(1/€®) steps (Kiwiel, 2000). When the objective function is strongly
convex, the convergence rate can be linear under some assumptions (Robinson, 1999).
Variants of this idea are also widely used, e.g., trust region bundle method (Schramm
& Zowe, 1992) which upper bounds the displacement instead of penalizing it; and level
set bundle method (Lemaréchal et al., 1995) which minimizes the displacement subject
to a level of f;*(w).

It is noteworthy that the above methods treat the objective function as a black box
which provides function and gradient evaluation at any given location. However, RRM
problems are not black boxes, but explicitly composed of two parts: empirical risk
Remp and regularizer Q. The free availability of the regularizer motivated Teo et al.
(2007); Smola et al. (2007b) to perform cutting plane on Remp, only, and use 2 as the
stabilizer. This is called bundle method for machine learning (BMRM). Different from
Moreau-Yosida regularization where wy is stabilized about w;_1, Q(w) usually attracts

w towards its fized center, e.g. origin for L, regularizer and uniform distribution for

38 Introduction

Algorithm 2: Exact inner solver for BMRM (gp-bmrm)

Input: Previous subgradients {al-}f:l and intercepts {bi};l.
1 Assemble A; := (ay,...,a;) and by := (by,...,b;)".
2 Solve oy = argmaxgen, — AL (—A T A4a) + (o, by).
3 return w; := 9Q* (-1 4,0)

Algorithm 3: Inexact line search inner solver for BMRM (Is-bmrm)

Input: Previous subgradients {a;}’_, and intercepts {b;}_;.
1 Assemble A; := (ay,...,a;) and by := (by,...,b;)".
2 Solve n; 1= argmax, (o 1] MV (=2 Arau(n)) + (ae(n), by) , where ay(n) =
(L =n)ey y,m)".
3 ap ¢ ((1—m)a g,
4 return w; := 9Q* (-1 A,0)

)T

entropy regularizer. Technically, BMRM modifies the cutting plane algorithm just by
replacing Eq. (1.29) with:

wy = argmin AQ(w) + Rep (W) = argmin AQ(w) + max;er {(ai, w) + b} . (1.31)
wedom f w

=Ji(w)

We summarize the BMRM algorithm in Algorithm 1.

The most expensive steps in BMRM are step 4 and 7 in Algorithm 1. In step 4, the
computation of subgradient needs to go through the whole dataset, and this admits
straightforward data parallelization. In particular, if Remp sums the loss from individual
data points like in the statistical query model (Kearns, 1998), then one can divide the
whole dataset into subsets residing on distributed computing devices, compute their
contribution to the gradient in parallel, and finally sum them up. This makes BMRM
very promising for the coming era when parallel computing is the mainstream.

The other expensive step is to solve the optimization problem Eq. (1.31), i.e. step
7 of Algorithm 1. Teo et al. (2007) resorted to the dual problem:

oy = argmax —AQ* (A1 4;a) + (o, by), (1.32)
aEA:

where A; is the ¢-dimensional simplex {(al, o) ERE ;> 0, D= 1}, A=
(a1,...,a;) and by := (by,...,b;) . The dual connection is w; = IQ*(—A\ "1 Ay;). See
Algorithm 2. Since the * in this dual problem is assumed to be twice differentiable
and the constraint is a simple simplex, one can solve Eq. (1.32) with relatively more
ease, e.g., (Dai & Fletcher, 2006) which is specialized to Ly regularizer 3 |wl|?, and
penalty/barrier methods (Nocedal & Wright, 1999) in general.

§1.7 Outline 39

To circumvent the growing cost of solving Eq. (1.31) or Eq. (1.32), Teo et al. (2007)
proposed the following approximation. Instead of searching for a; in A, we restrict
the search domain to a line segment {((1—n)a 1,m)" :n € [0,1]}. See Algorithm
3. If Q(w) = 3 |w||?, then we are essentially restricting the search for w; to the line
segment between w;_; and —A"'a;. In this case, we call Algorithm 3 Is-bmrm, and
Algorithm 2 gp-bmrm as it solves a full quadratic program. As the feasible region of
Is-bmrm in Eq. (1.32) is a proper subset of that of qp-bmrm, Is-bmrm makes less progress
than gp-bmrm in each iteration, and hence converges more slowly.

The key result on the convergence rate of BMRM is (Teo et al., 2010, Theorem 5):

Theorem 27 (Convergence rate for BMRM) Assume that J(w) > 0 for all w.
Assume ||OwRemp(W)|| < G for all w € domJ. Also assume that * has bounded
curvature, i.e. H@ZQ*(M)H < H* for all p € {—)_1 Zfi% o;a; t € At+1}. For any
€ < 4G?H* /), the algorithm BMRM converges to the desired precision € after
AJ(0) 8G*H*
<1 -
b log o T e

1

steps. Furthermore, if the Hessian of J(w) is bounded as H(‘??,VJ(W)H < H, convergence
to any € < H/2 takes at most the following number of steps:
AJ(0) 4H* 8G2H* } N AHH* H

< Z - .
k< logs omm T) ;) N los2 g

max {O,H —

Teo et al. (2010, Theorem 5) proved this rate for Is-bmrm where each iteration only
solves a simple one-dimensional optimization. In contrast, qp-bmrm performs a much
more expensive optimization at every iteration, therefore it was conjectured that the
rates of convergence of qp-bmrm could be improved. This was also supported by the
empirical convergence behavior of qp-bmrm, which is much better than the theoretically
predicted rates on a number of real life problems (Teo et al., 2010, Section 5). In Section
5.2, we answer this question in the negative by explicitly constructing a regularized risk

minimization problem for which qp-bmrm takes at least O(1/¢) iterations.

1.7 Outline

The rest of the thesis is organized as follows:

Chapter 2: Conditional random fields for multi-agent reinforcement
learning. We first applied graphical models to learn with distributed intelligent agents
such as traffic light control, for which conditional random fields (CRFs, Lafferty et al.,
2001) emerge as a natural way to model joint actions, and to efficiently search for
an optimal joint policy through local communications. Policy gradient RL algorithms

(Williams, 1992; Baxter & Bartlett, 2001) require inference in CRF's, and many existing

40 Introduction

algorithms can be utilized straightfowardly. Viewing our model from a CRF perspec-
tive, it extends the usual #id training scenario to temporal learning where the labels
(actions) are no longer 7d, but update the environment and affect the next observa-
tion. We tested our framework on a synthetic network alignment problem, a distributed
sensor network, and a road traffic control system. The RL methods employing CRF's
clearly outperform those which do not model the proper joint policy.

Chapter 3: Bayesian online multi-label classification. Data in many real
world problems are available only as streams and cannot be stored. Many maximum
margin online learners tend to overfit the noise, while Bayesian methods appear more
promising because they maintain a distribution over the classifiers and are less sus-
ceptible to outliers. We applied a form of Bayesian online learning, Gaussian density
filtering (GDF, Maybeck, 1982), to multi-label classification. The training labels are
incorporated to update the posterior of the linear classifier via a graphical model sim-
ilar to TrueSkill™ (Herbrich et al., 2007) tailored for the multi-label scenario, and
inference is based on GDF with expectation propagation. Using samples from the pos-
terior, we optimize the expected F-score on the test data. Our experiments on Reuters
dataset show that our Bayesian approach delivers significantly higher macro-averaged
F-score than the state-of-the-art online maximum margin learners.

Chapter 4: Kernel measure of independence for non-iid data. Although
the rich feature space induced by kernels have been extensively utilized in supervised
learning, it was observed recently that mapping probability distributions to their mean
in an RKHS constitutes a natural characterization or embedding of distributions. This
embedding induces new distances between distributions and in addition new measures
of independence, which circumvent density estimation required by most information
theoretic approaches. Interestingly, the undirected graphical models further allow us
to factorize this kernel embedding onto cliques, which yields efficient measures of inde-
pendence for non-iid or structured data. In Chapter 4, we applied our framework to
ICA, independence test, and sequence segmentation. Methods taking into account the
inter-dependence of observations significantly outperform those treating them as #id.

Chapter 5: Lower bounds for BMRM and faster rates for training SVMs.
The optimization problems arising from maximum margin estimation are often nons-
mooth, and can be effectively solved by BMRM and SVMS***¢* (Tsochantaridis et al.,
2005). Smola et al. (2007b) proved that BMRM requires O(1/¢) iterations to converge
to an € accurate solution, and we further show in Chapter 5 that this rate is tight, i.e.
there exists a function for which BMRM costs O(1/€) steps. Motivated by Nesterov’s
optimal first-order methods (Nesterov, 2003, 2005b), we further devised an algorithm
for the structured loss which finds an € accurate solution in O(4/1/e) iterations.

Extensions and proposed future work are detailed in the individual chapters.

Chapter 2

Conditional Random Fields for
Multi-agent Reinforcement

Learning

Conditional random fields (CRFs) have been studied in batch settings, where param-
eters are optimized over a training set; and online settings, where parameters are
updated after each iid sample is observed. However, there is little work on CRFs for
modeling temporal problems such as control or time-series prediction. The reinforce-
ment learning (RL) community, on the other hand, has done work on decentralized
(multi-agent) control. RL algorithms optimize a long-term measure of temporally de-
layed rewards in controlled systems. This chapter seeks to improve decentralized RL
methods by using CRF models to exploit the structure between agents exhibited in
many decentralized RL domains. Examples include sensor networks, traffic routing for
roads or networks, pursuer-evader problems, and job-shop scheduling.

Bernstein et al. (2000) proved that the complexity of learning optimal coordination
in decentralized RL is generally NEXP-hard in the number of agents. The simplest
algorithms assume all agents are independent, learning to cooperate implicitly via an
appropriate reward function (Bagnell & Ng, 2006). More advanced algorithms explicitly
share information about states, values, or proposed actions (Boutilier, 1999), but still
avoid modeling the optimal joint policy. Our work is similar to Guestrin et al. (2002),
which does model the optimal joint policy, using the underlying structure to factorize
Q-values and choose joint actions. In contrast, our approach focuses on directly opti-
mizing a joint probability distribution over preferred actions. Furthermore, we draw on
the wealth of approximate inference methods for graphical models, and CRFs in par-
ticular, to evaluate and optimize policies that would otherwise be intractable despite
the structured representation.

Traditionally, CRFs use batch training algorithms to learn model p(y|x;8), the

probability of a label y, conditioned on observable variables x with the CRF parameters

41

42 Conditional Random Fields for Multi-agent Reinforcement Learning

0 (Lafferty et al., 2001). During training we iterate through a set of training instances
{x;};—, with labels {y;};—,, finding 8* := argmaxg p(0| {(xi,vi)},—;). To predict the
label for a novel observation x” we select 3’ := arg max, p(y|x’; 0*). In this work, we
show that the same inference methods used for CRFs can be used to sample node
actions from a joint stochastic RL policy. We also show how to optimize this joint
policy by estimating the gradients of the long-term reward with respect to the policy
parameters. Similar methods could be used for RL policies based on arbitrary graphical
models. From the CRF point of view, we propose a method of using CRF's for modeling

temporal processes.

Despite the commonality of using graphical models, our approach is different from
the “control as inference” model by Toussaint (2009) and the graphical game by Kearns
et al. (2001). Toussaint (2009) used graphical models to reformulate the temporal
evolution in the control problem, which serves as a unifying framework for many control
algorithms. However, the multiple agents are still treated as a black box, without being
factorized by graphical models. Kearns et al. (2001), on the contrary, does factorize
the players by a graphical model, but it is only used for computing the Nash equilibria

which is a completely different setting from reinforcement learning.

Section 2.1 and Section 2.2 are devoted to describing graphical models and rein-
forcement learning respectively, with particular emphasis on CRF's and policy-gradient
methods for RL. We then elaborate on the combination of CRF and RL in Section 2.3.

Section 2.4 describes our experiments before concluding.

2.1 Conditional random fields and inference

CRF's are a probabilistic framework for labeling and segmenting data. Unlike hidden
Markov models (HMMs) and Markov random fields (MRF's), which model the joint
density p(x,y) over inputs x and labels y, CRFs directly model p(y|x) for a given
input observation x. Furthermore, instead of maintaining a per-state normalization,
which leads to the so-called label bias problem, CRF's use a global normalization that

allows them to take global interactions into account (Lafferty et al., 2001).

In Section 1.3, we rigorously formulated CRF's in the framework of conditional ex-
ponential family. Learning algorithms leveraging efficient inference were also surveyed
in Section 1.5. Now we just briefly recapitulate the concepts and furthermore introduce
an efficient inference algorithm called tree sampling, which fits into our RL framework

and delivers satisfactory empirical performance.

§2.1 Conditional random fields and inference 43

2.1.1 Conditional exponential families

Given an observation x € X and a finite discrete label set), a conditional distribution

over labels y €) parameterized by the natural parameter @ € R? can be defined as

p(ylx; 0) = exp((d(x,y),0) — g(6]x)). (2.1)

Here, g(-) is the log-partition function for normalization and the vector ¢(x,y) is the
sufficient statistics (also called features) which represent salient features of the input
observations, and typically depend on the applications and CRF design. Let ©x be
the set of all valid 6: Ox := {6 :¢(0]x) < co}. Finally we obtain the conditional
exponential family (CEF): Py« := {p(y|x;0) : 6 € Ox}.

Consider the more general case of structured output y € Y™ (m nodes). The
clique decomposition theorem essentially states that if all the conditional densities in
Pgy|x satisfy the conditional independence relations represented by a graph G = (V, E)
on y, then the sufficient statistics ¢(x,y) decompose along the maximal cliques C =
{c1,...,cn} of G (Altun et al., 2004b):

¢(X7 y) - ‘C/gg {¢C(X7 yc)}) (2‘2)

p(ylx; 0) = exp (Z (6o(x,), 00) — g(erx>) 7 (2.3)

ceC

where the vec operator concatenates vectors, ¢ indexes the set of maximal cliques C,
and 7. is the label configuration for nodes in clique c. For convenience, we will assume
that all maximal cliques have size two, i.e. an edge between nodes ¢ and j has a feature
¢;j associated with it. We will also associate potentials ¢; to single nodes . Node
features represent the observation of state available at each node. The edge features
encode the communication between nodes about their features and potential actions.

CRF's are examples of conditional exponential families with special graphs. For 1-D
CRFs, the graph is a chain, so the edge features are ¢;+1(X,vi,yi+1). For 2-D grid
CRFs, the edge features are qﬁ(ij)(i/j/)(x,yij, yirj») where nodes are indexed by double

coordinates and |i — | + |j — j/| = 1.

2.1.2 Inference and gradient computations

CRF training procedures usually minimize the negative log-posterior of the parameters
given the observation/label training set. As we will see in Section 2.2.1, policy-gradient
algorithms instead draw samples from (2.3) given the parameters 6 and the most recent
observation x. CRF training procedures usually minimize the negative log-posterior of

the parameters given the observation/label training set. This involves computing the

44 Conditional Random Fields for Multi-agent Reinforcement Learning

e R ok 1

) Left c¢) Right) Down

Figure 2.1: Four different partitions of a 5-by-6 CRF. Nodes in shaded and white
regions are the two trees and the small black circles represent observations.

log-partition function g(@|x). Policy-gradient algorithms also require the gradient of

the log probability of sampled labels/actions y:

880 In p(Y|X 0) - vec {¢c X, yc) - Ep(yc\x;e) [¢c(xa yc)]}) (2'4)

which exploits (2.2) and (2.3). Efficient (approximate) algorithms for sampling and
computing the feature expectations have been surveyed in Section 1.5. Below we de-

scribe in detail one such method used in our experiments.

2.1.3 Tree MCMC sampler for CRFs

The tree Markov chain Monte Carlo (MCMC) sampler of Hamze & de Freitas (2004)
is a state-of-the-art algorithm for sampling from posterior distributions and computing
expectations of sufficient statistics in undirected graphical models with regular struc-
ture and high tree width. Its basic form works on pairwise MRFs or CRFs whose
cliques are either nodes or edges.

The algorithm exploits the property that MRFs can be split into several disjoint
trees (see Figure 2.1 for four different choices of partitions). Although belief propaga-
tion (BP) on the whole MRF is prohibitively expensive, it is cheap to run BP on each
of the two trees (their tree width w = 1). So a natural idea is to combine analytical and
sampling steps: conditioned on a sample of one of the trees, use BP to compute the
exact joint conditional distribution of the other tree and draw a sample from it; then
alternate between the two trees. Moreover, knowing the exact conditional distribution
over the trees makes it possible to Rao-Blackwellize the sampler to reduce the variance
(Casella & Robert, 1996). Each partition of the tree has to exclude some edges. In
order to reduce the variance in the expectation estimates of these edges, and to cover
all edges in the graph, we need to partition the graph in several different ways. This
leads to the four partitions in Figure 2.1.

We provide the details of the tree sampler in Algorithm 4, which is specialized to

§2.1 Conditional random fields and inference 45

Algorithm 4: Tree MCMC Sampling, tailored from (Hamze & de Freitas, 2004)

Input:
e A graphical model G = (V, £) of labels with node set V and edge set £.

e A set of features defined on nodes ¢;(-), i € V, and on edges ¢y (-,),
(i,i') e &' C €.

1 Initialize:
e Set scores S{' = 0 for all nodes i € V and its possible assignments a;
e Set scores SZ-‘,’/ = 0 for all edges (i,7) € & and all its possible assignments a, a’.

e Find a set of partitions of node indices I so that &’ is covered by edges of these
trees:

{Nﬁ p=

where Exr £ {(i,i') € £ : i,i’ € AT}, and similar notations will be used below.

1...Pr=1..Ry APOAY, =0 forr# 7 U AP = qusAng}

for p = 1 to P /*for all partitions*/ do
Randomly initialize label nodes on all trees in partition p conditioned on

W N

observations x.

for t =1 toT /*loop till convergence or exit criteria are met*/ do
6 for r = 1 to Ry, /*all trees in partition p*/ do

7 Apply BP to compute the following smoothing densities:

e D <yz
p <yii’

Increment score

t t t—1 t—1 : p.
yA’f""’yAf_l’yAffH"‘"yA%p’X>’ for all i € Ay;

t t
le” R yA1:71

t—1 t—1 Y !
,yApH,...,yNé ,X), for all (7,4) € Ep-
T) T

_ t t t—1 t—1 . p .
hd Sf<_S5+p<yz_a yAll’v"'>yAP layAp+la---7yAI;? 7X>aVZ€ATaa7
T— T 'p

t
ny’ te 73JN;71

I I
° Sfﬂ — Sl-ai[/l +p <yii/ = aa’

- t—1
. X
7yA1;+17 7yAI}72) I

V(1,1)eé‘Ap,

10
o t t t—1 t—1 .
11 Sample Yar p<yA£‘ny,...,yAf1,yA£+l,...,yA%p,x> using forward

| filtering / backward sampling.

12 Normalize S < 5¢/5, 8¢, 1 € V, and 3¢’ 88’ /5, ., Sa', (i,') € €.

13 return Rao-Blackwellised estimators

= Za ¢i(a)sz€la ¢zz Z ¢u a, a Saa .

46 Conditional Random Fields for Multi-agent Reinforcement Learning

the pairwise maximal cliques. Empirically tree sampling is considerably more efficient
than other partition based sampling schemes and the naive Gibbs sampler, and with
provable faster geometric convergence rate and lower variance (Hamze & de Freitas,
2004).

2.2 Reinforcement learning

A Markov decision process (MDP) consists of a finite set of states s € S of the world,
actions y €) available to the agent in each state, and a reward function r(s) for
each state s. In a partially observable MDP (POMDP), the controller sees only an
observation x € X of the current state, sampled stochastically from an unknown dis-
tribution p(x|s). Each action y determines a stochastic matrix P(y) = [p(s'|s,y)] of
transition probabilities from state s to state s’ given action y. The methods discussed
in this paper do not assume explicit knowledge of P(y) or of the observation process.
All policies are stochastic, with a probability of choosing action y given state s, and
parameters 8 € R™ of p(y|x;0). The evolution of the state s is Markovian, governed

by an |S| x |S| transition probability matrix P(0) = [p(s'|s; @)] with entries

p(s1s:0) =3 pWls0)p(slsy). (2.5)

We assume an average reward setting where the task is to find a policy, or equivalently

the parameter 8, which maximizes

T—1
R(0) := Th_r)r;O TEQ 'r(st)] , (2.6)
t=0
The expectation Eg is over the distribution of state trajectories {sg,si, ...} induced
by P(6).

The core idea of this paper is to treat CRF distributions over labels, p(y|x;8),
exactly as joint distributions over multi-agent RL actions, i.e. a stochastic policy. Each
node in the CRF will represent a single RL agent. The joint stochastic policy will
give the probability of a vector of actions p(y|x;0). The observations available to
agent/node ¢ are represented by the sufficient statistics ¢;(x,y;). However, we also
need the edge “observations” ¢;;(x,y;,y;) to represent the information that can be
communicated between neighboring agents ¢ and j. Thus all we need for a CRF-RL

model is a family of RL algorithms that directly optimizes stochastic policies.

§2.2 Reinforcement learning 47

2.2.1 Policy-gradient algorithms

Policy-gradient (PG) algorithms optimize polices by performing gradient ascent on a
parameterized policy (Williams, 1992; Sutton et al., 2000; Baxter & Bartlett, 2001).
These algorithms require only a parameterized and differentiable policy model p(y|x; @),
and a way to compute the gradient of the long-term reward R(0).

A number of algorithms (Williams, 1992; Baxter & Bartlett, 2001; Peters et al.,
2005) compute a Monte Carlo approximation of the reward gradient: the agent interacts

with the environment, producing an observation, action, reward sequence

1
{x1,y1,71,%X2, ..., X7, Y1, T}

For example, under mild technical assumptions, including ergodicity and bounding all
the terms involved, Baxter & Bartlett (2001) obtain

5 T—1 T

OR 1 d L

% =T > 50 WP ilxi:0) > gy, (2.7)
t=0 T=t+1

where an eligibility discount 8 € [0, 1) implicitly assumes that rewards are exponentially
more likely to be due to recent actions. Without it, rewards would be assigned over a
potentially infinite horizon, resulting in gradient estimates with infinite variance. As (8
decreases, so does the variance, but the bias of the gradient estimate increases (Baxter
& Bartlett, 2001). In practice, (2.7) and all other policy-gradient algorithms share the

same core estimator that make use of an eligibility trace

e = fPer 1+ % oo Inp (y¢|x¢; 0) (2.8)

Now &; = rie; is the gradient of R(€) arising from assigning the instantaneous
reward to all log probability gradients, where 5 € [0, 1) gives exponentially more credit
to recent actions. Additionally, 8 may be 1.0 for finite-horizon problems (Williams,
1992). The different policy-gradient algorithms vary in how they use instant gradient
estimates d;.

For the experiments in this paper we adopt an online variation of the natural actor-
critic (NAC) algorithm (Peters et al., 2005; Richter et al., 2007). While the NAC algo-
rithm uses the estimator (2.8), it improves performance over (2.7) by: a) using a critic
that approximates a projection of value function, with discount factor v € [0, 1), to re-
duce variance of the gradient estimates; b) using a clever choice of critic parametrization

to naturalize gradients (Amari, 1998); and c) using a least squares approach to solve

'We use 7: as shorthand for r(s¢), making it clear that only the reward value is known, not the
underlying state.

48 Conditional Random Fields for Multi-agent Reinforcement Learning

Algorithm 5: Online Natural Actor-Critic.

1t=1, Ay =1, 8, = 0], e; = [0].
2 a=step size, y=critic discount, f=actor discount.
3 Get observation xj.
4 while not converged do
5 Sample action y; ~ p(-|x¢, 0;).
6 e, = Pei—1+ [%’9:@ lnp(yt|xt;0)T’Xz]T'
7 Do actions y;.
8 Get reward 7;.
9 5t = Tt€¢.
10 Get observation x;1.
11 Wi = [5% ‘gzgtlnp(ytb(t? 9)T7 XHT _’7[01-’ Xg—‘rl]T'
12 ¢ =1—t"L
13 us = (Gt_l — 1)At__11et-
14 ql = et_lngt__ll.
15 | A;l=etA - 11;‘}{%
16 [d],v]]T = A;'6; (just to extract dy, v¢ is never used).
17 0t+1 = 0; + ad;.
18 t+—1t+ 1.

for the naturalized gradients, making full use of simulated trajectories. Algorithm 5 is

used in our experiments (Richter et al., 2007).

2.2.2 Decentralized multi-agent RL

Decentralized (PO)MDPs assume a number of agents, each with a local observation of
the state space. Here the action y becomes a vector giving the action for each agent.
In the general case, optimal decision making in Decentralized MDPs is NEXP-hard
in the number of agents (Bernstein et al., 2000), due to the combinatorial degree of
communication required between the agents to coordinate actions. Many approximate
approaches exist including no communication (Peshkin et al., 2000); explicit actions
to communicate state information (Boutilier, 1999); local sharing of value functions
(Schneider et al., 1999); and others with varying degrees of formalism. Under a common
global reward, and some forms of local reward (Bagnell & Ng, 2006), agents that do
not communicate can learn to cooperate implicitly to maximize the global reward
(Boutilier, 1999). However, unless each agent has access to the full state description,
they will generally not be able to act optimally. Our contribution is to introduce
a mechanism for agents to efficiently — due to the graph structure of the CRF —
communicate in order to converge to a joint policy. Our choice of policy-gradient

algorithms is motivated by their ease of integration with CRFs, but they have the

§2.3 Conditional random fields for RL 49

additional benefit of being guaranteed to converge (possibly to a poor local maximum)
despite the use of function approximation and partial observability. Our model of
multi-agent learning is similar to Guestrin et al. (2002), which uses an exact form of
BP for factorizing Q-values and choosing jointly optimal actions, and hence may still

be intractable for high tree width graphs.

2.3 Conditional random fields for RL

Applying CRF's for distributed RL is relatively straightforward: simply assume that the
policy, p(y|x; @), of the POMDP factorizes according to a CRF. The agents correspond
to the label nodes, and the edges encode the spatial or temporal collaboration between
agents. In order to apply PG methods one needs: a) the ability to draw an action from
the policy model (step 5 of Algorithm 5); and b) computation of the gradient of the log-
probability of the sampled action (step 6,11 and Eq. (2.4)). Efficient implementations
rely on approximate sampling algorithms like the tree MCMC sampler described in
Section 2.1.3. One can also easily verify that exponential families in general, and
CRFs in particular, satisfy the mild technical conditions required for PG methods to
converge, as long as all features are bounded.

Interestingly, the CEF policy representation (2.1) implements exactly the soft-max
stochastic policy with linear feature combinations commonly encountered in RL appli-
cations, e.g. (Richter et al., 2007). Only the edge features prevent the trivial factor-
ization of the distribution into independent agents that was demonstrated by Peshkin
et al. (2000).

From the perspective of multi-agent RL, CRFs make efficient decentralized RL
possible. By using conditional independence assumptions, the search space of the
policy-gradient methods factorizes, leading to faster learning. Also, even though a CRF
requires only local connections between agents, global interactions are still incorporated
by belief propagation.

From a graphical models point of view, our technique is different from the usual
online or offline training methods in two important ways. The training data is no longer
1d. The action at time step ¢ stochastically determines the input at time step ¢ + 1.
Furthermore, the evaluation metric is no longer a loss function but a reward function
that depends on both the current state and future states.

Superficially, our setup looks similar to dynamic Bayesian networks (DBNs). DBNs
are directed graphical models (in contrast to CRFs which are undirected graphical
models) used to represent models that evolve with time. Typically DBNs are used for
a) filtering: monitor the hidden system state s over time by computing p(s;|x1 ...x¢); b)

prediction: computing p(s;+1]X1...X¢); or ¢) smoothing: computing p(s;—1|X1 ... X¢).

50 Conditional Random Fields for Multi-agent Reinforcement Learning

.. BE§E
p(arrive)=0.5

Figure 2.2: Abstract grid alignment domain.

In an RL context DBNs have been used to estimate the state transition matrix P(y),
as well as the distribution p(x|s), in order to resolve partial observability in a POMDP
(Theocharous et al., 2004). In contrast, we use CRFs as a policy, rather than as a state
transition model.

We have shown how to learn reactive policies that ignore the fact that the true
MDP state is unknown. Fortunately, PG methods still converge in this case. To take
partial observability into account we could encode (long term) observation history, or

a belief state (if P(y) and p(x|s) are known), into the sufficient statistics.

2.4 Experimental results

We performed experiments on one toy domain to demonstrate why a joint policy is

important, and two benchmark decentralized RL domains.

2.4.1 Grid alignment

We constructed an abstract traffic domain, where it was known that agents would have
to coordinate their actions in order to perform well, even in the case of a common global
reward. Traffic flows along the edges of an n x n grid, always traversing to the opposite
edge of the grid without turning (see Figure 2.2). Each intersection grid lines is an agent
that controls a gate. The actions of a gate allow traffic to flow vertically or horizontally
at each time step. Traffic units arrive with probability 0.5 per time step per boundary
node (but only the top and left boundaries). Importantly, traffic cannot flow until all
the gates on the traffic’s path line up. When this happens, all waiting traffic for that

§2.4 Experimental results 51

Table 2.1: Learning algorithm parameters. Lower § and v give lower variance but
higher bias in the gradient estimation. Too small « leads to slow learning, but too large
« causes zigzag which also slows down the learning. ay,04. is N/A for Traffic because
it does not use node features.

Domain | ®ind Qnode Oedge B v runs
Grid .002 .00001 .002 0.6 0.5 100
DSN .0005 .00025 .0005 0.6 0.5 100
Traffic .001 N/A .01 09 0.95 50

xlO4

‘ ‘ : < 3.57= ‘
T gl |~ -Independent = —CRF
™| —crF = 3
= o
S gl)
<@ c 25
- ccs
c 6 @9 2
% *915
s ¢ 4t g
g R g
= 2 ©
o o 0.5
O =

0345_6_789104*0345_6_%53516
Grid sizen xn Grid size n xn

Figure 2.3: Average reward over the last 1000 steps, and iterations to optimality.

line propagates through instantly and each unit of traffic contributes +1 to a global
reward. One or more misaligned gates blocks traffic, causing the length 10 buffer to
fill up as traffic arrives. Full buffers drop traffic. Two observations per node indicate
the normalised number of traffic units waiting for the node to align vertically, and
horizontally. Edge features are 1 if the two nodes agree on an alignment, 0 otherwise.
The optimal policy is for the all the n? gates to align in the orientation of the most
waiting traffic, but since each node only knows how many traffic units are waiting for

it, it must “negotiate” with neighbors on which way to align.

Learning parameters: The CRF model is a 2-D grid, with nodes for each agent,
and edges for all nodes connected by a grid line. Due to the 2-D nature of the CRF,
MCMC estimation of the log partition function, and its gradient were required. MCMC
estimation needed 10 tree samples. To initialize the tree sampler, we randomly picked
a spanning tree of the whole graph and sampled from the tree. Empirically, this
allows us to obtain a good estimation of the distributions much faster than starting
with independent node randomization. Other parameters, including the number of
independent learning runs, are summarized in Table 2.1. To prevent poor local maxima

when n > 5 we needed step sizes for edge feature parameters o,q4e to be larger than

52 Conditional Random Fields for Multi-agent Reinforcement Learning

® [) Figure 2.4: Sensor network domain
with 8 sensors, 2 targets, and 3 cells.

for node feature parameters «;,.qe, boosting the effect of edge features on the policy.

Results: The optimal reward is the grid size n. Figure 2.3 shows the CRF RL
approach compared to a naive implementation with independent agents. The CRF
approach obtains the optimal reward all the way to grid size 10 (100 nodes), at which
point some runs fail to reach the optimal policy. The number of iterations required to

reach the optimal reward for the first time is shown on the right panel.

2.4.2 Sensor networks

The distributed sensor network (DSN) problem is a sequential decision making variant
of the distributed constraint optimization problem described in (Dutech et al., 2005).
The network consists of two parallel chains of an arbitrary, but equal, number of
sensors. The area between the sensors is divided into cells. Each cell is surrounded
by four sensors and can be occupied by a target. With equal probability targets can
(from left to right) jump to the cell to its left, to its right, or remain where it is. Jumps
that would cause a collision are not executed. The goal of the sensors to capture all
targets. With initial configuration as in Figure 2.4, there are 37 distinct states. Each
sensor can perform three actions resulting in a joint action space of 3% = 6561 actions.
The actions are: track a target in the cell to the left, cell to the right, or none. Every
track action has a reward of -1. When in one time step at least three of the four
surrounding sensors track a target, it is hit and its energy level is decreased by 1. Each
target starts with an energy level of 3. When it reaches 0 the target is captured and
removed. The three sensors involved in the capture are each provided with a reward
of 410, and the goal is to maximize the total reward of all sensors. An epoch finishes
when all targets are captured. If the DSN cannot capture all targets within 300 steps,
the epoch is terminated, and a new epoch is started. A set of 50 randomly chosen
initial states (with replacement) is cycled through for one episode. We run for 200
episodes and study the average reward of each episode. Finally, the whole process is
independently repeated for 100 runs, and we report the average optimal reward and

number of episodes.

§2.4 Experimental results

53

200—————— ® 200
---Independent e
= —Chain_CRF B
@ 150;f|-- Cycle_CRF © 150;
c £ .
o S N
©
= 3
S:’ 50t 8 50|---Independent
I ‘LQ_7 —Chain_CRF
2 w --Cycle_CRF
0 * 07

2 3 45 6 7 8 9
Number of targets

2 3 45 6 7 8 9
Number of targets

Figure 2.5: Results over 100 runs of the Sensor Network scenario, varying the number

of targets.
50 © 200
=
i o
B840 S 150/
< S | -l
830 3
= 20!
S | [independent TR £ ~—-Independent
X 10 ndependen I\\ | & 50 ndependent);
—Chain_CRF I K2} —Chain_CRF
0 --Cycle_CRF ﬁ' 0 --Cycle_CRF
I I I 1 L L L L :u: n n n n n L n n
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Number of cells

Number of cells

Figure 2.6: Results over 100 runs of the Sensor Network scenario, varying the number
of cells.

Learning parameters: We experimented with two alternative CRF models, a cycle
in which neighboring sensors along the top and bottom are connected as chains, and
the cycle is completed with an edge between top and bottom sensors on the left and
right ends. The chain is a more complex arrangement. Local sensors are bunched
into groups of three (one top sensor, two bottom sensors and vice/versa). These meta-
sensors form one CRF node. All the meta-sensors are connected in a 1-D chain, so the

log-partition function and its gradient can be efficiently estimated.

Each node (or meta-node) has access to whether there is a target in its left and
right cells (two binary values with two dummy cells at the two ends always observing
no target). For the chain topology, the single edge feature is whether there are at least
three out of four sensors focusing on their common cell. For the cycle topology, a single

edge feature encodes whether connected sensors are focused on the same cell.

54 Conditional Random Fields for Multi-agent Reinforcement Learning

Results: The problem in Figure 2.4 has an optimal long-term average reward of 42.
The best results from Dutech et al. (2005) use a distributed Q-learning approach where
neighbors’ Q-values are averaged (which implicitly assumes communication), achieving
an average reward of less than 30. Figure 2.5 shows that CRF modeling with NAC
achieves the optimal reward for this problem, and problems where the number of targets
is increased up to 10. The ease with which we outperform the distributed Q-learning
approach is not surprising, since the CRF allows sensors to agree on which target to
focus on. We obtain similarly good results when the number of targets is fixed and
more cells are added (Figure 2.6). The curious peak in the required iterations for 5 cells
corresponds to the difficult situation where there are not enough sensors, and targets
are able to jump around with few collisions. Adding more cells also adds more sensors,
so that an individual sensor is rarely required to focus left and right at the same time.
In both experiments the chain CRF does marginally better, probably due to the tighter

coupling of the sensors and exact evaluation of the log-partition function.

2.4.3 'Traffic light control

Many drivers have been frustrated by driving along a main street, to be constantly
interrupted by red lights. This domain demonstrates learning an offset between neigh-
boring intersections. The domain and simulator code are from Richter et al. (2007),
which contains the full implementation details. We model one main road with n con-
trolled intersections and n + 1 road links to traverse. It takes cars 2 time units to
travel down a road to the next intersection. There are 4 actions, corresponding to
the 4 traffic signal patterns that allow traffic to move through the intersection safely
in any direction. For this experiment only the action that lets traffic drive straight
ahead along the main road is useful. At each time step (about 5 seconds of real-time)
the controller decides on the action for the next step. We do not restrict the order of
actions, but importantly, we enforce the constraint that all actions must be activated
at least once within 8 time steps so that vehicles on side streets would not wait forever.
One car enters the leftmost end of the road every 4 time steps. We use realistic local
rewards for each intersection: each intersection has an inductive loop sensor that can
sense a car waiting, producing a —1 reward. For edge (7, j) where j is downstream of
i, the edge parameters receive j’s reward. This is different from the grid and sensor
network case where a single scalar global reward is used. Our current work focuses
on the factorization of the actions of the multiple agents. The influence of the reward

factorization is left for future research.

Learning parameters: FEach intersection is a CRF node that chooses from one of

the four actions. For independent learners the only feature is a constant bias bit that

§2.5 Conclusions 55

5
B 40 5 2%10
£ E --Independent
5 a —CRF
- 30/ © 15
Q c
S @
= Q
s c
S 10/ | 2os
j= --Independent 5 Toomo T B S LR e b
o —CRF =
O 0 o o o o i oa, ® 0o o
3456 78 91011121314 3456 7 891011121314
Controllable intersections # Controllable intersections

Figure 2.7: Results over 50 runs of the road traffic offset scenario. The X-axis is
intersections. The left Y-axis is the travel time.

allows learning of which phase is the most commonly used. No node features were given
to the CRF. The edge features for the CRF version are an a X a binary matrix, where
a is the number of actions. Bit 4, j is on if the action of the upstream neighbor i from
2 time steps ago (the time required to drive down the road edge) matches the chosen
action of the current intersection j. The edge feature matrix has exactly 1 bit set to
true in the matrix in any step. Typically a road traffic network would be represented as
an undirected graph. But this simple scenario is one long road, thus can be represented
as a chain CRF.

Results: Figure 2.7 shows the results on the road traffic domain in the same style as
previous results. Again, the CRF model clearly outperforms the independent agents
approach. We observed, however, that early in learning both the independent agents
and CRF learn that all traffic moves left to right. Giving the maximum possible time
to this direction is a strong local minimum. After that, the independent agents fail to
improve but the CRF model asymptotically approaches the optimal 0 waiting time.
Figure 2.8 shows convergence plots for the CRF approach versus the independent

agents.

2.5 Conclusions

We have shown how to use CRFs to model control processes, or equivalently, how
decentralized RL can be performed with CRF optimisation methods. Although all our
examples have been related to controlling a process, a special case is where rewards
are given simply for predicting the next input, i.e., time series prediction. From a

reinforcement learning point of view we have presented an efficient policy-gradient

56 Conditional Random Fields for Multi-agent Reinforcement Learning

—Mean

45 ---Upper std|
- - Lower std
_% a0t Independent e
<
S35
CRF
30!
0 2 4 6 8

Number of iterations x 10°

Figure 2.8: Convergence of NAC on the independent agents (upper curve) and on
CRF model (lower curve). The number of controllable intersections is 14.

solution to the difficult problem of optimizing joint actions in a decentralised (PO)MDP.

Future work could explore RL in general graphical models, and how local rewards may

be propagated through a graphical model.

Chapter 3

Bayesian Online Learning for
Multi-label and Multi-variate

Performance Measures

Many real world applications involve a large number of classes and each example can
be associated with multiple classes. For example, a lot of web based objects such as
ads, blogs, web pages, RSS feeds are attached with tags which are essentially forms of
categorization. A news article on “Obama supported the AIG bailout of $170 billion
after some debate in Congress” can be associated with insurance, economics, and
politics. This setting is referred to as multi-label classification in machine learning.

Cases in point can be found in search engine industry. Most search engines are free
to use, and their revenue comes from users clicking on the ads embedded in the search
result. To select and place ads, tags play an important role. Advertisers provide ads
and their associated keywords, together with a bid once this ad is clicked. Upon a
search request, the ad ranker and filter are invoked to select the ads for display, with
an eye to maximizing the expected revenue which depends on a) how likely will the
user click it, and b) the price calculated from a Vickrey auction of advertisers’ bids. It
will be very helpful for ad selection if ads can be automatically attached with multiple
tags, or categorized into a hierarchy or ontology associated with odds of memberships.

Learning for multi-label data is usually faced with the following practical challenges:

1. The problem scale is huge in a) number of data points n, b) number of feature
D, and c) number of class C. Usually, O(nDC) computational complexity is the
limit we can afford. Hence efficiency becomes necessary and expensive operations

such as pairwise comparison must be avoided.

2. The performance measure is usually more complicated than accuracy, e.g. micro-
average F-score, area under ROC curve. These measures are usually called multi-

variate measure because they couple the labels of all the classes in the dataset in

57

58 Bayesian Online Learning for Multi-label and Multi-variate Measures

a nondecomposable way. This incurs two complexities: a) most existing training
algorithms simply optimize error rates per class which may lead to poor models
even on the training set under this new measure, and b) the application of the

trained model need to be calibrated over the whole testing set.

3. The labels can be highly correlated, e.g. co-occurrence. More importantly, the
labels in many applications employ a tree structured ontology hierarchy, i.e.
all ancestor classes of a relevant class must also be relevant. Examples include
the patent classification hierarchy according to the World International Patent
Organization, and the enzyme classification scheme for classifying amino acid
sequences of enzymatic proteins. Another example is the Pascal challenge on large
scale hierarchical text classification! which is based on the ODP web directory

data (www.dmoz.org).

Several algorithms have been proposed for multi-label learning, and they can be
categorized in three dimensions: a) online v.s. batch, b) frequentist v.s. Bayesian, and
c¢) using structures in the label space v.s. treating the labels as independent. This
categorization helps us to analyze how much these algorithms fit for the above three
challenges, and also motivates our new algorithm.

The most primitive algorithms are in the batch fashion. A typical frequentist
method is based on SVMs (Elisseeff & Weston, 2001), which generalizes the binary

hinge loss to the maximum inconsistency on data point x:

maxmax (We, X) = (Wer, %),

where R and Z are the set of relevant and irrelevant labels of x, and w, is the weight
vector for class ¢. This approach has complexity O(|R||Z|) hence not suitable for
large number of class. Among the Bayesian methods, mixture models are the most
straightforward. They assume that each document has an unknown “topic”, and each
word is generated by the topic through a multinomial distribution. To cater for the
multi-label scenario, McCallum (1999) proposed blowing up the latent topic space to
the power set of all the topics, and EM was used to estimate the parameters with
special care paid to overfitting which results from the exponentially large latent space.

Unfortunately, all these batch methods are very expensive in parameter estimation,
hence not suitable for the first challenge. For large datasets, one effective and efficient
scheme is to visit the data points one by one, and at each step update the model
by using just a single data point. This online learning scheme keeps each iteration

cheap and incrementally learns a good model. It also allows the training examples to

"http://1shtc.iit.demokritos.gr

59

be provided as a stream with no need of storing the data. The any-time property is
valuable as well: one can pause the process at any time and use the current model; once

new data arrives, learning can be resumed with no need of re-training from scratch.

Although online learning has been widely used for binary classification, it is less
studied for the multi-label scenario. Crammer & Singer (2003) proposed an additive
online algorithm for category ranking. Given a data point, it compares the output of
the model for each pair of relevant and irrelevant classes, and the difference is used to
update the weight vector of these two classes. To avoid the quadratic complexity as in
(Elisseeff & Weston, 2001), it devised a pre-computation such that the time complexity
is reduced to linear in the number of classes, and the space cost to sub-quadratic.
Bayesian online learning is also popular, e.g. (Opper, 1998). They essentially perform
assumed density filtering, where at each step the posterior of the model is updated
based on a single data point. We are unaware of any published Bayesian online learner

for multi-class or multi-label classification.

In a nutshell, Bayesian methods learn a distribution over a family of models, while
frequentist methods find the most probable model. They are both useful and commonly
used. Intuitively speaking, although learning and using a distribution of the models
are generally more expensive in computation, they provide more flexibility in decision
making and allow the model to be used in a completely different way from how it was
learned (decoupling). A case in point is the multi-variate performance measure. In
(Joachims, 2005), the training of SVM is customized for the multi-variate measure,
however the testing data are still labeled by applying the learned model independently.
In contrast, with a distribution of models available, the Bayesian method can a) provide
a principled framework of labeling the testing data to optimize multi-variate measures
in a batch fashion, and b) allow the distribution of the model to be estimated with
a different and decomposable measure (such as square loss), which is especially useful

when the large dataset size necessitates online learning.

Finally, to make use of the structure in the label space as desired from the last chal-
lenge, frequentist methods such as (Rousu et al., 2006) use the framework of maximum
margin Markov network, where the class hierarchy is represented by a Markov tree.
This tree plays a key role in the definition of the discrepancy between labels, and of the
joint kernels (kernels on the pair of feature and label). On the Bayesian side, the most
straightforward way to incorporate label interdependency is the conditional random
fields (CRFs), based on which Ghamrawi & McCallum (2005) directly incorporated
label co-occurrences into the features. Interestingly, this CRF model can also induce
the structure of labels from the data, instead of relying on a given structure that is
assumed by Rousu et al. (2006). However, they trained the CRF in a batch fashion

and it is not clear whether the model can also be learned efficiently in the stochastic

60 Bayesian Online Learning for Multi-label and Multi-variate Measures

online setting.

Summarizing the above discussion, we propose in this chapter a Bayesian online
multi-label classification (BOMC) framework which learns a probabilistic model of the
linear classifier (Section 3.1). As an initial work, the labels are only loosely coupled
in our model for the multi-label scenario, while extension to more general structures
is straightforward for future work. The training labels are incorporated to update the
posterior of the classifiers via a graphical model similar to TrueSkill™™ (Herbrich et al.,
2007), and inference is based on assumed density filtering between training examples
and expectation propagation (Minka, 2001) within each training example (Section 3.2).
This allows us to efficiently use a large amount of training data. Using samples from
the posterior of the model, we label the test data by maximizing the expected F-
score (Section 3.3). Experimental results are presented in Section 3.4, including the
comparison of macro-average F-score and training time. The whole chapter is concluded

in Section 3.5 with several proposal for future research.

3.1 A Bayesian model for multi-label classification

Suppose we have n training examples whose feature vectors are {Xi eRP }:.L:l. As-
sume there are C classes?, and the label vector y* of each example uses the canonical
representation for multi-label: y* € {0, 1}C and 3. = 1 if, and only if, example x; is
relevant to class ¢, and 0 otherwise.

Our basic assumptions on the model include the following;:

1. Each class is associated with a linear discriminant, i.e. weight vector w and bias
b: (w,x) — b.

2. The weight and bias are independent Gaussians. Their mean and variance are

estimated from the training data.

In the following sections, we start from a special case of multi-label classification:
multi-class classification. This allows us to introduce the most important concepts of
the framework without being complicated by the multi-label ingredients. Afterwards,

we will propose and compare three models for multi-label classification.

3.1.1 Multi-class classification

In multi-class classification, there are multiple classes and each example belongs to

exactly one class. For each training example x, a factor graph to model the likelihood

2We are very reluctant to use capital letters to denote numbers. However, since the later description
of algorithms will require explicit indexing of class and feature dimensions, we find it much more
intuitive to use D as the total number of features and d as the index for it. Similarly, C classes indexed
by c.

83.1 A Bayesian model for multi-label classification 61

Class 2:
Clgss 1 true ﬁbel Clags C
prior‘ prior !rior prior™ prior prior prion‘ prior lprior
for Wi for lez'“ for Wip for Wz’lfor W32 = for W2 p for chlfor Wc’z.” for Wcp

linear d(ac—<we, x>)
combination
discriminant(g,) (&) ...
noise (eg. 2
Gaussian) N(fe-ac,f)
likelihood
noisy
discriminant 69
Fra
5(dy — (f,—f1)) o(dec — (f2—Tc))
comparison
difference
Fq
Y 5(dy > ¢) 5(de>¢)

Figure 3.1: A factor graph for multi-class classification. Class 2 is the true label.

is built depending on its label. Figure 3.1 shows the case where example x has label 2.
Round circles represent random variables and solid rectangles represent factors which

are detailed below.

Priors. Each class ¢ € [C] has a corresponding weight vector w, € RP endowed with
a prior. The simplest form of prior is a diagonal Gaussian, i.e. all the elements of w,

are independent Gaussians as represented in the top row of factors in Figure 3.1.

Linear combination. We use a simple linear discrimination model for all classes:

a. := (W, X;), and this is encoded by the linear combination factor:
Fua(We,ae) :=0(aec — (We, X)),

where §(-) is the Dirac function: §(z) = 0 for all z # 0 and [, 6(x)dz = 1.

62 Bayesian Online Learning for Multi-label and Multi-variate Measures

Feature noise. To model the feature noise, we define the noisy discriminant by

passing a. through a Gaussian noise factor with a pre-specified variance 52, i.e.

—a.)?
Fulooe) = e (M2l). (3.1

Intuitively, this noise serves as a square loss when the dataset is not linearly separable,

and $72 corresponds to the regularization parameter.

Label comparison. The label of x is assumed to be argmax,¢(¢c) fe. This assumption
is encoded by comparing the f. of the correct class (2 in this example) with that of
the rest classes, and enforcing the difference to be positive by using a (- > ¢) factor,

where ¢ is a small positive margin.

Ffd(fla fC7 dc)
Fd(dC)

— 5(de — (fi— 1)), (3:2)
= d(d. > e€), (3.3)
where [= 2 is the correct label, and ¢ ranges over all the other classes. Note that the
0 in Eq. 3.2 is again the Dirac function, while the ¢ in Eq. (3.3) is 0-1: 6(p) =1 if p is
true, and 0 otherwise.3

Clearly, d(d. > €) is not the only way to enforce the correct label. In the similar
spirit of probit regression, one can use ®(d.) as Fy(d.) where ®(-) is the cumulative
distribution function of the standard normal distribution. Although & is smooth, exact
inference is still intractable.

A few notes on the connotation of the model in Figure 3.1 is in order. The product
of the factors below the dashed line is defined as the likelihood p(y*, a, f,d|w) (omitting
the conditioning on x*), while product of the factors above the dashed line equals the
prior p(w). So the product of all factors in the graph equals p(y’ a,f,d,w). So
summing out all the a, f, d, w, we obtain p(y?) which is called evidence in the Bayesian
theory. It is crucial to understand that this is not a function of y*, but just for the
particular given y’. Our model does not specify the probability for any other possible
label of x*, and there is no node that corresponds to the label. Fortunately, this
is sufficient for our need because we will be only interested in p(w|y®), which, as a
function of w, is equal to p(w,y’) up to a normalizing constant p(y*‘). Now that
the product of all the factors in Figure 3.1 is exactly p(y?, a, f,d, w), p(w,y’) (hence
p(w|y?)) as a function of w can be obtained by summing out a,f,d. This can be

equivalently achieved by treating Figure 3.1 as a factor graph which defines a joint

3The notation of § is standard in both cases. And this overloading does not cause any ambiguity:
when applied on a real number, § means Dirac function; and when applied on a predicate, it means
0-1.

83.1 A Bayesian model for multi-label classification 63

dij = fi - fj
i: relevant
j: irrelevant

o(=¢) o(>¢) o(=¢) J(>¢) o(=¢e) o(=¢)

Figure 3.2: A factor graph for multi-label classification via pairwise comparison. Here
class 2 and 4 are the relevant labels.

distribution over a, f,d, w (Definition 21), and then query the marginal distribution of
w by summing out a, f,d.

The fact that the label only affects the comparisons between f, is slightly suggestive
of the “gate notation” by Minka & Winn (2009) which conveniently represents mixture
models and context-sensitive independence in factor graphs. But in our case there is no
point introducing y* as a gate variable because y* is deterministically given. However,
when the given labels are noisy, then the true label becomes a random variable and
the gate notation becomes useful.

It is noteworthy that this diagram is very similar to the TrueSkill™ algorithm
(Herbrich et al., 2007), but they are different in the following ways: a) the factor
graph in our case corresponds to a fixed example x instead of multiple examples (play-
ers/teams), b) each class is associated with a different weight vector while TrueSkillT™
uses a common weight vector, and ¢) there is only one winner in our diagram, while
TrueSkill™ has several winners which entails pairwise comparison. In Section 3.2, we

will discuss how to learn the model parameters, ¢.e. the mean and variance of the prior.

3.1.2 Multi-label classification

In multi-label classification, each example can be associated with more than one label
or no label at all. Accordingly, we only need to modify the comparison part of the
model in Figure 3.1, keeping the linear combination and noise part intact. The new
model is shown in Figure 3.2.

The fundamental assumption in the new model is that the noisy discriminant value
f. of relevant?® classes should be higher than that of the irrelevant classes. No com-

parison is made within relevant classes or irrelevant classes. This idea is the same

4We changed “correct” to “relevant” to reflect the multi-label scenario.

64 Bayesian Online Learning for Multi-label and Multi-variate Measures

5(d - (fmin - fmax))

o(=>¢)

Figure 3.3: A factor graph for multi-label classification using max and min factors.

as in (Elisseeff & Weston, 2001). The biggest problem of this model is the computa-
tional cost. An example with R relevant labels and C' — R irrelevant labels will cost
O(R(C — R)) complexity both in time and space.

A simple and equivalent reformulation of pairwise comparison is by introducing the

max and min factors:

min fe— max fe> e,
c: ¢ is relevant c: c is irrelevant

and the corresponding factor graph is shown in Figure 3.3. This reduces the number
of factors back to linear. However, a new problem arises from the inference with max
and min factors, for which only approximate message formulae are available and the
error analysis is hard. We will present the details on message passing over max and
min factors in Appendix B.3.2, which is based on (Afonja, 1972).

A further simplification is by assuming that the relevance of the labels conforms
with an underlying total order. This translates to associating some score f. with each
class ¢, and f. > f» implies that ¢ must be relevant once ¢’ is. Equivalently, we can
determine the relevance of all classes by thresholding all f. by a global threshold b
which needs to be estimated from the training data as well. We also call b a global
bias due to its equivalence to thresholding f. — b at 0. Figure 3.4 illustrates this idea
graphically. One can further incorporate a “local” bias for each individual class by, for
example, adding an artificial constant feature. This could also eliminate the need of

the global bias. We will compare these two models in the experiment.

83.2 Online learning and inference 65

o(<-) o(>¢) o(<—) d(~¢e J(<—)
irrelevant relevant irrelevant relevant irrelevant

Figure 3.4: A factor graph for multi-label classification via total ordering and a global
bias. See text for explanation.

3.2 Online learning and inference

We discuss in this section how to use the training data to learn the model, i.e. the
distribution of weights and bias. Bear in mind that the graphical models in Figure 3.1,
3.2, 3.3 and 3.4 correspond to one particular training example. So we need to make

two decisions:

1. Given a training example and its corresponding graph, how to infer the posterior
of the model?

2. How is the set of training data used as a whole, i.e. how are the graphs of different

training examples connected?

Our answer is: expectation propagation (EP, Minka, 2001) for the first question
and Gaussian density filtering (Maybeck, 1982) for the second. Below are the details.

3.2.1 A Bayesian view of learning

Assume we have n feature/label pairs {(xi,yi)}?zl drawn iid from some underlying
distribution. Suppose we have a prior distribution po(w) on the weight vector w, as
well as a likelihood model p(x?, y?|w). In Bayesian learning, we are interested in the

posterior distribution of w.

i iy po(wW) [T p(x', y'lw)
POVIOSYID = o (w I, p0c y Twidw

The integral in the denominator can be computationally intractable, hence various

approximation algorithms have been developed (see Section 1.5). Due to the large

66 Bayesian Online Learning for Multi-label and Multi-variate Measures

Algorithm 6: Gaussian density filtering.

Input: A set of feature/label pairs for training {(xi7 yi)}?zl.
Output: Approximate posterior of the model.
1 Initialize: Specify a prior of the model py(w).
2 for i =1 ton do
3 Construct the likelihood p(x’,y*|w) using the training example (x°,y?).
Set the prior of the model to p;—1(w).
Find a Gaussian distribution p;(w) which approximates the posterior
distribution p(w|x’,y?) o< p;_1(w)p(x*, y¢|w). Different inference algorithms
differ in the sense of approximation.

(SR

6 return p,(w)

amount of data in many real life applications, we resort to one of the cheapest approx-
imations: assumed density filtering (ADF). The idea is simple: in each iteration, visit
only one data point (x?,y?), use its likelihood to compute the posterior of the weight,
and then use this posterior as the prior for the next iteration. Since each step only
deals with one likelihood factor, the posterior inference can be performed efficiently.
Algorithm 6 sketches ADF.

In our case the prior of all weights are set to zero mean Gaussians, and the variance
will be discussed in the experiment section. The likelihood is modeled by the factor
graph in Figure 3.1. If we keep the posterior approximated by Gaussians, then ADF
can also be called Gaussian density filtering (GDF). Now the only problem is how to
compute the posterior in the step 5 of Algorithm 6.

3.2.2 Inference on the graph of a given training example with EP

Given a training example (x,y), the discussion in Section 3.1.1 has shown that the
posterior p(w|x,y) can be derived by querying the marginal distribution of w in Figure
3.1. This marginal can be computed by EP, which was introduced in Section 1.5. In
a nutshell, EP is similar to loopy belief propagation, but further approximates the
messages as well as possible. To this end, it approximates the marginals of the factors
via Gaussians which match the first and second order moments. Strictly speaking,
EP finds a Gaussian approximation of the true posterior. Since our model uses the

1™ we refer the interested readers to the Table 1

same set of factors as in TrueSkil
in (Herbrich et al., 2007) for a summary of the message formulae, and we provide a
detailed derivation in Appendix B.

One important implementation consideration of EP is the message passing schedule
(Herbrich et al., 2007). There is no loop in all the graphical models from Figure 3.1 to
3.4. However, they all have a non-Gaussian factor: §(- > ¢), which necessitates passing

EP messages repeatedly on the graph. Realizing that the shortest paths between these

83.2 Online learning and inference 67

Figure 3.5: A dynamic graphical model with factors between the model of two adjacent
examples.

non-Gaussian factors only involve factors {a., 8.} and variables {d.} and b (see Figure
3.4), we only need to run EP iteratively over b and {ce,d., Bc}.. This significantly
reduces the cost of each EP iteration from O(DC) (for all weights) to O(C)®. In

practice, since we only send messages from factors to variables, we just repeatedly do:
) = dy,...,a5 > ds; L —di,..., Bs—ds; ap —b,...,a5 = b.

The termination criterion is that the relative difference of messages between two iter-
ations fall below a given tolerance value for all messages. All messages are initialized

to zero precision and zero precision-mean.

3.2.3 Dynamic models

So far we have not taken into account the need of different models for different parts
of the dataset, i.e. temporal/spatial variations. This simplification may be unrealistic
in many applications. For example, the categorization rule of Reuters news wire may
change over the year, so our model needs to evolve through time accordingly. GDF
also depends on the random order of training examples and the model information
propagates only in the forward direction of the data stream. If the data can be stored,
then we may add dynamic factors between the models of adjacent news article to
allow smooth temporal variations. See Figure 3.5 for the dynamic graphical model
and see (Dangauthier et al., 2008) for how TrueSkill™ can be extended to a dynamic
scenarios. In this case, EP needs to be performed back and forth over the whole dataset.

Theoretically appealing, it is very expensive in both time and space, and hence we stick

5 After EP converges, it still takes O(DC) complexity to record the final posterior.

68 Bayesian Online Learning for Multi-label and Multi-variate Measures

to GDF in this work.

Our model also admits straightforward active learning, where in each iteration one
picks a most informative training example, label it, and train on it. This can be useful
when labeling is expensive. In this chapter, we focus on applications where a large
number of labeled data is available, and then the bottleneck of computation shifts
to finding the most informative training example. This usually requires applying the
current model to the whole training set which is expensive, hence we would rather
spend that time taking more updates considering its low cost in our model.

From now on, we will refer to our algorithm as Bayesian online multi-label classifi-

cation (BOMC).

3.3 Generalization for multi-variate performance measure

After obtaining the posterior of weights w4 ~ N (:“&d?"g,d) for class ¢ € [C] and
feature d € [D], together with a global threshold b ~ N (ug, 03), the next task is to find
a label in 2[° for test example x. For simplification, unless explicitly highlighted we
make predictions class by class and omit the class index c¢. Denote w := (wy, ..., wD)T
(for class ¢ whose index we omit) and similarly g and o. Suppose we are given a set
of test data Xiest 1= {xi eRP:je [n]} Let y* be a Bernoulli random variable, and
y* = 1 means x' belongs to class ¢ and 0 otherwiseS. Given an instantiation of w and

b, we define the label y of a test example x depending on the sign of (w,x) — b:
y:=0((w,x) —b>0), ie ply=1x,w,b):=35(w,x)—b>0). (3.4)

Therefore using the posterior of w and b we have

ply =1x) = E 6((w, %) —b > 0)] = ® (1, x) — o

(Wyb)Np(W7b|Xtrain7§/train) O-g + Zd ngg

where ® is the cumulative distribution of a standard normal distribution. A naive

, (3.5)

decision criterion will then attach label ¢ to x if p(y = 1|x) > 0.5, or equivalently
(p,x) — po > 0. However, there is no justification that 0.5 is the best threshold. In
this work we will label the test data in a much more principled Bayesian fashion.

To this end, we study the joint distribution of all labels y := (y',...,y™)" and

assume the testing data are labeled independently given the model, i.e.

n

y' Ay w,b,xt %7, and p(y|w, b, Xiest) = Hp (yi]xi,w, b))
i=1

5Not to be confused with the ground truth. y° just represents the belief of our model and predictor.

§3.3 Generalization for multi-variate performance measure 69

However, the independence is lost after w and b are integrated out:

yi M‘ y] ‘ Xivxja under p(Y‘Xtest) = E [p<y‘wv baXteSt)] (36)
(Wvb)’\’p(wuletrainAftrain)

The following sections will study how to label the testing data based on p(y|Xtest)-
Incidentally, we could modify the definition Eq. (3.4) into a soft version:

p(y = 1|X7W7 b) = (I)(<W7X> - b)’ (37)
and hence

ply =1]x) = E [@((w,x) —b)] = E [®(2)].
(w,b)~p(W,b| Xtrain, Yerain) ZNN(<“ax)_HOaU(2)+Zd $§U§)

In this chapter, we will stick to definition Eq. (3.4) for simplicity.

3.3.1 Formulation of expected F-score

Labeling criteria must be designed to optimize some underlying performance measure.
Let 1 € {0,1}" be a reference labeling for n data points, and y € {0,1}" be a predicted

labeling. Some performance measures are additively decomposable such as accuracy:
1 n
Accurac D) :=— Sl =yt
v = 1 3200 =)

while there also exist many undecomposable multi-variate performance measures, e.g.
precision, recall, F-score, area under ROC curve, etc.. In such cases, the predicted
labels must be optimized as a whole. For example, the F-score” is defined through the

following sequence of performance measures:

n n

tp := true positive := Z Il fn := false negative := Z(l — It
i=1 1=1
n . .

fp := false positive := Zyl(l =1
T t

Pre := Precision = P Rec := Recall = P
tp + fp tp + fn
Pre x R 2t 230yl
F-score(y,1) := 2 ez e P = Liz1y (3.8)

= “ Pre + Rec tp+fp+fn Yy >

"Strictly speaking, we use the F}-score.

70 Bayesian Online Learning for Multi-label and Multi-variate Measures

This measure is useful in many applications like information retrieval, where the class
distribution is skewed and high accuracy can be achieved by blindly classifying all ex-
amples to the most common class. F-score, which is the harmonic mean of precision and
recall, essentially reweights the positive and negative classes to the same importance,
and encourages both of them to be accurately labeled.

Now that the true reference label is unknown, we simply check for each possible
labeling 1 € {0, 1}" how much the expected F-score is:

ExpFs(l) := Ey.p(y) [F — score(y, 1), (3.9)

where p(y) is the abbreviation of p(y|Xtest) in Eq. (3.6). Finally, we output the maxi-

mizer of the expected F-score as the deterministic labeling, i.e.
1" := argmax ExpFs(l) = argmax E [F —score(y,1)]
1€{0,1}" 1€{0,1}" y~p(y)

Yyl
=argmax [— -
16001} yrp(y) L2ier Yo+ Doy U

(3.10)

This principle of Bayesian labeling can be easily applied to other multi-variate
performance measures. In the multi-label settings, each class has an F-score and an
“average F-score” can be defined in two different ways. Suppose we have a set of
reference labels {1.}, for all classes, and a set of proposed labels {y.}.. Then we can
average over the F-scores for all the classes, which is called “macro-average F-score”:
/i

n i
Macro-average F-score := Z {F-score of class ¢} = Z iz Ve le
C Zz 1 yc + Zz 1 c

Another commonly used average F-score is the micro-average F-score. It first calculates
the average of true positive, true negative and false positive, and then use these averages

to compute the F-score:

_ c .
2tpc . 2 Z?:l Zc:l yé ’ lé

Micro-average F-score .= ————=—— = — o - -
tpe +1fp. +fne ST STyl DT Y L

where
tp := average true positive := 1 tp.; fn:= average false negative := fn.;
C
cE[C} cE[C
fp := average false positive := Z fp,.
CE[C

In general, micro-average F-score is more stable than macro-average F-score when some

§3.3 Generalization for multi-variate performance measure 71

classes have very few positive examples. In that case, small changes in the predicted

labels can make the F-score of those classes jump between 0 and 1.

The principle of Bayesian labeling can be applied here without change. Suppose
we have a joint distribution p ({y.},.). Then the optimal labeling should be:

argmax E [Micro-average F-score({y.}.,{l.}.)]-
(0.1} {ye}o~p({yele)

This discrete optimization problem is very hard in general because the labels of all the
classes are coupled in the numerator and denominator of micro-average F-score. In
contrast, the macro-average F-score is additively decomposed into the classes, which
allows us to find the optimal labels of all the classes independently using the marginal

distributions:

argmax E Z {F-score of class ¢ with (y.,1.)}
1:6{0,1} {yc}.~p({yc}.) c€[C]

& argmax Z E [F-score of class ¢ with (ye,1.)]

< argmax R [F-score of class ¢ with (y¢,1.)] Vce[C].
1:e{0,1} ye~p(ye)

For a fixed class, F-score is a multi-variate measure which cannot be additively de-
composed onto the data points. However, some other measures do admit such a decom-
position: Y, loss(y%,1%), and then the optimal labeling argmax; Ey[>"1 | loss(y?, 1%)]
can be found by optimizing on each data point separately based on the marginal dis-
tributions p(y*):

max g
1 y~p(y)

n

Zloss(yi,li) & max E [loss(yi,li)} &S max E [loss(yi,li)] Vi.
i1 =1 vi~p(y) " yip(y?)

In addition, when the loss is accuracy for binary classification, the rule of labeling
becomes exactly thresholding p(y* = 1) at 0.5:

argmin | [loss(yi, l’)] = argminp(y’ = 1)6(I* = 1) + p(y* = 0)6(I* = 0)
lie{0,1} v 1ie{0,1}

=0(p(y* =1) > 0.5).

In general, closed form solutions rarely exist for optimizing multi-variate perfor-
mance measures, and the expectation in Eq. (3.10) is intractable in the first place,
bearing in mind that the space of 1 and y are exponentially large. The rest of Section

3.3 provides some practical approximate solutions.

72 Bayesian Online Learning for Multi-label and Multi-variate Measures

Algorithm 7: A simple algorithm to maximize ExpFs(1).

1 for r =0 ton do

L Find 1, := argmax, | —, ExpFs(l)

[y =r

3 return 7" := argmax,cp,uo} ExpFs(l.) and 1,-

3.3.2 Algorithms for maximizing expected F-score

To solve the discrete optimization problem in Eq. (3.10), it is helpful to study the most
closely related algorithm: (Jansche, 2007). It relies on the assumption that y',..., y"
are independent. This assumption definitely does not hold in our case, but examining
this algorithm gives useful insights.

Based on the expression of F-score in Eq. (3.10), the intuition of (Jansche, 2007)
is to fix [|1|; = >, 1° to some value, and then 1 appears only in the numerator which
makes optimization easier. We outline the idea in Algorithm 7.

The key step is step 2: find 1, := argmaxy || = ExpFs(l). We now take a closer

look. Given that ||1||; = r, we have

ExpFs() = E [M}—Zz e |

yply) Lo Y0+ -1 y~p(y) iyt

=zt

So we only need to sort 2 in decreasing order, and assign the [* of the top r indices
to 1. Although 2° is hard to compute as well, it clearly shows that the correlation
among ¥’ plays an important role, because

i

“= 5 sl - Zz*yw N T

Zztly—i—r()

yy'=1

1 . . o
:Zzn;ﬁ yt—l-l—f‘rp(yZ:l) (\Z’y _1) (y\l = (ylv"'ayl luyH_l?"'ayn)T)
\i t#1

= s|yi = 1) . (3.11)

S (%
- Py = s—l—l—{—rp Y 1

—
SN—
» 3
||M\
o [u

So the conditional distribution p (Hy\"H1 |yi = 1) plays a very important part in
the value of 2, and the marginal probability p(y* = 1) is only one factor of z¢. Jansche
(2007) only sorted p(y* = 1) because he assumed the independence of {y'} (Theorem 1
therein). Incidentally, we can also derive from Eq. (3.11) that if {y’} were independent,

§3.3 Generalization for multi-variate performance measure 73

Algorithm 8: One implementation of the step 2 of Algorithm 7

1 Sample w and b.

2 Obtainy = (y',...,y™) " using Eq. (3.4).

3 Repeat step 1 and 2 for many times to obtain many samples of y. Compute
P (Hy\iHl ly* = 1) by counting, for all i € [n] and s = [n — 1] U {0}.

4 Compute 2! by applying Eq. (3.11) for all i € [n].

5 maxy,|y|, = ExpFs(l) is exactly the sum of the r greatest values of 2" (in the
derivation of 2" in Eq. (3.11), we omitted the index 7).

then the order of 2! would be exactly the order of p(y* = 1):
Proposition 28 If {y’} are independent, then p(y* = 1) > p(y? = 1) implies 2* > 27.

Proof First notice that independence implies p (Hy\iH1 = s‘yi = 1) =p (Hy\iHl = s).
If p(y* = 1) > p(y? = 1), then 2* — 27 equals

n—1
p(y' =1) p/ =Up | Dy =s—1]|+p/ =0p| > y' =s
s+1+4+r ~ -
s=0 4, t#4,
n—1 1
- - . . .
P =DY s [= e [v =s 1) i =0p Yy =
s=0 t#i,j t#i,j
n—1 1
= ——— (' =1p(y/ =0) —py' =0)p(y’ = 1)) p | Y ¢' =5
s+1+r -
s=0 t#i,j
n—1 1
= (' =1)—p/ =1)p | D v =s]| >0
=Ehn "y

Eq. (3.11) also provides a way to compute z¢, based on which we can implement
the step 2 of Algorithm 7 to find the maximizer of ExpFs(l) subject to |]1||; = r. The
conditional distribution p (HyW‘l |yi = 1) can be estimated by sampling w and b. We

formalize the whole idea in Algorithm 8.

Unfortunately, this approach is usually too expensive. The table of conditional
probability p (Hy\iﬂ1 ‘yz = 1) costs O(n?) complexity in time and space. Sampling one
set of w costs O(DC) time which can be expensive in practice as well. Statistically,

some concentration argument is also needed to bound the variance of the sampling.

74 Bayesian Online Learning for Multi-label and Multi-variate Measures

Stochastic gradient descent

The objective function ExpFs(1) is in the form of expectation, which is amenable for
stochastic gradient descent methods. We draw a sample of w and b which gives a sample
y, and then take a step of gradient descent based on this single sample. Asymptotically,
convergence to the optimal may be provable, but more theoretical analysis is needed
for this discrete problem. Fortunately, ExpFs(1) is convex in 1 after relaxing its domain
from {0,1}" to [0,1]™.

A heuristic approach to maximizing expected F-score

We have emphasized that the marginal probability p(y® = 1) is insufficient to optimize
ExpFs(1), and the correlations between {yl} are important. However, correlations are
expensive for both storage and computation. We finally resort to a simplified heuristic
which respects the order of p(y® = 1) but tunes the threshold: for any arbitrary value
of § € [0,1], we consider the class to be relevant if, and only if, p(y* = 1) > 0, where
p(yt = 1) is given in Eq. (3.5). So the label 1() is defined as a function of 0

10) = (6(p(y =1) > 0),....6(p(y" =1) >). (3.12)

Instead of maximizing ExpFs(1) over all 1 € {0,1}", we now find the final deterministic

labeling by maximizing the expected F-score of 1() wrt 6 € [0, 1]:

0* := argmax ExpFs(1(0)). (3.13)
0€[0,1]

In fact, ExpFs(1(f)) can assume at most n different values (jumping at 6 = p(y’ =
1)). This reduction of search space is significant, which makes optimization much
easier. Another benefit is that we are no longer in the transductive setting, and can
easily handle out-of-sample predictions. However, there is no guarantee that 1(6*) will
recover the true 1* = argmax; ExpFs(1), which may be not contained in the range of
{1(6) : 6 € [0,1]} in the first place.

Given 6, 1(f) can be computed efficiently from Eq. (3.12) and (3.5). But there is
still no closed form for ExpFs(l) defined by Eq. (3.9) due to the expectation opera-

tion. Therefore, we resort to approximate evaluation of ExpFs(l) based on samples

{y1,...,¥s} drawn iid from p(y):

1 ?/slZ

EXst :
SZZZ 1y5+ZZ 1!

(3.14)

To draw sample y; from p(y), one only needs to draw sample Wy from N (u, o) and

§3.3 Generalization for multi-variate performance measure 75

bs from N (uo,03), and set 7 := §((x;, W,) — by > 0). However, a naive application of
Eq. (3.14) costs O(nSCD) time, which is impractical for large datasets. We will design
a more efficient algorithm in Section 3.3.4 using careful precomputation and buffering.
Before that, we first justify the labeling criteria Eq. (3.13).

3.3.3 Soundness of approximate Bayesian labeling criteria

We call our labeling criteria 1" := argmaxc o 13» ExpFs(l) sound if 1" is “close” to the
ground truth y*, as long as p(w,b| Xtrain, Yirain) 18 well estimated. The meaning of

“close” can be quantified in three possible forms:
1. F —score(l*,y*) is high.
2. ExpFs(y*) is close to the maximum of ExpFs(1).
3. [ly* —I[|, is small.

However, since it is intractable to find 1*, none of these criteria can be computed in

practice, which leaves us unable to check the soundness of our exact labeling criteria.
Fortunately, it is possible to indirectly check the soundness of maximizing ExpFs(1(6))

over 6 € [0,1]. To this end, we simply enumerate 6 in [0,1] with a small step size and

plot two curves:
1. Expected F-score: ExpFs(1()) versus 6.
2. True F-score: F-score(1(0),y*) versus 6.

If these two figures are “similar”, then it suggests that optimizing ExpFs(1(6)) over 6
is a good proxy to maximizing the real testing F-score against the ground truth. In
practice, ExpFs(1(#)) can only be evaluated approximately via samples of w and b,
i.e. E;(;fs(l(ﬂ)) in Eq. (3.14), and accordingly we denote the sample based (empirical)
optimal threshold by:

~ —_—~—

0" := argmax ExpFs(1(6))
0

A case study of the soundness of §* and 6

We present an experimental result to compare E/XE)_I“:S(I(H)) and F-score(1(0),y*) as
functions of 6. The example uses group = topics of Reuters dataset, 10,000 training
examples, 100,000 testing examples, and 5 random samples. Noise 42 = 0.012 in
Eq. (3.1), and the prior of global bias has variance 1002. Since there are 101 classes
in all, we can just show some representative plots in Figure C.5 and the full set of 101

figures can be found in Appendix C. In all these figures, the red dotted curve represents

76 Bayesian Online Learning for Multi-label and Multi-variate Measures

100
1 e
] Q
i i
4 40 - --Ground truth s
20 — Sample based 20 — Sample based
- - -Ground truth - - -Ground truth
OO 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 G0 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold
(a) class 4 (b) class 6 (c) class 55
40,
—— Sample based
30 - --Ground truth
S
3
@ 20
L I
100/
1 —— Sample based ——Sample based
- - -Ground truth - - -Ground truth
0

0 02 04 06 08 1
Threshold

(d) class 74

0.2 0.4 0.6
Threshold

(e) class 84

0.2 0.4 0.6
Threshold

(f) class 93

0.8 1

Figure 3.6: Example curves of E;(;Fs(l(ﬂ)) (blue) and F-score(1(6),y*) (red) v.s. 6.

—_——

F-score(1(0), y*), while the blue solid curve represents ExpFs(1(6)). The horizontal axis
is 6.

In these figures, both curves follow roughly similar trend. In fact, we do not need
the maximizer of the blue and red curves to be similar, nor do we require the max of
them to be similar. We only hope that the maximizer of the blue solid curve gives

approximately the max of the red curve, i.e.

F-score(1(6*),y*) close to max F-score(1(0),y™).

And this is actually pretty much the case in this example. Numerically, the left hand

term is 60.97 after summing over all the 101 classes, while the right hand term is 63.26.

3.3.4 Efficient calculation of empirical expected F-score

0c}

can be efficiently computed. However, ExpFs(1()) is expensive in practice. We make

In the previous diagnosis, the curve F-score(1(6),y*) versus # on aset of 6 € {6y, ...

a concrete analysis by using the Reuters dataset as an example, where number of class
C = 300, number of feature D = 5 x 10%, number of test examples n = 10, average

number of non-zero features per example D = 70, and number of # candidate G = 20.

§3.3 Generalization for multi-variate performance measure s

1. Due to memory constraints, the testing data {xi,...,x,} can only be read in an
online fashion, and cannot be stored. In some cases, privacy or other accessibility
constraints disallow us to revisit the testing examples. In some other cases,
though revisiting the data is allowed, we can only afford at most a dozen of

passes due to the computational cost of reading and parsing the data.

2. Sampling is also expensive in time and space. The w vector costs O(C'D) mem-
ory. For the Reuters dataset, it costs 8C'D bytes = 120 MB. With regard to
computational complexity, one sample takes O(nCD) time to be applied to all
the testing data, so the total cost is about 2 x 10°. Therefore we can neither

compute nor store more than a dozen samples of w. So we let .S = 10.

Taking into account the above constraints, we propose two efficient exact algo-
rithms: one takes a single pass over the testing data and the other uses multiple passes.
Both algorithms rely on careful buffering which can be best illustrated by writing out
the empirical expected F-score in ground terms. For class ¢, combining the definitions
in Eq. (3.12) and (3.14), we have

‘=Qc,s,g

n

5
Z nzzl '
s=1 6<<x W) — by >0)+Z§ p(yl) =1) > 6,)

=1 =1

5<x Ws.c) b>0> S(p(yt=1) > 6,)
ExpFs,(1

CQ\H

:=Le,s =Ye,g

Technically, we maintain three counters: a. s g, 8¢5 and 7. 4. They are all cheap in
space, costing O(CSG) for a, O(CS) for B, and O(CG) for ~. ~ does not depend on
the samples, and can be computed efficiently. So the only problem left is o and 3.

Single pass If we are only allowed to visit the test dataset for a single pass, then for
each testing example, we must apply all the samples of w. Since there is not enough
memory to store all the weight samples, we have to regenerate these samples for every
testing example. To ensure good statistical performance, all the testing examples need
to “see” the same samples of w, and therefore we store the seed of the random number
generator for all the weight components. Algorithm 9 shows the whole algorithm, and
it is essentially trading computations (of resampling weights) for 10 pass.

Labeling could be done class by class which allows us to store all the weight samples
of that class in memory. However, it will require reading through the testing data for

C passes, which is forbidden or too expensive.

78 Bayesian Online Learning for Multi-label and Multi-variate Measures

Algorithm 9: 10 bounded computation of]g(f)fs(l(ﬁ)) for 6 € {6, : g € [G]}.
Input: A set of candidate thresholds 6 € {6, : g € [G]}, bias b ~ N (uo,03), and
posterior model we g ~ N (fic.d, 037) for class ¢ € [C] and feature d € [D].
Output: Egi)fsc(l(%)) for all ¢ € [C] and ¢ € [G].
1 Randomly generate seed s. 4 for ¢ € [C] and d € [D].

2 Draw #d random samples b1, . .., bg from N (o, 08).
3 Clear buffer a9 = fes =Yg =0 for c € [C], s € [S], g € [G].
4 while there is still testing data do

5 Load the next test example x, which has non-zero features d, ..., dp.
6 for ¢ € [C] (class index) do
7 = 1)+ & [ALeXm0) ytilizing feat ity.
P(Ye) \/(m utilizing feature sparsity.
for g € [G] (threshold candidate index) do
L Increment 7.4 by 1 if p(y. = 1) > 6.
10 Create random number generators ry,,...,rq, seeded by s.q,,...,5¢dp
resp.
11 for s € [S] (sample index) do
12 for d = dy,ds,...,dr (index of non-zero features) do
13 L Sample Ws 4 ~ N (pic,q4,02 ;) using generator 7 4.
14 if 3, xq4isq—bs >0 (ie., y. = 1) then
15 Increment f. s by 1.
16 for g € [G] (threshold candidate index) do
17 L Increment a4 by 1 if p(y. = 1) > 6,.
18 for c € [C] (class index) and g € [G] (threshold candidate index) do

—_ N — S o
Output: ExpFs.(1(6y)) = %28:1 ﬁcijr%g.

Multiple passes If the testing data can be visited for multiple passes, then we no
longer need to regenerate weight samples. For each weight sample, we go through the
whole testing data and update the counters a, 3 and ~. Since only a dozen of samples
are drawn, visiting the testing data for a dozen of passes is affordable. This algorithm
is simpler than the single pass version, and we omit the details. Essentially, it trades
multiple IO passes for the computational cost of regenerating samples.

Finally although 10 samples seem to be a very low number, the experimental results
in Section 3.3.3 and 3.4.3 show that 5 samples already provide a pretty good, though
approximate, characterization of how ExpFs(1(f)) and F-score(1(#),y*) depend on 6,
which allows us to find the optimal # approximately. Remember for each weight sample,
the whole testing dataset is used to compute the approximation. And we only need

the mode of ExpFs(1(#)), which could probably be roughly captured with a small set

§3.4 Empirical evaluation 79

of weight samples.

3.4 Empirical evaluation

In this section, we compare the empirical performance of several variants of BOMC
with batch SVM and two state-of-the-art online learning classifiers. Our focus is on

macro-average F-score and training time, and the dataset used is Reutersl-v2.

3.4.1 Dataset

The Reutersl-v2 dataset was studied by Lewis et al. (2004) and we downloaded the
raw tokens from
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/1yr12004_rcviv2_README.htm.

Labels. The dataset consists of three groups of categories: topics, industries,
and regions, which contain 103, 354, and 366 categories (or called classes/labels in

machine learning terminology) respectively.

Examples. There are 804,414 documents (news wire) in the whole dataset. Every
document is associated with zero or more labels from each of the three groups. In fact,
all documents have at least one label from the topics group while many documents
are not relevant to any label in the industries and regions group.

In the experiment, the training and testing sets were both sampled uniformly ran-
dom from the whole dataset. We varied the number of training examples in {10%,2 x
10%,4 x 10%,8 x 10*}, and this allowed us to plot curves. We also used different sizes of
testing set in {10°,2 x 10°,4 x 10°,7 x 10°} which will correspond to different subfig-
ures. Note Lewis et al. (2004) used 23,149 documents for training, and the rest 781,255

documents were used for testing.

Features. The feature representation of documents is basically tf-idf. Suppose we
are given a training set D, then the weight (feature value) of a token ¢ in a document

d is defined as follows:

D
wq(t) = (1 +logn(t,d)) x log 1L(t|) :
tf SN——
idf

where n(t, d) is the number of occurrences of token ¢ in document d, n(t) is the number
of documents in D that contain token ¢, and |D| is the number of the training doc-
uments. Unfortunately, this definition caters for the batch learning scenario, and is

not immediately suitable for our online learning scenario. In particular, the idf vector

80 Bayesian Online Learning for Multi-label and Multi-variate Measures

Table 3.1: Number of features under different sizes of idf set.

ip (W) |3 10 30 50
Number of features ‘ 58909 105269 172423 214887

x10_ ‘ ‘ 77.5;

(&)}

»
&)

77

iy

76.5

w

76¢

N
o

Number of features
w
(43
Average number of features

‘—Average number of features ‘

‘— Number of features ‘ 75
: ; .5

1 2 4 8 1 2 4 8
Number of training examples % 10* Number of training examplesX 10*

Figure 3.7: Total number of features
in the training set versus the number
of training examples.

Figure 3.8: Average number of non-
zero features per example versus the
number of training examples.

n(t) cannot be calculated offline because the training data (including both the feature
and label) comes online. Inspired by (Lewis et al., 2004, Section 7)%, we assume that
some statistics about the features can be computed offline, including the idf vector.
Importantly, their labels are still unknown and are revealed online. This idf vector
can be computed from the whole dataset, a subset of it, or even borrowed from other
sources of documents. We call that source as idf set Z. Our underlying assumption is
that % in 7 is similar to that in D for all tokens ¢, and it is more realistic for common
tokens than for rare ones.

In our experiment, we computed the idf vector offline by using ip = 3%, 10%,
30%, 50% samples drawn uniformly random from the whole dataset. Note we did not
require that Z contain all possible tokens, i.e., n(t) > 1 for all ¢. So if a token did not
appear in Z, then it was ignored even if it did appear later in the training set. Table
3.1 gives the number of features with respect to various values of ip under a draw of
idf set. In practice, using ip = 50% does not noticeably improve the testing F-score
compared with ip = 3%, therefore we will only present the results for ip = 3%.

For a specific random draw of training set, only the features and labels that ap-
peared in the training set were considered. Figure 3.7 shows the number of features

in the whole training set as a function of the number of training examples. The error

8Quote: “This (is) a legitimate use of additional unlabeled data. Only the document text from the
additional documents was used, not their codes.”

§3.4 Empirical evaluation 81

bars are based on 5 random draws of the training set.

Although there is a large number of features in the whole dataset, each data point
(document) has only a small number of non-zero features, i.e., tokens that appears in
the document after pre-processing like punctuation removal, stemming, and stop word
removal. On average there are 77 non-zero features in each data point (77 tokens in
each document), and Figure 3.8 shows the average number of features per training

example.

3.4.2 Algorithms

We compared different variants of BOMC with three state-of-the-art online learners.
BOMC was trained with the following settings.

1. The order of the training examples was randomized.

2. The prior of the feature weights were Gaussians N'(0,1). No class-wise bias was
used. The single global bias had prior A'(0,10%). The noise level in Eq. (3.1) is
set to 8 = 0.01, reflecting the fact that text data lies in a high dimensional space
which is pretty likely to be linearly separable.

3. EP was used for inference. The convergence criterion of EP was that the relative
change of all messages fell below 10~°. On average, it just took about 3 iterations

for EP to converge.

In practice, many classes only have very few positive examples and over 90% exam-
ples are negative. This skewed ratio is commonly dealt with by two heuristics. The first
approach tunes the threshold by using cross validation (CV) (Yang, 2001; Lewis et al.,
2004; Fan & Lin, 2007). Intuitively it translates the original separating hyperplane
towards the negative example region. However, CV is very expensive and relies heavily
on the batch setting. The second approach requires more prior knowledge but is much
cheaper. It uses different costs for misclassifying positive and negative examples, e.g.
the “j” parameter in SVM"8" Intuitively it increases the influence of less common
classes. Lewis (2001) won the TREC-2001 Batch Filtering Evaluation by using this
heuristic with SVMUeM* Theoretically, Musicant et al. (2003) proved that such cost
models approximately optimize F-score.

All the competing algorithm in our experiment perform very poorly when neither
heuristic is used. Therefore we assume some prior knowledge such as the relative
frequency of positive and negative examples (denoted by r). BOMC can encode this
prior in the delta factor 6(- > €). For negative examples, the loss factor is set to
0(d < —1), while for positive examples the loss factor is set to (d > In(e + 1/r)).

82 Bayesian Online Learning for Multi-label and Multi-variate Measures

BMOC with sampling (BOMC_Sample) To label the test data, we sampled from the
posterior of the learned model as shown in Algorithm 9. 5 samples were drawn since
the experiment showed that drawing 10 or 20 samples did not improve the F-score
significantly. We call this algorithm BOMC_Sample.

Special care was required when a class was never “activated” by samples, i.e. for
all test examples the inner product of feature and sampled weight being less than
the sampled bias. Not being activated by 5 samples probably should not rule out
the possibility of activating the class in the test set. Suppose the learned model is
w ~ N(p, o) and b ~ N (pg,00), we set the threshold of that class to the maximum of
membership probability (given by Eq. (3.5))

</’l’7 X) — Mo

b
[2 2 9
05+ 2 4T505

ply=1x) =

over all testing examples x.

BOMC with Class Mass Normalization (BOMC_CMN) A much simpler but non-
Bayesian heuristic for picking the threshold is by matching the zero-th order moment:
making the class ratio in the testing set identical to that in the training set. This
heuristic was proposed by Zhu et al. (2003) to solve a similar threshold tuning prob-
lem in semi-supervised learning. Technically, we sorted this membership probability
(Eq. (3.5)) of all testing examples in decreasing order, and labeled the top p percent
to be positive, where p is the fraction of positive examples in the training set. This
approach is called class mass normalization (CMN) by Zhu et al. (2003), so we call this
variant of BOMC as BOMC_CMN.

BMOC: Training all classes independently (BOMC_IND_CMN and BOMC_IND_Sample)
We also tried training each class independently, ¢.e. each class ¢ has its own bias b,
and the shared global bias is no longer used. Now the posterior of each class can be
computed in closed form for each training example. During testing, both CMN and
sampling are again applicable, and hence called BOMC_IND_CMN and BOMC_IND_Sample,
respectively.

All the variants of BOMC were implemented in F#?, and can downloaded from
http://www.stat.purdue.edu/~zhang305/code/bomc. tar.bz2.

Batch SVM (SVM_Batch) As a baseline for benchmark, we compared with SVM

whose batch nature is an unfair advantage over BOMC as an online learner. We

“http://research.microsoft.com/en-us/um/cambridge/projects/fsharp

§3.4 Empirical evaluation 83

trained one SVM for each class independently. Since many classes in Reuters have very
few positive examples, we applied the heuristic of using different cost for mislabeling
positive and negative examples. The cost was chosen by 5 fold CV, and the final result
was rather poor. So we tried the algorithm in (Yang, 2001) which tunes the threshold,
and it yielded very competitive performance. The final algorithm relies highly on
CV: besides using CV for picking the loss-regularization tradeoff parameter C, it also
employs a nontrivial 2-level CV strategy to tune the bias of SVM (Fan & Lin, 2007).
So in total, CV with k folds costs k® rounds. We call this method SVM_Batch.

As the 3-level CV is very expensive, our experiment used 3 folds for each level of
CV, and so the underlying trainer was called for 33 41 = 28 times. We tried 5 folds on

some random samples of training and testing data and it gave almost the same result.

We used the C implementation of 1iblinear as the batch SVM solver!?, and wrote
a Matlab script to deal with the multi-label data.

LaSVM (LaSVM) LaSVM is an online optimizer for SVM objective proposed by Bordes
et al. (2005), who showed that by going through the dataset for a single pass, LaSVM
achieves almost as good generalization performance as the batch SVM. Operating in
the dual which allows nonlinear kernels, LaSVM maintains the active/support vector
set, and employs a removal heuristic to avoid overfitting especially when the data is
noisy. Strictly speaking, it is not a stream learner because it memorizes some data

points (support vectors).

For our multi-label problem, we again trained all classes separately. The experiment
showed that using different cost for positive and negative examples did not improve
the testing F-score of LaSVM on imbalanced data, hence we resorted to the CV based
strategy to tune the bias as in SVM_Batch. Due to the high computational cost of
LaSVM, we only managed to use 2 folds for each level/parameter under CV. This means
calling LaSVM for 23 + 1 = 9 times.

We used the C implementation of LaSVM!'!, and wrote a Matlab script for the multi-

label scenario. Although only linear kernels are used here, this LaSVM implementation

was not optimized for this specialization, hence inefficient.

Passive-Aggressive (PA) This online algorithm has been repeatedly proposed (un-
der different names) for training SVMs, e.g. (Cheng et al., 2006; Crammer et al., 2006;

Hsieh et al., 2008b). The idea is simple: given a current model w; and a new training

Ohttp://www.csie.ntu.edu.tw/~cjlin/liblinear/
"http://leon.bottou.org/projects/lasvm

84 Bayesian Online Learning for Multi-label and Multi-variate Measures

example (x¢,y;), find a new w which minimizes
A
Wit = argiin o |lw — WtH% + loss(x¢, yt, W). (3.15)
w

PA does not naturally accommodate the bias in SVM. Hence we applied the same
CV strategy used in SVM_Batch to find the optimal bias. Here, CV may either use PA
or batch SVM, which we call PA_OnlineCV and PA_BatchCV respectively.

Due to the equivalence of PA and running one pass of liblinear, we simply used

liblinear with the iteration number set to 1.

3.4.3 Performance measure

In this experiment, we compared the generalization performance in terms of macro-
average F-score. It is useful for decision making and is easier for optimization due to

the decoupling of classes.

If a class had no positive example in the training set, then it was ignored in testing.
However if positive examples did appear in the training set but not in the testing
set, special care was needed. With ground truth y, the F-score of predicting 1 is
defined as % Now that all y* are 0, the F-score becomes NaN if all [’ are
0. In information retrieval community, there has been some discussion on what the
proper F-score should be in such a case. As we focus on machine learning, we simply
ignored this class when computing the macro-average F-score. However, if some testing
examples are erroneously predicted to be positive, i.e. [; = 1, then the definition gives

0 F-score and we did take this 0 into the macro-average.

In addition, we compared the CPU time cost for training the algorithms. All
competing algorithms of BOMC used CV for model selection and/or threshold tuning,
so we only measured the time cost for training the final model after CV. In Matlab,
CPU time can be simply obtained by the command cputime. In C/C++, getrusage
was used to query the system and user time process of the current process. In F#, we

called Process.GetCurrentProcess() .TotalProcessorTime or Sys.time.

3.4.4 Results

We compared the macro-average F-score and training time for the above algorithms.
The random sampling of training and testing data was repeated for 5 times which

allowed us to plot error bars.

§3.4 Empirical evaluation 85

50r 50

I
[¢)]

N

[¢)]

N
o

N

o

Macro—average F-score (%)
w
4]

Macro—average F-score (%)
w
[4)]

—BOMC_CMN 7 —BOMC_CMN
30 ---BOMC_Samplep 30F ---BOMC_Samplep
—SVM_Batch —SVM_Batch
L —PA_BatchCV || L —PA_BatchCV ||
25 / PA_OnlineCV 25 / PA_OnlineCV
20 e —LaSVM 20 - —LaSVM
1 2 4 8 1 2 4 8
Number of training examples % 10* Number of training examples % 10°
(a) #test = 100,000 (b) #test = 200,000

[

o
[
o

< S
) 45 == =" o 45 == ===
Q - - o]
[8] [S]
9 40¢ ¢ 40¢
TN T8
% 35 % 35]
5 —BOMC_CMN 5 —BOMC_CMN
30 ---BOMC_Sample & 30f ---BOMC_Sample
c|> —SVM_Batch c|> —SVM_Batch
= L —PA_BatchCV || = L —PA_BatchCV ||
S 25; / PA_OnlineCV S 25/, / PA_OnlineCV
= 20 ‘l/ ‘ ‘ —LaSVM = 20 ‘1/ ‘ ‘ —LaSVM

1 2 4 8 1 2 4 8

Number of training examples % 10° Number of training examples % 10*
(c) #test = 400,000 (d) #test = 700,000

Figure 3.9: F-score for the category group industries.

Macro-average F-score

Figure 3.9 to Figure 3.11 show the macro-average F-score as a function of the number

of training examples. The following observations can be drawn:

1. Among all online learners, BOMC_CMN achieves the highest macro-average F-score
most of the time. Comparing Figure 3.10a and Figure 3.10d for the group regions,
we observe that BOMC_CMN significantly benefits from a large size of testing set. This is
not surprising because the class mass normalization rule assumes that the testing data
has the same class ratio as in the training data, and this assumption is more likely to

hold when the test set is large. In contrast, none of the other classifiers here label uses

this assumption.

2. The macro-average F-score of BOMC_Sample is inferior to BOMC_CMN, but still com-
petitive. Notice that CMN is also a method to choose the threshold, so it suggests that

the training of the model is fine, and our sample based approach to threshold finding
can be improved.

86 Bayesian Online Learning for Multi-label and Multi-variate Measures

)])]
0? oo

@
£

Macro—average F-score (%)

621, —BOMC_CMN
---BOMC_Sample
— SVM_Batch
60 —PA_BatchCV
PA_OnlineCV
—LaSVM
1 2 4 8
Number of training examples % 10*
(a) #test = 100,000
68 w w

o OO O
SN % 9

@
—

Macro—average F-score (%)

[}
©

—BOMC_CMN
---BOMC_Sample
—SVM_Batch
—PA_BatchCV
PA_OnlineCV
—LaSVM

70r

2 4 8
Number of training examples % 10*

(c) #test = 400,000

)]
[ee]

o]
)]

(o)
»

Macro-average F-score (%)

62 —BOMC_CMN
---BOMC_Sample
1 —SVM_Batch
60 —PA_BatchCV
PA_OnlineCV
58 I —LaSVM
1 2 4 8

Number of training examples % 10°

(b) #test = 200,000

)]
[ee]

o]
(o))

o
X

Macro-average F-score (%)

62 —BOMC_CMN
---BOMC_Sample
| —SVM_Batch
60 —PA_BatchCV
PA_OnlineCV
58 . —LaSVM
1 2 4 8

Number of training examples % 10°

(d) #test = 700,000

Figure 3.10: F-score for the category group regions.

Macro—average F-score (%)

—BOMC_CMN
---BOMC_Sample
— SVM_Batch
—PA_BatchCV
PA_OnlineCV
—LaSVM

55 }\

2 4 8
Number of training examples % 10*

70r

Macro—average F-score (%)

(a) #test = 100,000

T —BOMC_CMN

| ---BOMC_Sample

Il — SVM_Batch

— PA_BatchCV
PA_OnlineCV

—LaSVM

2 4 8
Number of training examples % 10*

(c) #test = 400,000

~
o

[e2]
o

—BOMC_CMN
---BOMC_Sample||
—SVM_Batch

—PA_BatchCV

PA_OnlineCV
A —LaSVM

1 2 4 8
Number of training examples % 10°

[o2]
o

Macro-average F-score (%)

[¢1]
82

(b) #test = 200,000
70— :

Macro—average F-score (%)

—BOMC_CMN
---BOMC_Sample|{
—SVM_Batch
—PA_BatchCV
PA_OnlineCV
55 }\ —LaSVM
1 2 4 8

Number of training examples % 10°

(d) #test = 700,000

Figure 3.11: F-score for the category group topics.

§3.4 Empirical evaluation 87

3. Not surprisingly, SVM_Batch usually yields the highest F-score. However, BOMC_CMN
often performs as well as or even better than SVM_Batch by a single pass, especially on

the dataset industries, and on other datasets when the training set size is medium.

4. PA OnlineCV and PA_BatchCV perform worse than other algorithms. One reason is
probably that the noise in the data leads to a high number of support vectors in online

learning, hence overfitting.

5. In contrast, LaSVM employs a removal step to handle noise, and provably converges
to the true SVM solution if multiple passes are run. The macro-average F-score of
LaSVM is slightly worse than BOMC_CMN, but competitive.

Comparing coupled and decoupled training for BOMC

It is easy to observe from Figure 3.4 that our multi-label model only loosely couples all
the classes via the global bias. A natural question is why not introduce a “local” bias to
all the classes and learn the model of all the classes independently. In this experiment
we address this concern by comparing the macro-average F-score of BOMC trained in

two different ways:

1. BOMC_IND_CMN: All classes have their own local bias and no global bias is used.
Closed form inference is available for this case. We set the prior of all b. to

N(0,10%) which gave the highest macro-average F-score.

2. BOMC_CMN: All classes share a global bias and no local bias is used. EP was used

for approximate inference;

Figure 3.12 to 3.14 demonstrate how much the macro-average F-score of BOMC_CMN
(Feouplea) is relatively higher than that of BOMC_IND_CMN (Finq):

F, coupled — End

200 x .
Fcoupled + End

It can be seen that on industries and regions, BOMC_CMN delivers significantly
higher macro-average F-score than BOMC_IND_CMN. As we observed in the final learned
model, the precision of the global bias in BOMC_CMN is much higher than that of the
feature weights, and also higher than that of the local bias in BOMC_IND_CMN. This is no
surprise because for each training example, the global bias serves as a hub for all the
classes and is often updated. In contrast, due to feature sparsity, many feature weights
are updated only on a few training examples, resulting in less confidence in the final
posterior. On topics group, BOMC_IND_CMN slightly outperforms.

As we will discuss in Section 3.5, graphical models provide considerable flexibility in

modeling important factors such as label noise and co-occurrence of labels or hierarchies

88 Bayesian Online Learning for Multi-label and Multi-variate Measures

0.6

0.4

0.2

0.6

0.4

0.2

0.6

0.4

0.2

0.6

0.4

0.2

E £ o6 £ o6
(9] QO [
8 8 0.4 8 0.4
¢ P P
w w w
j=2} (=2 (=2
z 2 0.2 H 0.2
5 5 i
8 O g O g ©
= = =
& & -0.2 & -0.2
10k 20k 40k 80k 10k 20k 40k 80k 10k 20k 40k 80k
Number of training data Number of training data Number of training data
(a) #test = 100,000 (a) #test = 100,000 (a) #test = 100,000
E £ o6 £ 06
(9] [[
g 8 04 8 04
0 12 N (0] -
i d d
o (= =2
z 2 0.2 H 0.2
°) °
g 0 g 0 g 0
= = =
& &£ -0.2 £-02
10k 20k 40k 80k 10k 20k 40k 80k 10k 20k 40k 80k
Number of training data Number of training data Number of training data
(b) #test = 200,000 (b) #test = 200,000 (b) #test = 200,000
E E o6 £ o6
o o o
8 S 04 S 04
¢ P P
(TN w w
(=2 o i=J
] = 02 2 02
o o °
g 0 g 0 g 0
= = =
& & -0.2 £-02
10k 20k 40k 80k 10k 20k 40k 80k 10k 20k 40k 80k
Number of training data Number of training data Number of training data
(c) #test = 400,000 (¢) #test = 400,000 (c) #test = 400,000
E E o6 £ 06
o <4 o
3 S 04 S 04
i P f.
w w w
o (= j=J
H Z 0.2 H 0.2
o o °
g 0 g 0 g 0
= = =
& &£ -0.2 £-02

10k 20k 40k 80k
Number of training data

(d) #test = 700,000

Figure 3.12: industries

10k 20k 40k 80k
Number of training data

(d) #test = 700,000

Figure 3.13: regions

10k 20k 40k 80k
Number of training data

(d) #test = 700,000

Figure 3.14: topics

in the labels. The benefit of modeling them has been confirmed by existing algorithms
such as (Rousu et al., 2006; Ghamrawi & McCallum, 2005).

§3.4 Empirical evaluation

89

gx0’ gx10' gx10'
—BOMC_Coupled —BOMC_Coupled —BOMC_Coupled
---BOMC_IND ---BOMC_IND ---BOMC_IND
5 —SVM_Batch 4H—SVM_Batch 4H—SVM_Batch
o PA_BatchCV o PA_BatchCV ® PA_BatchCV
£ 4 —PA_OnlineCV £ PA_OnlineCV 15 PA_OnlineCV
S ||—LasvMm = 3[|—LaSvM = 3[|—LaSvM
j=2) j=2] j=2]
£ 3 £ £
c c c
5 52 52
=2 = =
1 1 1
0 e —— 0 e —
1 2 4 8 2 4 8 1 2 4
Number of training examples X 10° Number of training examples x 10° Number of training examples x 10°
(a) industries (b) regions (c) topics
10000 —BOMC_Coupled 8000] —BOMC_Coupled 4000 —BOMC_Coupled
---BOMC_IND ---BOMC_IND ---BOMC_IND
8000 —SVM_Batch —SVM_Batch —SVM_Batch
° PA_BatchCV o 6000 PA_BatchCV ° 3000 PA_BatchCV
£ PA_OnlineCV £ PA_OnlineCV £ PA_OnlineCV
= 6000 —LaSVM = —LaSVM = —LaSVM
j=2 j=2} j=2}
S = £ 4000 - £ 2000
c = c
@ 4000 K K
= = =
1000
2000 2000

8
Number of training example§(10° Number of training e><amp|e%< 10° Number of training e><amp|es>< 10°

(d) industries (zoom in) (e) regions (zoom in) (f) topics (zoom in)

Figure 3.15: CPU time for training.

Training Time

Figure 3.15 presents the CPU time cost for training these algorithms, under various

number of training examples.

The most important observation is that the training time of all algorithms except
LaSVM is linear in the number of training examples. This matches the theoretical
property. Training BOMC_IND_CMN takes slightly more time than BOMC_CMN. On the one
hand, the inference step in BOMC_IND_CMN can be conducted in closed form without
running EP repeatedly. On the other, BOMC_IND_CMN uses local bias for each class while
BOMC_CMN uses only one global bias, and EP converges in just 3 iterations on average.
Empirically the latter factor seems to be more influential. Passive-Aggressive and batch
SVM can be trained faster than BOMC by a factor of 2-3. This is probably because they

are implemented in pure C while BOMC was written in F#.

Although LaSVM is the online learner which achieves closest testing F-score to BOMC,
it takes a lot of time for training and is slightly super-linear in the training set size.
This is because it operates in the dual and has not been customized/optimized for the

linear kernels.

90 Bayesian Online Learning for Multi-label and Multi-variate Measures

3.5 Conclusion and future directions

In this chapter, we proposed a Bayesian learning algorithm for multi-label classification.
The model is assumed to be a probabilistic linear classifier, and training is based on
Gaussian density filtering. It is online, efficient, and allows the model to be trained in-
crementally. In contrast to ad hoc thresholding schemes used in frequentist approaches
like SVM, it labels unseen data in a much more principled manner, namely maximizing
the expected F-score by using samples from the posterior of the model. Empirically,
our method delivers state-of-the-art macro-average F-score compared with batch SVM,
LaSVM, and passive-aggressive updates. The method is also efficient in time and space.

In the future, the following three extensions are straightforward.

1. Dynamic training with EP through the dataset. It is expected to learn a better
model at a higher cost.

2. Model the label noise. We used to assume that the label is just thresholding at 0,
i.e. y =06(f > 0) in Eq. (3.4) where f is the linear discriminant. However, labels
can also be noisy, and to take this into account, the models proposed by Kim
& Ghahramani (2006) can be easily incorporated into our framework by simply

changing the factor §(f > €) into

1
Itexp(=(2y—1)f)

p(lf) =< ®((2y —1)f) cumulative normal
p+(1—=2p)6((2y —1)f > 0) mnoisy threshold

sigmoid

where the noise p € [0,0.5). For example, a common type of label noise is
the flipping noise where the observed label simply flips the correct label. This
can be due to typos. To model it, we simple replace the factor d(d > ¢€) by
po(d>e€)+ (1 —p)o(d < —e).

3. Modeling label hierarchies. We propose a model in Appendix D.

Chapter 4

Kernel Measures of

Independence for non-7:d Data

Statistical dependence measures have been proposed as a unifying framework to address
many machine learning problems. For instance, clustering can be viewed as a problem
where one strives to maximize the dependence between the observations and a discrete
set of labels (Song et al., 2007b). Conversely, if labels are given, feature selection can
be achieved by finding a subset of features in the observations which maximize the
dependence between labels and features (Song et al., 2007¢). Similarly in supervised
dimensionality reduction (Song et al., 2008a), one looks for a low dimensional embed-
ding which retains additional side information such as class labels. Likewise, blind
source separation (BSS) tries to unmix independent sources, which requires a contrast
function quantifying the dependence of the unmixed signals.

The use of mutual information is well established in this context, as it is theoret-
ically well justified. Unfortunately, it typically involves nontrivial intermediate steps
such as density estimation, space partitioning (Learned-Miller, 2004), bias correction
(Stogbauer et al., 2004; Nemenman et al., 2002), etc. These operations often require so-
phisticated optimization procedures (Nguyen et al., 2008) or are not well underpinned
in theory for high dimensional data (Learned-Miller, 2004). In addition, most methods
work only for distributions in Euclidean spaces. Borgwardt & Ghahramani (2009) used
flexible models like Dirichlet process mixtures to test independence, which encodes the
inductive bias in terms of probability distributions (Dirichlet distribution). However,
it is essentially still based on density estimation and requires sophisticated graphical

model inference algorithms.

These problems can be averted by using the Hilbert Schmidt Independence Criterion
(HSIC). It can be computed directly from the dataset without needing any intermediate
step. It also enjoys concentration of measure properties and can be computed efficiently
on any domain where a reproducing kernel Hilbert space (RKHS) can be defined. The

RKHS essentially encodes the inductive bias, and allows the algorithm designers to

91

92 Kernel Measures of Independence for non-iid Data

) & BSOS
-1 t t+1

[CROR® @@@

(a) Directed model for XOR with causality) Moralized undirected graphical model

Figure 4.1: Graphical model for the XOR problem y; = ¢ ® x¢_1.

focus on the properties of a distribution that are most important to their problems.

However, the application of HSIC is limited to independent and identically dis-
tributed (iid) data, a property that many problems do not share (e.g., BSS on audio
data). For instance many random variables have a pronounced temporal or spatial
structure. A simple motivating example is given in Figure 4.1. Assume that the ob-
servations x; are drawn ¢id from a uniform distribution on {0, 1} and y; is determined
by an XOR operation via y; = z; ® ;1. Algorithms which treat the observation pairs
{(@¢,yt)}=, as #d will consider the random variables z, y as independent. However, it
is trivial to detect the XOR dependence by using the information that z and y are, in
fact, sequences.

In view of its importance, temporal correlation has been exploited in the indepen-
dence test for blind source separation. For instance, Hosseni & Jutten (2003) used
this insight to reject nontrivial nonseparability of nonlinear mixtures, and Ziehe &
Miiller (1998) exploited multiple time-lagged second-order correlations to decorrelate
over time.

These methods work well in practice. But they are rather ad hoc and appear very
different from standard criteria. In this paper, we propose a framework which extends
HSIC to structured non-i#d data. Our new approach is built upon the connection
between exponential family models and the marginal polytope in an RKHS. This is
doubly attractive since distributions can be uniquely identified by the expectation
operator in the RKHS and moreover, for distributions with conditional independence
properties the expectation operator decomposes according to the clique structure of
the underlying undirected graphical model (Altun et al., 2004b).

In this chapter, we will first survey the existing works on Hilbert space embeddings
of distributions and kernel measures of independence for iid data (Section 4.1). Of
central importance is the empirical estimators, especially their computational efficiency
and statistical properties such as concentration of measure and sample efficiency. This
framework allows us to further decompose the probability embeddings and the kernel

independence criterion when the distribution and kernel factorize with respect to a

§4.1 Preliminaries of RKHS embeddings of probabilities 93

graphical model. Accordingly, the empirical estimators can also be decomposed onto
the cliques which we will demonstrate in Section 4.2. Example estimators for typical
graphical models and various choices of kernels will be given in Section 4.3, where we
also show how homogeneity and stationarity can improve the efficiency of estimation.
Interestingly, for first order Markov chains, the asymptotic bounds on the concentration
of measure can be obtained under mild regularity conditions. Finally, Section 4.4
will provide the experimental results on independence test for non-iid data, ICA, and
sequence segmentation. In all these problems, methods taking into account the inter-

dependence of observations significantly outperform those treating them as #id.

4.1 Preliminaries of RKHS embeddings of probabilities

Many theoretical and practical problems involve comparison of distributions, and a lot
of measures have been proposed over the years, such as KL divergence, total variance,
dynamic range, L, norm, and earth mover’s distance. However, we usually only have
samples of the distributions and therefore density estimation is often required before
these measures can be applied. This adds more complexity, and it is desirable for a
measure to be directly estimated from samples.

One solution is the discrepancy in moments, which can be directly estimated from
samples. More generally, we can compare the mean of distributions P and Q on
a class of touchstone functions F. This is especially suitable for many applications
where distributions matter only via their expectations, and the same idea motivated
the definition of weak convergence for random variables, where bounded continuous
functions are used. With a kernel k£ and its induced RKHS #H, Shawe-Taylor & Dolia
(2007) proposed using samples from the unit ball of H as the touchstone function
class, and Song et al. (2008b) used the sup of the mean discrepancy over this ball. The
advantage of the latter is two folds: a) it can be easily estimated from samples of P,
Q with tight concentration, and b) the space of RKHS can be rich enough to capture

all the high order moments of the distributions. Intuitively, we measure:

sw | E @) - E [f(x)]‘: o | [s - | f(x)dQ‘

fem:||flI<1 le~P z~Q feH: fII<1

= sup /(f,k‘(ac,-))dP—/(f,k:(x,-))dQ‘ (Using the reproducing property)
JeH:|fI<1

= o |5 [aap— [0aq)

= sw (5 B o]~ E k).

feH:||flI<1 z~P z~Q

94 Kernel Measures of Independence for non-iid Data

The last form indicates a key object that captures the property of a distribution P:
Ey~p[k(x,-)]. It gives the expectation of any arbitrary function by a simple inner
product. This motivates the abstraction of mean mapping which we formulate in this
section.

Given a distribution P on domain X, define a mean operator Tp : H — R as

Te(f) = Eznr[f(2)].

Tp is obviously linear. To check whether it is bounded, notice

E /@

sup

I|= sup E [[(f,k(z,))yll < E [k,)] = E [VE(z,2)].
f:”fHH:l z~P ~P

Fllflly=12~P

Hence, Tp is bounded if E,p[\/k(x, z)] < oo, and by Rietz representer theorem, there
exists an element p[P] € H such that

<M[P]7 f> = TP(f) = EINP{f(ﬂf)] for all f € H.

Formally, we define:

Definition 29 (Mean operators) Let P be a distribution on domain X and k be
a kernel on X with RKHS H. If Epp[\/k(z,z)] < oo then there exists an element
u[P] € H such that for all f € H we have (u[P], f) = Ezp[f ()], and we call u[P] the
mean element of P.

If we have a finite set of samples x1,...,x, from X, then the empirical mean
element is defined by %Z?:l k(z;,-), which is obviously in H.

Note u[P] maps a function f € H to its mean under P (a scalar), while p maps
a distribution to H. We will call u[P] the mean element of P, and call u the mean

operator. From definition, the following useful property is immediate:

Property 1 IfE, p[\/k(z,z)] < co then

WPLuQ) = E E [kz,2), in particular [p[P]|> = E E_[k(z,2)]
z~vP 2'~Q z~P z'~P

Proof

(uPl,ulQl) = E _[n[Ql(z)] = E [(n[Q].k(z,)] = E E [k(z,2")].

z~P z~P z~P 2/ ~Q

Incidentally, notice that ||u[P]||* # Eymp|k(x,2)] in general. [|

§4.1 Preliminaries of RKHS embeddings of probabilities 95

Remark 30 [t is possible to define u[P] in the following more intuitive form:

uiP) = [Kz)ap.

but then the proof of well-definedness for integral in the RKHS is more involved than our
definition. To this end, a sufficient condition required by Smola et al. (2007a) is that
E.[k(x,x)] < co. However, this condition is strictly stronger than our Ey[\/k(x,z)] <

oo. For example if P has density p(x) mgﬁ on R and a linear kernel is used, then
Ex[v/E(x,z)] < oo but Ez[k(x,x)] = 0.

We naturally want u[P] to be a signature of P, i.e., different distributions have
different mean elements in . This is obviously not true for linear kernels because
different distributions can easily have the same mean. So more assumptions are needed

such as in the following theorem.

Theorem 31 (Injectivity of mean operator) If the kernel k is universal (see Def-

inition 15), then the mean operator P — u[P] is injective.

A simple example is Gaussian RBF kernels. Let oy, o) € R\ {0} and x;, x, € R? where
{x;}i | are distinct and {x]}", are distinct, then Y " | cik(x;,-) = D", abk(x],-) iff

n
i=1"

In analogy to the characteristic functions of distributions, a kernel is called charac-

m =mn and {(a;,x;)};, is a permutation of {(a,x])}
teristic if its induced mean operator is injective from the whole set of distributions on
X. Universality on compact domains is a sufficient but not necessary condition of char-
acteristicity. More properties on characteristic kernels can be found in (Sriperumbudur

et al., 2008; Fukumizu et al., 2009).

Empirical estimation

If we have n iid samples X]' := {X;};"; of P, a natural estimator of u[P] is
1 n
plXT] = z; k(Xi,).
P

To quantify the concentration of measure for u[X7'], we first note the following

relationship:
sup |Ex[f(X)] - lZf(Xi) = sup [(p[P] — p[XT], f)| = [|u[P] — u[XT]]-
FlflI<1 n i=1 fHlflI<1

The LHS is exactly the uniform deviation in statistical estimation (see Appendix E.5).

Therefore, the results like Eq. (E.14) translate directly to the following concentration:

96 Kernel Measures of Independence for non-iid Data

Theorem 32 (Concentration of measure) Assume f € [0,1] for all f € Hi =
{geH g <1}. Given n iid samples X7 = {X1,...,Xn} of P, with probability

1 — 6 we have

|p[P] = p[XTI < Ro(H) +

where R, () is the Rademacher average of function space H (see definition in Eq. (E.13)).
This procedure is in complete analogy to the Glivenko-Cantelli lemma, which is used to
bound the deviations between empirical and expected means of functions, and at the

same time gives rise to the Kolmogorov-Smirnov statistics for comparing distributions.

4.1.1 Distance between distributions

The embedding x[P] in the Hilbert space H immediately induces a distance between
two distributions P and Q:

D(P,Q)? == ||u[P] — u[Q]|I* = |u[P]* + |u[Q]lI* — 2 (u[P], £[Q])
- E E [k(z,2)] + yLEQ y/IEQ [k(y,y)] — Qx@NEP yLEQ k(z,y)]. (4.1)

In view of

D(P,Q) = [|p[P] = p[Qlll = sup [(p[P]=p[Ql, /)l = sup | E [f(z)] - E [f()]|,
Flfl<t Flfl<t le~P y~Q

we will call D(P, Q) the maximum mean discrepancy MMD(P, Q).

Empirical estimation

Suppose we have n éid samples {X;};", of P and m iid samples {Y;};", of Q, then a
natural estimator for MMD(P, Q) is ||u[XT]] — p[Y7"]|l, and the concentration bound

can be easily derived by using the diagram:

p[P] #Q]

pXT] —— p[Y7"]

Theorem 33 Suppose {X;}} | and {Y;}[~, are iid samples from P and Q respectively.
Let R, (H,P) be the Rademacher average of H wrt P. Then with probability 1 — 6, we

§4.1 Preliminaries of RKHS embeddings of probabilities 97

have

log(2/6 log(2/6
MMD(P, Q) < [1[X7] — uY7") + R P) + o (4,Q) +) B . [lon(2/5),
Another estimator can be obtained by noticing that MMD(P, Q) is a U-parameter
according to definition Eq. (4.1), and its corresponding U-statistic has the minimal
variance among all unbiased estimators (see Appendix E.2). But this estimator imposes

the constraint that P and Q have the same number of samples (n = m).

One advantage of using MMD(P, Q) as a distance measure between P and Q is
that it can be directly estimated from the samples with no need of density estimation.
If a universal kernel is used, then it captures the difference of all high order moments,
while a polynomial kernel of order d allows one to focus on the first d order moments.
And the use of kernel allows the distribution to be from any domain where kernels can

be defined, such as strings and graphs.

4.1.2 Hilbert-Schmidt independence criteria

Using the MMD distance, we can further quantify the (in)dependence of two random
variables X, Y on domains X and) respectively. Define the product space Z := X' x).
Let the kernels on X', V and Z be k;, ky, and k; respectively, and the corresponding
RKHS be H,, Hy, H. respectively. Let the joint distribution on Z be Pxy and the
marginal distributions be Px and Py. Since X and Y are independent iff Pxy =
PxPy, an independence measure can be naturally defined via the distance between
the RKHS embeddings of Pxy and PxPy:

HSIC(X,Y) := MMD(Pxy, PxPy) =

(z,y)~Pxy x~Px y~Py

(4.2)

The name HSIC stands for Hilbert-Schmidt independence criteria, because this measure
was first proposed as a Hilbert-Schmidt norm of the cross-covariance operator between
X and Y (Gretton et al., 2005a), and then it was observed that this can be equally

motivated as above.

The definition in Eq. (4.2) requires a joint kernel k, on Z. A factorized kernel k,

allows one to substantially concretize the expression of HSIC. Let

kz((xa y)v (xlay/)) = kx(xa xl)ky(%y/)a z'.e., kz((x7y)7 ('7)) = kx(xv) X ky(y, :)7

98 Kernel Measures of Independence for non-iid Data

which means # is the tensor product of H, and H,. Now Eq. (4.2) becomes

HSIC(X,Y)’ = | E_ [kelz,)) @ky(y,:)] = E [ke(z,)]® E [ky(y,:)]

(z,y)~Pxy z~Px y~Py

= E [kx(x,x/)ky(y,y/)] (4.3)
(z,y)~Pxy (z',y)~Pxy

-2 E E [ku(z,2")] E [k:y(y,y/)]} (4.4)
(CC,y)NPXY z'~Px y' ~Py

+ E E |k, 2] E E [k,(y,v)]. 4.5
zNPXx’NPX[(2,a")] pryy/pr[y(y)] (4.5)

A key property of HSIC is that it correctly detects independence:

Theorem 34 (Gretton et al., 2005a, Appendiz B) If k, and k, are both universal
kernels on compact domains X and Y respectively, then HSIC = 0 if, and only if, X

and Y are independent.

Empirical estimation

Let Z7" be n pairs of observations {Z; := (X;,Y;)};_, drawn iid from the joint distri-
bution Pxy. A natural estimator is to replace all the expectations in Eq. (4.3), (4.4),
and (4.5), with the respective empirical means, namely n~2 > ko (Xis X5)ky (Y3, Y5),
n=3 Dij s ka(Xi, Xs)ky(Ys, Y;), and n~4 >ij ka(Xi, Xj) D ky(Ys, Yi) respectively. So

we finally obtain an estimator:
— 1
HSICy(Z7) = — tr(K. HK,H), (4.6)
n

where K := (k3 (Xi, Xj))ij, Ky = (ky(Y3,Y}))ij, and H is the n-by-n centering matrix
H:=I-n111"7.

This estimator is clearly biased because of the self-interacting terms. For example,
check the first half of Eq. (4.5):

1 n—1 1
Exp w2 Z ko (Xi, X5) | = TExEx’ [(2, 2")] + EEx[k(xaf)] (4.7)
ij

7é E:vEx’ [kx (1’, 1'/)]

An obvious remedy is to remove these self-interacting terms as

1 ’
Ext | gy S)| Bkt)

§4.1 Preliminaries of RKHS embeddings of probabilities 99

This modification leads to an unbiased estimator for HSIC:

fSIC, = — <tr(Kme) -

o 1TK,1-1TK,1
1"K,K,1 z Y 4.8
n(n _ 3) eyl +) ’ ()

n—2 (n—1)(n—2)
where K, is equal to K, except that the diagonal terms are all set to 0.

Despite the biasedness of H/Sﬁb, its computational form is much simpler and in
fact the bias diminishes with more samples, as can be intuitively seen from the last
term in Eq. (4.7).

Theorem 35 The estimator HSIC, has bias [HSIC — Ezp [H/SI\CI,(Z{L)] =0(n1).

Finally we study the concentration properties of H/SEU To start with, it is im-
portant to recognize that HSIC is a U-parameter and HSIC, happens to be its corre-

sponding U-statistic. The background of U-statistics can be found in Appendix E.2.

Theorem 36 HSIC can be written as a U-parameter with the kernel

(i,j,q/f’)
h(iaja q, T) = ﬂ Z Kx(S, t)(Ky(S, t) + Ky(uv U) + 2Ky(3a u)) (49)
(s,t,u,v)

where the summation means (s,t,u,v) enumerates all the permutations of (i,7,q,r).

H/S-Eu s exactly the corresponding U-statistic

-1

H/SI\Cu - " Z h(iv.jvqar)'

1<4,7,q,r<n and are distinct

Rewriting H/SI\Cu as a U-statistics allows one to make use of a large body of lit-
erature on U-statistics. The following uniform bounds and asymptotic bounds are

straightforward from Theorem 80, 82, and 83 in Appendix E.

Theorem 37 (Uniform bounds) Assume k, and k, are nonnegative and bounded

almost everywhere by 1. Then with probability 1 — § we have for all Pxy:

‘H/sﬁb _ HSIC‘ <4 2105‘1‘71(2/5).

Theorem 38 (Asymptotic normality if not independent) Suppose E[h?] < oo
where h is defined in Eq. (4.9). If X and Y are not independent, then

Vvn (H/Sﬁu(Z{‘) — HSIC) LA N(0,6%) asn — .

100 Kernel Measures of Independence for non-iid Data

Here 0* =16 (Ez, [(Ez, z,.2,[h(i, j,q¢.7)])?] — HSIC?).

When X and Y are independent, the variance of H/SI\Cu becomes degenerate, and

a different asymptotic bound can be derived similar to Theorem 83.

4.1.3 Applications of HSIC

Independence measures are very useful in machine learning. A large variety of learning
algorithms can be posed in this framework, and here we just give some intuitions and
links.

In supervised learning, the labels are given. So in general, we seek for a systematic

way to transform the features such that:
1. The class of transform is restricted, e.g., linear transform.
2. A kernel can be defined on the range of the transform.

3. We look for the transformation which maximizes the dependence between the

transformed image and the labels, measured by HSIC or its empirical estimates.

One simple transformation is just inner product with a weight vector, and this recovers
(kernel) fisher discriminant analysis (Mika et al., 1999). Or, one can look for a subset
of features with a prescribed cardinality, and maximize the dependence between the
selected features and the labels. This leads to feature selection (Song et al., 2007a).
Furthermore, the transform can be a permutation of the training examples, which
gives kernelized sorting (Quadrianto et al., 2009). If we map to a lower dimensional
space keeping the distance between nearest neighbors intact, then we obtain supervised
dimensionality reduction (Song et al., 2008a).

In unsupervised learning, there is no label. While we still seek for a systematic
transformation of the features in some prescribed form, we now maximize the depen-
dence between the transformed image and the original data. For example, principal
component analysis restricts the transform to projection to a direction. If the transform
must take value in categories on which delta kernels are applied, we recover clustering

such as k-means, spectral clustering, and normalized graph cut (Song et al., 2007b).

4.2 Embedding distributions with graphical models

Bearing in mind that the domains X and Y are fully general, we will discuss a number
of different structural assumptions on them in Section 4.3 which allow us to recover
existing and propose new measures of dependence. For instance X and Y may represent

sequences or a mesh for which we wish to establish dependence. To this end, graphical

§4.2 Embedding distributions with graphical models 101

models can be used as a unifying framework to model the relationship of conditional
independence and dependence, and we introduced graphical models in Section 1.2.
The starting point of our extension is how the RKHS embeddings of distributions
can be factorized onto cliques when the domain is associated with an undirected graph.
This involves two aspects: kernels k£ and distributions P which can be completely
independent in general. Naturally, we will assume factorization of both kernels and
distributions in the sense of Eq. (1.16) and (1.2) respectively. Since a lot is known about
the decomposition of distributions, we will develop some results on the decomposition
of kernels and their RKHS in Section 4.2.2. Based on these insights, we will study
the injectivity of the embeddings in Section 4.2.3, with special attention paid to the
exponential family generated by k& whose RKHS we embed into. These analyses will
immediately facilitate the factorization of HSIC, which will be detailed in Section 4.2.4.

4.2.1 Factorization of mean operators

When the kernel and/or distribution factorize by an undirected graph, we naturally

conjecture that the RKHS embedding also factorizes onto the cliques:

Conjecture 39 Let P be a distribution which satisfies all conditional independence
relationships given by a graph G. Suppose a kernel k on Z decomposes along the
cliques as in Eq. (1.16), with joint RKHS H and clique-wise RKHSs H. (c € C). Then
for any (joint) distribution P on Z that also factorizes wrt G as Fq. (1.2), its joint
mean map p[P] is related to the the mean map of u.[P.] where P. is the marginal
distribution of P on clique ¢ and p.[P.] is the mean map of P, in H.. Furthermore, if

ke are all characteristic, then the joint map u is injective.

This intuition turns out only roughly correct. This section aims to rigorously estab-
lish the factorization results. We first show that even without making any assumption
on the conditional independence of the distribution, the factorization of kernels itself

is enough to guarantee the factorization of the square norm of mean elements.

Theorem 40 (Factorization of mean element) Let Sy, So, ... be subsets of the node

set, and denote S := {S1,S2,...}. Suppose the kernel k on Z can be decomposed by:
k(z,z') = Z ks(zs, zg), (4.10)
Ses

where kg are kernels on Zg. Let the RKHSs of k and kg be H and Hg respectively,
and let pug be the mean operator induced by kg. Then for any arbitrary distribution P

102 Kernel Measures of Independence for non-iid Data

and Q on Z whose marginal distribution on Zg is Pg and Qg respectively, we have

(P, 1[Ql)y = > (1s[Ps], 15[Qs])py »

Ses

and in particular
6P = llns[Ps]lz, -
Ses

Proof The proof is straightforward from Property 1.

(uPLulQhy = E E [k(z,2)=E E [st(zs,z’s)]

z~P z/~Q z~P 7/ ~Q ses
=Y E E_[ks(zs,25)] = > (us[Ps], ps[Qs])y -
Ses #5~Ps 25~Qs Ses

Theorem 40 is very suggestive of the decomposition of H: H factorizes into the direct
product (or direct sum') of Hg: H = ©sHs. However, this turns out to be true only

when all S in S are disjoint, and the next section will discuss the details.

4.2.2 Factorization of RKHS for factorized kernels

In this section, we temporarily ignore the distributions, and focus on the relationship
between H and {Hs} g5 when the kernel k factorizes according to Eq. (4.10). One

key encouraging property is the following existential theorem:

Theorem 41 Suppose kernel k factorizes by Fq. (4.10). Then for any f € H, there
must exist fg € Hg such that

f(z) = Z fs(zs), forallze Z, and Hng_[= Z ||fSH3_[S)

Ses Ses

Proof First, if f(-) = k(2,-), then f(z) = k(2,2) = > gcsks(Zs,25) for all z € Z.
Next, if f(-) = 3, aik(2, -), then for all z € Z we have

f(z) = Z K 2) =) Y ouks(8s,25) = Y > aiks(2, 25) . (4.11)

i SeS§ SeES i
=fs(zs)€Hs

!The direct product is the same as the direct sum when the cardinality of S is finite.

§4.2 Embedding distributions with graphical models 103

To check the norm, notice
1117 =) aicsk(2', %) Z a0 Z k(2. 2%) Z Z aiak Z I fs11?.
]

Finally, if f is a limit point of the linear span{k(z,-):z € Z}, then there exists a
sequence of {f"}, .y in the linear span, and f* — f. For each n, due to the above
result, there exist functions f§ € Mg, such that f"(z) = > ¢ fi(zs) for all z € Z
. H .
and ||f]* = g ||fg}||2 Since f* = f, so {||f"||},en is bounded, hence {[|f§ll},cx
is bounded for all S € §. Call the sets in S as S1,59,.... For S, the sequence
{ fgl}neN must have a cluster point f§ € Hg,, which is the limit of a subsequence
{ fglk}keN' Without loss of generality, assume this subsequence is { fgl}neN itself.

Similar procedure of subsequence selection can be run for Sy, .53, Finally, we obtain

fi€Msforall S €S and f2 5 f5asn — . So

f(z) = lim f"(z) = hm Zfs zs) Z hm fg(zs) Zfs zs),

n—0o0

IA1? = lim [f")* = ,}ggoz 781" = anggo I1781* = Z 17517
S S S
Pathological behavior may occur when |S| = co?, which we do not consider here. W

It is convenient to formalize the above map from f € H to {fs: S € S}.

Definition 42 (Function factorization mapping) The function factorization map-
ping Ts from H to the power set of ®sesHs is defined by mapping any function f € H
to the set of all possible factorizations of f:

7s(f) = {{fs €Hsts: f(2) =) fs(zs), Vz € Z} : (4.12)

Ses
So Theorem 41 says |7s(f)| > 1 for all f € H.
For any arbitrary kernel, it is not hard to see that if the index sets in S constitute
a partition of all the nodes?, the factorization of any f € H is unique, i.e., |7s(f)| = 1.
Conversely, for any set of functions {fs € Hg : S € S}, f(Z) := > ges [s(Zs) must be

in ‘H. However, if the index sets in S overlap, then in general neither uniqueness nor

surjectivity holds even if S is the set of maximal cliques. We give two examples.

2| A| denotes the cardinality of the set A.
3 A partition of a set A is any set of subsets {4; C A:i € T} where 7 is an index set, such that
UiezA; = A, and A;NA; =0 for all 4,5 € Z and i # j.

104 Kernel Measures of Independence for non-iid Data

Proposition 43 (Breakdown of uniqueness) One can construct an example with
the following elements: a) a graph with maximal clique set C, b) positive definite kernels
ke on all cliques ¢ € C, ¢) a joint kernel k defined by Eq. (4.10), and d) a function f € H
such that its factorization is not unique, i.e., |1c(f)| > 2, and different factorizations

have different sum of squared norm), FAR

Proof Let the graphical model of the random variable Z € R* be a loop with C =
%21, 22} {Za, Z3} ,{Z3, Zs} ,{Z4, Z1}}. Let the kernel on clique {Z;, Z]‘} be

kij (21, 25), (21, 25)) := exp(— (2 — 2)?) + exp(—(z; — 2})%),

and k(z,2') = Y .ccks(ze, 2L). Set f(z) := 1k(0,2) = 31, exp(—2z?) which is ob-

7

viously in the RKHS of k. It is not hard to check that the following {f.}. satisfy
f(z) =, fe(ze) for all o € R:

e @ fia(z1,22) = a exp(—23) + a exp(—23)
fos(z2,23) = (1—a) exp(—23) + (1—a) exp(—23)

faa(z3,24) = a exp(—23) + a exp(—=23)

(2)—Z) tat) = (-0) ep-R) + (-0) ep-)

Besides, > ¢ Hngg{S = 8a? —8a+4 which equals HfH?{ =4only whena=0or 1. ®

Proposition 44 (Breakdown of surjectivity) With the same conditions a), b), c)
as in Proposition 43, there exist { f. € Hc} such that f(z) := . fe(zc) is not in H.

Proof Consider a simple three node chain on R3 with cliques {{Z1, Z2} ,{Z2, Z3}},

A Z Z3

and let the kernel on the cliques be Gaussian:
kij((ziv Zj)ﬂ (z£7 Z;)) = exp(—(zi - 21{)2 - (Zj - 23')2) for {Z,]} = {17 2} or {27 3}7
and the joint kernel be k1o + kog:

k(z,2') =: k12((21, 22), (21, 23)) + kas((22, 23), (23, 23)).-

§4.2 Embedding distributions with graphical models 105

Pick two functions fis € Hia, fo3 € Has, and define f by

fiz(z1,22) :=0,
f23($2,x3) = kgg(o, (ZQ, 23)) = exp (—Z% — Z%) s
f(2) = f(21,22,23) := fra(z1,22) + fo3(22,23) = exp (—25 — 23) . (4.13)

The proof of f not being in H is lengthy, hence moved to Appendix F. It is based

on the orthonormal basis of real Gaussian RKHS. [|

In conclusion, the relationship between H and {#.} .. is much more involved than
just direct product, which holds only when the maximal cliques in C are mutually
disjoint. It will be interesting for future research to investigate when the f. are unique
(|re(f)] = 1) and when Hf||§_[=>. ”fC”gic' Example conditions may be C being the
maximum clique set of a triangulated graph, or kernels being universal. Since the
example in Proposition 44 satisfies both, it indicates that some new conditions are
needed.

Fortunately, Theorem 40 is enough for our subsequent discussions on the indepen-

dence criteria.

4.2.3 Injectivity of factored mean operators

When the kernel factorizes by Eq. (4.10), it is again important to study the sufficient
and necessary conditions for the operator p to be injective. In particular we study the
case where the kernel and the distribution factorize wrt the same graphical model.

In the cases without factorization, the injectivity results such as by Fukumizu et al.
(2009); Sriperumbudur et al. (2008) usually seek conditions on the kernels such as uni-
versality, while almost no assumption is made on the distribution space. The following
theorem shows the feasibility of the other way round: weaker assumption on kernels

and stronger assumptions on the distributions.
Theorem 45 For any kernel k, the mean operator from Py to H is injective.

Notice that except for tree structured graphs, the marginal distribution on the
cliques does not uniquely identify the global distribution in general. However, among
them, only one can be in the exponential family.

Proof Immediate from Theorem 26. [|

Restricting the distributions to kernel exponential families does not cost much gen-

erality, thanks to Theorem 18 which says that if the kernel k is universal, then P can

106 Kernel Measures of Independence for non-iid Data

approximate a very general class of densities arbitrarily well in the sense of Lo, norm
or KL divergence. Now we generalize this result to the case where the distribution and

kernel decompose by a graphical model.

Theorem 46 (Dense distribution wrt graphical models) Given a graphical model
G on a multivariate random variable Z with maximal clique set C. Suppose the domain
of Z, Z, is measurable with respect to the Lebesque measure. Let Pg be the set of all dis-
tributions that a) have full support on Z, b) satisfy all the conditional independence rela-
tions encoded by G, and c) there exists a constant B such that ||p||., < B for allp € Pq.
Assume a joint kernel k on Z decomposes along the cliques by k(z,2') = > ke(ze, 2.,

where the kernel k. on Z. are all universal. Suppose

U({HC}C) = {f(z) = ch(zc) D fe € Hc}
ceC
is dense in H in Loy norm. Then Py is dense in Pg in the sense that for any € > 0
and any distribution in Pg with density p, there exists a density py in Py with natural

parameter f € H, such that ||p — pyl| < e.

Proof For any distribution in Pg with density p, the Hammersley-Clifford theorem

guarantees that there exists a potential function . on Z, for all ¢ € C, such that

p(z) = exp (Z Ye(ze) — g) , Wwhere g = log/exp (Z ¢c(2c)> dz.

Let m := |C| be the number of maximal cliques. Since k. is universal, there must exist
a function f. € H. such that | f. — (Y — g/m)||,, < 5. Denoting ¥(z) := > _1bc(zc)
and f(z) := Y. fe(2c), we have Hlogp— f”oo =l —g— fllo <€/2. Since o({Hc},)
is dense in H in Ly, sense, there must exist a function f € H such that H f—7f H < €/2.
Hence |logp — f|, <e. =

[determines a distribution in P}, with density p¢(z) = exp(f(z) — g¢), where

< = €.

lggl = log/eﬁp(z)dz

log [exp(f(2))dz

log/exp(f(z) —logp(z))p(z)dz
Therefore,

[logpy —logpl,, = IIf — g5 —logpll,, < [If —logpll + |97 <€+ €= 2,
Ipf —plly = llexp(logpy) — exp(logp)||
< |plloo llexp (log s —logp) — 1]l < [Pl (€% = 1) = [|pll o o).

§4.2 Embedding distributions with graphical models 107

Noting the uniform bound B on ||p||, for all p € Pg completes the proof. [|

Incidentally, the density of Py, in Pg also holds in the sense of KL divergence (both
KL(p||pf) and KL(p¢||p) for p € Pg and py € Py), which can be derived in exactly the
same fashion as Altun & Smola (2006, Proposition 3).

So below we focus on Pi, where another map Ap : H +— H naturally arises in
complete analogy with the mean operator for vanilla exponential family (from the

natural parameter to the marginal polytope): Ag[f] := pu[P(z; f)], i.e.

f — p(l‘; f) = exp(f(ac) - g) — Ezwp(x;f)[k(x7)]
cH € Pr cH

Studying the properties of Ay can be interesting for future research on the infer-
ence in kernel exponential families with graphical models, hence generalizing the large
volume of existing literature (e.g. Wainwright & Jordan, 2008).

In Py, the natural parameters are the function f € H and the sufficient statistics
are the evaluating elements k(x,-). So according to Theorem 25, the map Ay from H
to the mean of the sufficient statistics is injective if, and only if, k(z,-) is minimal,
i.e., there does not exist any nonzero function f € H such that (f, k(z,-)) is constant.

Hence we just require that H not contain constant functions.

Proposition 47 If the RKHS of kernel k does not contain nonzero constant functions,

then the map Ay, from H to H via Py is injective.

In view of the important role played by the existence of nonzero constant functions
in RKHS, we formally define:

Definition 48 (Constant-exclusive (CE) kernels) A kernel is called constant ex-
clusive (CE) if its RKHS H does not contain nonzero constant functions. Furthermore,
if the kernel is defined on the space Z1 X ... X Z,, then the kernel is called coordinate
constant exclusive (CCE) if H does not contain any function f for which there is a
coordinate i € [n] and a set of assignment {Z;}, ,; such that f(Z1, ..., Ti—1, i, Tiz1, .- .)

is constant in x; and nonzero.

The CE property looks simple but has not been well studied. Steinwart & Christ-
mann (2008, Corollary 4.44) gave a nontrivial proof that nonzero constant functions
are not in the RKHS of Gaussian kernels on a subset of R"™ which contains open set,
hence is CE. Lemma 92 further proves that it is CCE as well. However, in general,
there seems to be no implication between a kernel being universal/characteristic and

CE/CCE. Even universal kernels are not necessarily CE or CCE, e.g., Gaussian kernel

108 Kernel Measures of Independence for non-iid Data

plus 1 is universal but not CE or CCE. Polynomial kernels are also clearly not CE or
CCE. The RKHS of linear kernels only contains linear functions, hence CE but not
necessarily CCE. The kernel k((x1,z2), (], 25)) = exp(—(z1 — 2)?) + 1 is CE but not
CCE. Conversely, CCE clearly guarantees CE.

The following Theorem 49 gives an interesting result which connects three impor-
tant aspects: a) the graphical model topology, b) CCE of the kernels on the cliques,
and c) CE of the joint kernel.

Theorem 49 Suppose G is a tree and the kernels k. are all CCE, then k is CE and

hence the mean operator Ay is injective.

Proof Suppose k is not CE and its RKHS has a non-zero constant function f. Then
there must exist functions {f.: Z. — R,c € C} such that f(Z) = > .- f:(Z.). Since
the maximal cliques of a tree are just edges, take an edge ¢ = (I,n) where [is a leaf.
Since [does not appear in other ¢ € C, so f. must be constant in . However, k. is
CCE, so f. can only be 0. This argument can be run recursively from all leaves, to
parent of leaves, and finally to the root, resulting in f. being 0 for all ¢, hence f = 0.

This contradiction means k must be CE. [|

4.2.4 Factorization of independence criteria

Theorem 40 implies that we will be able to perform all subsequent operations on struc-
tured domains simply by dealing with mean operators on the corresponding maximal
cliques. In addition, it implies that if the kernel decomposes along an undirected graph
G we may decompose HSIC(X,Y") further into

I(X7 Y) = ZCEC H/"LC[PXCYC] - /’LC[PXCPYC]H’?-[C

= ZCEC {E(mcyc)(;z’cyé) + Excycx/cy": - 2E(1’cy0)xéyé} [k’z’c((l'c, yc)’ (l’é, yé))}
(4.14)

where bracketed random variables in the subscripts are drawn from their joint distri-
butions and un-bracketed ones are from their respective marginals, e.g., E(;_y.)0y =
E(zoye)Ea By (vefer to Eq. (4.3) to (4.5) for the full expansion). Obviously the chal-
lenge is to find good empirical estimates of (4.14). In its simplest form we may replace

each of the expectations by sums over samples, that is, by replacing

1< 1 &
=1

3,j=1

84.3 Estimates for special structures 109

a) iid

L]
b) First order sequential (c) 2-Dim mesh

Figure 4.2: From left to right: (a) a graphical model representing iid observations,
(b) a graphical model for first order sequential data, and (c) a graphical model for
dependency on a two dimensional mesh.

4.3 Estimates for special structures

To illustrate the versatility of our approach we apply our model to a number of graphical
models ranging from independent random variables to meshes proceeding according to

the following recipe:

Define a conditional independence graph.

Identify the maximal cliques.

Choose suitable joint kernels on the maximal cliques.

Exploit stationarity (if existent) in I(X,Y) in (4.14).

Derive the corresponding empirical estimators for each clique, and hence for all
of I(X,Y).

AR

4.3.1 Independent and identically distributed data

As the simplest case, we first consider the graphical model in Figure 4.2a, where
{(z4, yt)}thl are 7id random variables. Correspondingly the maximal cliques are {(xy, yt)}tT:l.

We choose the joint kernel on the cliques to be

kz,t((xta yt)a (.%';, yg)) =]_fﬂ?(xta m;)l_fy@tv yé) (416)

hence k((x,y), (x',y") =) ka(we, 2)ky (yr, 1), (4.17)

where k, and Ey are ground kernels on the cliques of X and) respectively. The
representation for k,; implies that we are taking an outer product between the Hilbert
spaces on z; and v; induced by kernels k, and l_cy respectively. If the pairs of random
variables (z¢, y¢) are not identically distributed, all that is left is to use (4.17) to obtain

an empirical estimate via (4.15).

110 Kernel Measures of Independence for non-iid Data

We may improve the estimate considerably if we are able to assume that all pairs
(x¢,y:) are drawn from the same distribution p(z:,y¢). Consequently all coordinates
of the mean map are identical and we can use all the data to estimate just one of the

discrepancies ||NC[C(mayc)] _Mc[c(xc)pc(yc)]||2.
the standard HSIC criterion and we obtain the biased estimate

The latter expression is identical to

I(X,Y) =+ tr HK,HK, (4.18)
where (Ko)st i= ky(ws, 24), (Ky)st == %y(ys, yt) and Hgy := 05 — %

4.3.2 Sequence data

A more interesting application beyond iid data is sequences with a Markovian depen-
dence as depicted in Figure 4.2b. Here the maximal cliques are the sets {(z¢, z¢+1, yt, yt+1)};f:_11-
More generally, for longer range dependency of order 7 € N, the maximal cliques will
involve the random variables (z¢, ..., ZTi4r, Yty - - -, Yitr) =1 (Tt.r, Yt.7)-

We assume homogeneity and stationarity of the random variables: that is, all cliques
share the same sufficient statistics (feature map) and their expected value is identical.

In this case the kernel

kz((xtfﬁ ytﬂ')? (1';5,7'7 yé,'r)) =]_fl(xt,ﬂ ‘,I};f,T)]%y(yt,’T? yllf,'r)

can be used to measure discrepancy between the random variables. Stationarity means
that pe[pe(ze, ye)] and pe[pe(ze)pe(ye)] are the same for all cliques ¢, hence I(X,Y) is
a multiple of the difference for a single clique.

Using the same argument as in the iid case, we can obtain a biased estimate of the
dependence measure by using (K;);j = l_fw(xim zj,) and (Ky);; = l_ﬁy(yi,T, yjr) instead
of the definitions of K, and K, in (4.18). This works well in experiments. In order to
obtain an unbiased estimate we need some more work. Recall the unbiased estimate of
I(X,Y) is a fourth order U-statistic (see Theorem 36 and (Gretton et al., 2008)).

Theorem 50 An unbiased empirical estimator for ||ulp(z,y)] — plp(z)p(y)]||? is
A (n—4)!
[(X,Y) = > h@iyi, T), (4.19)
(Z‘,j7q77‘)

where the sum is over all terms such that i, j,q,r are mutually different, and

(1,2,3,4)
1 B _ B _
h($17y1,--~,~’647y4) = E Z kx(xt,xu>ky($taxu) +kz($taxu)ky(x’vaxw)

(t7u7v7w)

— Qkx(:rt, xu)]_ﬁy(.%'t, xv)a

84.3 Estimates for special structures 111

and the latter sum denotes all ordered quadruples (t,u,v,w) drawn from (1,2,3,4).

The theorem implies that in expectation h takes on the value of the dependence mea-
sure. To establish that this also holds for dependent random variables we use a result
from (Aaronson et al., 1996) which establishes convergence for stationary mixing se-
quences under mild regularity conditions, namely whenever the kernel of the U-statistic
h is bounded and the process generating the observations is absolutely regular. See
also Appendix E.3 and (Borovkova et al., 2001, Section 4). We note that Kontorovich
(2007) developed a similar result for uniform bound, and his results are highlighted in
Appendix E.4.

Theorem 51 Whenever I(X,Y) > 0, that is, whenever the random wvariables are

dependent, the estimate f(X, Y') is asymptotically normal with
Vnll(X,Y) — I(X,Y)) % N(0,402) (4.20)

where the variance is given by

o? =Var [hg(z1,91))> + 2 _ Cov(hs(z1,11), ha(zs, 1)) (4.21)
t=1

and hg(.%'l, yl) ::E(xg,y27x37y3,x4,y4) [h(xl, Y1y -+ ,T4, y4)] (4.22)

This follows from (Borovkova et al., 2001, Theorem 7), again under mild regularity
conditions (note that Borovkova et al. (2001) state their results for U-statistics of
second order, and claim the results hold for higher orders). The proof is tedious but

does not require additional techniques.

4.3.3 TD-SEP as a special case

So far we did not discuss the freedom of choosing different kernels. In general, an RBF
kernel will lead to an effective criterion for measuring the dependence between random
variables, especially in time-series applications. However, we could also choose linear
kernels for k, and]_ﬁy, for instance, to obtain computational savings.

For a specific choice of cliques and kernels, we can recover the work of Ziehe &
Miiller (1998) as a special case of our framework. In (Ziehe & Miiller, 1998), for two
centered scalar time series x and y, the contrast function is chosen as the sum of same-
time and time-lagged cross-covariance E[ziy;] + E[zy4-]. Using our framework, two
types of cliques, (x¢,y¢) and (x¢,y1++), are considered in the corresponding graphical

model. Furthermore, we use a joint kernel of the form

(Ts, Tt) (Ys, Yt) + (@5, Tt) Ystrs Ytr) 5 (4.23)

112 Kernel Measures of Independence for non-iid Data

which leads to the estimator of structured HSIC:
. 1
I(X,)Y) = T (trHKmHKy + trHKxHK;))

Here K denotes the linear covariance matrix for the time lagged y signals. For scalar
time series, basic algebra shows that tr H K, H K, and tr H K, H K; are the estimators
of E[xyy:] and E[zy.4,] respectively (up to a multiplicative constant).

Further generalization can incorporate several time lagged cross-covariances into
the contrast function. For instance, TD-SEP (Ziehe & Miiller, 1998) uses a range of
time lags from 1 to 7. That said, by using a nonlinear kernel we are able to obtain

better contrast functions, as we will show in our experiments.

4.3.4 Grid structured data

Structured HSIC can go beyond sequence data and be applied to more general depen-
dence structures such as 2-D grids for images. Figure 4.2¢ shows the corresponding
graphical model. Here each node of the graphical model is indexed by two subscripts,

i for row and j for column. In the simplest case, the maximal cliques are

C = {(Tij, Tit 15> Tijr1s Tiv 1,41, Yij»> Yit 1,js Yij+ 1, Yit 1,541) ij-

In other words, we are using a cross-shaped stencil to connect vertices. Provided that
the kernel k., can also be decomposed into the product of k, and Ey, then a biased
estimate of the independence measure can be again formulated as tr H K, HK, up to a
multiplicative constant. The statistical analysis of U-statistics for stationary Markov
random fields is highly nontrivial. We are not aware of results equivalent to those
discussed in Section 4.3.2. Kontorovich (2007), when dealing with uniform bounds,

also did not give any result on grid structured data.

4.4 Experiments

Having a dependence measure for structured spaces is useful for a range of applications.
Analogous to iid HSIC, structured HSIC can be applied to non-#id data in applications
such as independent component analysis (Shen et al., 2009), independence test (Gretton
et al., 2008), feature selection (Song et al., 2007c¢), clustering (Song et al., 2007b), and
dimensionality reduction (Song et al., 2008a). The fact that structured HSIC can take
into account the interdependency between observations provides us with a principled
generalization of these algorithms to, e.g., time series analysis. In this thesis, we will

focus on three examples:

4.4 Experiments 113
§ P

1. Independence test where structured HSIC is used as a test statistic;
2. Independent component analysis where we wish to minimize the dependence;

3. Time series segmentation where we wish to maximize the dependence.

4.4.1 Independence test

We first present two experiments that use the structured HSIC as an independence
measure for non-iid data, namely XOR binary sequence and Gaussian process. With
structured HSIC as a test statistic, we still need an approach to building up the distri-
bution of the test statistic under the null hypothesis HO : x 1l y. For this purpose, we
generalize the random shuffling technique commonly used for iid observations (Gretton
et al., 2008) into a clique-bundled shuffling. This shuffling technique randomly pairs
up the observations in x and y. Depending on the clique configurations of structured
HSIC, one observation in x may be paired up with several observations in y. The
observations corresponding to an instance of a maximal clique need to be bundled to-
gether and shuffled in blocks. For instance, if the maximal cliques are {(x¢, y¢, yi+1)},
after shuffling we may have pairs such as (z3,ys,y9) and (xg,ys,y4), but never have
pairs such as (x3,y4, y9) or (z4,ys3,ys), because y3 is bundled with y4, and yg is bundled
with yg. If the structured HSIC has a form of (4.18) with Gram matrices K, and K,
possibly assuming more general forms like l_fgc(a:iﬁ7 xjr), the shuffling can be performed
directly on the matrix entries. In this case, K, and K, can be computed offline and
separately. Given a permutation m, a shuffle will change (K,)s into (K) (s)=t)- The
random shuffling is usually carried out many times and structured HSIC is computed

at each time, which results in the null distribution.

Independence test for XOR binary sequences

In this experiment, we compared 4id HSIC and structured HSIC for independence test.
We generated two binary sequences x and y of length T = 400. The observations in x
were drawn 4id from a uniform distribution over {0,1}. y were determined by an XOR
operation over observations from x: y; = z; ® x4_1. If we treat the observation pairs as
11d, then the two sequences must appear independent. The undirected graphical model
for this data is shown in Figure 4.1b.

For iid HSIC, we used maximal cliques {(z¢,y:)} to reflect its underlying 7id as-
sumption. The corresponding kernel is (xs,x¢)0(ys, v¢). The maximal cliques for
structured HSIC are {(xy—1,x¢, y¢)}, which takes into account the interdependent na-
ture of the observations. The corresponding kernel is d(xs—1, x¢—1)0 (s, 2¢)0(ys, y¢). We
tested the null hypothesis HO : x Il y with both methods at significance level 0.01.

114 Kernel Measures of Independence for non-iid Data

Table 4.1: The number of times HSIC and structured HSIC rejected the null hypothesis.

data | HSIC p-value Structured HSIC p-value
XOR 1 0.44+0.29 100 0+0
RAND 1 0.49+0.28 0 0.49+0.31

The distributions of the test statistics was built by shuffling the paring of kernel entries
for 1000 times.

We randomly instantiated the two sequences for 100 times, then counted the number
of times each method rejected the null hypothesis (Table 4.1 XOR row). Structured
HSIC did a perfect job in detecting the dependence between the sequences, while
normal HSIC almost completely missed that out. For comparison, we also generated
a second dataset with two independent and uniformly distributed binary sequences.
Now both methods correctly detected the independence (Table 4.1 RAND row). We
also report the mean and standard deviation of the p-values over the 100 instantiations

of the experiment to give a rough picture of the distribution of the p-values.

Independence test for (Gaussian processes

In this experiment, we generated two sequences x = {xt}thl andy = {yt}thl using the

following formulae:
x=Au and y=A4 (eu +v1-— ezv) , (4.24)

where A € RT*T is a mixing matrix, and u = {ut}thl and v = {Ut}thl are sequences of
iid zero-mean and unit-variance normal observations. € € [0,1] and larger values of €
lead to higher dependence between sequences x and y. In this setting, both x and y are
stationary Gaussian processes. Furthermore, due to the mixing matrix A (especially
its non-zero off-diagonal elements), observations within x and y are interdependent.
We expect that an independence test which takes into account this structure will out-
perform tests assuming #id observations. In our experiment, we used 7" = 2000 and
Agp = exp(—|a — b| /25) with all elements below 0.7 clamped to 0. This banded matrix
makes the interdependence in x and y localized. For structured HSIC, we used the
maximal cliques {(x¢r,y:)} where 7 = 10 and linear kernel (z 10, ¢,10) (Ys,10, Y¢,10)-
We varied e € {0,0.05,0.1,...,0.7}. For each value of ¢, we randomly instantiated
u and v for 1000 times. For each instantiation, we followed the strategy in (Karvanen,
2005) which formed a new subsequence of length 200 by resampling every d observations
and here we used d = 5. We tested the null hypothesis HO : x Il y with 500 random

shuffles, and the nominal risk level was set to o = 0.01. When € = 0 we are interested

4.4 Experiments 115
§ P

1000 ‘ ‘ i
800 ;
600!
400} ;

200 —structured HSICi

= ---iid HSIC

0 0.2 04 06
€

#times HO is rejected

Figure 4.3: Independence test for a Gaussian process.

in the Type I error, i.e., the fraction of times when HO is rejected which should be
no greater than the . When ¢ > 0 we are concerned about the same fraction, but
now called empirical power of the test because a higher value is favored. d and 7
were chosen to make the comparison fair. Smaller d includes more autocorrelation and
increases the empirical power for both #d HSIC and structured HSIC, but it causes
higher Type I error (see e.g., Table I in Karvanen, 2005). We chose d = 5 since it is
the smallest d such that Type I error is close to the nominal risk level o = 0.01. 7 is
only for structured HSIC, and in our experiment higher values of 7 did not significantly
improve the empirical power, but just make the kernels more expensive to compute.

In Figure 4.3, we plot the number of times HO is rejected. When € = 0, x and y are
independent and both 4id HSIC and structured HSIC almost always accept HO. When
e € [0.05,0.2], i.e., x and y are slightly dependent, both tests have a low empirical
power. When ¢ > 0.2, structured HSIC is considerably more sensitive in detecting
dependency and consistently rejects HO more frequently. Note u and v have the same
weight in Eq. (4.24) when e = 271/2 = 0.71.

4.4.2 Independent component analysis

In independent component analysis (ICA), we observe a time series of vectors t that
corresponds to a linear mixture t = As of n mutually independent sources s (each
entry in the source vector s here is a random process, and depends on its past values;
examples include music and EEG time series). Based on the series of observations t,
we wish to recover the sources using only the independence assumption on s. Note
that sources can only be recovered up to scaling and permutation. The core of ICA is
a contrast function that measures the independence of the estimated sources. An ICA

algorithm searches over the space of mixing matrix A such that this contrast function is

116 Kernel Measures of Independence for non-iid Data

minimized. Thus, we propose to use structured HSIC as the contrast function for ICA.
By incorporating time lagged variables in the cliques, we expect that structured HSIC
can better deal with the non-iid nature of time series. In this respect, we generalize
the TD-SEP algorithm (Ziehe & Miiller, 1998), which implements this idea using a
linear kernel on the signal. Thus, we address the question of whether correlations
between higher order moments, as encoded using non-linear kernels, can improve the

performance of TD-SEP on real data.

Data Following the setting of (Gretton et al., 2005b, Section 5.5), we unmixed various
musical sources, combined using a randomly generated orthogonal matrix A (since
optimization over the orthogonal part of a general mixing matrix is the more difficult
step in ICA). We considered mixtures of two to four sources, drawn at random without
replacement from 17 possibilities. We used the sum of pairwise dependencies as the

overall contrast function when more than two sources were present.

Methods We compared structured HSIC to TD-SEP and #id HSIC. While 4id HSIC
does not take the temporal dependence in the signal into account, it has been shown to
perform very well for 7d data (Shen et al., 2009). Following Gretton et al. (2005b), we
employed a Laplace kernel, k,(z,2") = exp(—A||z —2'||) with A\ = 3 for both structured
and iid HSIC. For both structured and iid HSIC, we used gradient descent over the
orthogonal group with a Golden search, and low rank Cholesky decompositions of the

Gram matrices to reduce computational cost, as in (Bach & Jordan, 2002).

Results We chose the Amari divergence as the index for comparing performance of
the various ICA methods. This is a divergence measure between the estimated and true
unmixing matrices, which is invariant to the output ordering and scaling ambiguities. A
smaller Amari divergence indicates better performance. Results are shown in Table 4.2.
Overall, contrast functions that take time delayed information into account perform

best, although the best time lag is different when the number of sources varies.

4.4.3 Time series clustering and segmentation

We can also extend clustering to time series and sequences using structured HSIC.
This is carried out in a similar way to the iid case. One can formulate clustering as
generating the labels y from a finite discrete set, such that their dependence on x is
maximized (Song et al., 2007b):

maximize, tr HK,HK, subject to constraints on y. (4.25)

84.4 Experiments 117

Table 4.2: Median performance of ICA on music using HSIC, TDSEP, and structured
HSIC. In the top row, the number m of sources and n of samples are given. In the
second row, the number of time lags 7 used by TDSEP and structured HSIC are
given: thus the observation vectors x;, x;_1,...,2t_, were compared. The remaining
rows contain the median Amari divergence (multiplied by 100) for the three methods
tested. The original HSIC method does not take into account time dependence (7 = 0),
and returns a single performance number. Results are in all cases averaged over 136
repetitions: for two sources, this represents all possible pairings, whereas for larger m
the sources are chosen at random without replacement.

Method m = 2, n = 5000 m = 3, n = 10000 m = 4, n = 10000
1 | 2 | 3 1 [2 | 3 1 [2 | 3
HSIC 1.51 1.70 2.68
TDSEP 154 | 162 | 174 |18 | 172 | 154 |290 |208 |191
Structured HSIC | 148 | 1.62 | 1.64 | 1.65 | 158 | 156 | 265 |212 | 1.83

Here K, and K, are the kernel matrices for x and the generated y respectively. More
specifically, assuming (K,)s := 0(ys,y:) for discrete labels y, we recover clustering.
Relaxing discrete labels to y; € R with bounded norm ||y||, and setting (Ky)s = ysyt,
we obtain principal component analysis.

This reasoning for iid data carries over to sequences by introducing additional de-
pendence structure through the kernels: (K;)g := l?:x(:csﬁ, xtr) and (Ky)e =]Ey(ys,f, Yt,r)-
In general, the interacting label sequences make the optimization in (4.25) intractable.
However, for a class of kernels Ey an efficient decomposition can be found by applying

a reverse convolution on k.

Efficient optimization for convolution kernels

Suppose the kernel Ey assumes a special form given by

T _
ky (ys,77 yt,‘r) = Zu v=0 k; (ys+ua yt+v)Muv7 (4-26)

where M e RTDX(T+1) ig positive semi-definite, and E; is a base kernel between
individual time points. A common choice is]?:;(ys, yt) = 0(ys,yt). In this case we can

rewrite tr H K, H K, by applying the summation over M to HK,H, i.e.,

T T T+t T
Z {HK$H]Z_] Z k;(ys—f—uayt—i—v)Muv = Z Z Muv[HK:cH]s—u,t—v k;j(y&yt)
s,t=1 u,v=0 s,t=1 u,v=0

s—u,t—ve(1,T]

e
=K7,

(4.27)

118 Kernel Measures of Independence for non-iid Data

This means that we may apply the matrix M to HK,H and thereby we are able
to decouple the dependency within y. That is, in contrast to ky which couples two
subsequences of y, /%; only couples two individual elements of y. As a result, the
optimization over y is made much easier. Denoting the convolution by K* = [H K, H]*
M, we can directly apply (4.25) to time series and sequence data in the same way as
iid data, treating K™* as the original K,. In practice, approximate algorithms such
as incomplete Cholesky decomposition are needed to efficiently compute and represent
K* and the details can be found in Appendix G.

Empirical Evaluation

Datasets We studied two datasets in this experiment.

1. Swimming dataset. The first dataset was collected by the Australian Institute
of Sports (AIS) from a 3-channel orientation sensor attached to a swimmer which
monitors: 1. the body orientation by a 3-channel magnetometer; 2. the acceleration
by a 3-channel accelerometer. The three time series we used in our experiment have
the following configurations: 7' = 23000 time steps with 4 laps; T" = 47000 time steps
with 16 laps; and T'= 67000 time steps with 20 laps. The task is to automatically find
the starting and finishing time of each lap based on the sensor signals. We treated this
problem as a segmentation problem, and used orientation data for our experiments
because they lead to better results than the acceleration signals. Since the dataset
contains four different styles of swimming, we assumed there are six states/clusters for
the sequence: four clusters for the four styles of swim, two clusters for approaching and
leaving the end of the pool (finishing and starting a lap, respectively).

2. BCI dataset. The second dataset is a brain-computer interface data (data
IVb of Berlin BCI group*). It contains EEG signals collected when a subject was
performing three types of cued imagination: left, foot, and relax. Between every

two successive imaginations, there is an interim. So an example state sequence is:
left, interim, relax, interim, foot, interim, relax, interim,...

Therefore, the left/foot/relax states correspond to the swimming styles and the
interim corresponds to the turning at the end or beginning of the laps. Including
the interim period, the dataset consists of 7' = 10000 time points with 16 different
segments (32 boundaries). The task is to automatically detect the start and end of an
imagination. We used four clusters for this problem.

We preprocessed the raw signal sequences by applying them to a bandpass filter
which only keeps the frequency range from 12Hz to 14Hz. Besides, we followed the

“http://ida.first.fraunhofer.de/projects/bci/competition-iii /desc-IVb.html

4.4 Experiments 119
§ P

common practice and only used the following electrode channels (basically those in the

middle of the test region):

33,34,35,36,37,38,39,42,43,44,45,46,47,48,49,51,52,53,54,
55,56,57,59,60,61,62,63,64,65,66,69,70,71,72,73,74,75.

Finally, for both swimming and BCI datasets, we smoothed the raw data with

moving averages, i.e., Ty < » 233 followed by normalization to zero mean and

w

T=—w
unit variance for each feature dimension. Here w is set to 100 for swimming data and
50 for BCI data due to its higher frequency of state switching. This smoothed and

normalized x was used by all the three algorithms.

Methods We compared three algorithms: structured HSIC for clustering, spectral
clustering (Ng et al., 2002), and HMM.

1. Structured HSIC. For the three swimming datasets, we used the maximal
cliques of {(z¢, y+—50,100) } for structured HSIC, where y is the discrete label sequence to
be generated. Time lagged labels in the maximal cliques reflect the fact that clustering
labels keep the same for a period of time. The kernel lz/'y took the form of equation (4.26),
with M € R0 and M, := exp(—(a — b)?). We used the technique described
in Section 4.4.3 to shift the dependence within y into x. The kernel k, was RBF:
exp(— ||zs — z¢||?). We performed kernel k-means clustering based on the convolved
kernel matrix K*. To avoid the local minima of k-means, we randomly initialized it
for 20 times and reported the error made by the model which has the lowest sum of
point-to-centroid distances. The parameters for BCI dataset are the same, except that
M € R33! to reflect the fact that state changes more frequently in this dataset.

2. Spectral clustering. We first applied the algorithm in (Ng et al., 2002) on
x and it yielded far larger error, and hence is not reported here. Then we applied
its kernelized version to the convolved kernel K*. We used 100 nearest neighbors with
distance function exp(— ||z; — x; |?). These parameters delivered uniformly best result.

3. HMM. We trained a first order homogeneous HMM by the EM algorithm with
6 hidden states for swimming dataset and 4 states for BCI dataset, and its observa-
tion model contained diagonal Gaussians. After training, we used Viterbi decoding
to determine the cluster labels. We used the implementation from Torch®. To reg-
ularize, we tried a range of minimum variance o € {0.5,0.6, ...,2.0}. For each o, we
randomly initialized the training of HMM for 50 times to avoid local maxima of EM,
and computed the error incurred by the model which yielded the highest likelihood on

the whole sequence. Finally, we reported the minimum error over all o.

®http://www.torch.ch

120 Kernel Measures of Independence for non-iid Data

R1 R1R2 R2’

—{al«— —lbroic

4d

Figure 4.4: Illustration of error calculation. Red lines denote the ground truth and
blues line are the segmentation results. The error introduced for segment R; to R} is
a + b, while that for segment Ry to R) is ¢ + d. The overall error in this example is
then (a +b+c+d)/4.

Table 4.3: Segmentation errors by various methods on the four studied time series.

Method Swimming 1 Swimming 2 Swimming 3| BCI

structured HSIC 99.0 118.5 108.6 111.5
spectral clustering 125 212.3 143.9 162
HMM 153.2 120 150 168

Results To evaluate the segmentation quality, the boundaries found by various meth-
ods were compared against the ground truth. First, each detected boundary was
matched to a true boundary, and then the discrepancy between them was counted
into the error. The overall error was this sum divided by the number of boundaries.
Figure 4.4 gives an example on how to compute this error.

According to Table 4.3, in all of the four time series we studied, segmentation using
structured HSIC leads to lower error compared with spectral clustering and HMM.
For instance, structured HSIC reduces nearly 1/3 of the segmentation error in the
BCI dataset. We also plot the true boundaries together with the segmentation results
produced by structured HSIC, spectral clustering, and HMM respectively. Figures 4.6
to 4.8 present the results for the three swimming datasets, and Figure 4.5 for the BCI
dataset. Although the results of swimming data in Figure 4.6 to 4.8 are visually similar
among all algorithms, the average error produced by structured HSIC is much smaller
than that of HMM or spectral clustering. Finally, the segment boundaries of BCI data
produced by structured HSIC clearly fit better with the ground truth.

4.5 Conclusion

In this paper, we extended the Hilbert Schmidt Independence Criterion from iid data
to structured and non-itd data. Our approach is based on RKHS embeddings of dis-

tributions, and utilizes the efficient factorizations provided by the exponential family

§4.5 Conclusion 121

1, L L L |

— Structured HSIC
0 ——Ground Truth

0 2000 4000 6000 8000 10000
(a) Structured HSIC

4 — ‘ ‘ ‘
3 U
2 L L . -
1,

— Spectral Clustering

—Ground Truth

% 2000 4000 6000 8000 10000

(b) Spectral Clustering

T

—HMM

0 —Ground Truth
0 2000 4000 6000 8000 10000
(¢) HMM

Figure 4.5: Segmentation results of
BCI dataset produced by (a) struc-
tured HSIC, (b) spectral clustering and
(¢c) HMM. In (c), we did specify 4 hid-
den states, but the Viterbi decoding
showed only two states were used.

| — Structured HSIC
—Ground Truth

0 05 1 15 2 25
x 10

(a) Structured HSIC

] i
2, L

— Spectral Clustering]|
—Ground Truth
0 0.5 1 1.5 2 2.5

x 10"

(b) Spectral Clustering

—HMM
—Ground Truth
0 0.5 1 15 2 2.5

x 10°

(c) HMM

Figure 4.6: Segmentation results of
swimming dataset 1 produced by (a)
structured HSIC, (b) spectral cluster-
ing and (c) HMM.

122 Kernel Measures of Independence for non-iid Data

6, — =

5 R

4k = |

3, I— I

2 H

1—structured HsIC| I

—Ground Truth

00 1 2 3 4 5

x 10"
(a) Structured HSIC

6,

5¢ —‘ —

4, | — | —

3. — L

2 H L U

1= —Spectral Clustering| |

0 —Ground Truth

0 1 2 3 4 5
x 10*
(b) Spectral Clustering

6 ' Ill '

5 — -

4 — | — I—

3, —

2 H [— [—

nmr —HMM

0 —Ground Truth

0 1 2 3 4 5
x 10*
(c) HMM

Figure 4.7: Segmentation results of
swimming dataset 2 produced by (a)
structured HSIC, (b) spectral cluster-
ing and (¢) HMM.

6 T 5 ‘ T PP

5 - | -
4l |

34— | |

off U i

1—Sstructured HSIC

ol==Cround Truth,

0 1 2 3 4 5 6 7

(a) Structured HSIC

— Spectral Clustering]|
—Ground Truth

0 1 2 3 4 5 6 7
x 10"

(b) Spectral Clustering

—HMM
—Ground Truth

(c) HMM

Figure 4.8: Segmentation results of
swimming dataset 3 produced by (a)
structured HSIC, (b) spectral cluster-
ing and (c¢) HMM.

§4.5 Conclusion 123

associated with undirected graphical models. Encouraging experimental results were
demonstrated on independence test, ICA, and segmentation for time series. Further
work will be done in the direction of applying structured HSIC to PCA and feature
selection on structured data. It will be also impacting in theory to study the asymp-
totic bounds for grid structured non-iid data, in the same line as Section 4.3.2 and
(Kontorovich, 2007).

124 Kernel Measures of Independence for non-iid Data

Chapter 5

Lower Bounds for BMRM and
Faster Rates for Training SV Ms

CRFs are log-linear models for learning from structured data. A similar approach
to this task is maximum margin models (e.g., Taskar et al., 2004) which a) allows
decomposition of loss and variable parameterization along the graphical models, and
b) admits straightforward kernelization to implicitly model nonlinear dependencies
with a much richer feature space while still retaining linear estimation. However, the
nonsmooth objective function poses new challenges in optimization (Collins et al.,
2008; Taskar et al., 2006). Fortunately, the problem can be cast as an example of
regularized risk minimization, for which bundle methods (BMRM, Teo et al., 2007) and
the closely related SVMSt*2¢* (Tsochantaridis et al., 2005) are state-of-the-art general
purpose solvers. Section 1.6 provided a brief introduction to these solvers.

Smola et al. (2007b) proved that BMRM requires O(1/¢) iterations to converge
to an e accurate solution, and we will show in this chapter that this rate is tight,
i.e. there exists a function for which BMRM requires O(1/¢) steps. Motivated by
Nesterov’s optimal first-order methods (Nesterov, 1983, 2005a, 2007), we further devise
an algorithm for the structured loss which finds an e accurate solution in O(1//€)
iterations.

Let x* € X C R% denote the feature vector of examples and y; € Y be the cor-
responding labels'. Given a training set of n sample label pairs {(xi, y,-)}?zl, drawn
i.i.d. from a joint probability distribution on X x), many machine learning algorithms

solve the following regularized risk minimization problem:

1~
min J(w) := AQ(W) + Remp(W), where Remp(W) := - Zl(x’,yi;w). (5.1)
i=1

Here I(x¢, y;; w) denotes the loss on instance (x¢, ;) using the current model w and

"We first discuss binary SVMs and therefore use the symbol y; without boldface. Structured
outputs will be discussed in Section 5.4 where we will use y to denote the structured labels.

125

126 Lower Bounds for BMRM and Faster Rates for Training SVMs

Remp(W), the empirical risk, is the average loss on the training set. The regularizer
Q(w) acts as a penalty on the complexity of the classifier and prevents overfitting.
Usually the loss is convex in w but can be nonsmooth while the regularizer is usually
a smooth strongly convex function. Binary support vector machines (SVMs) are a
prototypical example of such regularized risk minimization problems where Y = {1, -1}

and the loss considered is the binary hinge loss:
l(xi, Yi; W) = [1 —Y; <W,Xi>]+, with []+ := max(0, -). (5.2)

Recently, a number of solvers have been proposed for the regularized risk minimiza-
tion problem. The first and perhaps the best known solver is SUMS**%¢t by Tsochan-
taridis et al. (2005), which was shown to converge in O(1/€?) iterations to an € accurate
solution. The convergence analysis of SVMS*™%°* was improved to O(1/¢) iterations by
Smola et al. (2007b). In fact, Smola et al. (2007b) showed that their convergence anal-
ysis holds for a more general solver than SVM3***°* namely BMRM (Bundle method for
regularized risk minimization).

At every iteration BMRM replaces Remp by a piecewise linear lower bound R;® and
optimizes

mvin Jy(w) == X\Q(w) + RP(w), where R;®(w) := max (w,a;) + b;, (5.3)
to obtain the next iterate w;. Here a; € 0 Remp(W;—1) denotes an arbitrary subgradient
of Remp at wi—1 and b; = Remp(Wi—1) — (W;_1,a;). The piecewise linear lower bound

is successively tightened until the gap

€ = oglfrgltj(wt,> — Ji(wy), (5.4)
falls below a predefined tolerance e. The full details of BMRM can be found in Section
1.6.4 and (Teo et al., 2010).

Even though BMRM solves an expensive optimization problem at every iteration,
the convergence analysis only uses a simple one-dimensional line search (Algorithm 3
in Chapter 1) to bound the decrease in €. Furthermore, the empirical convergence
behavior of BMRM is much better than the theoretically predicted rates on a number
of real life problems (Teo et al., 2010, Section 5). It was therefore conjectured that
the rates of convergence of BMRM could be improved. In Section 5.2, we answer
this question in the negative by explicitly constructing a regularized risk minimization
problem for which BMRM takes at least O(1/¢) iterations.

One possible way to circumvent the O(1/€) lower bound is to solve the problem

in the dual. Using a very old result of Nesterov (1983) we obtain in Section 5.3 an

§5.1 Preliminaries 127

algorithm for SVMs which only requires O(1/4/€) iterations to converge to an € accurate
solution; each iteration of the algorithm requiring O(nd) work. Although we primarily
focus on the regularized risk minimization with the binary hinge loss, our algorithm can
also be used whenever the empirical risk is piecewise linear and contains a small number
of pieces. Examples of this include multi-class, multi-label, and ordinal regression hinge
loss and other related losses. Extension to more general structured output spaces is
also feasible as long as it factorizes according to a graphical model. Section 5.4 shows
the details. Finally, experimental results will be presented in Section 5.5 which confirm

our bounds.

5.1 Preliminaries

In this section, we quickly recap the necessary convex analysis concepts. A brief
introduction to convex analysis is available in Appendix A, and more details can
be found in textbooks like (Hiriart-Urruty & Lemaréchal, 1993a; Rockafellar, 1970).
Unless specified otherwise, |-|| refers to the Euclidean norm |lw| = (37, w?)%
R := RU {co}, and [t] := {1,...,t}. The dom of a convex function f is defined
by dom f :={w: f(w) < co}. Ay refers to the k dimensional simplex. The following

three notions will be used extensively:

Definition 52 (Strong convexity) A convex function f : R™ — R is strongly convexr
(s.c.) wrt norm || - || if there exists a constant o > 0 such that f — 5| - ||* is convez. o
s called the modulus of strong convezity of f, and for brevity we will call f o-strongly

COnvexr or o-S.c..

Definition 53 (Lipschitz continuous gradient) A function f is said to have Lip-

schitz continuous gradient (l.c.g) if there exists a constant L such that
IVf(w) = Vf(w)] < Lijw—w| Vw and w'. (5.5)
For brevity, we will call f L-l.c.g.

Definition 54 (Fenchel duality) The Fenchel dual of a function f : Ey — Es, is a
function f*: E5 — EJ given by

fr(w*) = sup {(w,w") — F(w)} (5.6)

weF

The following theorem specifies the relationship between strong convexity of a primal

function and Lipschitz continuity of the gradient of its Fenchel dual.

Theorem 55 (Hiriart-Urruty & Lemaréchal, 1993a, Theorem 4.2.1 and 4.2.2)

128 Lower Bounds for BMRM and Faster Rates for Training SVMs

1. If f : R™ — R is o-strongly convez, then dom f* = R" and VF* is %—l.c.g.
2. If f:R™ = R is convex and L-l.c.g, then f* is %—Stmngly convez.

Subgradients generalize the concept of gradients to nonsmooth functions. For w €

dom f, p is called a subgradient of f at w if
fW') > fw)+ (W —w,p) Yw' (5.7)

The set of all subgradients at w is called the subdifferential, denoted by 0f(w). If f
is convex, then 9f(w) #) for all w € dom F, and is a singleton if, and only if, f is
differentiable (Hiriart-Urruty & Lemaréchal, 1993a).

Any piecewise linear convex function f(w) with ¢ linear pieces can be written as

f(w) = mf[%tffﬂau w) + bi}, (5.8)

1€

for some a; and b;. If the empirical risk Remp is a piecewise linear function then the

convex optimization problem in (5.1) can be expressed as

min J(w) := min me{u}<{<ai, w) + b} + AQ(w). (5.9)
w woogeft

Let A := (ai,...,a;) and b := (b1,...,b,), then the adjoint form of J(w) can be

written as
D(a) := AV (=A"'Aa) + (a,b) with a € A, (5.10)
where the primal and the adjoint optimum are related by
w* = 00 (—\ T Aa®). (5.11)

In fact, using concepts of strong duality (see e.g.Theorem 2 of (Teo et al., 2010)), it

can be shown that

inf {max (a;,w) +b; + /\Q(w)} = sup {—A*(-A\"'Aa) + (e, b)} (5.12)

weRd | i€[n] acAy
5.2 Lower bounds

The following result was shown by Smola et al. (2007b):

Theorem 56 (Theorem 4 of (Smola et al., 2007b)) Assume that J(w) > 0 for
all w, and that ||Ow Remp(W)|| < G for all w € W, where W is some domain of interest

containing all wy for t' < t. Also assume that Q* has bounded curvature, i.e. let

§5.2 Lower bounds 129

H@ZQ*(#)H < H* for all p € {—)_1Aa where o € At}. Then, for any e < 4G*H* /)

we have €, < € after at most

AJ(0) | 8GPH*

1
982 Capr+ e

4 (5.13)

steps.

Although the above theorem proves an upper bound of O(1/¢) on the number of iter-
ations, the tightness of this bound has been an open question. We now demonstrate a
function which satisfies all the conditions of the above theorem, and yet takes Q(1/¢)

iterations to converge.

5.2.1 Concepts and notations

Since most rates of convergence discussed in machine learning community are upper
bounds, we will first clarify the meaning of lower bound wrt €, with special attention
paid to the qualifiers of objective functions and optimization algorithms.

Given a function f and an optimization algorithm, we define T'(¢; f) as the number

of steps required to reduce the gap defined in Eq. (5.4) to less than €%:

T(e f) =max{k: f(wg) — f* > €}.

Since convergence rates are often expressed in O(-) form, comparisons need to be
redefined up to multiplicative constants. It is intuitive to define the following total

order on the convergence rate.

Type Meaning

g(€) < h(e) | limeo g(€)/h(e) =0

g(€) > h(e) | limeo h(e)/g(e) =0

g(€) ~ h(e) | limeo g(€)/h(e) = C € (0, +00)
g(€) < h(e) | gle) < h(e) or g(e) ~ h(e)

g(€) = h(e) | g(e) = h(e) or g(e) ~ h(e)

Special attention should be paid to the qualifications in upper and lower bounds.

Upper bounds are usually qualified by “for all functions and for all €”, it takes at most

2Indeed the initial point also matters: in the best case one just starts from the optimal zo = z*.
So rigorously, it should be T'(e; f, o). Here for simplicity, we omit the zo which is always qualified as
existential in lower bounds and universal in upper bounds. Furthermore, an algorithm can be random
to some extent, e.g., pick a subgradient in the subdifferential. Again, we qualify it as existential in
lower bound and universal in upper bound.

130 Lower Bounds for BMRM and Faster Rates for Training SVMs

O(g(e)) steps to reduce the gap to e. However, for lower bounds, the two “for all” may

be turned into “there exist” in two different ways.

Type Meaning

Upper bound: For all function f, T'(e; f) < g(e)

Strong lower bound | There exists a function f, such that T'(¢; f) = g(e).
(SLB):
Weak lower bound | For all ¢, there exists a function f, which may depend
(WLB): on €, such that T'(¢; fe) > g(e).

Clearly, if SLB holds, WLB must hold, but not vice versa. A simple example is
the well known WLB for cutting plane (Hiriart-Urruty & Lemaréchal, 1993a, Example
1.1.2 of Chapter XV): for all ¢, there exists a function f. with n variables such that
it takes k > O(1/€"/?) steps to ensure f(wy) — f* < e. However, after that many
steps, the gap immediately drops to 0, hence it is not admissible as a SLB example.
Incidentally, there is no known SLB example for cutting plane algorithm (Nemirovski,
2009).

Both upper bound and SLB are defined in an asymptotic fashion, while WLB is
not. Obviously SLB and upper bound are incompatible, i.e., if g(e¢) < h(e), then the
following cannot be true at the same time: a) for all function f, T'(e; f) < g(€); and b)
there exists a function f such that T'(¢; f) = h(e). However, WLB and upper bound
are compatible, i.e., given an optimization algorithm there can be two rates g(e) < h(e)

such that the following two hold simultaneously:

1. for all function f there exist a constant C'y such that for all €, it takes at most

k = Ctg(e) steps to ensure f(xy) — f* <e

2. for all €, there exists a function f. which may depend on €, such that it takes at

least k = h(e) steps to ensure fo(wy) — f* < €3

The objective function domain F under consideration is also important. When
discussing upper bounds where f is universally qualified, broader F leads to stronger
statements. However, when discussing lower bounds where f is existential, a narrower
F means stronger claims.

For both upper and lower bounds, a statement is stronger if the domain of the algo-
rithm is more general. For example, Nesterov (2003) showed a WLB for all algorithms

that satisfy the condition that wyiq lies in the linear span of previous subgradients
k
{Vf(wi)}izo-

3Note we do not further allow a function-dependent constant C since f is qualified as existential.

§5.2 Lower bounds 131

To understand optimization algorithms, both WLB and SLB are important. The
algorithm domain of this section is restricted to BMRM, and we construct SLB and
WLB examples for binary linear SVM objectives, as well as a WLB example for Lo

regularized piecewise linear objectives.

5.2.2 Strong lower bounds

Strong lower bounds are harder to construct and prove. We now demonstrate one for
Is-bmrm (see Section 1.6.4 for an introduction to Is-bmrm and gp-bmrm). In particular,
we show that the primal gap of Issbmrm on an SVM training example is decreased at
O(1/k) rate where k is the step index. Similar examples can be constructed to show
the O(1/€) SLB for pegasos, which is given in Appendix H. The SLB for qp-bmrm is
an open problem.
Consider the following training instances in 1-d space. Let 2 € R be features and
y' € {—1,1} be labels. Pick (z!,y') = (1,1), (22,4?) = (-1,-1), (23,4%) = (3,1), and
(z*,y*) = (—1,-1). Set A = ;=. Then the objective function of a SVM can be written
o 1 1 1 w
min J(w) = min —w? + 2 [1 =], + [1—5L. (5.14)

Our main result is the following Theorem:
Theorem 57 limy_,o k(J(wy) — J(w*)) = 1, where w* = argmin,, J(w).

The proof is based on the fact that {wy} oscillates about and approaches w* = 2
at the rate of 1/k:

Lemma 58 limy o0 k|2 — wi| = 2 with wer1 > 2 and wy, € (1,2).

To this end, we establish a recursive relation between wy and oy, 1, the first element
of the solution ey, of the inner dual problem in BMRM (Eq. (5.10) or step 2 of Algorithm
2 in Chapter 1).

Lemma 59 For k > 1, we have

3 2 2 3
whyy_q + 120051 1wy, + 16wap—105;, 1 — 6das,

Wopt1 = 2 > 2, (515)
wop—1 (wap—1 + 4aop_11)°
P P

Wy + 1605, 4 4
Qokt1,1 = 5 Q2k—1,15 (5.16)

(wop—1 + 40‘2k71,1)2

8oy
wop, =2 — —2=LL € (1,2), (5.17)
Wok—1

(5.15) and (5.16) provide recursive formulae to compute wopt1 and coky1,1 based on

wok—1 and ogr—1,1, and (5.17) gives wayy.

132 Lower Bounds for BMRM and Faster Rates for Training SVMs

The straightforward but technical proof for Theorem 57, Lemma 58 and 59 can
be found in Appendix H. Also notice that these results only show how fast the opti-
mization problem 5.14 can be solved, while the question of how fast the generalization

performance gets improved is still open.

5.2.3 Weak lower bounds

Although we are unable to construct a SLB for qp-bmrm on binary SVM, we manage
to prove a WLB: O(1/¢). For ease of presentation, we postpone the description and
first show a WLB example for Ly regularized piecewise linear objectives.

Our example of Ly regularized piecewise linear objective can be written in the
framework of RRM as:

1
=3 |Wl|?, Remp(W) := ?é%z}}{wi = 51;&}}((ei,w), J(W) := QW) + Remp, (5.18)

Q(w)

where w € R", e; is the i-th coordinate vector (straight 0 except the i-th coordinate

being 1). Our key result is the following:

Theorem 60 Let wyp = 0 and w* := argminy, J(w). Suppose running qp-bmrm on
the objective J(w) in Eq. (5.18) gives w1, Wa, ..., Wg,.... Then for all k € [n] we have
in J(wi) — J(W*) = o + = (5.19)
min J(w;) — J(w*) = — + —. .
ek 2k 2n

And J(wy) = J(w*) for all k > n.

Proof We prove Theorem 60 by simply running gp-bmrm by hand. The Reyp in
Eq. (5.18) consists of n hyperplanes. Since gp-bmrm cuts a tangent plane of Remp at
each iteration, we can assume without loss of generality that after k steps, the first k
hyperplanes cut by gp-bmrm are: (e;,w),...,(ex,w). Then we obtain a regularized

lower approximation Jx(w) to minimize:

1 1
Je(w) := = |w]* + max (e;, w) = = |w]|* + max w;,.
2 i€[k] 2 i

€[k]
It is not hard to see that the optimal solution of Ji(w) is
k copies
. —1 —1 T
wj = argmin Ji(w) = (—,...,—,0,...) ,
w k

because 0Ji(wyg) = {Wk + Zie[k] aie; o€ Ak} 5 0. Similarly, we can derive that

w* = —%1. Plugging wj, and w* into the definition of J(w) we immediately derive

§5.2 Lower bounds 133

Eq. (5.20). m

To complete our construction, for any arbitrary €, set n to [1/€¢|. Then for all
k< n <1/e, mingepy J(w;) — J(W*) = 3¢ + = >+ +L =15 ¢ Since Issbmrm

cannot converge faster than qp-bmrm, this is also a WLB of O(1/¢) for Is-bmrm.

In fact, a careful look at the proof of Theorem 60 shows that the rate in Eq. (5.20)

holds not only for gp-bmrm, but also for any optimizer which satisfies:

W1 € span{V Remp(W;) 1 @ € [k]}, where V Remp(Wi) € ORemp(Wi).

Now coming back to SVM, the definition of hinge loss [1 — y (x, w)]; indicates
that we can treat any data point (x,y) (y € {—1,1}) as a new example yx with
fixed label +1. So let the n “new” examples in R"*! be x; = (y/n,7n,0,0,...), Xo =
(v/n,0,1,0,...), x3 = (/n,0,0,n,0,...), i.e., X' = ne; 11 + /ne; (n will be set later).
So the objective function is
Y= (wx)]y = 5 Iwl|* + - > (1= Vnwy — nawiga]

i=1 i=1

1

n

1
T(w) = 5 IIw|* +

Our key result is the following.

Theorem 61 Let wy = (n_1/2,0,0, .. .)T. Suppose running qp-bmrm on the objective

function Eq. (5.18) gives Wi, Wa,...,Wg,.... Then for all k € [n] we have
min J(w;) — J(w") = 1 (5.20)
iG[lk] ! 2k 2n’ ’

And J(wy) = J(w*) for all k > n.

Proof Again we run gp-bmrm by hand. Since ORemp(Wo) = {_71 S ax o€ Ay},

we can choose

a=-n"'x; = (-n""%,-1,0,..)7

b1 = Remp(Wo) — (a1, wg) =0 — nt=-nt

1
w1 = argmin {2 [wl* = n= 2w, — wy — n_l} =72 1,0,..)".
w

134 Lower Bounds for BMRM and Faster Rates for Training SVMs

Since ORemp(W1) = {%1 Y axita€ An_l}, we can choose

ag = —n 'xy = (—n"Y2,0,-1,0,..)7

by = Remp(W1) — (a2, wq) =0 — nt=—_nt

. J1 _ _ _ _
wzzargmm{szHz—i—max{—n V2 —wy =Y, —n V2w, —ws —n 1}
w

(111 i
- \/757272’,.” :

Proceeding in the same way, we can show that

k copies
—
(o)’
k \/ﬁaka akaa 9
i (11 T CJ(w) =L L
And w* =w,, = T . Hence J(wy) — J(W*) = 5 T u

To complete the construction of WLB example, set n = [2/€], then for all k < % <

n, we have

N oe €

That is, gp-bmrm has WLB O(1/¢) on binary linear SVM problem. As Is-bmrm con-

verges no faster than qp-bmrm, this is also a WLB example for Is-bmrm.

5.3 A new algorithm with convergence rates O(1/\/¢)

We now turn our attention to the regularized risk minimization with the binary hinge
loss, and propose a new algorithm. Our algorithm is based on (Nesterov, 1983) and
(Nesterov, 2005a) which proposed a non-trivial scheme of minimizing an L-l.c.g func-
tion to e-precision in O(1/4/€) iterations. Our contributions are two fold. First, we show
that the dual of the regularized risk minimization problem is indeed a L-I.c.¢ function.
Second, we introduce an O(n) time algorithm for projecting onto an n-dimensional sim-
plex or in general an n-dimensional box with a single linear equality constraint, thus
improving upon the O(nlogn) deterministic algorithm of Duchi et al. (2008) (who also
gave a randomized algorithm having expected complexity O(n)). This projection is
repeatedly invoked as a subroutine by Nesterov’s algorithm when specialized to our
problem.

Consider the problem of minimizing a function J(w) with the following structure

§5.3 A new algorithm with convergence rates O(1//e) 135

over a closed convex set (1:
J(w) = f(w) + g"(Aw). (5.21)

Here f is strongly convex on (1, A is a linear operator which maps Q1 to another
closed convex set 2, and g is convex and [l.c.g on Q2. Nesterov (2005a) works with
the adjoint form of J:

D(a) = —gla) - f*(~A"a), (5.22)

which is lc.g according to Theorem 55. Under some mild constraint qualifications
which we omit for the sake of brevity (see e.g. Theorem 3.3.5 of (Borwein & Lewis,
2000)) we have

J(w)>D(a) Vw,a and inf J(w)= sup D(a). (5.23)
weQn acQ)2
By using the algorithm in (Nesterov, 1983) to maximize D(a), one can obtain an

algorithm which converges to an e accurate solution of J(w) in O(1/4/€) iterations.

The regularized risk minimization with the binary hinge loss can be identified with
(5.21) by setting

n

A 1 i
J(w) = SlIwl® +min =3 [1—pi((x', w) +)], (5.24)
~—— i=1
1(w) —

The latter, g*, is the dual of g(a) = —), v (see Appendix Example 3). Here Q1 = R,
Let A := —Y X" where Y := diag(yt,...,y"), X = (xl, .. ,x”). Then the adjoint

can be written as :

D(a) = —g(e) - f(-ATa) =Y ai— —a VX XYa with (5.25)

Qs = {a e 0,7 > yioy = 0} : (5.26)

In fact, this is the well known SVM dual objective function with the bias incorporated.

Now we present the algorithm of (Nesterov, 2005a) in Algorithm 10. Since it
optimizes the primal J(w) and the adjoint D(a) simultaneously, we call it pragam
(PRimal-Adjoint GAp Minimization). It requires a oa-strongly convex prox-function
on Qa: da(a) = %|lef|?, and sets Dy = maxacq, d2(x). Let the Lipschitz constant
of VD(a) be L. Algorithm 10 is based on two mappings a,(w) : Q1 — Q2 and
w(a) : Q2 — @1, together with an auxiliary mapping v : Q2 — Q2. They are defined
by

136 Lower Bounds for BMRM and Faster Rates for Training SVMs

Algorithm 10: pragam: an O(1/k?) rate primal-adjoint solver (Nesterov, 2005a).

Input: Objective function f which has a composite form as Eq. (5.21). L as a
conservative estimate (i.e. upper bound) of the Lipschitz constant of
VD (o).
Output: Two sequences w; and oy which reduce the duality gap
J(wi) — D(ay.) at O(1/k?) rate.
1 Initialize: Randomly pick a_j in Q. Let py = 2L, ag < v(a—1),
wo < w(a_1).
2 for k=0,1,2,... do
3 L T = %Jrg, Br + (1 — 7)o —I—Tka”k(wk).
4 | Set Wiy < (1= mp)wy + 7 W(Bk), agr1 < v(Bk), pt1 <+ (1 — 75) .

o, (w) == argmin uds (o) — (Aw, a) + g(a) (5.27)
acQ)2
= argmin n lal?+w XYa — Zai, (5.28)
OLEQQ 2 ‘
w(a) := argmin (Aw, a) + f(w) (5.29)
weEQR1
: T A 9 1
= argmin —w' XYa+ = |w||" = -XYa, (5.30)
weRd 2 A
. L / 2 /
v(a) == argmin = ||’ — a|” = (VD(a), o’ — a). (5.31)
a’'eQ2 2

Eq. (5.30) is exactly the dual relationship in binary SVM. Eq. (5.28) and (5.31) are
examples of a box constrained QP with a single equality constraint. In Section 5.3.2,
we provide a linear time algorithm to find the minimizer of such a QP. The overall
complexity of each iteration is thus O(nd) due to the gradient calculation in (5.31) and

the matrix multiplication in (5.30).

5.3.1 Convergence rates

According to (Nesterov, 2005a), on running Algorithm pragam for k iterations, the ay

and wy, satisfy:

4L Do

Twe) = Dlew) < G m 990,

(5.32)

For SVMs, L = %HAH%Q where [|Al]; , = max {(Aw, o) : |la]| = 1, [|w[| =1}, 02 = 1,
Dy = % Assuming HXZH <R,

[(Aw, @)|* < [|ex]|? HYXTWH2 = HXTWH2 = Z <x",w>2 < Z [w|| HX’H2 < nR?.

§5.3 A new algorithm with convergence rates O(1//e) 137

Thus by (5.32), we conclude

ALDs - 2R?
(k+1)(k+2)oy — Mk+1)(k+2)

J(wg) — D(ay;) < <,

which gives

R
E>O0 <\/E> .

This O(+/1/e) rate improves upon the O(1/¢) rate in state-of-the-art SVM solvers
like pegasos (Shalev-Shwartz et al., 2007), SVMPerf (Joachims, 2006), SVMS**** (Tsochan-
taridis et al., 2005), and BMRM (Teo et al., 2010). It should also be noted that our
algorithm has a better dependence on A compared to these methods which have a fac-
tor of % in their convergence rates. Our rate of convergence is also data dependent,
showing how the correlation of the dataset XY = (y'x!,...,y"x") affects the rate via
the Lipschitz constant L, which is equal to the square of the maximum singular value
of XY (or the maximum eigenvalue of Y X XY). On one extreme, if x* is the i-th

dimensional unit vector then L = 1, while L = n if all y'x’ are identical.

5.3.2 A linear time algorithm for simple QP

It is easy to see that the dual optimization problem D(a) from (5.25) is a box con-
strained QP with a single linear equality constraint.

In this section, we focus on solving the following simple QP:

. 1o
min 3 Z; d?(a; —m;)*
1=
s.t. i <oy <ug Vi € [n];

n
> ooy = 2. (5.33)
=1

Without loss of generality, we assume I; < u; and d; # 0 for all . Also assume o; # 0
because otherwise a; can be solved independently. To ensure the feasible region is

nonempty, we further assume

Zai(é(a@- > O)Zi + 5(UZ < O)UI) <z< 201(5(01 > O)Ui + 5(O'Z < 0)[1)

2 K3

The algorithm we describe below stems from (Pardalos & Kovoor, 1990) and finds the
exact optimal solution in O(n) time, faster than the O(nlogn) complexity in (Duchi
et al., 2008).

138 Lower Bounds for BMRM and Faster Rates for Training SVMs

With a simple change of variable 5; = o;(c; — m;), the problem is simplified as

1< :
min 5 E a2 62 /= oi(li —m;) ifo; >0
i=1 (s N i o
h oi(u; —my) if o; <0
st. U< Bi<u, Vieln) where

)

’ O’i(ui — mz) if o; >0

n

/ —
E /Bi:Za Uy = ’
=1

O’i(li — mz) if o; <0
72 d2
i /
di:;l?, z :Z_Zaimi'
? 7

We derive its dual via the standard Lagrangian.

1 , 3 .)
LZQZ:d?B?_zi:pj(ﬁi_li)"i_zi:pi (Bz_uz)—)\<§;52—z>

Taking derivative:

OL
9P

Substituting into L, we get the dual optimization problem

=dBi—pf +p; —A=0 = Bi=d;(pj —p; +). (5.34)

7
. - 1 - _
min D(\, pj, p;) = 3 Zdi 2(pf —p; +N)? — ijl; + iju; -\
s.t. pi >0, p; >0 Vie|[n].

Taking derivative of D with respect to A\, we get:

> d (e —p; +X) -2 =0 (5.35)

i

The KKT condition gives:

) (5.36a)
(5.36b)

Now we enumerate four cases.

1. ,oj > 0, p; > 0. This implies that I, = 8; = u}, which is contradictory to our

assumption.

2. pf =0, p; =0. Then by (5.34), B; = d; °X € [I},ul], hence \ € [d2l}, d?ul].

ALt et}

§5.3 A new algorithm with convergence rates O(1//e) 139

Figure 5.1: h;(\)

Algorithm 11: O(n) algorithm to find the root of f(A). Ignoring boundary
condition checks.
Set kink set S <« {d?l} : i € [n]} U {dZu} : i € [n]}.
while |S| > 2 do
Find median of S: m < MED(S).
if f(m) >0 then
‘ S« {xeS:z<m}.
else
LS(—{xGS:me}.

N O Ok W N

0]

return Root % where S = {l,u}.

3. p >0, p; =0. Now by (5.36) and (5.34), we have I} = 3; = d; *(p] +\) > d; 2},
hence A < d?l; and p; = 3l — \.

4. pf =0, p; >0. Now by (5.36) and (5.34), we have u} = B; = d; %(—p; +\) <
d;?), hence \ > d?u and p; = —d?u}, + \.
In sum, we have p = [d?l} — A+ and p; = [A — d?u}]4+. Now (5.35) turns into

Zd (21— Ny — [N = d2ul]y +X\) =2 =0. (5.37)

In other words, we only need to find the root of f(\) in (5.37). h;(\) is plotted
in Figure 5.1. Note that h;(\) is a monotonically increasing function of A, so the
whole f()) is monotonically increasing in X. Since f(oco) > 0 by 2/ < Y. u! and
f(=00) <0 by 2’ > 3.1, the root must exist. Considering that f has at most 2n
kinks (nonsmooth points) and is linear between two adjacent kinks, the simplest idea is
to sort {d2l},d2u} < i € [n]} into sV < ... < s If f(5)) and f(s(*V) have different
signs, then the root must lie between them and can be easily found because f is linear
in [s(i), s(”l)]. This algorithm takes at least O(nlogn) time because of sorting.
However, this complexity can be reduced to O(n) by making use of the fact that

the median of n (unsorted) elements can be found in O(n) time. Notice that due to the

140 Lower Bounds for BMRM and Faster Rates for Training SVMs

Algorithm 12: O(1/k?) rate optimization for l.c.g functions (Nesterov, 1983).
Input: A l.c.g function f, a conservative estimate (upper bound) of the
Lipschitz constant of its gradient, an oracle which gives the gradient of
f at any query point x, a proxy-function d(x) which is o-strongly
convex on) wrt a norm ||-||.
Output: A sequence {yk} which converges to the optimal solution at O(1/k?)
rate.
1 Initialize: Set x" to a random value in Q.
2 for k=0,1,2,... do
Query the gradient of f at point x*: V f(x").
Find y* « argming o (Vf(xF),z - xk> + %L Hx — kaZ)
Find z* « argmin, ., La(x) + Zf:o LV f(x),x — xb).
Update x**1 « ,%rgzk + %yk.

[I L B Y]

monotonicity of f, the median of a set S gives exactly the median of function values,
i.e., f(MED(S)) = MED({f(x) : x € S}). Algorithm 11 sketches the idea of binary
search. The while loop terminates in log,(2n) iterations because the set S is halved in
each iteration. And in each iteration, the time complexity is linear to |S|, the size of
current S. So the total complexity is O(n). Note the evaluation of f(m) potentially
involves summing up n terms as in (5.37). However by some clever aggregation of slope
and offset, this can be reduced to O(]S]).

5.3.3 Other versions of Neseterov’s algorithms

The Algorithm 10 is one of the three major algorithms proposed by Nesterov which offer
a0 (M) rate of convergence. We detail it because a) it captures all the important
techniques in this series of work, b) it is primal-dual, which bounds the duality gap
instead of merely the gap for primal or dual objective, and c) it is not too complicated

to describe. Below we sketch the other two important variants of Nesterov’s algorithm:

1. (Nesterov, 1983) outlined in Algorithm 12. This was the first algorithm that gives
the O (M) rate of convergence in our setting. It works only on [.c.g functions
constrained to a convex set which allows efficient projection. It works purely in
the primal. Similar to (Nesterov, 2005a), it also needs the explicit knowledge of

the Lipschitz constant of the gradient, which is often expensive in practice.

2. (Nesterov, 2007) outlined in Algorithm 13. The main contribution of this work
is to automatically estimate the Lipschitz constant of the gradient via geomet-
ric scaling. Its objective function is assumed to be the same as the primal of
(Nesterov, 2005a) in Eq. (5.21), i.e. composite. This algorithm works only in the
primal, hence not bounding the duality gap.

§5.4 Structured output space 141

Algorithm 13: O(1/k?) solver for composite functions as Eq. (5.21), with built-in
Lipschitz constant estimation (Nesterov, 2007).

Input: Lo € (0, L] as an optimistic estimate (lower bound) of L, two scaling
parameters v, > 1 and v4 > 1.
Output: A sequence x* which converges to the optimal solution at O(1/k?)
rate.

1 Initialize: Set Ay =0, L := Lo/7u, set x° randomly and ¢o(x) := : Hx - X0H2.
2 for k=0,1,2,... do
3 repeat
4 L+ ~,L.
. s 2 ol4pAg
5 Find the pOiltlve root of AZ+a = 2713 k.
6 Set y = %, where v, := argmin, ¢ (x).
7 Set T; (y) := argming & [x — y||* + (V/(y),x = y) + ¥(x) + f(y)-

2
, where

s | until (' (T3(y),y — T (v)) = L7 [|¢/(T; ()]
¢ (x) € Vf(x) 4+ 0¥(x).)]
9 Set Agt1:= Ay +a, x"T := T; (y) and finally L < L/(v47)-

10 | Set ¢pi1(x):= gp(x) +a {f(xkﬂ) + <Vf(xk+1),x - xk+1> + \I/(x)}

5.4 Structured output space

It is noteworthy that applying pragam to structured data is straightforward, and this
section sketches the basic ideas. As we will see, a key interesting problem here is how
to project onto a probability simplex such that the image decomposes according to a

graphical model.

Recall the margin rescaled hinge loss for multi-class classification in Section 1.6.1:
[yt w) = max {A(y, y'sx) = (w, @(x',y") = &(x',¥)) }

where we moved the sample index to superscript. For structured output space),
optimization becomes intractable as there are exponentially many candidates in the
max operation. Therefore, the graphical model structure must be exploited to factorize
the features ¢ and discrepancy A(y,y*), which leads to parameter estimation based
on cliques. We illustrate this idea using the maximum margin Markov network (Taskar
et al., 2004), and show how pragam can be applied. For ease of exposition, the output
space of all training examples is assumed to have the same graphical model structure

with maximal clique set C, and this restriction can be easily relaxed.

142 Lower Bounds for BMRM and Faster Rates for Training SVMs

5.4.1 Margin scaled maximum margin Markov network

The maximum margin Markov network (M?N) by Taskar et al. (2004) uses square norm

regularizer and margin rescaled hinge loss:
J(w) = g Iwll* + szglgg {Aly, y'5x') = (w,(x",y") —o(x",y))}, (5.38)
where both ¢(x%,y) and A(y,y*;x?) are assumed to decompose onto the cliques:

$x\y) = & Pelwiye), Al,yix = eyl yes X, (5.39)

ceC

where @ means Cartesian product.

Viewing the primal objective J in Eq. (5.38) as a composite function in the same

way as in Eq. (5.24), we can derive the adjoint form:

2)\22 (i.y) (Jy)o‘ ZZA)’Y x')a' (y), (5.40)

L7 Yy

where Ag; y) jy) = (' (¥), ¥ (y')) denoting ¥'(y) := ¢(x',y") — ¢(x',y). The con-
straints are that o’ be in the simplex:

a'(y) >0 Viy, and) al(y)=1 Vi (5.41)

The dual connection is:

w=> > a MY (5.42)

Now incorporating the decomposition in Eq. (5.39), we can derive the factorized

adjoint form:

1 i i i.oi\ i
) = ﬁ ZZ Z A(i,c,yc),(j,c’,y;,)ac(yc)ai’(yé’) - Z lc(y&yc; X)ac(yc)7 (543)

. ,))
LI GC YooYy 2,6,Yc

where o!(y.) := >y al(y). Herey ~ y. means ranging over all possible assignments

of y which match y. on the clique c¢. Then the constraints in Eq. (5.41) become

al(ye) >0 Vi, c e and Zaé(yc) =1 Vi (5.44)

§5.4 Structured output space 143

In addition, a new set of constraints need to be introduced to enforce consistency:

Z i c(Ye) = Z a; o (Yer) Vi,Ve,d € C:end # 0, YYere (5.45)

Ye~Yene! Ye! ~Yene!

which ensures that the marginal distribution of y.n~ computed from the marginal
distribution of clique c is consistent with that computed from clique /. Notice that
the simplex conditions Eq. (5.44) and the local consistency conditions Eq. (5.45) are
just necessary but not sufficient conditions of global consistency Eq. (5.41). When the

graph is tree structured, they are equivalent.

Finally, the dual connection becomes

w= 0 303 el (5.46)

Now it turns out straightforward to apply Algorithm 12 (Nesterov, 1983) and Al-
gorithm 13 (Nesterov, 2007) to optimize the dual objective Eq. (5.43) subject to the
constraints Eq. (5.44) and (5.45). Both algorithms only require the following form of

projection as the inner solver:

. 1 2
min B Z; @2 || — m||; (5.47)
s.t. O € Ach\ Veel
Z ozc(yc) = Z O‘c’(?/c’) Vend 7é mv V' Yerer-
Ye~Yene! Ye! ~Yene!

where V. is the range of assignments that y. can assume, and m, is an arbitrary
vector in RIVel that is not necessarily a distribution. This problem bears significant
resemblance to the inner solver for binary SVM in Eq. (5.33). The key difference is
that we now have to enforce additional local consistency constraints originating from
the graphical models. Intuitively speaking, we are again projecting to a probability
simplex, but subject to the conditional independence relations encoded in a graphical
model. More details on how to solve this constrained projection will be given in Section
5.4.2.

Application of the primal-dual Algorithm 10 (Nesterov, 2005a) is still hard, because
the factorized problem Eq. (5.43) is not exactly the adjoint form of the primal problem
Eq. (5.38). Technically, the key obstacle is that the projection in Eq. (5.31) measures
the Lo distance of the joint distribution:

loc — ml|3, (5.48)

144 Lower Bounds for BMRM and Faster Rates for Training SVMs

where a is the joint distribution, and this square distance can not be decomposed onto
the cliques as in Eq. (5.47). This disallows us to apply the trick in (Collins et al., 2008):
conceptually optimize wrt joint distributions {ai(y)}iy via practically updating the

marginals on the cliques {ai(yc)}i’c’yc.

Most machine learning models for structured output data perform parameter esti-
mation by graphical model decomposition, and it is not hard to apply the same idea

here to those models, e.g. Gaussian process for sequence labeling (Altun et al., 2004a).

5.4.2 Efficient projection onto factorized simplex

We consider in this section how to solve the constrained projection (5.47), which extends
the simple projection in Section 5.3.2. In addition to projecting onto the n dimensional
simplex wrt Lo distance, we also restrict the image to be factorized by a graphical
model. Formally, given a set of marginal parameters on the cliques {mC eRVel: ce C}
where m,. may not be a distribution, we want to find a set of marginal distributions

{ac S A|VC| ic€ C} which minimize:

. 1 9
min ZXC:dE |lote — me|[5
s.t. ac € Ay, VeeC
Z ac(ye) = Z ae(ye) Vend #0,Yyene.
Ye™~Yene! Ye! ~Yene!

We proceed by writing out the standard Lagrangian:

L :% Z dz Z(ac(yc> — mc(yc))z — Z Ac (Z ac(yc) — 1) — ZEC(yC)aC(yC)

Ye CYe

_ Z Z ﬂc,c’ (ycﬂc’) Z ozc(yc) — Z Qe <yc’)

c,c:eNc’ 0 Yere! Ye:Ye™~Yene! Ye! ~Yene!

Taking derivative over a.(y.):

oL
dae (yC)

= dz<ac(yc) - mc(yc)) -)\c - gc(yc) - Z ﬂc,c’(ycﬂc’) + Z ,ac’,c(ycﬂc’) = 07

= ac(ye) = me(ye) + dc_2 (Ac +&e(ye) + Z He,e’ (ycmc’)>) (5.49)

C/

§5.4 Structured output space 145

where fic o (Yene') = Pee' (Yere) — Bere(Yener). Plugging it back into £, we derive the

dual problem:
2
minD()\c,gc(yc),ucc ycmc Zd 2 Z (A +£c yc + Zﬂcc Yene!) (5'50)

+ Z Z mc(yc) ()\C + {c(yc) + Z Nc,c’(ﬁ%ﬂc’))
¢ Ye d
_ Z Ao
s.t. gc(yC) > 0.

This problem is essentially a QP over A, &c(ye), e, (Yener) With the only constraint
that &.(y.) > 0. Similar to Section 5.3.2, one can write &.(y.) as a hinge function of A.
and i ' (Yener). However since it is no longer a single variable function, it is very hard
to apply the median trick here. So we resort to a simple block coordinate descent as

detailed in Algorithm 14 with reference to the following expressions of gradient:

oD

dey — e Ot Gelye) + > tteer (Yerer)) + melye) = 0 (5.51a)

C/

gi =d?) (Ac +&(ye) +) tee (ycmc/)> +) melye) =1 (5.51D)
oD i / , /
=d.? > <AC + &e(ye) + Zuc,c(yc,c)> + > me(yy). (5.51c)

Opte,er (Yenrer
“¢ (¢ C) yéNycﬁc/ yt’:Nycﬂc’

From (5.51a) and &.(y.) > 0, we can derive

€e(ye) = [dgme(ye) = Ac _Z,Ucc’ (Yerrer)] : (5.52)

+

Example: sequence

Suppose the graph is simply a sequence: y; — y2 — ... — yr and each node can take
value in [m]. Then the cliques are {(y;, yi+1) : t € [L — 1]} and the primal is:

min Zdt Z (4, §) — mq(i, §))*

1,j=1
s.t. o € A2 Vit e [L —1]

Yoalig) =Y al(jk) vt €[L—2],j € [m].
7 k

146 Lower Bounds for BMRM and Faster Rates for Training SVMs

Algorithm 14: A coordinate descent scheme for minimizing the dual problem

(5-50).

1 Initialize: Randomly set {\; : ¢}, {&:(ye) : ¢, e}, {,uc’c/ (Yerer) €, c’,ycmc/}.

2 while not converged do

3 Fixing &.(y.), apply conjugate gradient to minimize the unconstrained
quadratic form in (5.50) with respect to {\. : ¢} and
{ P! Yere) : €, ¢, ycmcl}. The necessary gradients are given in (5.51b) and
(5.51c).

4 Set Ec(ye) « [—d2me(ye) — Ae — 2 p tee (Yerrer)] , forall ¢ € C and ye.

5 Compute a.(y.) according to Eq. (5.49).

(=]

return Oéc(yc)c,yc'

Proceeding with the standard Lagrangian:

Z Zayay) me(i,J)) Z)\t Z()dtZ]—l

=1 2,7=1
L—
—ZZ& i 4) o (i, J) ZZM (Z@t(i,j) _Zat+1(j7k)) :
t=1 14, t=1 j i k
Taking derivative over (i, j):
0L R (anling) — malis) — A — () —) + pea(6) = 0
80@(@',]’)7 (a2,] t(2,] t t(2,] 2AW pHe—1(2) =

= ay(i,§) = dy *(M + & (1, §) + p1e(F) — pe—1(8)) + mu(i,), (5.53)

where we define po(j) := 0. Plugging into £, we derive the dual problem:
min D (A, & (4, 7), Z d; Z (At 4 &eli, 5) + e () — pe—1(i))? (5.54)
7]

Y S i)0+ 605) +) o Z y

t=1 i,j
st &(i,7)>0. Vte[L—1],i,5 € [m)]
Taking derivatives:

oD

06.(i.7) dy * (e + &0, 5) + e (5) — p—1(2)) +me(i, j) = 0 vt e [L—1]

= &(i,5) = [=dime(i,§) — A — pe(§) + pe—1(8)]+

§5.5 Experimental results 147

Table 5.1: Dataset statistics. n: #examples, d: #features, s: feature density.

dataset ‘n ‘d ‘s(%) Hdataset ‘n ‘d ‘s(%) Hdataset ‘n ‘d ‘s(%)
adultd |32,561[123 | 11.28|[covertype| 522,911] 6,274,932 |22.22||reuters-c11|23,149 |1,757,801]0.16
astro- [62,369(99,757|0.077||news20 |15,960 |7,264,867 |0.033||reuters- 23,149 |1,757,801|0.16

ph ccat

aut-avn | 56,862 [20,707 |0.25 ||[real-sim |57,763 2,969,737 [0.25 ||web8 45,546 |579,586 |4.24
O _ 42" O+ 60) +) — () + omainf) — 1 vee [L—1)
8>\t t Z] 9 - Z] 9
0D 472 S e &) + i) — () vielL—2

8,ut(z') = a; . t t\J, et He—1(J

J

+di 7> Nern A+ e (6,9) + pera () — (@) + Y ma(G 1) = > mega (6,),
J J J

where we further define 7, _1(j) := 0. Obviously it takes O(Lm?) time to compute all
the gradients, and so is {&(7,7)}.

5.5 Experimental results

In this section, we compare the empirical performance of our pragam with state-of-
the-art binary linear SVM solvers, including two variants of pegasos® (Shalev-Shwartz
et al., 2007), and two variants of BMRM?® (Teo et al., 2010).

Datasets Table 5.1 lists the statistics of the dataset. adult9, astro-ph, news20,
real-sim, reuters-cll, reuters-ccat are from the same source as in (Hsieh et al.,
2008a). aut-avn classifies documents on auto and aviation (http://www.cs.umass.edu/
~mccallum/data/sraa.tar.gz). covertype is from UCI repository. We did not normal-

ize the feature vectors and no bias was used.

Algorithms Closest to pragam in spirit is the line search BMRM (Is-bmrm) which
minimizes the current piecewise lower bound of regularized Repmp via a one dimensional
line search between the current w; and the latest subgradient. This simple update was
enough for Smola et al. (2007b) to prove the 1/e rate of convergence. Interpreted in
the adjoint form, this update corresponds to coordinate descent with the coordinate
being chosen by the Gauss-Southwell rule (Bollen, 1984). In contrast, pragam performs

a parallel update of all coordinates in each iteration and achieves faster convergence

“http://ttic.uchicago.edu/~shai/code/pegasos.tgz
Shttp://users.rsise.anu.edu.au/~chteo/BMRM.html

148 Lower Bounds for BMRM and Faster Rates for Training SVMs

Table 5.2: A\ for datasets.

dataset | A dataset A dataset A dataset A
adult 218 || astro-ph 2-17 |l aut-avn 2717 || covertype | 2717
news20 | 2714 || reuters-c11 | 2719 || reuters-ccat | 27 || real-sim 216
web8 217

rate. So in this section, our main focus is to show that pragam converges faster than
Is-bmrm.

We also present the results of pegasos, which is a primal estimated subgradient
solver for SVM with L; hinge loss. We tested two extreme variants of pegasos: pegasos-
n where all the training examples are used in each iteration, and pegasos-1 where only
one randomly chosen example is used. Finally, we also compare with the gp-bmrm
which solves the full QP in (5.10) in each iteration.

It should be noted that SVMS*™®¢* (Tsochantaridis et al., 2005) is also a general
purpose regularized risk minimizer, and when specialized to binary SVMs, the SVMPerf
(Joachims, 2005, 2006) gave the first linear time algorithm for training linear SVMs.
We did not compare with SVMPerf because its cutting plane nature is very similar to
BMRM when specialized to binary linear SVMs.

For pragam, since the Lipschitz constant L of the gradient of the SVM dual is
unknown in practice, we resort to Algorithm 13 (Nesterov, 2007) which automatically
estimates L while the rates presented in Section 5.3.1 are unchanged. We further
implemented pragam-b, the pragam algorithm which uses SVM bias. In this case the
inner optimization is a QP with box constraints and a single linear equality constraint.

For all datasets, we obtained the best A\ € {2_20, . ,20} using their corresponding

validation sets, and the chosen \’s are given in Table 5.2.

Results We first compared how fast err; := miny 4 J(wy) — J(w*) decreases with
respect to the iteration index ¢. We used err; instead of J(w;) — J(w*) because J(w)
in pegasos and Is-bmrm fluctuates drastically on some datasets. The results in Figure
5.2 show pragam converges faster than Is-bmrm and pegasos-n which both have 1/e
rates. gp-bmrm converges faster than the rest algorithms in general. pegasos-1 is not
included because it converges very slowly in terms of iterations.

Next, we compared in Figure 5.3 how fast err; decreases in wall clock time. pragam is
not fast in decreasing err; to low accuracies like 1073, But it becomes quite competitive
when higher accuracy is desired, whereas Is-bmrm and pegasos-1 often take a long time
in this case. Again, gp-bmrm is much faster than the other algorithms.

Another important comparison is on generalization performance: how fast a solver

finds a model with reasonable testing accuracy. At iteration ¢, we examined the test

§5.6 Discussion and conclusions 149

accuracy of wy where t' := argmin, ., J(wy), and the result is presented in Figures
5.4 and 5.5 with respect to number of iterations and time respectively. It can be seen
that although pragam manages to minimize the primal function fast, its generalization
power is not improved efficiently. This is probably because this generalization perfor-
mance hinges on the sparsity of the solution (or number of support vectors, (Graepel
et al., 2000)), and compared with all the other algorithms pragam does not achieve any
sparsity in the process of optimization. Asymptotically, all the solvers achieve very
similar testing accuracy.

Since the objective function of pragam-b has a different feasible region than other
optimizers which do not use bias, we only included it when comparing test accuracy.
In Figures 5.4 and 5.5, the test accuracy of the optimal solution found by pragam-b
is always higher than or similar to that of the other solvers. In most cases, pragam-b
achieves the same test accuracy faster than pragam both in number of iterations and

time.

5.6 Discussion and conclusions

In this chapter, we described a new lower bound for the number of iterations required
by BMRM and similar algorithms which are widely used solvers for the regularized
risk minimization problem. This shows that the iteration bounds shown for these
solvers are optimum. Our lower bounds are somewhat surprising because the empirical
performance of these solvers indicates that they converge linearly to an e accurate
solution on a large number of datasets. Perhaps a more refined analysis is needed to
explain this behavior.

The SVM problem has received significant research attention recently. For instance,
Shalev-Shwartz et al. (2007) proposed a stochastic subgradient algorithm pegasos. The
convergence of pegasos is analyzed in a stochastic setting and it was shown that it
converges in O(1/e) iterations. We believe that our lower bounds can be extended to
any arbitrary subgradient based solvers in the primal including pegasos. This is part
of ongoing research.

Our technique of solving the dual optimization problem is not new. A number of
solvers including SVM-Light (Joachims, 1999) and SMO (Platt, 1999) work on the dual
problem. Even though linear convergence is established for these solvers, their rates
have n=? dependence which renders the analysis unusable for practical purposes. Other
possible approaches include the interior-point method of (Ferris & Munson, 2002) which
costs O(nd?log(log(1/¢))) time and O(d?) space where d refers to the dimension of the
features. liblinear (Hsieh et al., 2008a) performs coordinate descent in the dual, and

has O(ndlog(1/¢)) complexity but only after more than O(n?) steps. Mirror descent

150

Lower Bounds for BMRM and Faster Rates for Training SVMs

|
N

10
i ---liblinear
—pegasos—n|
1072 —Is-bmrm
—qp-bmrm
S —Pragam

'
Iy

primal function difference
(= (=
o o

0 2000 4000 6000
Number of iterations

8000

(a) adult9 (pegasos diverged)

10
---liblinear
—pegasos—n|
1072 —Is-bmrm
—qp-bmrm
—Pragam

10°

primal function difference
[
o

0 500 1000 1500
Number of iterations

2000

(d) covertype

---liblinear
—pegasos—n|
—Is-bmrm
—qp-bmrm
—Pragam

primal function difference

0 500 0
Number of iterations

1000 1500 2000

(g) reuters-c11

primal function difference primal function difference

primal function difference

=
o|

i
o

i
o

|
@

|
A

0 500

0 500

0 500

---liblinear
—pegasos-n
—Is-bmrm
—qgp-bmrm
—Pragam

1000 1500
Number of iterations

(b) astro-ph

2000

---liblinear
—pegasos-n
—Is-bmrm
—qgp-bmrm
—Pragam

1000 1500
Number of iterations

(e) news20

2000

---liblinear
—pegasos-n
—Is-bmrm
—qp-bmrm
—Pragam

1000 1500
Number of iterations

2000

(h) reuters-ccat

|
fiN

i
o

---liblinear

—pegasos-n
—Is-bmrm
—qp-bmrm
—Pragam

H
OI
b

|
@

i
o

primal function difference
) 5
e

0 500

1000 1500 2000
Number of iterations
(c) aut-avn
107
8 —liblinear
q:_) —pegasos—n|
@ 1077 —Is—bmrm
% —qgp-bmm
= —Pragam
o
3]
c
2
©
£
=
S ;
0 500 1000 1500 2000
Number of iterations
(f) real-sim
107 —
---liblinear
—pegasos—n|
1072 —Is—bmrm
—qp-bmrm
73‘ —Pragam

primal function difference
=
o

0 1000

2000 3000 4000
Number of iterations
(i) web8

Figure 5.2: Primal function error versus number of iterations.

algorithms (Beck & Teboulle, 2003) cost O(nd) per iteration, but their convergence

rate is 1/€2. These rates are prohibitively expensive when n is very large.
The O(1/+/€) rates for the new SVM algorithm we described in this chapter has

a favorable dependence on n as well as A. Although our emphasis has been largely

theoretical, the empirical experiments indicate that our solver is competitive with the

state of the art. Finding an efficient solver with fast rates of convergence and good

empirical performance remains a holy grail of optimization for machine learning.

§5.6 Discussion and conclusions 151
-2 -2
10 10
3 -~-liblinear 3 ---liblinear 3 ---liblinear
S ——pegasos-1] S ——pegasos—1] S ——pegasos-1]
© | —pegasos-n] —pegasos—n|] — pegasos-n
= 1073 —Is-bmrm E 107° —Is=bmrm £ —Is—bmrm
k]] k] k]
c i —qgp-bmrm c —qp-bmrm c —qgp-bmrm
o | —Pragam 2 —Pragam il —Pragam
g 2 \ g
5 107} 510" O E
2 2 2
© 1 © 1 I ®
1 i e
£ | E | ~ £
= ! = i — =
S | IS - I3 ~
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Time in seconds Time in seconds Time in seconds
(a) adult9 (pegasos diverged) (b) astro-ph (c) aut-avn
-2 -2
10 10
3 ~~-liblinear 3 -~-liblinear 3 -~-liblinear
5 ——pegasos—1| g ——pegasos—1| 5 ——pegasos—1|
] —pegasos-n] —pegasos—n|] — pegasos-n
E 1073 —Is-bmrm E —Is-bmrm E —Is=bmrm
© k=l ©
c —qp-bmrm c —qp-bmrm c —qp-bmrm
K=} —Pragam K=} —Pragam K=l —Pragam
g 3 3
510 L =} =
2 . 2 2
= L = =
< < <
E h £ - E
= = e ——— =
o —— o S| a
0 100 200 300 400 500 1000 2000 3000 0 100 200 300 400 500
Time in seconds Time in seconds Time in seconds
(d) covertype (e) news20 (f) real-sim
-2 -2 -2
10 10 7y 10
3 ~~-liblinear 3 -~-liblinear 3 ~~-liblinear
% ——pegasos—1| qc, ——pegasos-1| 5 ——pegasos—1|
] —pegasos—n] —pegasos-n] —pegasos-n
% 107 —Ils-bmrm % 10° —Is=bmrm % 107 —Is-bmrm
c —qgp-bmrm P —qp-bmrm - —qp-bmrm
o —Pragam o —Pragam 9o —Pragam
5107 510 5107
2 2 2
© © ©
= E =
= 1 = =
o L o Q 1

0 100_ 200 300 400 500
Time in seconds

(g) reuters-c11

100 200 300 400 500
Time in seconds

(h) reuters-ccat

0 100_ 200 300 400 500
Time in seconds

(i) web8

Figure 5.3: Primal function error versus time.

152

Lower Bounds for BMRM and Faster Rates for Training SVMs

>
9
I
8 ---liblinear
% 82 pegasos—1|
= —pegasos—n|
$ —Is—bmrm
80 —qp-bmrm
—Pragam
78 Pragam-b
ko) 2000 4000 6000 8000
Number of iterations
(a) adult9
79
78
>
877 w‘”“ﬂu?f”‘ﬁ”—‘ i
3 | ---liblinear
8 76 pegasos-1|
= —pegasos—n|
D75 —Is—bmrm
= —qp-bmrm
74 —Pragam
7 Pragam-b
0 500 1000 1500 2000

Number of iterations

(d) covertype

297

E —

3 ---liblinear

% 96 pegasos-1|

2 —pegasos—n|

3] —Is-bmrm

=95 —qp-bmm
—Pragam

Pragam-b
94O 200 400 600 800 1000

Number of iterations

(g) reuters-c11

99
98.5
>
8 98
5 ---liblinear
é 975 pegasos-1
o — pegasos—n|
B o7 —Is—bmrm
L [—qgp-bmrm
96.5 —Pragam
Pragam-b
96
0 100 200 300

Number of iterations

(b) astro-ph

---liblinear
pegasos-1

—pegasos-n

—Is-bmrm

—qp-bmrm

—Pragam
Pragam-b

0 200 400 600 800 1000 1200

Number of iterations

Test accuracy
©
D

(e) news20

Ses ---liblinear
o pegasos—1|
S g6 —pegasos—n
a —Is-bmrm
)
- 84 —qgp-bmrm

82 —Pragam

sol Pragam-b

0 200 400 600 800 1000

Number of iterations

(h) reuters-ccat

99
5 98 —
@© —
5 ---liblinear
S 97 pegasos-1]
f — pegasos—n|
23 —Is—bmrm
= 96 —qgp-bmrm
—Pragam
Pragam-b
95
0 100 200 300
Number of iterations
(c) aut-avn
98
97
ISl
5 ---liblinear
§ 9t | pegasos—1
o — pegasos—n|
S —Is-bmrm
= 95¢/ —qgp-bmrm
—Pragam
Pragam-b
94
0 50 100 150 200
Number of iterations
(f) real-sim
100
2 99
g T~]
3 ---liblinear
% 98 pegasos-1
- —pegasos-n
] —Is-bmrm
= 97 —qgp-bmm
—Pragam
% Pragam-b
0 500 1000 1500 2000 2500

Number of iterations

(i) web8

Figure 5.4: Test accuracy versus number of iterations.

§5.6 Discussion and conclusions 153
86 99 99
98.5 7
>84 — > >98 65?-5- — —
) liblinear) 98 _)
5 ——pegasos-n 5 ---liblinear 5 ~liblinear
o —Is-bmrm Q 1] o
O 82 © 975 pegasos o 97 pegasos-1
© :qp—bmrm ® —pegasos—n © —pegasos—n|
7 gragam_b 2 97 —Is=bmrm 2 —Is—bmrm
2 50 ragam [hus —qp-bmrm 96 —qgp-bmrm
96.5) —Pragam —Pragam
78 M % Pragam-b o5 Pragam-b
0 50 100 150 200 250 0 20 | 40 60 0 20 40 60
Time in seconds Time in seconds Time in seconds
(a) adult9 (b) astro-ph (c) aut-avn
79 98 98
78 7 ’ ~—
oy _ 96 297 ﬂ
® 77 8 e 8 —
3 ~liblinear 3 ---liblinear 3 ---liblinear
g 76 pegasos-1 8 94 pegasos-1 e 96 pegasos-1
- —pegasos—n — ——Ppegasos—n| - ——pegasos-n|
875 —ls-bmrm 2 —Is—bmrm 2 —Is=bmrm
= —qgp-bmrm 92 —qp-bmrm = 95 —qp-bmrm
74 —Pragam —Pragam —Pragam
7 Pragam-b 90 Pragam-b o4 Pragam-b
0 100 200 300 0 100 | 200 300 0 10 | 20 30
Time in seconds Time in seconds Time in seconds
(d) covertype (e) news20 (f) real-sim
98 100
297 2 99
© e - © -
3 ~liblinear 388 -~~liblinear 3 ~~liblinear
% 96 pegasos-1 8 pegasos-1 % 98 pegasos—1
— | 86 —pegasos—n| — |
— pegasos—n — peg — pegasos—n|
4 —Is-bmrm 3 84 —Is-bmrm 3 —Is-bmrm
=95 —qgp-bmrm = —qgp-bmrm = o7 —qp-bmrm
—Pragam 82 —Pragam —Pragam
0 Pragam-b 80 Pragam-b 9% Pragam-b
0 20 | 40 60 0 20 | 40 60 "0 50 | 100 150
Time in seconds Time in seconds Time in seconds
(g) reuters-c11 (h) reuters-ccat (i) web8

Figure 5.5: Test accuracy versus time.

154 Lower Bounds for BMRM and Faster Rates for Training SVMs

Appendix A

Fundamentals of Convex Analysis

In this appendix, we provide an introduction to convex analysis which is used in this the-
sis. All definitions and most properties can be found in (Hiriart-Urruty & Lemaréchal,
1993b).

A.1 Convex set and convex function

Definition 62 (Convex set) A set C C R? is conve if for any two points x1,Xs € C
and any A € (0,1), we have

Ax1 + (1= N)xe € C.

In other words, the line segement between any two points must lie in C.

Definition 63 (Open set) A set C C R is open if for any point x € C, there exists
an € > 0, such that z € C for all z : ||z — x|| < €. In other words, there is an e-ball

around x: Be(x) :={z:z: |z — x| < €} which is contained in C.

Definition 64 (Convex hull) For any nonempty set S in R?, its convex hull coS is
defined as:

k
coS = {Z)\ixi:xiES,)\i ZO,Z)\izl,k‘EN}.

i=1 %

It can be shown to be the smallest convex set that subsumes S.

Definition 65 (Convex function) Given a conver set C, a function f : C — R is

convex if for any two points x1,%2 € C' and any X\ € (0,1), we have
Fx1 4+ (1= A)x2) S Af(x1) + (1= A)f(x2).

155

156 Fundamentals of Convex Analysis

In general, we can define a generalized function f : R¢ — R = R U {+o0}, such that
f(x) is 400 for all x ¢ C. And we call C, on which f is finite, the domain of f

domf::{xeRd:f(x)<oo}.

Definition 66 (Subgradient and subdifferential) Given a function f and a point

x with f(x) < 0o, a vector u is called a subgradient of f at x if

f(y)—f(X)Z<y—X,ll>, VyERd.
The set of all such u is called the subdifferential of f at x, and is denoted by Of(x).

Function f is convex iff 9f(x) is not empty for all x where f(x) < oo. If f is further
differentiable at x, then 0 f(x) is a singleton comprised of the gradient of f at x: V f(x).

Property 2 (Calculus rules for subgradient)

e Linearity: if f and g are convex functions from R? to R, then O(f + g)(x) =
Of(x) + 0g(x) for all x € RY.

e Affine transformation: for any linear transform A and offset b, define g(x) :=
f(Ax +b). Then dg(x) = ATOf(Ax +b) for all x € RY.

e Point-wise maximization: Suppose g(x) := max;e7 fi(x), then 0f(x) is the
convex hull of the union U;jer: 0 f;(x), where I} is the index set which attains the

maz: T :={i € T: f;(x) = f(x)}.

Definition 67 (Strong convexity) Given a norm |-|| on R?, a convex function f is
called strongly convex with modulus o wrt ||| if for all x1,%2 € dom f and A € (0,1)
we have

FOx1+ (1= N)x2) < Af(x1) + (1= A)f(x2) — %)\(1 — M) [lx1 — %2

Strong convexity can be equivalently defined in the following ways depending on
the differentiability:

Property 3 f is o-strongly convex wrt ||-|| iff:
o f(x)— 5 |x[is convex.

o f(x2) > f(x1) + (g,%2 —x1) + S0 |x1 — X2 for all x1,x2 € domf and g €

of (x1).

§A.2 Fenchel conjugate 157

o If f is differentiable, then (Vf(x1) — Vf(x2),X1 —X2) > o ||x1 — %o for all

X1,X2 € domf.

o If [is twice differentiable, then <V2f(x),x> >0 Hx||2 for all x € domf. If the
norm is chosen as the Fuclidean norm, then this is equivalent to the Hessian’s

etgenvalues being lower bounded by o.

Definition 68 (Lipschitz continuity) Given a norm |-|| on R? and a norm ||-||, on
R®, a function f : R% — R® is called Lipschitz continuous with modulus L wrt ||-|| and
I, if

|f(x1) = f(x2)l, S Llx1 —x2f Vxi,xz2: f(x1) < 400, f(x2) < +o0.

Lipschitz continuity characterizes the rate of change of f, and is stronger than conti-
nuity but weaker than differentiability.

If a convex function f : R — R is differentiable and its gradient V f : int domf —
RY is Lipschitz continuous with modulus L wrt ||-|| (setting ||-||, = ||-]|), then we call f
as L-l.c.g.

A.2 Fenchel conjugate

Definition 69 (Fenchel dual) Given a function f : R — R, its Fenchel dual is
defined as

() := sup (x, u) — f(x).

x€R4

Example 1 (Affine functions) Let f : R? — R be defined as f(x) = (a,x) +b where
ac R and b€ R. Then

—-b ifpu=a

+00 otherwise .

[(n) =

Example 2 (Hinge loss) Let f : R? — R be defined as f(x) = [p — (w,x)] where
pER, weR? and []4 := max {-,0}. Then

pA if p=Aw, and X € [—1,0]

+o00 otherwise

[(n) =

158 Fundamentals of Convex Analysis

Example 3 Let us consider the Fenchel dual of the function

d .
— 2ui=1%i ifx€Q
foo=4 = ’
+00 otherwise

where @ = {x € R* : z; € [0,d™ "], 3", yiwi = 0} and y; € {—1,+1}. Below we show

* 1
f*(p) = min i (14 p1i — yib]

where [x]y := max {x,0}. To this end, it suffices to show that for all pu € R%:

1
P = in — 1 i ib . Al
igg<z,u>+ E 2 =min~ E (14 ps — yib] (A.1)

Posing the latter optimization as:
i 125 too 14 pi—yb<&, &>0
H:{lr)ld i S.L. Hi — Yi0 = G4, i = U.
Write out the Lagrangian:
1
L= d;& +;P¢(1 + 2z —yib— &) — ;/51'&-

Taking partial derivatives:

oL _ 1
& d

Plugging back into L,

—2z—pi=0 = z € 0,d71],

L= Zzi(l + i), s.t. z € [O,d_l], E:yl,zz = 0.

Mazimizing L wrt z is exactly the LHS of (A.1).

Example 4 (Relative entropy) Suppose

Zle wilnf?—jl if x € Ag

400 otherwise

f(x) =

§A.2 Fenchel conjugate 159

where Ay is the d-dimensional simplez: {x € [0,1]% : >, x; = 1}. Then

d
1
f*(n) =1n (d Zexpm) .
=1
Property 4 (Dual connection) If f is convex and closed, then

f(x) + (1) — (x,u) > 0.

And the equality is attained iff p € 0f(x) iff x € Of*(p).

Property 5 f*, as the supremum of linear functions, is convex. It is also closed.

When f is closed and convez, f** = f.
Property 6 (Calculus rules)
1. If g(x) = f(x) + a, then g*(p) = f*(p) — a.
2. If g(x) = af(x) with a > 0, then g*(p) = af*(p/a).
If A is an invertible linear operator, and g(x) = f(Ax), then g*(u) = f*(A"tp).
If g(w) = f(x —x0), then g*(p) = f*(p) + (1, %0).
If g(x) = f(x) + (po, %), then g*(p) = f*(p — po).

Property 7 (max rule) (Hiriart-Urruty & Lemaréchal, 1993a, Theorem 2.4.7) Let
fi, ..., fn be finitely many convex functions from R? to R and let f := max; f;. Denote

SR N

by m :=min{n,d + 1}. For every
p € dom f* = coUjepn) {dom f7}.
there exists s; € dom fF and convex multipliers o; € R (i =1,...,m) such that

K= Z%Si and f*(p) = ZUz’f:(Si)-

The expansion of {o;} may be not unique, but the value of f*(w) is unique.
As an application of the max rule, we have

Example 5 (Maximum of affine functions) Let f : R? — R be defined as f(x) =
max;e] (a;,x) + b; where b; € R, and a; € Re. Then

- 2?:1 /\ibi if o = Z?:l)\iai with)\i > 0, Zl)\i < 1

+o00 otherwise

f (n) =

160 Fundamentals of Convex Analysis

Example 6 (Maximum of hinge loss) Let f : R? — R be defined as f(x) = max;e () [0i—
(w;,x)]+ where p; € R, and w; € R%. Then

—> N ifpe {—Zi-c:l Aiwi, A >0, A < 1}

+00 otherwise

f(p) =

Property 8 (Strong convexity and L-l.c.g under Fenchel dual) (Hiriart-Urruty
€ Lemaréchal, 1993b, Theorem 4.2.1 and 4.2.2)

1. If f : R™ — R is strongly conver with modulus ¢ > 0, then dom f* = R", and

V f* is Lipschitz continuous with constant o='.

2. If f : R" = R is conver and have L-Lipschitz continuous gradient mapping
(L >0), then f* is strongly convex with modulus L.

Property 9 (Borwein & Lewis, 2000, Theorem 3.3.5) Let Ey be a subset of RY, and
E5 be a subset of R®. Let A be a linear map from Ey to Eo. Given functions f : By — R
and g : Eo — R, we have

inf f(x) + g(Ax) > sup —f*(A"n) — g*(—p).

xeF nEE,

If f and g are convex and O € core(domg — A domf)!, then the equality holds and the

supremum is attained if finite.

A.3 Convex analysis for the log partition function

In this section, we prove some important fundamental properties of the log partition

function of exponential family distributions.
Proposition 70 ¢(0) strongly convez if, and only if, ¢ is minimal.

Proof Strong convexity = minimality: Suppose there exits an «, which is not
necessarily in O, such that (¢(z),a) = C v-almost everywhere. For any 6 in the
interior of O, there must exist a 6 > 0 such that 8 + Aa € © for all A € [0,0].
Let f(z) = exp((¢(x),0/2)) and g(z) := exp((¢(z), (6 + da)/2)). As g(x)/f(x) =
exp((@(2), (6x)/2)) = exp(6C/2) v-almost everywhere, so || f[l5 9]l = [[fglly, i-e.

\//eXp(<¢(w)70>)V(d$) - \//exp(<¢($),9+5a>)l/(dx) = /exp(<¢(w),9+5a/2>)V(dx)-

'The core of a set C in a space E is the set of points x € C such that for any direction d € E,
x + td € C for all small real .

§A.3 Convex analysis for the log partition function 161

Therefore, taking log of both sides,
1 1
S9(0) + 59(0 -+ 60) = (0 + 6cx/2),

which contracts with the strong convexity (in fact contracts with the strict convexity
which is implied by strong convexity).

Minimality = strong convexity: As the Hessian is the covariance matrix and
© is open, strong convexity follows if we can show the covariance matrix is positive
definite very where. Suppose otherwise, there exists a @ such that the covariance matrix

under p(z; @) is just positive semi-definition, i.e. there is a vector a satisfying

a (Elps'] -EQEQ] Ja=0 = E[¢(x))] = E[{p(z),)]

This means

, exp((p(2).0) ecp($(2).0)
[(@) Ten((6(y), 0))0(dy) (/ ($(a), @) dy>>
)

)
j/<¢(ﬂf)7a>2exp((¢($,9>)V(d$)/exp(<¢(w)79>)V(dw)

~ ([e exp<<¢<m>,e>>u<dx>)2.

By Cauchy-Schwartz inequality, we derive (¢(x), o) exp({¢(x),0/2))/ exp((¢p(x),0/2)) =

(¢(x), @) is constant v-almost everythere. []

Proposition 71 Irrespective of whether © is open, the log partition function g(0) is

lower semi-coninuous.

Proof Let 0 € ©, and let a sequence in © {6,,} converge to 6. Since exp((¢(z),0)) =

lim,, o exp({@(z), 0,)) for all z, so by Fatou’s lemma, we have

/exp((q’)(:r),@))y(dx) < liminf/exp(<d)(x),On))y(dx).

n—0o0

So h(0) := [exp({¢(z),0))r(dx) is a lower semi-continuous function in 6. As log is

monotonically increasing, hence g(@) = log h(€) must be lower semi-coninuous. []

When © is open, the lower semi-continuity is direct from the convexity of g(8)
because any convex function must be continuous on the interior of its domain.

Below we assume that O is open.

162 Fundamentals of Convex Analysis

Proposition 72 For any distribution p(z; @) from an exponential family, the expecta-

tion of the absolute value of sufficient statistics and their arbitrary power is in R:

E i
z~p(z;0) [1:[¢ (@)

for all c; € NU{0}. As a result,

e R.

H ¢ (x)| € R.

E
z~p(z;0)

Proof For any z € R, § > 0, by elementary math we have |z| < 671 (e*® 4+ e7%%). So
for any n € NU {0}, we have

n) 2\ "
|Z|n < 5—n(62(5+€—25)n — 5" <T‘L>e(n—2z)26 < <> (enzé_‘_e—nzé)‘

Therefore

2\ T Sovcs
< <5> [4 esastita))

%

_ (;)Za Z exp <(5;biai¢i(w)>

bie{-1,1}

For any 8 € O, due to the openness of ©, there must exist a § > 0 such that 0 +
dvec; {bja;} € © for all b; € {—1,1}. Here vec; {b;;} means assembling all b;«; into

/ [To @)
< <§>Za 3 /exp <<¢(x),0+5vzec{biai}>> v(dz)

bie{_lvl}
< +oo. (A.2)

one vector. So

exp((¢(z), 0))v(dz)

For improper integral, absolute convergence implies normal convergence. |

Proposition 73 For any distribution p(x;0) from an exponential family, g(0) must

be differentiable at @ and the derivative is equal to the mean of suffficient statistics, i.e.

§A.3 Convex analysis for the log partition function 163

Proof First,

0 & [exn((g(r),6)da
36,9 = Tep((6(), 8)v(de)

and we show that the direvative and integral can be interchanged

o / exp({ v(de) / 35 xp(((2),6)(da).
By definition, letting e; be the i-th coordinate unit vector, we have
o [tto@.epvian) = tim + { [exp((9(e).6 + tedvtan) - [expl(ota). opvan) |
= tim [+ lexp(($(x), 6 + ter)) — exp(($(x), 6))] (dr)

:=h(z,t)

As O is open, there exists a § > 0 such that both 8 — de; and 0 + de; are in ©. For any
z € R, it is elementary to show that |e* — 1| < el*l —1. And if a € Ry and z € (0,6),
then ¢“=1 =1 < =1 Qo for any t € (—6,6),

t - || - 8 - J '

Hence

‘h(x7t)| - eXp(<¢($)79>) +

< 57" exp(((x), 0)) (exp(6i(a)t) + exp(— s (x)t))
— 57" (exp(((), 8 + der)) + exp((b(x), 0 — be.))

exp(@i()1t) — 1‘

Since both §—de; and 0+de; are in ©, so [|h(x,t)|v(dz) < 57 1(g(0+5e;)+g(0—de;)).

Therefore by the dominated convergence theorem, we have

" / exp(((x). 0))v(dx) = lim [b, Hv(dz) = / lim A, t)v(d)
aaeexp((¢ v(dz) / 65(x) exp(((x), 0))(da).
So

90,90 = " exp (@), O))v(de)

9 a5 J exp((@(x), 0))v(de):/ () exp((¢(z),0))

164 Fundamentals of Convex Analysis

Proposition 74 The log partition function g(0) is C* on ©.

Proof It is not hard to see that we only need to prove, without loss of generality,

;| TL6 @) -expl(ota). o) = [=TT o) expl((e).) v(ar) €

for all a; > 0 and for all @ € ©. We can proceed in the same way as the proof of
Proposition 73, but we prefer writing out the details. First,

3891 / H 7 () exp({¢(x), 8))v(dz)

= lim { / L6t) expl(9(a). 0 + toa)v(an) / [To) exp<<¢<x>,e>>u<dx>}
~tiny [5 [T (0) lexpl(9(0).0-+ te)) = exp((9(0), O] ().

:=h(z,t)

As O is open, there exists a § > 0 such that both 8 — de; and @ + de; are in ©. So for
any t € (—4,6), we have

h(z,t)| = Zi(z) | exp((¢p(x),0))

exp(¢1(x)t) — 1 ’
t

<t

sz
et

)| exp({¢(x), 0))(exp(¢1(2)t) + exp(—o1(z)t))

=5t (exp({d(x), 0 + de1)) + exp({(p(x),0 — dey))) .

By Eq. (A.2), we have

/|hxt y(dz) < 6

011

)| exp({(¢p(x), 0 + dey))v(dz)

(e2)

x)|exp((¢p(x),0 — deq))r(dx)

< +00.

§A.3 Convex analysis for the log partition function 165

Therefore by the dominated convergence theorem, we have
0 . . [
oo | TLo @) - expl(@(w). 0))vica) =t [b tyw(de) = [l hia, (e

— [5o TL @) (@l ovide) = [or(a) [[67 (@) - exp((@(a). O)w(do)
< + oo,

where the last step is due to Proposition 72. |

166 Fundamentals of Convex Analysis

Appendix B

Message Update Formulae of

Expectation Propagation

In this appendix, we give the detailed derivation of the messages used in EP updates
in Chapter 3.

B.1 Preliminaries: canonical parametrization of multi-

variate Gaussians

The multi-variate Gaussian distributions (MVGs) are commonly expressed in terms of

moment parametrization:

1 1 _
N(x;p, %) = Wexp (‘2(X -2 (x - N))) (B.1)

where 7 = 3.14159...! The mean and variance can be easily read off from Eq (B.1),
hence its name. However, inconvenience arises when we study the product of two
MVGs’ density function. Although the result still assumes the exponential form of
Eq. (B.1), the new mean and variance can not be expressed in simple forms of the

original mean and variance. Therefore the canonical representation is often adopted:
II:=x1 L:=X1pu,
and we obtain an equivalent formulation of Eq (B.1) denoted by N”:

1
N (x;T,II) := exp <a +Tx— 2XTHX> , (B.2)

"We will use 7 later for the precision of univariate Gaussians as a standard notation, so here we
introduce 7 to avoid symbol conflict.

167

168 Message Update Formulae of Expectation Propagation

where a := (—nlog(27) + log |IT| — T TIIT') /2. II is often called precision and T is
called precision-mean. For one dimensional Gaussians, the canonical parametrization
can be simplified into

n 1

<~ 0=] =
o

T
m s

1
e 97
So whenever we see p(z) o exp (—%a:cQ + bx), we can immediately read off 7 = a and
7 = b from the quadratic form. The representation of Eq. (B.2) is also useful when we

multiply or divide two Gaussians. Suppose p;(x) ~ N/ (T;, II;) for i = 1,2, then

p1(x)
p2(x)

p1(x)p2(x) ~ N'(T1 + Lo, I + D), ~N'(Ty — Ty, 1L —). (B.3)

Notice that g ;gg can have a negative definite “covariance matrix”. Anyway, g;g:; is

obviously NOT the density function of the random variable %

B.2 EP updates for all factors in Figure 3.1

We now derive the update formulae in Figure 3.1, which can also be found in Table 1 of
(Herbrich et al., 2007). We only need messages from factor to node. We use mys_,, to

denote the message sent from factor f to node x in the last iteration, and the current

new

iteration will send m pale

which is what we are computing.

Prior factor

myf g
B N (z;m,v?)
The factor is f(z) = N(z;m,v?), and the update equation is

oW — Ty + %, TV — Ty + % (B.4)
This update equation should be taken with care. It does not mean that if we run EP on
the whole graph repeatedly, then the formulae (B.4) should be applied again and again.
In fact, that would push the 7, and 7, to infinity. Because the factor is Gaussian and is
attached only to x, the message m¢_,, is always exact and equals N’ (U%, U%) Emyp,
is initialized to N(0,0), then the first message from f to z will update the marginal

p(x) according to Eq. (B.4). Afterwards, p(x) will never be changed by my_,.

¢B.2 EP updates for all factors in Figure 3.1 169

Noise factor

mf—g

B N (z;y,¢%)

Here the factor is f(x,y) = exp (—(x - y)2/(262)). Suppose the message mf_,, ~
N (T¢_y, T¢—sy) and current marginal p(y) ~ N'(7,,m,). Then by Eq. (B.3),

p(y) /
m = 2~ N1y —Tiy, Ty — T .
y—=f mf—>y(?/) (Yy f—=y Ty fﬁy)

new

So the message myey, is:

miy, (x):/f(:c,y)myﬁf(y)dy

1 1
X /exp (‘202(93 - y)2> exXp <_2(7Ty - 7Tf—>y)y2 + (Ty - Tf—>y)y> dy

1 Ty — Tf—y 2 Ty — Tf—y)
xexp|—= z° + T,
(21+ c*(my —) 1+ c2(my — mpoy)

Le., myy, ~ N'(a(ry — Try), a(my — mpy)), where a = (1+ c(my — Wf%y))fl.

Linear combination factor 1

mg g

B iz —(by))

Here the factor is f(z,y) = 6(z — a'y), where 0 is the Dirac impulse function. So

mpose(a) = / f<x,y>Hmyﬁf<yz->dy

170 Message Update Formulae of Expectation Propagation

To proceed, we need a property of the Dirac function:

1
L zel,
§(z) = lim f.(z), where fo(z) :={ © 0.¢] (B.6)
e=0 0 z€[0,¢]
So . T 1 T
mysz(x) =lim [fo(r —a y)p(y)dy = lim - Pr {a y—z€ [0,5]}
e—0 e—=0 € y~p(y)
= p.(x), where z :=a'y.
In general, if y ~ N (uy, Xy), then
T N(aT T N aTNy T -1
z=a y~N(@ puy,a Xya)= aTSya’ (a' Xya) .
By definition of p(y) in Eq. (B.5), we have
1
y ~ N’ <V€C (Tyz Wi 7 > , diag ()) ,
Tys = Tf—y; Ty; = Tf—y;
where vec(a;) stands for (ay,...,a,)" and diag yields a diagonal matrix. We now have

T 1 a; —Tf—ui a; -
Mmisg~a y~N 272 Zazﬂ g Zﬂ_iz
Yi yi

Ty — T f—y p Ty p =y

If fact, this result is obvious, because this factor enforces that = a'y, and hence

x should have the same distribution as a'y.

Linear combination factor 2

Here the factor is f(x,y) = 6(z = b'y). Update equations for this factor can be
derived by converting the it into the case in row 3. In row 3, the receiving node (z)
appears in the factor d(x = a'y) as the linear combination (a'y) of the rest nodes.
Here in row 4, the receiving node y,, does not appear in the factor potential as the linear
combination of the rest nodes. However, we can re-write the potential §(x = b'y) into
S(yn = a'[y1, ... Yn_1,2]"), where a = b ' (=by,...,~bu_1,1)". If b, = 0, then in

¢B.2 EP updates for all factors in Figure 3.1 171

fact y, is not connected to the factor, and hence we can ignore v,,.

Margin comparison factor

/ N

mf<z mfzx
d(z>e) N B i(xr < —e)

Here the factor is f(z) = d(z > ¢) and f(x) = §(Jz| > ¢). Suppose the message
M in the last time step is N7 (7_,4, Tf—z). Then the product of the latest messages

that f has received from other adjacent nodes is Myest— f = N (g — Tfq, To — Ty—2),

-~

=C ;:d
where 7, and 7, are the precision-mean and precision of the current marginal p(x).

The message mjy_,, in the current time step, if calculated by standard belief prop-
agation formula, should be exactly d(z > ¢). Hence the new marginal p"*V(z) =
Mrest— ()0 (x > €). However, in EP we want to approximate it by a Gaussian. In
particular, we approximate the new marginal p"°V(x) by a Gaussian which preserves
the mean and (co)variance?. This means we only require the mean and (co)variance of

p"°¥(x), as computed below.

In fact, this is a standard truncated Gaussian. In general, if X ~ N(u,o?) is
restricted into the interval X € (a,b) where —oco < a < b < oo, then the truncated

Gaussian distribution has normalized probability density function (pdf)

N (5H)

@ (P5) — @ ()

where ® is the cumulative distribution function of the standard Gaussian distribution.

h(w;,u,a, a, b) =

Then one has (by http://en.wikipedia.org/wiki/Truncated normal_distribution):

EXla< X <b=p+o

Var[X|a < X <b] =0% |1+

2Notice that row 5 is the only approximate message of EP in the whole graph.

http://en.wikipedia.org/wiki/Truncated_normal_distribution

172 Message Update Formulae of Expectation Propagation

In our case, 0 = ==, u = %. If f=06(x > ¢), then a =¢,b = 00. Then

S

d
EXla<X<b="f———>""7 _C4p ,
c \/E —% C \/E d—ec
() Ve ()
et \r (o=t e 2
| e (1/\@)‘0 (1/\@)‘0
Var[X\a<X<b]:E 1+ y y
e—2 e—2
-2 wz) 1“1”<w6)
B d—ec d—ec
_ 1 1_N<ﬁ> N(ﬁ)+d—6c
C d—ec d—ec c
oo () \e(hr) v

By introducing functions

N(t—e
VE(~>€) (t,e) == <I>((t—5)’ W6(~>s) (t,e) = V6(~>a)(t75)(‘/23(->s) (t,e) +1—¢2),

we arrive at

Thew d 1 d
=E[X|la< X <b] = p + \%V;s(.>g) < 6%) ,

ﬂ-new \/E’
L vVarxla< x <t =2 (1-wyo, (L eve
new = var a = c 5(->¢) \/E,s C .

The case of f(z) = d(z < €) can be dealt with similarly by using Eq. (B.7).

B.3 Message passing for the max factor

There turns out no closed form formula for the messages related to the max factor.
We will first give the mathematical form of the messages, and then show how it can be
reduced to the cumulative distribution functions of multi-variate Gaussians. Finally,

we provide an efficient approximate algorithm.

B.3.1 Mathematical formulation of messages

Suppose the factor is f(x,y1,...,yn) := d(z = max; {y;}). We are interested in the
update formulae for this max node: mys_,, and my_,,,. Similar to the case of linear

combination, we proceed as follows:

§B.3 Message passing for the max factor 173

N B

o(x = max {v:}) §(z = max {vi})

M (2 /f r,y Hmyl—>f yi)dy = /f =] (yfzyi)dy

= /5@ = max {y;}) HNI (Vi3 Tyi = Tisyir Ty — Tfoy,) Ay (B.8)

=p(y)

Again using the definition in Eq. (B.6), we have

(o) = limy [fo(o = max {y}p(v)dy

1
“tig L Pr sy} —o € 0.}
= p.(x), where z := max {y;} .

So the message m_,, is exactly the distribution of the max of multiple Gaussians {y;},

1
where y; ~ N (Vi3 Ty, — Troyss Tys — Tf—ys)-

Finally, we compute my_,,, . Different from factor d(x = a'y), we cannot convert

the derivation of my_,,, into mys_,,. First similar to Eq. (B.8), for a fixed value of y;

we have:
*pz(yz) Pa ()
f—/\—\/—/\“
Mgy, (Y1) / flz,y Hmyz—ﬁ i) my—q(z)dys ... dyndz
=2
p2:n(y2:n)

=[5 (o= s) paalyzdn(Ohie s (B9)

174 Message Update Formulae of Expectation Propagation

Using the definition in Eq. (B.6), we have

My, (Y1) = ;i_rg(l)/fs (z - max {yi}> P2 (Yo)Pz (2)dys - . . dypda

1
= lim — Pr {max{yl,.n%ax yi}—xE[O,E]}.

e—=0 € Y2:n~P2:n, TPz =2,...,n

Here yo, ..., y, are involved only in terms of max y;. So we can treat them in
1=2,...,n
whole by introducing z := Tmax y; and denoting its distribution as p,, which is again
1=4...
the max of n — 1 Gaussians. We now study Pr.p, z~p, {max{yi,z} — 2 €[0,¢]} in

more detail.
z~p§£~pz {max {y1,2} —z €[0,¢]}
=Pr(max{y, 2} <z +¢) — Pr(max {y;, 2} < x)
=Pr{z<yrandy; <z+e}+Pr{z>y;and z <z +¢}
—(Pr{z<yiand y1 <z} +Pr{z >y and z < zx})

+oo
=Pr(z < y1)Pr(y; <z +¢) —|—/ Pr(x > z — e)p,(2)dz

z T
At

+o00
—Pr(z <) I;r(yl <z)-— / fg’cr(z < x)p.(z)dz

Y1

—+o00
=Pr(z<y1)Pr(y1 —e <z <wy1)+ / Pr(z —e <z < 2)p.(2)dz
z x Y1 T

where the step (*) makes use of the independence between x and z (do not get confused

by * = max {y1, 2}). So now

1
Mfyy, (Y1) =lim — Pr {max{y, 2} —x € [0,¢]}

e—0 € z2~Vpz,x~py

P —e<zx< oo P —e<z<

:Pr(zgyl)lim rm(yl _:E_yl) —l—/ i rx(z =T= Z)d
z e—0 g Y

“+oo
P <ypan) + [pelomale)d
Y1
which makes a lot of sense. my_,,, involves the cumulative distribution function (cdf)
of z, the max of n — 1 independent Gaussians. If p,(z) is approximated by a Gaussian
via moment matching up to the second order, then the second term (integral) is just

the cdf of a one dimensional Gaussian.

The mean and variance of m¢_,,, are not trivial. Even after p,(2) is approximated
by a Gaussian, they are still not trivial. In the next subsection, we will discuss how to

compute the mean and variance of the maximum of multiple Gaussians.

§B.3 Message passing for the max factor 175

B.3.2 Moments of the maximum of multiple Gaussians

In this subsection, we show how the mean and variance of the maximum of multiple
Gaussians can be expressed in terms of the cumulative distribution functions (cdf) of
multi-variable Gaussians (MVGs). This result is completely from (Afonja, 1972). We

fixed some typos and polished the symbols. In the whole subsection, we use ¢, j # p, q,r
to represent that i £ p, i £ q, 1 #r, j#p,j#q, and j #£r.

Max of Two Gaussians

In the simplest case of only two Gaussians x; ~ N (u;, 02-2) with correlation p, we have

an exact expression of the pdf of z = max {z1,z2}: p(z) = mi(—x) + ma(—2x), where

fl(:v):ld><x+ul>><@<p(x+ul) x4+ fi2)

o1 o1 o1y/1—p? a o9v/1 — p?
f2(x):1¢<x+u2>xq)<p(x+u2) x4+)7

02 02\/1—p2_01\/1—p2

and ¢(-) and ®(-) are, respectively, the pdf and cdf of the standard normal distribution.

The moments can also be easily derived:

E[z] = & (‘”;’“) + ps® (”2;“1) + 0 (“1;’“‘2>

E [2°] = (o} + pi})® <’“;“2) + (03 + pd)® <M2;“1) +(u1+u2)9¢<”15“2>,

where 0 := \/a% + 05 — 2po109.

Recursively raply the max of two (Gaussians

It is obvious that the max of two Gaussians is not Gaussian. But knowing its mean
and variance allows us to approximate it by a Gaussian with the same mean and
variance. This also allows us to recursively apply the procedure of taking the max of
two Gaussians. For example, Figure B.1 uses a chain style where ¢; = max {x1, 22},
and t; = max {t;_1,zj+1} for i =2,3,...,n— 1.

Figure B.2 uses a tree structure for recursion. Intuitively, the topology in Figure
B.2 may deliver lower approximation error than Figure B.1 because the highest layer
of Figure B.2 introduce independent noises while the error of #; in Figure B.1 will be
propagated through the whole chain. This intuition is confirmed by (Sinha et al., 2006).
Finally, neither of the approaches makes use of the correlation of the n Gaussians, so

they work only for independent Gaussians.

176 Message Update Formulae of Expectation Propagation

o(tz = max{ty, X4})
(S(tl = max{xl, Xz}) 5(tn71 - maX{tnfz, Xn})

Figure B.1: Recursively apply the max

of two Gaussians in a chain structure Figure B.2: Recursively apply the max of two

to compute the max of n Gaussians. Gaussians in a tree structure to compute the
max of n Gaussians.

General results for correlated multi-dimensional random variables

Suppose a k-dimensional multivariate random variable x has p.d.f. ¢x(x;0,%) (not
necessarily Gaussian), where 8 = E[x] is the mean and ¥ = {0;;} = {Cov(z;x;)} is the
covariance matrix. Notice this notation does not imply that x must be a multivariate
Gaussian distribution with mean 6 and covariance matrix Y. To avoid introducing
more symbols, we denote ¢ (z;R) as the standardized form of ¢ (x;0,%) with z; =
“U;ﬁ and o; = /0y, i.e., only translation and scaling are applied, with no rotation.
Furthermore, we define ®;(b;R) fbl . .fbo; or(z;R)dz = fso or(z; R)dz. See the
last part of this appendix section for a summary of the symbols.

Denote y := max {x1,...,2x}. The general results is:

Theorem 75 (Theorem 1 of (Afonja, 1972)) The r-th moment of y about the ori-

gin is given by

Z/ (0; + 032)" i (2 R)dz = zka <T> 07 o 1 (2) (B.10)

i=1 1
where ~ N =
niz) = JF #lon(z R)da
al = (ai(1),....ai(k)) = {a:(j)}i, € RF
0,0, e
, Lt ifjFi
az(]) — Var(z;—x;)
NS ifj =i
RS = {ri(s,t)}i,_, e RRXk
Corr(z; — xs,x; — ¢) if s,t#1
ri(s,t) = Corr(z;, x; — xs) or Corr(x;,x; —) if s#i=1t ort#1i=s resp.

1 ifs=t=1

§B.3 Message passing for the max factor 177

Note we have changed the notation from (Afonja, 1972), in order to make the
subscript indices clearer. The notations in the original paper are extremely hairy. For
clarity, we write all vectors or matrices in boldface. All variables denoted with (), e.g.,
a;(j), ri;j(p,q) are real values, and those without are vectors or matrices except for
simple ground symbols like 6;, 0;;. Vectors and matrices are denoted by removing ()

from their elements, e.g., R; ; is a matrix made up of {r; ;(s,t)} We also try not

b0,
to use superscript in order to avoid confusion with exponents unlejs Jdouble indices are
used like 7 (p, q).

We will focus on the Gaussian distributions of ¢y, and compute the 15 and 27¢
moments of y = max {z;}. Attention will be paid to special cases like: equal mean of
marginals of z;, equal variance and covariance, and independent {x;} which is of our

particular interest.

First order moments of the max of Gaussians

We first derive the general formula for the first order moment (mean) of y = max {z;}

where x is a multivariate normal distribution.

k k
Yy) = 0;Pr_1(a;; R;) + i 74 i(7))Pr—2(;j; Ri
11 (y) Zz; iPr—1(ai; Ry) ZZ \/O'ii“‘o'jj _2Uij¢l(az(])) k—2(ij; Rij)

i=1 j#i
(B.11)
where
a; = {ai(f)};z € R+
R, = {ri(s,t)};, € R(k—1)x(k=1)
aij = {aij(t)}, € R
Ri,j = {T‘i7j(8, t)}s tti c R(k—Q)X(k—2)
(3 — 6;—0:) . "
ai(j) = Var(e,—o)) i # j by definition
ri(s,t) = Corr(x; — xs,x; — x¢) s,t # i by definition
rij(s,t) = partial correlation between x; — z, and x; — x; given x; — x;
aiy(t) = ez i # j #1t+#i by definition
¢1(a) = standard normal p.d.f. evaluated at a
Po() = L

A short note on partial correlation. Given random variables X, Y and set of random
variables Z" := {Z1,...,Z,}, the (n-th order) partial correlation between X and Y

given Z can be computed recursively based on three (n—1)-th order partial correlations:

p PXY|Zr—1 = PXZ,|Zn—1PY Z,|Zn—1
XY|Z =
1- P2 1y /1 — p2 -1
X Zp |2 Y Z,|Zn

(B.12)

178 Message Update Formulae of Expectation Propagation

where Z" ! := {Z1,..., Z,_1}, and the base of recursion is that pxyp = pxy which is
the regular correlation between X and Y (we also denoted it as Corr(X,Y’)). Naively
applying Eq. (B.12) costs exponential time complexity in n (order), and dynamic pro-
gramming can reduce the complexity to O(n?). However, our problem only involves

n = 2, so we just implemented the recursive formula.

Special case 1: equivariance and equicorrelated case Assuming
Oii =0 and oij =0%p (i # j),

then we have

The derivations are simple:

0, -6, _ 0,—6, _ 0,—6

ai(])z \/\m_ \/202_20210_0'\/2(1*/0)

Cov(x; — xs, x5 — x4)
\/Var (x; — xs) \/Var —)

ri(s,t) = Corr(z; — xg,m; — x¢) =

0% —20%p+d%p

V202 = 202p\/202 — 20%p
0:—6; 0;—0; 1

a\/21 p) a\/2 2 2915—91'—9]'

A e T Ay - g &

Denoting A := x; — x5, B := x; — x4, and C := z; — z;, by Eq. (B.12) we have:

N =

PAB — PACPBC

\/1_PAC\/1 pBC_

Special case 2: equal means Suppose §; = 6. In this case, a;(j) = 0 and o ;(t) =
0. Using Eq. (B.11), we have

rii(s,t) = _. (B.13)

— o=
DI Do =

N[0l
w

= 9"‘22 j (27r)71/2(1)k—2(0§Ri,j)7

= \/O'“ +0']J — 20y

§B.3 Message passing for the max factor 179

where Zle ®;_1(0; R;) =1 is from the main theorem in Eq. (B.10) setting r = 0.

Special case 3: {z;} are independent (covariance o;; = 0 for i # j) In this
case 0;; = 0 for ¢ # j. Then
0; —0; 0; —6;

ai(j) = = ,
V/ Var(z; — z;) \/02.2 + 07
2

C - o '
ri(s,t) = Corr(x; — xs, ; — 1) = ov(x; — Tg, i — xy) B o

= V/Var(z; — x5)/Var(z; — z¢) B \/01‘2 N Ug\/af N Ut2.

Using same notation in Eq. (B.13), we can compute r; j(s,t) with
o2 o2 o2

PAB =) PAC = ’ PBC = .
\/aiz—i-ag\/a?%—at? \/al-z—i-ag\/af—i—ajz \/012—1-0?\/0124-0]2-

And the rest o ;(t) does not admit any simple form.

Second order moments of the max of Gaussians

Finally, the second order moment of y = max {x;} where x is multivariate Gaussian is

k
wa(y) = Yoy ri) {0i61(ai(5)) + oiai(f) - 7i(G, i)} Pra(eiji Riy) (B.14)

i=1 j#i
=2 . ais)
+D 0of > rilsd) Y S e ai(t) ;Ti(s,1)
i=1 s t#i,s !
< (al R (1) = i) i)
where
a‘;vt = {af’t(p)} , € Rk—3 i, s,t mutually different by def
pFi,s,t
Rf’t = {rf’t(p, q) y e RE=3)x(k=3) s t mutually different by def
D,q70,8,t
rf’t(p, q) = partial correlation between x; — z, and z; — x4 given x; — x5 and z; — x¢
aft(p) = az(ﬁj/*lﬁj:l((l;)?)f;z\(;)l:f: Elz;:gzz‘(t) i,s,t,p mutually different by def

Bii(s,t) = ”(S’ti::i((‘:g;gi(t’j) 1,7, s,t mutually different by def
S_(;) = 0 if k= 2.

Special case 1: {z;} are independent (covariance o;; = 0 for i # j) It only

affects rf’t(p, q). The only convenience provided by independence is that Corr(z; —

180 Message Update Formulae of Expectation Propagation

2
Ts, Tj — Ty) = ———2i —___ The rest terms still do not admit simple forms.

Voi+to2\/o2+o?
Summary of symbols

In Figure B.3 we summarize the relationship among symbols which is helpful for imple-
mentation. Table B.1 summarizes the correspondence between symbols in this report

and in (Afonja, 1972). Finally, we list all the symbols used in this section of appendix.

' (p, q) 7i (s, 1) a; (j) 7i; (s, 1)

Bij(s. 0 0 (2)

o' (p)

Figure B.3: Relationship among symbols. Those without inbound arrows can be com-
puted directly from @ and X.

(Afonja, 1972) here with original indices here with new indices

Qi = ai(j) ai(j)

Q; 55/ - Oéw/(jl) e7% (t)

Qg g & al? (5") ;' (p)

Bigs.i & Bii(a:s Bii(s:t)

Ti,qs.j And ri,j(q, 5) rij(s,1)

Tij5’ = ?fi(jaj/) ri(s,t)

Tigs.ji' N 77 (q, 5) r(p,q)

Table B.1: Correspondence Between Symbols in This Report and in (Afonja, 1972).

§B.3 Message passing for the max factor 181

List of symbols

or(x;0,%)

ox(z,R)

(b R)

Y

1 ()

pi(zi) =
N

a] =

ai(j) =

= p.d.f. of k-dimensional multivariate random variable x
= standardized form of ¢ (x,0,3)
= fbio .. szo or(z; R)dz = fso or(z; R)dz
= max{x1,...,Tk}
= r-th moment of y (about the origin)
fz:f zgqﬁk(z; R;)dz
(ai(1),...,ai(k)) =: {a;(j)};, € R®
S
—0 if j =i
fri(s, O}, € RV
Corr(x; — xs, x; — o) if s,t#1
Corr(x;, x; — xs) or Corr(x;,x; —xy) ifs#i=tort#i=sresp.
1 ifs=t=1
{ai(5)} 4 € RF!
{ri(s,)}, 4 € RETDXED
{aij(t)} 0, € RF?

N .
Var(x;—x;)

i # j by definition

Corr(z; — xg,m; — ¢) s,t # 1 by definition
partial correlation between z; — x5 and x; — 4 given x; — x;
%\/%)(QM) i # j # t # i by definition
standard normal p.d.f. evaluated at a

1.

{af’t(p) }p#i,syt € RF3 i, 8,t mutually different by def
{rf’t(p, q) }p,qyéi,s,t e RE=3)x(k=3) s ¢ mutually different by def

partial correlation between z; — x;, and x; — x4 given x; — x5 and z; — x4

ai(p)—Pi,t(p,5)ai(s)—Pi s (p;t)ai(t)
V1=ri(p,5)2\/1=i s (p,t)2

ri(s’ti:;?((i’gggi(t’j) i,7,s,t mutually different by def

0 it k=2.

1, 8,t, p mutually different by def

182 Message Update Formulae of Expectation Propagation

Appendix C

Detailed Result of Empirical
Optimal Threshold

In Section 3.3.3, we showed six examples of how E/X;)fs(l(e)) and F-score(1(0),y*) vary
as functions of 6. In this appendix, we show the same result for all the 101 classes in

the group topics.

mple based
- --Ground truth

— Sample based
- - -Ground truth

Sample based
---Ground truth

100

40 40 40
20 20 20 20 —Sample based
- --Ground truth
0 0 0 0
0 02 04 06 08 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Threshold Threshold Threshold Threshold
(a) class 1 (b) class 2 (c) class 3 (d) class 4
100, 100
80
eoff .-~
. Sample based
40| 40| - --Ground truth
20 ——Sample based —Sample based 20 20 —sample based
- - -Ground truth - --Ground truth - - -Ground truth
% 0z 04 06 08 % 0z 04 o6 08 1 % o0z o4 o6 08 1 % o0z 04 06 08 1
Threshold Threshold Threshold Threshold
(e) class 5 (f) class 6 (g) class 7 (h) class 8

— Sample based
---Ground truth

— Sample based
---Ground truth

— Sample based
---Ground truth

— Sample based
---Ground truth

40 40| 40 40|
20 20 20 20
00 0.2 0.4 0.6 0.8 O0 0.2 0.8 1 00 0.2 0.8 1 GO 0.2 0.8 1
Threshold

(i) class 9

0.4 0.6
Threshold

(j) class 10

0.4 0.6
Threshold

(k) class 11

0.4 0.6
Threshold

(1) class 12

Figure C.1: Example curves of E/XEF/‘S(I(G)) (blue) and F-score(1(6),y™) (red) v.s. 6.

183

184 Detailed Result of Empirical Optimal Threshold

0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6
Threshold

(a) class 13 (b) class 14 (c) class 15 (d) class 16

0.4 0.6 0.4 0.6 0.4 0.6
Threshold Threshold Threshold

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold
(e) class 17 (f) class 18 (g) class 19 (h) class 20

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold

(i) class 21 (j) class 22 (k) class 23 (1) class 24

0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6
Threshold

(m) class 25 (n) class 26 (o) class 27 (p) class 28

0.4 0.6 0.4 0.6 0.4 0.6
Threshold Threshold Threshold

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold

(q) class 29 (r) class 30 (s) class 31 (t) class 32

0 0.2

0.8 1 0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6
Threshold

(u) class 33 (v) class 34 (w) class 35 (x) class 36

0.4 0.6 0.4 0.6 0.4 0.6
Threshold Threshold Threshold

Figure C.2: Example curves of ET}EI\)—I*:S(I(H)) (blue) and F-score(1(f),y*) (red) v.s. 6.

185

0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6 0.4 0.6 04 0.6 0.4 0.6
Threshold Threshold Threshold Threshold

(a) class 37 (b) class 38 (c) class 39 (d) class 40

0 0.2 Ql;ﬁreshca.c? 0.8 1 0 0.2 ql;ﬁreshg.de 0.8 1 0 0.2 ql;ﬁreshuoléi 0.8 1 0 0.2 Ql;ﬁreshg:.ds 0.8 1
(e) class 41 (f) class 42 (g) class 43 (h) class 44
10O
80
60
40
20,
OO 0.2 0.4 0.6 0.8 1 GO 0.2 0.4 0.6 0.8 1 OO 0.2 0.4 0.6 0.8 1 O0 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold
(i) class 45 (j) class 46 (k) class 47 (1) class 48
10O
80, =
60 .
40
20
OO 0.2 0.4 0.6 0.8 1 GO 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1 OD 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold
(m) class 49 (n) class 50 (o) class 51 (p) class 52
100
80
60/,/’/
40|
20|
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold
(q) class 53 (r) class 54 (s) class 55 (t) class 56

0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6
Threshold

(u) class 57 (v) class 58 (w) class 59 (x) class 60

0.4 0.6 0.4 0.6 0.4 0.6
Threshold Threshold Threshold

Figure C.3: Example curves of ET);I\)FS(I(Q)) (blue) and F-score(1(6),y™) (red) v.s. 6.

186 Detailed Result of Empirical Optimal Threshold

L0 100y 80 L0O|

0 0.2

0.8 1 0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6
Threshold

(a) class 61 (b) class 62 (c) class 63 (d) class 64

0.4 0.6 0.4 0.6 0.4 0.6
Threshold Threshold Threshold

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold
(e) class 65 (f) class 66 (g) class 67 (h) class 68

% o0z o4 o065 o8 1 © o0z o024 os o8 1 % o0z o0z o6 08 1 % o0z 04 o8 08 1
Threshold Threshold Threshold Threshold
(i) class 69 (j) class 70 (k) class 71 (1) class 72
60 60
50 50
40| 40
30|{—sample based 30
- - -Ground truth
of » 2
10f/ a0 NN .
0 = oL o .
o 02 04 06 08 1 ©0 02 04 06 08 1 ©0 02 04 06 08 1 0 02 04 06 1
Threshold Threshold Threshold Threshold
(m) class 73 (n) class 74 (o) class 75 (p) class 76

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Threshold Threshold Threshold Threshold

(q) class 77 (r) class 78 (s) class 79 (t) class 80

0 0.2

0.8 1 0 0.2 0.8 1 0 0.2 0.8 1 0 0.2 0.8 1

0.4 0.6
Threshold

(u) class 81 (v) class 82 (w) class 83 (x) class 84

0.4 0.6 0.4 0.6 0.4 0.6
Threshold Threshold Threshold

Figure C.4: Example curves of ET}EI\)—I*:S(I(H)) (blue) and F-score(1(f),y*) (red) v.s. 6.

187

0 02z 04 06 08 1 0 02 04 06 08 0 02z 04 06 08 1 0 02 04 06 08 1
Threshold Threshold Threshold Threshold
(a) class 85 (b) class 86 (c) class 87 (d) class 88
80 80
60 60
wl /7 40
20(/ 200 e
0 o 0 o
0 02 04 06 08 1 0 02 04 06 08 © 02 04 06 08 1 o 02 04 06 08 1
Threshold Threshold Threshold Threshold
(e) class 89 (f) class 90 (g) class 91 (h) class 92
60 80 60
50 50
40| 40
30 —Sampie based 30
- --Ground truth
20 . 20/
10 - . 10
0 o 0 i R
0 02 04 06 08 1 o 02 04 06 08 © o0z 04 06 08 1 o 02 04 06 08 1
Threshold Threshold Threshold Threshold
(i) class 93 (j) class 94 (k) class 95 (1) class 96
80 80 10
60 8
RN 6|
40
4
20 25‘
% oz o8 1 % o2 08 % oz 08 1 0 o2 08 1

0.4 0.6
Threshold

(m) class 97

0.4 0.6
Threshold

(n) class 98

0.4 0.6
Threshold

(o) class 99

r—suuie
£ o ©

)

0 0.2 0.4
Threshold

(q) class 101

0.6

0.8 1

0.4 0.6
Threshold

(p) class 100

Figure C.5: Example curves of ﬁ;ﬁfs(l(e)) (blue) and F-score(1(#),y*) (red) v.s. 6.

188 Detailed Result of Empirical Optimal Threshold

Appendix D

Modeling Hierarchies in Labels

Hierarchy is often modeled as a tree composed of all possible labels, and extension
to forest is immediate. The root is the most general class and by going down to the
leaves, the labels become more and more specific. It encodes the fact that if a child
label is relevant, then its parent label must be relevant as well (but not vice versa). In
the sequel, we will use the word “node” and ”label” interchangeably. Another example
relationship is co-occurrence, where two labels must be relevant or irrelevant at the
same time. Both forms can be unified in the framework of propositional logic. Using
lc € {1,0} to represent whether label c is relevant, the tree hierarchy encodes [, — .
if class ¢ is a child of class p, and co-occurrence can be denoted by I, < [. Clearly
propositional logic can model more general relations like I, A =l — [..

In the simplest case, the relations are provided as prior information. A more com-
plicated task is to induce relations from the data, and associate them with some confi-
dence. This will be similar to association rule mining. Here we assume that a hierarchy

of classes is available a priori in terms of a tree, whose connotation is:

Every data point is associated with a (possibly empty) set of labels. Whenever an
instance is labeled with a certain label c, it must also be labeled with all the nodes on
the path from the root down to c.

This is exactly the setting used in (Rousu et al., 2006), which utilizes the hierarchy
mainly through the definition of loss function: if the node c is misclassified, then further
mistakes made in the subtree rooted at ¢ are not penalized. Formally, suppose the true
label on a tree is y and the predicted label is 1, then the so-called H-loss defined by
Rousu et al. (2006) is:

lu(ly) = Zac -0(le #ye N1y, = yn Vh € ancestor of ¢).

C

where the summation goes through all the classes, and a. € [0, 1] downscales the loss

when going deeper in the tree.

Inference can be performed on directed trees, and the conditional probability p(l.|l,)

189

190 Modeling Hierarchies in Labels

is important where [, is the parent node and [, is the child node. By definition, p(l. =
1|l, = 0) = 0 and p(l. = 0|l, = 0) = 1 so we only need to learn p(l.|l, = 1). Similar
to the marginal probability models, we also assume a linear model for p(l.|l, = 1),
and its weights are updated only when the ground truth satisfies [, = 1. However,
as the marginals and the conditionals are learned separately, their consistency is not

guaranteed, i.e.

p(le) # Zp(lc”p) “plp)-
lp

To solve this problem, we may resort to undirected trees, where we learn a linear model
for the node and edge potentials. However, all the factors in undirected graphical
models are globally coupled and learning becomes hard.

So we would rather patch the directed tree model in two different ways:

1. Learn the model of marginal only for the root label in the tree. The rest non-root
nodes will be inferred only via the conditionals (edges). This will immediately

rule out over-parametrization and inconsistency.

2. Still learn the marginals of all nodes and conditionals on all edges, but treat these
probabilities as node and edge potentials of the undirected graph, and samples

can be drawn easily from this undirected tree.

The second approach might be better because it uses more information, and enforces
consistency between different parts of the models learned separately. And this approach
is also general enough to model propositional logic. For each proposition such as [, — .
and [, < [, we introduce a factor with linear parametrization, and the resulting factor

graph can be loopy.

Appendix E

Statistical Estimation and

Concentration of Measure

Parameter estimation is one of the key problems in statistics. Given an unknown
distribution F, we wish to estimate a parameter of F: 6 = 6(F), e.g., moments,
quantiles, and Gini differences. To this end, suppose we have observations (a stochastic
process) Xi, Xo,... obtained from certain statistical experiment, and then a statistic
g(X1, Xo,...)! is applied as an estimator of 6.

When X; are independently and identically distributed (iid) according to F, the
behavior of the statistics has been well studied. However, the #id assumption is often
unrealistic in practice and the non-iid setting is of particular interest in Chapter 4. This
appendix will first list some desirable statistical properties of estimators, then state the
properties of U-statistics under iid observations. Finally, we will briefly survey some

fairly recent results on U-statistics under non-iid observations.

E.1 Desirable statistical properties of estimators

In this section, we describe some general intuitions on what makes a good estimator.
We will emphasize the intuition, and more rigorous statements will be given in the
subsequent sections under more specific settings. We assume X := (X1, Xy,...) is
the random variables of observation from a stochastic process related to F but not

necessarily iid, and g(X) is an estimator.

Unbiasedness. It is natural to desire that the estimator g(X) be centered around

the true parameter 6. g(X) is said to be an unbiased estimator of 6 if

Bias(g(X),0) :=E[g(X) — 6] = 0.

!Most literature use the symbol h for statistics. We use g here in order to avoid confusion with the
kernel function of U-statistics later.

191

192 Statistical Estimation and Concentration of Measure

Mean square error. The mean square error of an estimator g(X) is defined by
MSE(g(X),0) := E [(9(X) — 6)*] = Var(g(X)) + Bias(g(X),6).

The lower the MSE, the better. Incidently, this shows the bias-variance tradeoff, which

is related to a similar issue in statistical machine learning.

Consistency. A sequence of estimators g, (X) are consistent for 6 if g, (X) 5 0 as
n — 00, i.€.,
lim Pr(|gn(X)—60|>¢) =0 foralle>0. (E.1)

n—oo

Here and henceforth, the symbol Pr means the implicit probability measure is clear from
the context. Same is true when discussing convergence of random variables. Note that
consistency does not imply unbiasedness since it allows Bias(g,(X),0) — 0 as n — oo.
An example is BUGBUG (HSIC_b). When g, is based on n observations X1, ..., X,,
consistency simply means that the estimation approaches the true parameter with
more observations. This is often formulated as the law of large numbers (LLN), whose
simplest form says when we have more and more iid observations, the average of the
observations converges to the mean (§ = pu) of the distribution. Loosely speaking, it
has two forms: letting g,(X) = X,, :== 1 3" | X;,

T on

weak law of large numbers (WLLN): X, 50 as n — 0o;

a.s.

strong law of large numbers (SLLN): X, =6 as n — 0o.

The Borel-Cantelli lemma allows one to convert a sufficiently rapidly converging WLLN
into a SLLN.

Mode of convergence. The consistency Eq (E.1) is defined in terms of convergence
. . P . a.s. .
in probability (—). Stronger modes such as converging almost surely (—') and in
L . o D
moment/mean (—), or weaker modes like converging in distribution (—) are also

useful. All these modes will be used later.

Concentration of measure and rate of convergence. When the sequence of
estimators ¢, (X) are consistent (i.e., Eq (E.1)), it is furthermore desirable that a)
the probability mass of g, (X) concentrates tightly around 6, and b) the concentration
tightens fast with the growth of n, or the number of observations. These are typically
characterized by two kinds of bounds: uniform bounds and asymptotic bounds which

are defined by converging in probability and in distribution, respectively. Two typical

¢E.2 U-Statistics for iid observations 193

forms are:

uniform bounds: Pr {|g,(X) — 0] > €} < cexp(—nne?) for all € > 0;

asymptotic bounds: /n(g,(X) — 6) = N(0,0), asn — oo,

where ¢, 7,0 are some constants. The asymptotic bounds are also known as central
limit theorem (CLT).

In practice, computational efficiency is also an important issue.

In the next two sections, we will specialize the discussion to a common class of
parameters: U-parameters. They can be estimated by U-statistics which are applied
in Chapter 4. Before branching to U-statistics with #d and non-iid observations, we

first give the (common) definition of U-parameters.

Definition 76 (U-parameters) (Hoeffding, 1963) 6 = 0(F) is a U-parameter of dis-
tribution F if there is a measurable function h : R® — R, called the kernel, so that

O(F) =0,(F) = / hdFD for all F for which the integral is defined,
Rd

where FD s the product measure F x ... x F on R%. The positive integer d is called
the order of the kernel.

For example, when d = 1 and h(z) = =z, 0,(F) is the mean of F. When d = 2 and
h(z1,22) = |21 — 22]%, O,(F) is the generalized Gini difference of F.

U-parameter is often called an estimable parameter, in the sense that a parameter
can be estimated in an unbiased matter if, and only if, it is a U-statistics (Lehmann,
1983). For simplicity, we assume that the kernel h is symmetric, i.e., invariant to the

permutation of its arguments. This is enough for our use in Chapter 4.

E.2 U-Statistics for 22d observations

In this section, assume we have a sequence of observations (X1, Xo, ..., X,,) drawn iid
from a distribution F. For convenience, let X/ := (X;, Xit1,...,X;). We now define

the U-statistics which can be used to estimate the corresponding U-parameter.

Definition 77 (U-statistics) (Hoeffding, 1963) Given a U-parameter 0y, where h is
symmetric, the U-statistic for 0y based on a sequence X1i,..., X, s defined by

-1
Up = Un(Xe,o o X)) = |] S (b X)) s 1< iy < < ... <ig <n}.
d

194 Statistical Estimation and Concentration of Measure

Closely related is a V-statistic for 0, and {X;}" ;:
Vit o= Va(Xy, o Xn) =0~ {0(XG,, ., XGy) 0 1 <y < nfor all j}
U-statistics have a number of desirable properties under #id observations, and we

list a few important ones below.

Theorem 78 (Unbiasedness) The U-statistic U}’ is an unbiased estimator of Oy :
Exp[Uy] = 0, for all n.

Theorem 79 (Minimality of variance) (Serfling, 1980) U} has the lowest variance

among all unbiased estimators of Oy (for a fixed n).

Theorem 80 (Concentration of measure, a.k.a. Hoeffding) (Hoeffding, 1963) If
h is of order d and h € [a,b], then

2 |n/d| €

Pr{U} — Exn[Uy] > e} <exp <— b—a)

> for all e > 0.

We can further characterize the variance of U-statistics, based on which an asymp-
totic bound on the concentration of measure can be established (Serfling, 1980).
Assume E yq [R(X{)?] is finite. For any ¢ € [1,d], define

he(X}) 1= B (X)), (E:2)
i.e., expecting out the tail d — t variables XﬂH. Define (4 = 0 and
G := Vary: [he(X1)] € R.

Then
Theorem 81 (Variance of U-statistics) (Serfling, 1980, pp. 183)

-1
d

n d n—d
Var[U}'] = Z Gt-
d] =\t d—t

Now we can state the asymptotic bound, which branches into two cases depending

on whether (; = 0 or not.

Theorem 82 (CLT 1) (Serfling, 1980, pp. 192) If E[h?] < oo and (1 > 0, then U}

converges in distribution to a Gaussian with mean 0, and variance d*¢y/n:

Va(UR = 0,) 2 N(0,d%¢1) as n — .

¢E.3 Statistics for non-iid observations 195

Theorem 83 (CLT 1) (Serfling, 1980, pp. 194) If E[h?] < 0o and (1 = 0 < (a, then

N D d(d—1)
n(wp) 5 WD S e -,
i=1
where x2(1) are iid x*(1) random variables, and X\; are the eigenvalues of

/R(h2($17$2) — 0p)®@i(z1)dF (72) = A\ ®i(z1).

®; are the corresponding eigen-functions.

E.3 Statistics for non-22d observations

In reality, the #4d assumption almost never holds. So it is crucial to study the non-iid
setting, which motivates Chapter 4.

Let (9", F,P)? be a probability space and {X;}_; be its associated real valued
stochastic process. If the process is stationary?, we will also assume that the probability
space of Xj to be (Q, A4, P).

This section again focuses on U-statistics. The definition of U-parameter in Defini-
tion 76 keeps intact. The U-statistics, however, needs to be generalized using stochastic

process.

Definition 84 (U-statistics with stochastic process) Given a U-parameter 6;, where

h is symmetric, the U-statistic for 0y, based on the sequence X1,..., X, is
—1
Ul =Up(X1,..., X,) =) > WXy, Xiy) 1< iy <ip < ... <dg < n}.

To state the convergence and concentration results, some definitions pertaining to
stochastic process is necessary. Intuitively, a stochastic process is “nice” if it is close
to #d, where “closeness” is characterized by concepts such as stationarity, ergodicity,

and in particular quantified by mixing coefficients.

Definition 85 (Ergodic stationary process) A real valued ergodic stationary pro-
cess (ESP) with sample space (2, A, P) is a stochastic sequence (X1, Xo,...) of form

20" means Q to the power of n, and P is not necessarily a product measure.
3Stationary means if Fy, ... ¢, is a distribution function of the the joint distribution X,,..., X,
then for all k£ and all 7 € Z, we have Fy, .. ¢, = Ft,4r.. t)+7-

196 Statistical Estimation and Concentration of Measure

X = foTF where T is an ergodic*, probability preserving transformation® of the prob-
ability space (2, A, P), and f : Q — R is a measurable function. The marginal of the
ESP is the distribution of X1, and the ESP is called integrable if X1 is integrable, and
bounded if X7 is essentially bounded.

An important characterization of the mixing property for stochastic processes is

the absolute regularity.

Definition 86 (Absolute regularity) A process {X;};2, is called absolutely regular

(also known as weak Bernoulli) if limg_,o B, = 0 where

Bri=2sup E | sup |P(A|B)— P(A)|]. (E.3)
n BEAY | Ae A,

Here AT := 0(Xp, ..., Xm) for n < m, i.e., the o-algebra generated by {X;}". ©.

Intuitively, absolute regularity implies that for any two possible states of the system
(realizations of the random variable), when given a sufficient amount of time between
the two states, the occurrence of the states is independent. Different notions of mixing

can be derived from different ways of characterizing independence, e.g.:

strong mixing: « =sup sup sup |P(ANB)—P(A)P(B)|—0ask — o0
n ACA? BEAZ,
uniformly mixing : ¢ =sup sup sup |P(BJ]A)— P(B)|—0ask— oo
n A€A} BEAY, .
P(ANB)

Y-mixing : ¢ = sup sup sup P(A)P(B)

n A€A} BEAY,,

—1’—>0ask—>oo.

It is clear that ¢y > ¢ > Br > ai. Under some mild regularity conditions, SLLN and

WLLN can be proved for non-iid observations.

Theorem 87 (SLLN for U-statistics) (Aaronson et al., 1996) Let {X;};_, be an
ESP with marginal F, and let h : R* — R be a measurable function bounded by an
F-integrable product”. If any of the following three conditions hold:

1. F is discrete;

*Ergodic transformation means P(T~'(A) A A) = 0 for some A € A only if P(4) = 0 or P(A) = 1.
Here A stands for symmetric difference: A A B := (A\B) U (B\A).

A transformation T : Q — Q is called probability preserving if for any set A € A, P(T7'A) =
P(A).

5The o-algebra generated by a family of real valued random variables {Xi};cz is defined to be
the smallest o-algebra for which all X; are measurable, i.e., the smallest o-algebra that contains
{X;"(B) :i € Z,B € B (the Borel g-algebra)}.

"Meaning that there exist measurable functions f; : R — R with J1fi|ldF < oo, such that
(@1, ... za)| < TTi, fi(wi)-

¢E.3 Statistics for non-iid observations 197

2. h is continuous at F\D almost every point;
3. { X}, is absolutely reqular.
then

Ur “5 0, (F), as n — o0o.

Theorem 88 (WLLN for U-statistics) (Borovkova et al., 1999, Thm 1) Let {X;};,
be a ESP with marginal F, and let h : R* — R be a measurable function and F(D-a.e.
continuous. Suppose moreover that the family of random variables {h(X;,,...,X;,) :
ij > 1 for all 1 < j < d} is uniformly integrable. Then

P
Upl — 0n, asn — oo.

In particular this holds, if sup;, ;. B |[hM(X, ... ,Xid)|1+6} < 00 for some § > 0.

Theorem 89 (LLN in moment for U-statistics) (Borovkova et al., 1999, Thm 2)
Let {X;};, be a stationary and absolutely reqular process with marginal F, and let
h : R — R be a measurable function. Suppose moreover that the family of random
variables {h(X;,, ..., Xi,) :1; > 1 for all 1 < j < d} is uniformly integrable. Then

and hence also in probability.

Theorem 90 (CLT for U-statistics) (Borovkova et al., 2001, Thm 7) Let {X;};_,
be an absolutely regular process with mixing coefficients By, and let h be a bounded 1-
continuous® kernel. Suppose the sequences {Brtis1s {aktysy and {qﬁ(ak)}@lg satisfy

the following summability condition:

> K (B + o + paw)) < oo
k=1
Then the series

o’ = Var(hl(Xo))2 + 2 Z Cov(hi(Xo), h1(Xk))
k=1

®Definition of p-continuity (Borovkova et al., 2001, Def 2.13): Let {X;}!" | be a stationary stochastic
process. A measurable function g : RY — R is called p-continuous if there exists a function ¢ : (0, 00) —

(0,00) with ¢(€) = o(1) as € — 0 such that E “g(fh,&g) —9(&n, €))7 1{“ 9}} < ¢(e€) holds

for all disjoint index sets I; and I> with I; U I = I and for all random vectors &y, , &1, §}2 such that
(é1,,€r1,) has distribution Px, x,, or Px, X Px, and &}, has the same distribution as Xr,. In our
case, the cardinality of I only needs to be d.

9This ¢ is from the definition of 1-continuity of h.

£1,—¢T,

198 Statistical Estimation and Concentration of Measure

converges absolutely and
V(U — 6) Lt N(0,46%), asn — occ.

Here, hy is defined by Eq (E.2).

It is noteworthy that there is a large amount of literature on the concentration of
measures for #id and non-iid processes. Many more results can be found from, e.g.,
(Ledoux, 2001; Lugosi, 2006), and http://www.stats.org.uk/law-of-large-numbers for an

online literature collection of LLN.

E.4 Mixing coefficients using Markov properties

Most results in the previous sections on non-#id process provide global characterization
of the stochastic process and the estimators, while more useful insights may be derived
by studying the Markov properties of the process (e.g., first order Markov chain). To

this end, we need some mixing coefficients which:

1. Can be decomposed onto the structure of the process, which yields more refined

characterization and tighter bounds.
2. Can be used to bound the concentration of measure.

The n-mixing coefficient introduced by Kontorovich (2007) is a powerful tool for
these two purposes. The main result of concentration is as follows. Let {Xi}lgign
(X; € Q) be a stochastic process defined on the probability space (2", F,P), and

f: Q" — R be a function satisfying some Lipschitz condition. Then we have

62
Pr{|f —Ef| > e} < 2exp () , (E4)
21 12w

where:
1. Pr is with respect to P.
2. |[fllLipw is the Lipschitz constant of f with respect to the weighted Hamming
metric dw: dw(Xx,y) := D1 wid(z; # y;), where w € R™ with all w; > 0.

Lipschitz constant means that |f(x) — f(¥)| < || fllLip.w - dw(x,y) for any x,y.

3. /A, is the n-by-n n-mixing matrix, which is the focus of following discussion.

§E.4 Mixing coefficients using Markov properties 199

The utility of Eq E.4 relies on bounding || f|;;, w and [[An]ly. Restricting w to

normalized Hamming (i.e., Y ;- ; w; = 1 with w; > 0), we have
[8awl3 < ne max (Aaw)? < | allZ -
1<i<n

So the major challenge becomes controlling the quantity ||A,|,,, and Kontorovich

o0

(2007) showed that by using the the Markov property of the process, ||A,],, can be
tightly bounded.

E.4.1 Bounds on ||A,||, using Markov property

This section collects several important results from (Kontorovich, 2007, Chapter 4).
We start with the definition of A\,,.

Definition 91 (n-mixing matrix) (Kontorovich, 2007, Section 3.2.1) Let (", F,P)
be a probability space and {X;};—, be its associated real valued stochastic process. For
1<i<j<nandzx €, let E(X]’-‘]X{ = x) be the law of X]” conditioned on X{ =z.
Fory € Q7! and w,w' € Q, define

mij (y, w,w') = || L(X]|XT = [yw]) = LX1XT = [y 1y »

— /
i = max max 7 (y,w,w
J yeQi—1 w,w'eq](B)’

where ||-— :||lpy s the total variation distance of two probability measures p and q on
(2, A) defined by ||p — q||py = supaeq [P(A) — q(A)|. Finally, N\, = A, (P) is defined
as the upper-triangular matriz with (Ay)i =1 and (Ay)ij = 75 for 1 <i < j <n.

The key interesting property of | A, ||, (or 7;;) is that its upper bound can be much
tightened by utilizing the Markov properties (conditional independence) of the process
(if any). Results below are all directly quoted from (Kontorovich, 2007, Chapter 4).

Markov chains

Let g be an inhomogeneous Markov measure on 2", induced by the kernels pg and
pi(-]), 1 <i < n. Thus

n—1
pu(z) = po(z1) H pi(Tiy1]ws).
=1
Define the " contraction coefficient:
0; = max ||pi(-ly) — pi(-1y) || 1y ; (E.5)

y,y'€Q

200 Statistical Estimation and Concentration of Measure

then
Nij < 9,‘91‘_;,_1 S 9]‘_1. (Eﬁ)

Undirected Markov chains

For any graph G = (V, E), where |V| = n and the maximal cliques have size 2 (are

edges), we can define a measure on Q" as follows

H(i,j)EE Yij (@i,)

=P(X =zx)= '
p(x) (7) 2wrean L jen ¥ig (@), 5)

for some 1;; > 0. We can relate the induced Markov transition kernel p;(-|-) to the

random field measure p by:

pilaly) = e et VL
S ven St S Hloy'?]

x,y €

Then one can bound the it" contraction coefficient 6; of the Markov chain:

Ri — T

9. — — <
max lez zly) — pi(zly)| < R

yyeQQ

where R; := max, yeq ¥i,i+1(x,y) and 7 := ming yeq ¢ i41(2, y). Eq (E.6) still applies.

Hidden Markov chains

Consider two finite sets Q (the hidden state space) and (the observed state space).
Let (Q”, 1) be a probability space, where p is a Markov measure with transition kernels
pi(-]-). Thus for & € ", we have:
n—1
(@) = po(@1) [| pr(@rsalin)-
k=1

Suppose (Q x Q,v) is a probability space whose measure v is defined by

n
e H (1)),

where ¢;(-|2;) is a probability measure on € for each # € Q and 1 < I < n. On this prod-
uct space, we define the random process (Xl, Xi)1<i<n, which is clearly Markov. The

marginal projection of (Xl, X;) onto X; results in a random process on the probability

§E.4 Mixing coefficients using Markov properties 201

space (2", p), where

z2eQn
The process (X;)i<i<n with measure p is called hidden Markov process, which need

not be Markov to any order. Define the k** contraction coefficient), by

O = sup |pr(-12) = pr(-12")]| py -
£,3'€0)

Then for the hidden Markov process (X;)i1<i<n, we have
Mij < 91‘92'4_1 .. 9j_1, for1<i< 7 < n.

Markov tree

If © is a finite set, a Markov tree measure p is defined on Q" by a tree T' = (V, E) and
transition kernels py, {pw(|)}(l jep- Take V = [n] :== {1,...,n}. The topology of T'

and the transition kernels determine the measure p on Q":

p(x) =po(a1) [T pislaslzo). (E.7)

(i,5)EE

A measure on Q" satisfying Eq (E.7) for some tree T" and {p;;} is said to be compatible
with tree T; a measure is a Markov tree measure if it is compatible with some tree.

Suppose {X;}, oy, (Xi € Q) is a stochastic process defined on (QN, P). If for each
n > 0 there is a tree T = ([n], E™) and a Markov tree measure y,, compatible with
T such that for all z € Q" we have

P{X7" = a} = pn(2),

then we call X a Markov tree process.

For all (u,v) € E, define (u,v)-contraction coefficient 6,,, by
—_— . _— . ,
O —yIE%}éHpuv(1Y) — Pun(|y)HTV

Suppose max(y ek Ouy < 0 < 1 for some 6 and the width!'® of the tree T is at most
L™, Then for the Markov tree process X we have

iy < (1-(1- G)L)L(jii)/LJ , forall1<i<j<n.

"The width of a tree is defined as the greatest number of nodes in each level /depth.
"n theory, the root of the tree can be arbitrarily chosen, which does affect the width. However,
the sharpest bound is attained when the choice of root minimizes the width.

202 Statistical Estimation and Concentration of Measure

E.5 Concentration of measure with function space

So far, we have characterized random processes by using only one fized function. How-
ever, machine learning often involves optimization over a space of functions, and hence
it is crucial to study the concentration properties in conjunction with function spaces.
This section will motivate the very fundamentals for iid observations, and the non-iid

case is far from well studied in machine learning.

Suppose the instance space is X and the label space is Y = {—1,1}. We are given a
sequence of labeled instances (X, Y;)1<i<, which are assumed to be 4id for now. Let P
be a distribution of Z; = (X;,Y;). Let G be a space of functions g : X —) from which
we search for an optimal classifier. The selection criteria is to minimize the expected
risk:

R(g) = P{g(X) £ Y}, (E8)

which can be estimated by the empirical risk
_ 1 <&
Ra(g) = = > 0(F(X:) # V). (£.9)
i=1

Treating §(g(X;) # Vi) as a function f : X x Y — {0,1} of Z; = (X;,Y)), i.e.,
f(Z;) =0(9(X;) #Y;), then Eq (E.8) and Eq (E.9) can be rewritten as

RUN=E[(Z)] and Ra(f)= 1> f(Z0). (E.10)
=1

and suppose the corresponding space of f is F. Our goal is to minimize R(f) with
respect to f. But in practice, this can only be accomplished approximately via minimiz-
ing the empirical risk. Let f be the function (classifier/hypothesis) which minimizes

the empirical risk

[= arginf R, (f).
ferF

A natural question to ask is how much R, (f;) deviates from R(f}). So we study

its upper bound (uniform deviation)

W(27) = sup [R(f) = Ru(f)| = max { sup {R(f) = Rua(£)}, sup {Ru(f) = R())} }-

feF feF feF
Y4 (27) v (27)

We first bound ¢4 (Z7), and ¢_(Z7) can be bounded similarly. A standard pro-
cedure which is also taken by Bousquet et al. (2005) is to invoke the McDiarmid’s

§E.5 Concentration of measure with function space 203

inequality noticing that Z; causes at most 1/n change in ¢4 (Z7):

P{|¢4(Z7) = Ezp [0+ (Z])]] > ¢} < exp (—2n6?)) (E.11)
i.e., with probability at least 1 — § we have

94 (20) ~ By [0 (ZD)]] < 252, (£.12)

So the problem becomes bounding Ezn [¢4 (Z1")], which can be done by using Rademacher
averages as in (Bousquet et al., 2005).
E.5.1 Rademacher averages

Define n #d binary random variables {o;};"_;, where each o; has Pr(c; = 1) = Pr(o; =

—1) = 0.5. Then a simple application of Jensen’s inequality yields

=Rn(F,Z7)

n

sup {E[f(Z)] - iZﬂZi)}

feEF i=1

)

Ezp [+ (27)] = Ezp

1 n
<2Ezp Esn [?‘;2 n Z 0:f(Z;)
-1

-~

:=Rn(F)

(E.13)
where R, (F,Z}) and R, (F) are the empirical Rademacher average and (population)
Rademacher average respectively (Mendelson, 2003).

Notice that in R, (F, Z7'), the change of Z; again causes at most 1/n variation, so
McDiarmid’s inequality can be applied again. Combining with Eq. (E.12), we conclude
that with probability at least 1 — 9:

log(1/4) 21og(2/96)

U (27) S 2 Ru(F) +[—5— and 94.(Z7) <2 Ra(F, 27) +) — ——

As for ¢_(Z7), Eq. (E.12) keeps intact (except changing ¢4 (Z7) to ¢¥_(Z7)). It
is also not hard to show that Eq. (E.13) still holds for ¢_(Z7"). Since 0 < ¢(Z7) =
max {4 (Z7),v_(Z7)}, we conclude that with probability at least 1 — ¢:

B(Z}) < 2 Ru(F) + log;i/é) (E.14)
W(Z}) <2 Ro(F, Z7) + 210gn(4/(5) (E.15)

The bound in Eq. (E.14) uses R, (F) which depends solely on the function class
F, and can be bounded via the VC-dimension of F. Bound in Eq. (E.15) is data
dependent, which could be tighter than that in Eq. (E.14) if the samples are “typical”.

204 Statistical Estimation and Concentration of Measure

It is interesting to examine R, (F, Z7') in more depth. First of all, it is independent

of Y; because

o;— 1
0if(Z;) = 00(9(Xs) #Y5) = 6(9(Xy) # 03Ys) + 5
therefore
n 1
Ry (F,Z}) = Egp [?22 - 25 i) #oYi)| -5 (E.16)
1
= E n = —_ . E.l
o7 [?2%25 =oYi)| — 5 (E.17)

In effect, o; flips the sign of Y;. The expectation over all o} € {—1,1}" enumerates
all the possible labelings of Xi,...,X,. Secondly, Eq. (E.16) shows that for each
labeling one looks for the classifier ¢ which maximizes the classification error. On the
other hand, Eq. (E.17) shows that for each labeling one looks for the classifier g which
maximizes the accuracy. These two interpretations look contradictory, but indeed they
both characterize the complexity of the function space F. Obviously, F C F’ implies
R.(F,Z}) < R, (F',Z}). Therefore, although a larger F lends more possibility in
reducing the empirical risk, the Rademacher average grows and Eq. (E.14) and (E.15)
show the higher risk that the empirical risk deviates from the true expected risk.

In general, f does not need to be restricted to the form of d(g(X;) # Yi), and it
can map from any space to R. > 7', 0, f(Z;) measures how well the vector/direction
(01,...,0p) aligns with (f(Z1),..., f(Zy)). This alignment is similar to our discussion
in Section BUGBUG. More details can be found in (Bartlett & Mendelson, 2002).

E.5.2 Extension to non-iid observations

Unfortunately, little has been about the deviation ¢(Z7) = supscr |R(f) = Ru(f)|
when the process (samples) is non-iid. First, the analog of Eq. (E.11) can be simply
derived from Eq. (E.4):

ne?
P {4 (Z27) —E¢i(Z7) > €} <exp (—2 :
4 Anll5
Now the key difficulty is to generalize Eq. (E.13) to the non-iid case, i.e., some kind
of tailoring the definition of Rademacher average to the non-iid process. This is still
an open question. Once this can be done, the bounds in Eq. (E.14) and (E.15) carry

over directly.

Appendix F

Proof for Proposition 44

In this appendix, we give the detailed proof of why the function defined by Eq. (4.13)
is not in the RKHS of k. For self-containedness, we copy to here the definitions in
Proposition 44.

Consider a simple three node chain on R? with cliques {{Z1, Z2},{Z2, Z3}},

A Z3 Z3

and let the kernel on the cliques be Gaussian:
kij (2, 2), (#4, 2))) = exp(= (2 — 2)* = (5 — £)%) for {i,5} = {1,2} or {2,3},
and the joint kernel be k1o + kog:
k(z,2) = k12((21, 22), (21, 23)) + kas((22, 23), (22, 23)).
Pick two functions fi5 € Hi2, fo3 € Hog, and define f by

fiz(x1,z2) :==0,
fa3(w2, 23) := ko3 (0, (22, 23)) = exp(—23 — 23),

f(z) = f(21,22,23) := fra(21,22) + fo3(w2, m3) = exp(—23 — 23).

We show in the rest of the appendix that f is not in . To this end, we need the

following lemma which will be proved in Section F.3 later.

Lemma 92 Let k be a Gaussian kernel on R? with RKHS H. If f € H and f(x,y) is
independent of x for all y, then f = 0.

F.1 Finite linear combination

We first show that f(z) is not in the linear span of {k((a,b,c),z) : a,b,c € R}. Other-
wise suppose that f(z) =Y ;" ; aik((ai, bi,¢),2z), o € R. Then

205

206 Proof for Proposition 44

z) =Y aik((ai, b, ci), ZazkIQ (@i, bi), (21,22)) + Y _ cvikas((bi, i), (22, 23))
i=1

i=1

-~

=f12(21,22)EH12 :=f23(22,23)EHo3

Since both f(z) and fa3 are independent of 21, so is fi2. By Lemma 92, we must

have fio =0, i.e.,

> aikia((ai, bi), (21, 22)) = 0 V21, 22 (F.1)
Z aikas((bs, i), (29, 23)) = exp(—23 — 23) V29, 23 (F.2)
i=1

Integrating out z1, z2 on both sides of Eq. (F.1) throughout R?, we derive Y, a; = 0.
Integrating out 22,23 on both sides of Eq. (F.2) throughout R?, we derive >, a; # 0.

Contradiction.

F.2 Limit of linear combination

Next, we need to show that including the limit point of the linear span does not solve

the problem either. Suppose there is a sequence of functions in H:

Ny
{fn ::Za?k az’b?’ ?))}
=1 neN

such that f™ * f. We rewrite

f 21722723 Zank azab’zna ZL) (21,252,253))

Np,
= Zankw ai',bi'), (21, 22)) + Za?k‘%((b?, ci')s (22, 23))
i=1
=f15(21,22)€H12 =f34(22,23)EHas

It is easy to check that [|f™||* = || full® + | f25]1% As {||f"[}, is bounded, so is
{Ilfi51I},,- Hence { f{5}, must have a cluster point f}, € H2, and a subsequence { f{5},
that converges to it. Without loss of generality, we assume that this subsequence is
{fl5},, itself. Similarly, we can assume that {f35}, converges to f3; € Ho3. In the
limit, we have f{5(z1,22) + fo3(22,23) = f(21,22,23). By Lemma 92, we must have

¢F.3 Proof of Lemma 92 207

fis = 0 and f3; = exp(—25 — 22). In conjunction with Proposition 13, we obtain

uniform convergence

Za”k’lg ail,by), (z1,22)) = 0 as n — 0o, (F.3)
Za"k23 moc), (22, 23)) = exp(—23 — 23) as n — oo. (F.4)

Uniform convergence allows us to integrate both sides of Eq. (F.3) and (F.4) through-
out R? which yields lim; 00 Y g @ = 0 and lim, o0 Y iq @' # 0 respectively.

Contradiction.

F.3 Proof of Lemma 92

Finally, we turn to prove Lemma 92. Our proof relies on an important theorem on the
orthonormal basis of real Gaussian RKHS (Steinwart & Christmann, 2008, Theorem
4.42). It requires that the kernel be defined on a domain which contains an open set,

and this is of course true for R%2. Applying to our special case, the theorem says for all

fin H, there must exist a double-indexed array b = {b;; € R}, ;,, such that
2@+a o
f(z1,22) Z zlz% exp (—2f — z%) , (F.5)
7]€N0
2
Ibllz = b?,j < 00, (F.6)
1,j€No
1Fll2 = 1Bl - (F.7)
Denoting a; := %, Eq. (F.5) gives:
f(e1,20) - exp() = D bijia;212 Z
7]6N0
—1)k . .
= Z bi,jaiaj(]{3') Zfi+2kZ%,
,5,k€Np :

Since the left hand side is independent of z;, the identity theorem for the power series
on the right hand side implies that the coefficient of 2z be 0 for any p > 1 and ¢ > 0.

This means that for all j € Ny, we have:
2023 coefficient is cg ; := by jagaj,

1.J. : ; e) _
2 %y: coeflicient is ¢y j := b1 jara; =0

208 Proof for Proposition 44

z%z%: coefficient is b jasa; — by japa; = 0, hence ca ; 1= by jaza; = by japa; = co ;.
zfz%: coefficient is b3 jaza; — b1 jaja; = 0, hence c3 ; := b3 jaza; =0

zfz%: coefficient is by jasa; — by jasa; + %b(]’ja()aj =0, hence ¢y j := by jasa; = o).

Letting ¢ ; := by jaraj, we will prove by induction that c;; = 0 if k is odd, and
Cok,j = %Co,j for all £ > 0.

Suppose c2i—1,; = 0 holds for 7 = 1,2,..., k. Then we check the coefficient of

2k+1
2

. 1
coefficient = bog 11 jasgy1a; — bog—1jask—1a; + 55%734@%73&]‘ 3,b2k 5,j02k—50;5 + .

1 1

= Cok+1, — C2k—1,5 + 2,02k 34— 3,02k 55 T -

=0.

So Cok+1,5 = 0.

Now we prove the result for cyy ;. Suppose co;; = %CO,]‘ for all 7+ < k. Then we

check the coefficient of 22k+2 Zy:

. 1
coefficient = boy o jask2a; — bay jasga; + §b2k—2,ja2k—2aj - ?bZk:—4,ja2k:—4aj +...

1 1
= Cok+2, — Cok,j t+ ECQk—Q,j 3,C2k 45+
=0.
Hence
1
Cok+2,5 = C2k,j — 2,62k 2,5 T 3,02k 4,5 —
11 1 1 + 1 1 1
=coi | o= — =
O\ Tk 20k —1) " 31 (k—2)
k+1
—C.i k+1
:COJ‘.Z(_l)%< +)
(k+1)! P i
(k+ 1)V

where the last step is based on the binomial expansion of (1 — 1)**!. Now we check

the square norm of f: HfHH Z” i ;- First fix j € No, we have

C

Z bf’j - aéj Z 2221 (F.8)

i€Np J ’LZO

Unfortunately, the series diverges, which can be seen by using exactly the same ar-

gument in the proof of (Steinwart & Christmann, 2008, Theorem 4.42): denote «; :=

¢F.3 Proof of Lemma 92 209

1)1
%,then
Oé@'+1_2i—|—l> /)
o 20427 i+ 1

for all ¢ > 1. So iq; is an increasing positive sequence, and therefore there exists a
positive constant C' such that «; > % for all ¢ > 1. Hence Z;’io «; = oo. Since

|| f]l < o0 and 0 < a; < oo for fixed j, Eq. (F.8) requires that ¢ ; = 0 for all j € No,
which means b; ; = 0 for all 4, j € Ng. So f = 0.

210 Proof for Proposition 44

Appendix G

Incomplete Cholesky
Decomposition for HSIC-Struct

With T observations and a w X w mixing matrix M, a naive implementation of (4.27)
costs O(T?w?) computations and O(T?) memory to obtain K*. This is beyond normal
capacity in computation and storage when T is large (e.g., 67000 in our experiment).
We resort to a low rank approximation of kernel matrix K* via incomplete Cholesky
decomposition Bach & Jordan (2002), i.e. approximating K* by PP ' where matrix
Pis T x D with D < T. At each iteration d (1 < d < D), one column of K* is
needed which costs O(Tw?), and the update of P costs O(T'd). So the total cost is
O(TDw? 4+ TD?) for computation and O(TD) for storage. The short Matlab routine

for incomplete Cholesky decomposition is given below:

Input:
Kstar : a n-by-n positive semi-definite matrix (we will only
query a small fraction of its elements)
max_d : the maximum rank of the approximating matrix P
tol : the approximation tolerance
OQutput:
A matrix P (n-by-d) such that PP’ approximates K.

Either d = max_d, or the approximation error is below tol.

d = 0;
= [1;
n = size(Kstar, 1); % Kstar matrix is sized n-by-n

xbuf = the diagonal of Kstar (n-by-1 vector);
sum_buf = sum(buf);
[nu, I(j+1)] = max(buf);

P = zeros(1, n);

211

212 Incomplete Cholesky Decomposition for HSIC-Struct

while (sum_buf > tol && d < max_d)
d=d+ 1;

nu = nu~(0.5);

* K_col = the I(j)-th column of Kstar;
P(:, d) = (K_col - P *x P(C I(d), :)’) ./ nu;

buf = buf - P(:, 4)." 2;
[nu, I(d+1)] = max(buf);

sum_buf = sum(buf);

end

In the two steps marked with (%), we either need a column or a diagonal of the
matrix. For K* = K x M (K convolved with M), each element K7, only depends on
w X w values in K. This locality property of the convolution operation is critical for

our efficient approximation algorithm to work.

Appendix H

Detailed proof for Theorem 57

For self-containedness, we repeat the notation used by Teo et al. (2010):

a; € Oy Remp (wtfl)

by = Remp(wt—l) - <’wt—1,at>

At = (a’la"'vat)
B = (b, by)
R (w) = max (w, a;) +b;

Ji(w) = AQ(w) + RP(w)
JH(a) = X2 (=214 @) — b

wy = argmin Jy(w)
w

a; = argmin J; ().
acAy

Note the dual connection is w; = -\~ Aay.

In line search BMRM, the inner optimization problem
JH(a) = (=21 Asa) — bra,

is subject to a = a(n) = (na, 4,1 — n)T with n € [0,1]. Let n; = argmin J; (a(n)),

and a; = a(n:). With some abuse of notation, we write J;(n) = J; (a(n)).

H.1 Example Dataset and Initial Few Steps

Consider the following training examples in 1-d space. Let x; € R be features and
yi € {—1,1} be labels. Pick (z1,y1) = (1,1), (z2,92) = (-1, -1), (23,y3) = (3, 1), and

213

214 Detailed proof for Theorem 57

(z4,y4) = (—%,—1). Set A = {-. Then the objective function of SVM is:

J(w)—?}2w2+;[1—w]++;[1—1;]+. (H.1)

First we confirm that the optimal solution is w* = 2. This can be seen by checking
the subgradient of J(w) at w* = 2:

0J(2) = %627 %;[0] = 0cal)

And J(w*) = §. Now the dual connection is w; = —16A440y, and J; () = 8 | Arer|)? —
l_)tOé.

Let wg = 0. We now do a few iterations.
Stepl Ai=a;=(-3),b1=b=1 01 =1, w =—-16321=12.
Step 2 a3 =0, Ay = (—%,O), by =0, by = (1,0). Let a = (1,1 —n)". Then

* 3 2 9 2
Jz(n)—8<—4n> =50 =0

1 18 31 4
= — inJi(n) = -, ==, = -16—= = - € (1,2).
72 a;ég[rglll]n 5(m) g @ <9 9> wo 19-3 (1,2)

T T
Step 3 a3 = _%7 A3 = (_%)07 _%)7 b3 = %7 b3 = (1707 %) Let a = (%T,a %T,? 1- 77)
Then

2
J3(n) =8 (—3177 “la- n)) L laog=2po 2y,

49" 4 979 97 718
T
5 5 5 3 35 13\ 7
= = in J3 = = \=5'0'0) =16 - > 2.
s s =g <72 9 8> ws (4 ntT 8> 3

. T
Step4 a4 =0, A4 = (_%707 _%70)7 by =0,bs = (1707 %70) Let o = (%777 8777 %777 1- 77)
Then

472 48

7217 28" 288" T 144"
(185 185 111 12)

(35 13)2 5 13 49 , 37

= 1y =argminJ;(n) =
n€l0,1]

~3185 1111
— 1,2
b 6(13528 4 392) o1 € (12

35287 441° 392 49

¢H.2 Asymptotic Rates 215

Step 5 as, = —i, b5 =1.

In general, if wy—; € (1,2), then a; = —%, and by = 1. If wy_1 > 2, then a; = 0,
and by = 0. As we have seen, w; € (1,2) for ¢ being even, and w; > 2 for ¢ being odd.
We will show that this is true indeed: w; oscillates around 2 and approaches 2 in both

directions.

H.2 Asymptotic Rates

Theorem 93 gives recursive formulae of wy and ;1 (the first element of ay).

Theorem 93 (Theorem 59 in text) For k > 1, we have

w1 + 1200 11w5_; + 16“’216—10‘%%1,1 - 640‘%1@71,1
Wopy1 = 2 5 > 2, (H.2)
wap—1 (Wap—1 + 40421%1,1)

2 2
wy_q + 1605, 4 4

Qok41,1 = Q2k—1,15 (H.3)
(wap—1 + dagg_11)?
8agp_
wop = 2 — TLL ¢ (g 9y, (H.4)
Wak—1

(H.2) and (H.3) provide recursive formulae to compute wopi1 and ogpy11 based on

wop—1 and agr—1,1, and (H.4) gives way.

The proof will be given in the section H.3. By (H.2) and (H.4), we have:

9 — gy, = 8ZH=LL (H.5)
Wok—1
0ok 11(wap—1 — dagg_11)
Wop41 —2 =38 (H.6)

wop—1(wok—1 + daog_11)

BMRM guarantees

lim wg = 2, hence lim agp_11 = 0.
k—o0 k—o0

We will show in Theorem 94 that asr_11 tends to 0 at the rate of 1/k, and hence

by (H.5) and (H.6), |2 — wg| approaches 0 at the same rate. This further implies, as

will be shown in Theorem 95, that J(wy) — J(w*) goes to 0 at the rate of 1/k as well.

Theorem 94 (Theorem 58 in text) limj_,o kaor_11 = ;. Hence by (H.5) and

(H.6), we have limg_,o0 k |2 — wy| = 2.

216 Detailed proof for Theorem 57

Proof The proof is based on (H.3). Let 8, = 1/agk_1,1, then limy_,, S = 0o because

limkﬁoo Qok—1,1 = 0. Now

] —1 5\ ! —1
lim koaogp—11=(lim —— = lim — =1 1 —
g V2R <ki>n;o ka%—l,l) <ki>n;° k) (kingo Bt Bk> 7

where the last step is by the discrete version of L’Hospital’s rule!.

limy_y00 Br+1 — Bk can be computed by plugging definition 5, = 1/ag,—1,1 into
(H.3), which gives:

2 1
3 = kgﬁf = Biy1— B =238
k+1 <w2k+4é> k

worfy . W

wyBp+16 wd + ;7%

Since limy_, oo wi, = 2 and limy_,o B = 00, SO

1
lim koog—11 = (lim Byp1 — Br =
k—o00 k—ro0

Theorem 95 (Theorem 57 in text) limy .o k(J(wy) — J(w*)) = i

Proof Let ¢ =2 — wy, then limg_, k |ex| = 2 by Theorem 94.
If €, > 0, then J(wy) — J(w*) = 52— x)? + 3% — & = fex + 5562 = & || + 5565
If €, <0, then J(wy) — J(w*) = 35(2 — €,)> — § = —kex + 3561 = 1 || + 5565

Combining these two cases, we conclude limy_,o k(J (wy,) — J(w*)) = 1. [|

H.3 Proof of Theorem 93

We prove Theorem 93 by induction. Obviously, Theorem 93 holds for £k = 1. Suppose
Theorem 93 holds for indices up to some k — 1 (k > 2). Let p=2k — 1 (p > 3). Then

3 1 1 - 1 1
Ap:<—4’0’—4,...,0,_4>, bp:<17072)"'70’2>'

"http://hermes.aei.mpg.de/arxiv/05/04/034/article. xhtml

¢H.3 Proof of Theorem 93 217

So
3 1 1 1 1
wy = —16A,0;, = (—16) (—404}7,1 13T %5 T Opp-2 4ap7p>
Wp
= Qpg3 + ...+ Qpp—2 + app = Z _ 3ap71‘
So
7 1 1 1 1
bpap =aQp1+ Qap,?, + §Oép,5 + ...+ iap’p_2 —+ §ap,p = gwp — Qapal

Since wp > 2, 80 apt1 = 0, byy1 = 0. So Apr1 = (A,,0), bps1 = (BP,O). Let
apy1 = (noy, 1 —n), then J¥, | (n) = 8n(A) ap)? — nbpay,. So

by 2wy — Bay,1
Mp+1 = = —, H.7
" 16 (Apap)2 wp (5D
8a 1
wpt1 = —16Apapip1 = wpipy1 = 2 — Tp’ <2
p

Since ag 1 = %, p > 3, and a1 > 41,1 due to the update rule of Is-bmrm, we have

8
8ap1 < 9 < 2 < wp, (H.8)

hence wp41 > 1.

Next step, since wpt1 € (1,2), 80 apy2 = —1, bpro = 3, Apio = (4p,0,—7),
bp1 = (bp,0,3). Let apa(n) = (mmpr1ce, n(1 = npt1), 1 —n). Then
1 - - 1
Aptro0pra = Mp+14pay — 1(1 —n), bpt2ap+2 = Mp+1bpay, + 5(1 —n).

So

;+2(77) = S(Ap+zap+2)2 - 5p-|-204p+2

1 2 - 1
=5 (4np+1Apap + 1) - <4np+1Apozp + Mp+1b,0p + 2) 1 + const,

where the const means terms independent of 7. So

N Anpr1 A0 + np+113 ap + 1 w? + 1602 1
Tp+2 = argmin Jy »(n) = £ = pL (H9)
n€l0,1] (477p+1Apap + 1) 17p+1 (wp + 4041,,1)

218 Detailed proof for Theorem 57

and

Wpt2 = —16A, sapyo = —16n0p42mpr1 4,0 + 4(1 = 1pi2)
wg + 12ap,1w12) + 16wp04123’1 — 6405’)71

-)

wp (wp + 40‘1071)2

where the last step is by plugging (H.7) and (H.9). Now check

where the last step is due to (H.8).

Bibliography

Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., & Weiss, B. (1996). Strong
laws for L and U-statistics. Transactions of the American Mathematical Society, 348,
2845-2865.

Afonja, B. (1972). The moments of the maximum of correlated normal and t-variates.
Journal of the Royal Statistical Society. Series B, 34(2), 251-262.

Altun, Y., Hofmann, T., & Smola, A. J. (2004a). Gaussian process classification for
segmenting and annotating sequences. In Proc. Intl. Conf. Machine Learning, 25-32.
New York, NY: ACM Press.

Altun, Y., & Smola, A. (2006). Unifying divergence minimization and statistical in-
ference via convex duality. In H. Simon, & G. Lugosi, eds., Proc. Annual Conf.
Computational Learning Theory, LNCS, 139-153. Springer.

Altun, Y., Smola, A. J., & Hofmann, T. (2004b). Exponential families for conditional
random fields. In Uncertainty in Artificial Intelligence (UAI), 2-9. Arlington, Vir-
ginia: AUAIT Press.

Amari, S.-i. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2), 251-276.

Amdahl, G. (1967). Validity of the single processor approach to achieving large-scale
computing capabilities. 30, 483—485.

Andrew, G., & Gao, J. (2007). Scalable training of /;-regularized log-linear models. In
Proc. Intl. Conf. Machine Learning, 33—40. New York, NY, USA: ACM.

Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to

mcmce for machine learning. Machine Learning, 50, 5—43.

Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc., 68,
337-404.

Bach, F. R., & Jordan, M. I. (2002). Kernel independent component analysis. J. Mach.
Learn. Res., 3, 1-48.

219

220 BIBLIOGRAPHY

Bagnell, J. A., & Ng, A. Y. (2006). On local rewards and scaling distributed reinforce-
ment learning. In Proc. NIPS’2005, vol. 18.

Barahona, F., & Mahjoub, A. R. (1986). On the cut polytope. Mathematical Program-
ming, 36(2), 157-173.

Bartlett, P. L., Jordan, M. 1., & McAuliffe, J. D. (2006). Convexity, classification, and
risk bounds. Journal of the American Statistical Association, 101(473), 138-156.

Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk
bounds and structural results. J. Mach. Learn. Res., 3, 463—482.

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, 15, 319-350.

Beck, A., & Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3), 167-175.

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2000). The complexity

of decentralized control of markov decision processes. In UAI 16.

Bertsekas, D. (1976). On the Goldstein-Levitin-Polyak gradient projection method.
IEEE Transactions on Automatic Control, 21(2), 174-184.

Bollen, J. A. M. (1984). Numerical stability of descent methods for solving linear

equations. Numerische Mathematik.

Bordes, A., Bottou, L., & Gallinari, P. (2009). SGD-QN: Careful quasi-Newton stochas-
tic gradient descent. Journal of Machine Learning Research, 10, 1737-1754.

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with

online and active learning. Journal of Machine Learning Research, 6, 1579-1619.

Borgwardt, K., & Ghahramani, Z. (2009). Bayesian two-sample tests. Tech. Rep.
04-104. Http://arxiv.org/abs/0906.4032.

Borovkova, S., Burton, R., & Dehling, H. (1999). Consistency of the takens estimator
for the correlation dimension. Annals of Applied Probability, 9(2), 376-390.

Borovkova, S., Burton, R., & Dehling, H. (2001). Limit theorems for functionals of
mixing processes with applications to dimension estimation. Transactions of the
American Mathematical Society, 353(11), 4261-4318.

Borwein, J. M., & Lewis, A. S. (2000). Convex Analysis and Nonlinear Optimization:
Theory and Examples. CMS books in Mathematics. Canadian Mathematical Society.

BIBLIOGRAPHY 221

Boser, B., Guyon, 1., & Vapnik, V. (1992). A training algorithm for optimal margin
classifiers. In D. Haussler, ed., Proc. Annual Conf. Computational Learning Theory,
144-152. Pittsburgh, PA: ACM Press.

Bottou, L. (1991). Une Approche théorique de I’Apprentissage Connezionniste: Ap-
plications a la Reconnaissance de la Parole. Ph.D. thesis, Université de Paris XI,

Orsay, France.

Bottou, L., & Bousquet, O. (2007). The tradeoffs of large scale learning. In
J. C. Platt, D. Koller, Y. Singer, & S. Roweis, eds., NIPS. MIT Press.
http://books.nips.cc/papers/files/nips20/NIPS2007_0726.pdf.

Bottou, L., & LeCun, Y. (2004). Large scale online learning. In S. Thrun, L. Saul, &
B. Scholkopf, eds., Advances in Neural Information Processing Systems 16, 217-224.
Cambridge, MA: MIT Press.

Bousquet, O., Boucheron, S., & Lugosi, G. (2005). Theory of classification: a survey
of recent advances. ESAIM: Probab. Stat., 9, 323— 375.

Boutilier, C. (1999). Sequential optimality and coordination in multiagent systems. In
1JCAI 478-485.

Boyd, S., & Vandenberghe, L. (2004). Convexr Optimization. Cambridge, England:
Cambridge University Press.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families, vol. 9 of Lecture

notes-monograph series. Hayward, Calif: Institute of Mathematical Statistics.

Candes, E., & Tao, T. (2005). Decoding by linear programming. IEEE Trans. Info
Theory, 51(12), 4203-4215.

Casella, G., & Robert, C. P. (1996). Rao-blackwellisation of sampling schemes.
Biometrika, 83(1), 81-94.

Catanzaro, B., Sundaram, N., & Keutzer, K. (2008). Fast support vector machine
training and classification on graphics processors. In Proc. Intl. Conf. Machine

Learning.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Incremental algorithms for hier-
archical classification. J. Mach. Learn. Res., 7, 31-54.

Cheney, E. W., & Goldstein, A. A. (1959). Newton’s method for convex programming
and tchebycheff approximation. Numerische Mathematik, 1(1), 253-268.

222 BIBLIOGRAPHY

Cheng, L., Vishwanathan, S. V. N.; Schuurmans, D., Wang, S., & Caelli, T. (2006).
Implicit online learning with kernels. In B. Scholkopf, J. Platt, & T. Hofmann, eds.,
Advances in Neural Information Processing Systems 19. Cambridge MA: MIT Press.

Cheng, L., Vishwanathan, S. V. N.,; & Zhang, X. (2008). Consistent image analogies
using semi-supervised learning. In Proc. IEEE Conf. Computer Vision and Pattern

Recognition. Anchorage, AK.

Chu, C., Kim, S., Lin, Y. A., Yu, Y. Y., Bradski, G., Ng, A., & Olukotun, K. (2007).
Map-reduce for machine learning on multicore. In B. Scholkopf, J. Platt, & T. Hof-

mann, eds., Advances in Neural Information Processing Systems 19.

Collins, M., & Duffy, N. (2001). Convolution kernels for natural language. In T. G.
Dietterich, S. Becker, & Z. Ghahramani, eds., Advances in Neural Information Pro-
cessing Systems 14, 625-632. Cambridge, MA: MIT Press.

Collins, M., Globerson, A., Koo, T., Carreras, X., & Bartlett, P. (2008). Exponentiated
gradient algorithms for conditional random fields and max-margin markov networks.

J. Mach. Learn. Res., 9, 1775-1822.

Cooper, G. F. (1990). The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42, 393—405.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online
passive-aggressive algorithms. J. Mach. Learn. Res., 7, 551-585.

Crammer, K., Dekel, O., Shalev-Shwartz, S., & Singer, Y. (2003). Online passive-
aggressive algorithms. In S. Thrun, L. Saul, & B. Scholkopf, eds., Advances in
Neural Information Processing Systems 16. MIT Press.

Crammer, K., & Singer, Y. (2003). Ultraconservative online algorithms for multiclass

problems. Journal of Machine Learning Research, 3, 951-991.

Dai, Y.-H., & Fletcher, R. (2006). New algorithms for singly linearly constrained
quadratic programs subject to lower and upper bounds. Mathematical Programming:
Series A and B archive, 106(3), 403-421.

Dangauthier, P., Herbrich, R., Minka, T., & Graepel, T. (2008). Trueskill through
time: Revisiting the history of chess. In NIPS.

Dekel, O., Keshet, J., & Singer, Y. (2004). Large margin hierarchical classification. In
Proc. Intl. Conf. Machine Learning.

BIBLIOGRAPHY 223

Dobson, A. J., & Barnett, A. (2008). Introduction to Generalized Linear Models. Texts
in Statistical Science. Chapman & Hall/CRC, 3 edn.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in
Practice. Springer-Verlag.

Duchi, J., Shalev-Shwartz, S., Singer, Y., & Chandrae, T. (2008). Efficient projec-
tions onto the ¢;-ball for learning in high dimensions. In Proc. Intl. Conf. Machine

Learning.

Duchi, J., & Singer, Y. (2009). Online and batch learning using forward-backward
splitting. J. Mach. Learn. Res. Accepted.

Dutech, A., et al. (2005). Proc of reinforcement learning benchmarks and bake-offs II.
In NIPS 2005 Workshops.

Elisseeff, A., & Weston, J. (2001). A kernel method for multi-labeled classification. In
Advances in Neural Information Processing Systems 14, 681-687. Cambridge, MA:
MIT press.

Enflo, P. (1973). A Counterexample to the Approzimation Property in Banach Spaces.
Acta Mathematica.

Fan, R.-E., & Lin, C.-J. (2007). A study on threshold selection for
multi-label classification. Tech. rep., National Taiwan University.

Http://www.csie.ntu.edu.tw/ cjlin/papers/threshold.pdf.

Ferris, M. C., & Munson, T. S. (2000). Interior point methods for massive support
vector machines. Data Mining Institute Technical Report 00-05, Computer Sciences

Department, University of Wisconsin, Madison, Wisconsin.

Ferris, M. C., & Munson, T. S. (2002). Interior-point methods for massive support
vector machines. SIAM Journal on Optimization, 13(3), 783-804.

Fukumizu, K., Sriperumbudur, B., Gretton, A., & Scholkopf, B. (2009). Characteristic
kernels on groups and semigroups. In Advances in Neural Information Processing
Systems 21.

Ghamrawi, N., & McCallum, A. (2005). Collective multi-label classification. In CIKM.

Graepel, T., Herbrich, R., & Shawe-Taylor, J. (2000). Generalisation error bounds
for sparse linear classifiers. In Proc. Annual Conf. Computational Learning Theory,
298-303.

224 BIBLIOGRAPHY

Graf, H. P., Cosatto, E., Bottou, L., Durdanovic, I., & Vapnik, V. (2004). Parallel
support vector machines: The cascade SVM. In Neural Information Processing

Systems.

Gretton, A., Bousquet, O., Smola, A., & Schélkopf, B. (2005a). Measuring statistical
dependence with Hilbert-Schmidt norms. In S. Jain, H. U. Simon, & E. Tomita,
eds., ALT, 63-77. Springer-Verlag.

Gretton, A., Fukumizu, K., Teo, C.-H., Song, L., Scholkopf, B., & Smola, A. (2008).
A kernel statistical test of independence. Tech. Rep. 168, MPI for Biological Cyber-

netics.

Gretton, A., Herbrich, R., Smola, A., Bousquet, O., & Scholkopf, B. (2005b). Kernel
methods for measuring independence. J. Mach. Learn. Res., 6, 2075-2129.

Grinwald, P. D. (2007). The Minimum Description Length Principle. MIT Press.

Guestrin, C., Lagoudakis, M., & Parr, R. (2002). Coordinated reinforcement learning.
In ICML.

Guo, Y. G., Bartlett, P. L., Shawe-Taylor, J., & Williamson, R. C. (1999). Covering
numbers for support vector machines. In Proc. Annual Conf. Computational Learning

Theory.

Hammersley, J. M., & Clifford, P. E. (1971). Markov fields on finite graphs and lattices.
Unpublished manuscript.

Hamze, F., & de Freitas, N. (2004). From fields to trees. In Uncertainty in Artificial
Intelligence (UAI).

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning.
New York: Springer, 2 edn.

Haussler, D. (1999). Convolutional kernels on discrete structures. Tech. Rep. UCSC-
CRL-99-10, Computer Science Department, UC Santa Cruz.

Herbrich, R., Minka, T., & Graepel, T. (2007). Trueskill™™: A Bayesian skill ranking
system. In NIPS.

Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear
systems. Journal of Research of the National Bureau of Standards, 49(6), 409-436.

Hildreth, C. (1957). A quadratic programming procedure. Naval Research Logistics
Quarterly, 4, 79-85.

BIBLIOGRAPHY 225

Hiriart-Urruty, J., & Lemaréchal, C. (1993a). Convexr Analysis and Minimization Al-
gorithms, I and II, vol. 305 and 306. Springer-Verlag.

Hiriart-Urruty, J., & Lemaréchal, C. (1993b). Conver Analysis and Minimization Al-
gorithms, I and I, vol. 305 and 306. Springer-Verlag.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58, 13-30.

Hosseni, S., & Jutten, C. (2003). On the separability of nonlinear mixtures of tempo-
rally correlated sources. IEEFE Signal Processing Letters, 10(2), 43-46.

Hsieh, C. J., Chang, K. W., Lin, C. J., Keerthi, S. S., & Sundararajan, S. (2008a). A
dual coordinate descent method for large-scale linear SVM. In W. Cohen, A. Mc-
Callum, & S. Roweis, eds., ICML, 408-415. ACM.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., & Sundararajan, S. (2008b).
A dual coordinate descent method for large-scale linear SVM. In A. McCallum, &
S. Roweis, eds., ICML, 408-415. Omnipress.

Ihler, A. T., III, J. W. F., & Willsky, A. S. (2005). Loopy belief propagation: Conver-
gence and effects of message errors. J. Mach. Learn. Res., 6, 905-936.

Iusem, A. N., & Pierro, A. R. D. (1990). On the convergence properties of Hildreth’s

quadratic programming algorithm. Mathematical Programming, 47, 37-51.

Jansche, M. (2007). A maximum expected utility framework for binary sequence la-
beling. In ACL.

Joachims, T. (1999). Making large-scale SVM learning practical. In B. Scholkopf,
C. J. C. Burges, & A. J. Smola, eds., Advances in Kernel Methods — Support Vector
Learning, 169-184. Cambridge, MA: MIT Press.

Joachims, T. (2005). A support vector method for multivariate performance measures.
In Proc. Intl. Conf. Machine Learning, 377-384. San Francisco, California: Morgan

Kaufmann Publishers.

Joachims, T. (2006). Training linear SVMs in linear time. In Proc. ACM Conf. Knowl-
edge Discovery and Data Mining (KDD). ACM.

Joachims, T., Finley, T., & Yu, C.-N. (2009). Cutting-plane traning of structural
SVMs. Machine Learning, 76(1).

226 BIBLIOGRAPHY

Karvanen, J. (2005). A resampling test for the total independence of stationary time
series: Application to the performance evaluation of ICA algorithms. Neural Pro-
cessing Letters, 22(3), 311 — 324.

Kearns, M. (1998). Efficient noise-tolerant learning from statistical queries. Journal of
the ACM, 45(6), 983-1006.

Kearns, M., Littleman, M., & Singh, S. (2001). Graphical models for game theory. In

Conference on Uncertainty in Artificial Intelligence.

Keerthi, S. S., & Gilbert, E. G. (2002). Convergence of a generalized SMO algorithm
for SVM classifier design. Machine Learning, 46, 351-360.

Kelley, J. (1960). The cutting-plane method for solving convex programs. Journal of
the Society for Industrial Applied Mathematics, 8, 703-712.

Kim, H.-C., & Ghahramani, Z. (2006). Bayesian gaussian process classification with
the EM-EP algorithm. IEEFE Transactions on Pattern Analysis and Machine Intel-
ligence, 28(12), 1948-1959.

Kimeldorf, G. S., & Wahba, G. (1971). Some results on Tchebycheffian spline functions.
J. Math. Anal. Appl., 33, 82-95.

Kivinen, J., & Warmuth, M. K. (1995). Additive versus exponentiated gradient up-
dates for linear prediction. In Proc. 27th Annual ACM Symposium on Theory of
Computing, 209-218. ACM Press, New York, NY.

Kiwiel, K. C. (1985). Methods of Descent for Nondifferentiable Optimization.

Kiwiel, K. C. (1990). Proximity control in bundle methods for convex nondifferentiable

minimization. Mathematical Programming, 46, 105-122.

Kiwiel, K. C. (2000). Efficiency of proximal bundle methods. Journal of Optimization
Theory and Applications, 104 (3), 589-603.

Koh, K., Kim, S.-J., & Boyd, S. (2006). An interior-point method for large-scale

l1-regularized logistic regression. J. Mach. Learn. Res. Submitted.

Kontorovich, L. (2007). Measure Concentration of Strongly Mizing Processes with
Applications. Ph.D. thesis, CMU.

Kschischang, F., Frey, B. J., & Loeliger, H. (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2), 498-519.

BIBLIOGRAPHY 227

Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Conditional random fields: Prob-
abilistic modeling for segmenting and labeling sequence data. In Proceedings of In-
ternational Conference on Machine Learning, vol. 18, 282-289. San Francisco, CA:

Morgan Kaufmann.
Lauritzen, S. L. (1996). Graphical Models. Oxford, UK: Oxford University Press.

Learned-Miller, E. G. (2004). Hyperspacing and the estimation of information theo-
retic quantities. Tech. Rep. 04-104, Department of Computer Science, University of
Massachusetts. Http://www.cs.umass.edu/ elm/papers/04-104.pdf.

Ledoux, M. (2001). The Concentration of Measure Phenomenon. Providence, RI: AMS.
Lehmann, E. (1983). Theory of Point Estimation. New York: John Wiley and Sons.

Lemaréchal, C., Nemirovskii, A., & Nesterov, Y. (1995). New variants of bundle meth-
ods. Mathematical Programming, 69, 111-147.

Lewis, D. (2001). Applying support vector machines to the TREC-2001 batch filtering
and routing tasks. In Proc. TREC.

Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark col-
lection for text categorization research. The Journal of Machine Learning Research,
5, 361-397.

Lugosi, G. (2006). Concentration ~ of measure inequalities.

http://www.econ.upf.es/~lugosi/anu.ps.

Luo, Z. Q., & Tseng, P. (1992). On the convergence of coordinate descent method
for convex differentiable minimization. Journal of Optimization Theory and Appli-

cations, 72(1), 7-35.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press.

Maybeck, P. S. (1982). Stochastic Models, Estimation and Control. Academic Press.

McCallum, A. (1999). Multi-label text classification with a mixture model trained by
EM. In AAAI Workshop.

Mendelson, S. (2003). A few notes on statistical learning theory. In S. Mendelson, &
A. J. Smola, eds., Advanced Lectures on Machine Learning, no. 2600 in LNAI, 1-40.
Heidelberg, Germany: Springer-Verlag.

228 BIBLIOGRAPHY

Mercer, J. (1909). Functions of positive and negative type and their connection with
the theory of integral equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., A 209, 415-446.

Mika, S., Rétsch, G., Weston, J., Scholkopf, B., & Miiller, K.-R. (1999). Fisher dis-
criminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, & S. Douglas,
eds., Neural Networks for Signal Processing 1X, 41-48. IEEE.

Minka, T. (2001). Ezpectation Propagation for approximative Bayesian inference. Ph.D.
thesis, MIT Media Labs, Cambridge, USA.

Minka, T. (2005). Divergence measures and message passing. Report 173, Microsoft

Research.

Minka, T., & Winn, J. (2009). Gates. In D. Koller, D. Schuurmans, Y. Bengio, &
L. Bottou, eds., Advances in Neural Information Processing Systems 21, 1073-1080.

Moreau, J. J. (1965). Proximite et dualite dans un espace hilbertien. Bull. Soc. Math.
Fr., 93, 273-299.

Moschitti, A. (2006). Efficient convolution kernels for dependency and constituent
syntactic trees. In Machine Learning: ECML 2006, 17th European Conference on

Machine Learning, Berlin, Germany.

Musicant, D. R., Kumar, V., & Ozgur, A. (2003). Optimizing f-measure with support
vector machines. In International Florida Artificial Intelligence Research Society

Conference.

Nedic, A. (2002). Subgradient Methods for Convex Minimization. Ph.D. thesis, MIT.

Nemenman, I., Shafee, F., & Bialek, W. (2002). Entropy and inference, revisited. In
Neural Information Processing Systems, vol. 14. Cambridge, MA: MIT Press.

Nemirovski, A. (2009). Personal communications.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with
the rate of convergence O(1/k?). Soviet Math. Docl., 269, 543-547.

Nesterov, Y. (2003). Introductory Lectures On Convex Optimization: A Basic Course.
Springer.

Nesterov, Y. (2005a). Excessive gap technique in nonsmooth convex minimization.
SIAM J. on Optimization, 16(1), 235-249. ISSN 1052-6234.

BIBLIOGRAPHY 229

Nesterov, Y. (2005b). Smooth minimization of non-smooth functions. Math. Program.,
103(1), 127-152.

Nesterov, Y. (2007). Gradient methods for minimizing composite objective function.
Tech. Rep. 76, CORE Discussion Paper, UCL.

Ng, A., Jordan, M., & Weiss, Y. (2002). Spectral clustering: Analysis and an algorithm
(with appendix). In T. G. Dietterich, S. Becker, & Z. Ghahramani, eds., Advances

in Neural Information Processing Systems 14.

Nguyen, X., Wainwright, M., & Jordan, M. (2008). Estimating divergence functionals
and the likelihood ratio by penalized convex risk minimization. In NIPS 20. MIT

Press.

Nocedal, J., & Wright, S. J. (1999). Numerical Optimization. Springer Series in Oper-

ations Research. Springer.

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization. Springer Series in Oper-

ations Research. Springer, 2nd edn.

Ong, C. S., Mary, X., Canu, S., & Smola, A. J. (2004). Learning with non-positive
kernels. In Proc. Intl. Conf. Machine Learning.

Opper, M. (1998). A Bayesian approach to online learning. In On-line Learning in
Neural Networks, 363-378. Cambridge University Press.

Opper, M., & Winther, O. (2000). Gaussian processes and SVM: Mean field and
leave-one-out. In A. J. Smola, P. L. Bartlett, B. Scholkopf, & D. Schuurmans, eds.,
Advances in Large Margin Classifiers, 311-326. Cambridge, MA: MIT Press.

Pardalos, P. M., & Kovoor, N. (1990). An algorithm for singly constrained class of
quadratic programs subject to upper and lower bounds. Mathematical Programming,
46, 321-328.

Peshkin, L., Kim, K.-E., Meuleau, N., & Kaelbling, L. P. (2000). Learning to cooperate
via policy search. In UAL

Peters, J., Vijayakumar, S., & Schaal, S. (2005). Natural actor-critic. In Machine
Learning: ECML 2005, 16th FEuropean Conference on Machine Learning, Porto,
Portugal, October 3-7, 2005, Proceedings, 280-291. Springer.

Platt, J. (1999). Fast training of support vector machines using sequential minimal
optimization. In B. Schoélkopf, C. J. C. Burges, & A. J. Smola, eds., Advances in
Kernel Methods — Support Vector Learning, 185-208. Cambridge, MA: MIT Press.

230 BIBLIOGRAPHY

Platt, J. C. (1998). Sequential minimal optimization: A fast algorithm for training
support vector machines. Tech. Rep. MSR-TR-98-14, Microsoft Research.

Quadrianto, N., Song, L., & Smola, A. (2009). Kernelized sorting. In Advances in

Neural Information Processing Systems 22.

Rao, C. R. (1973). Linear Statistical Inference and its Applications. New York: John
Wiley and Sons.

Richter, S., Aberdeen, D., & Yu, J. (2007). Natural actor-critic for road traffic optimiza-
tion. In B. Schoélkopf, J. Platt, & T. Hofmann, eds., Advances in Neural Information
Processing Systems 19. Cambridge, MA: MIT Press.

Robbins, H. E., & Monro, S. (1951). A stochastic approximation method. Annals of
Mathematical Statistics, 22, 400—407.

Robinson, S. M. (1999). Linear convergence of epsilon-subgradient descent methods

for a class of convex functions. Mathematical Programming, 86(1), 41-50.

Rockafellar, R. T. (1970). Conver Analysis, vol. 28 of Princeton Mathematics Series.

Princeton, NJ: Princeton University Press.

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82,
273-302.

Rousu, J., Sunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learn-
ing of hierarchical multilabel classification methods. Journal of Machine Learning
Research, 7, 1601-1626.

Schneider, J., Wong, W.-K., Moore, A., & Riedmiller, M. (1999). Distributed value
functions. In Proc. Intl. Conf. Machine Learning, 371-378. Morgan Kaufmann, San
Francisco, CA.

Scholkopf, B., & Smola, A. (2002). Learning with Kernels. Cambridge, MA: MIT
Press.

Scholkopf, B., Smola, A. J., & Miiller, K.-R. (1996). Nonlinear component analysis
as a kernel eigenvalue problem. Tech. Rep. 44, Max-Planck-Institut fiir biologische
Kybernetik.

Schramm, H., & Zowe, J. (1992). A version of the bundle idea for minimizing a
nonsmooth function: Conceptual idea, convergence analysis, numerical results. STAM
J. Optimization, 2, 121-152.

BIBLIOGRAPHY 231

Serfling, R. (1980). Approximation Theorems of Mathematical Statistics. New York:
Wiley.

Shalev-Schwartz, S., & Srebro, N. (2008). SVM optimization: Inverse dependence
on training set size. In W. Cohen, A. McCallum, & S. Roweis, eds., Proceedings
of the 25th Annual International Conference on Machine Learning (ICML 2008).

Omnipress.

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal estimated sub-
gradient solver for SVM. In Proc. Intl. Conf. Machine Learning.

Shawe-Taylor, J., & Dolia, A. (2007). A framework for probability density estimation.
In M. Meila, & X. Shen, eds., Proceedings of International Workshop on Artificial

Intelligence and Statistics.

Shen, H., Jegelka, S., & Gretton, A. (2009). Fast kernel-based independent component

analysis. IEFEE Transactions on Signal Processing. In press.

Shor, N. (1985). Minimization methods for non-differentiable functions. Springer-
Verlag, Berlin.

Sinha, D., Zhou, H., & Shenoy, N. V. (2006). Advances in computation of the maximum
of a set of random variables. In 7th International Symposium on Quality Electronic

Design.

Smola, A., Gretton, A., Song, L., & Scholkopf, B. (2007a). A hilbert space embedding
for distributions. In E. Takimoto, ed., Algorithmic Learning Theory, Lecture Notes

on Computer Science. Springer.

Smola, A., Vishwanathan, S. V. N., & Le, Q. (2007b). Bundle methods for machine
learning. In D. Koller, & Y. Singer, eds., Advances in Neural Information Processing
Systems 20. Cambridge MA: MIT Press.

Smola, A. J., Gretton, A., Song, L., & Scholkopf, B. (2007¢). A Hilbert space embed-
ding for distributions. In Proc. Intl. Conf. Algorithmic Learning Theory, vol. 4754
of LNAI 13-31. Springer-Verlag.

Song, L., Smola, A., Borgwardt, K., & Gretton, A. (2008a). Colored maximum variance
unfolding. In Advances in Neural Information Processing Systems 20, 1385—-1392.
Cambridge, MA: MIT Press.

Song, L., Smola, A., Gretton, A., Bedo, J., & Borgwardt, K. (2007a). Feature selection

via dependence maximization. J. Mach. Learn. Res. Accepted with minor revisions.

232 BIBLIOGRAPHY

Song, L., Smola, A., Gretton, A., & Borgwardt, K. (2007b). A dependence maximiza-
tion view of clustering. In ICML, 815-822. Omnipress.

Song, L., Smola, A., Gretton, A., Borgwardt, K., & Bedo, J. (2007c). Supervised

feature selection via dependence estimation. In ICML, 823-830. Omnipress.

Song, L., Zhang, X., Smola, A., Gretton, A., & Scholkopf, B. (2008b). Tailoring density

estimation via reproducing kernel moment matching. In ICML.

Sontag, D., & Jaakkola, T. (2007). New outer bounds on the marginal polytope. In

Advances in Neural Information Processing Systems 21.

Sriperumbudur, B., Gretton, A., Fukumizu, K., Lanckriet, G., & Scholkopf, B. (2008).
Injective hilbert space embeddings of probability measures. In Proceedings of the

21st Annual Conference on Learning Theory, 111-122.

Steinwart, I. (2001). On the generalization ability of support vector machines. Tech.

rep., University of Jena.

Steinwart, I., & Christmann, A. (2008). Support Vector Machines. Information Science

and Statistics.

Stogbauer, H., Kraskov, A., Astakhov, S., & Grassberger, P. (2004). Least dependent
component analysis based on mutual information. Phys. Rev. E, 70(6), 066123.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient methods
for reinforcement learning with function approximation. In S. A. Solla, T. K. Leen,
& K.-R. Miiller, eds., Advances in Neural Information Processing Systems 12, 1057—
1063. Cambridge, MA: MIT Press.

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin Markov networks. In
S. Thrun, L. Saul, & B. Schélkopf, eds., Advances in Neural Information Processing
Systems 16, 25-32. Cambridge, MA: MIT Press.

Taskar, B., Lacoste-Julien, S., & Jordan, M. (2006). Structured prediction, dual ex-
tragradient and bregman projections. Journal of Machine Learning Research, 7,
1627-1653.

Teo, C., Le, Q., Smola, A., & Vishwanathan, S. (2007). A scalable modular convex
solver for regularized risk minimization. In Proc. ACM Conf. Knowledge Discovery
and Data Mining (KDD). ACM.

Teo, C. H., & Vishwanathan, S. V. N. (2006). Fast and space efficient string kernels

using suffix arrays. In ICML ’06: Proceedings of the 23rd international conference on

BIBLIOGRAPHY 233

Machine learning, 929-936. New York, NY, USA: ACM Press. ISBN 1-59593-383-2.
doi:http://doi.acm.org/10.1145/1143844.1143961.

Teo, C. H., Vishwanthan, S. V. N., Smola, A. J., & Le, Q. V. (2010). Bundle methods

for regularized risk minimization. J. Mach. Learn. Res., 11, 311-365.

Theocharous, G., Murphy, K., & Kaelbling, L. (2004). Representing hierarchical
POMDPs as DBNs for multi-scale robot localization. In ICRA.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Ser. B Stat. Methodol., 58, 267-288.

Tikhonov, A. N. (1943). On the stability of inverse problems. Dokl. Akad. Nauk SSSR,
39(5), 195-198.

Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regular-
ization method. Soviet Math. Dokl., 4, 1035-1038.

Toussaint, M. (2009). Probabilistic inference as a model of planned behavior. Tech.
rep., T. U. Berlin.

Tseng, P., & Yun, S. (2008). A coordinate gradient descent method for linearly con-
strained smooth optimization and support vector machines training. Computational

Optimization and Applications. To Appear.

Tseng, P., & Yun, S. (2009). A block-coordinate gradient descent method for linearly
constrained nonsmooth separable optimization. Journal of Optimization Theory and
Applications, 140(3), 513-535.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin
methods for structured and interdependent output variables. J. Mach. Learn. Res.,
6, 1453-1484.

Tsypkin, Y. Z. (1971). Adaptation and Learning in Automatic Systems. Academic

Press.
Vanderbei, R. J. (2008). Linear Programming: Foundations and Extensions. 3 edn.
Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, I. R., & Borgwardt, K. (2009).
Graph kernels. J. Mach. Learn. Res. Submitted.

Wainwright, M. (2002). Stochastic processes on graphs with cycles: geometric and
variational approaches. Ph.D. thesis, EECS MIT.

234 BIBLIOGRAPHY

Wainwright, M., & Jordan, M. 1. (2006). Log-determinant relaxation for approximate
inference in discrete Markov random fields. IEEE Transactions on Signal Processing,
54(6), 2099-2109.

Wainwright, M. J., Jaakkola, T. S., & Willsky, A. S. (2003). Tree-based reparam-
eterization framework for analysis of sum-product and related algorithms. IEEE
Transactions on Information Theory, 49(5), 1120-1146.

Wainwright, M. J., Jaakkola, T. S., & Willsky, A. S. (2005). A new class of upper
bounds on the log partition function. IEFEE Transactions on Information Theory,
51(7), 2313-2335.

Wainwright, M. J., & Jordan, M. I. (2003). Graphical models, exponential families,
and variational inference. Tech. Rep. 649, UC Berkeley, Department of Statistics.

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1 —2), 1

- 305.

Weiss, Y. (2000). Correctness of local probability propagation in graphical models with
loops. Neural Computation, 12, 1-41.

Weiss, Y. (2001). Comparing the mean field method and belief propagation for ap-
proximate inference in MRFs. In D. Saad, & M. Opper, eds., Advanced Mean Field
Methods. MIT Press.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine Learning, 8, 229-256.

Yang, Y. (2001). A study on thresholding strategies for text categorization. In Pro-
ceedings of ACM SIGIR Conference on Research and Development in Information

Retrieval.
Yosida, K. (1964). Functional Analysis.

Zhang, X., Aberdeen, D., & Vishwanathan, S. V. N. (2007). Conditional random fields

for multi-agent reinforcement learning. In Proc. Intl. Conf. Machine Learning.

Zhang, X., Graepel, T., & Herbrich, R. (2010a). Bayesian online learning for multi-
label and multi-variate performance measures. In Y. W. Teh, & M. Titterington, eds.,
Proc. Intl. Workshop on Artificial Intelligence and Statistics. Society for Artificial

Intelligence and Statistics.

BIBLIOGRAPHY 235

Zhang, X., Saha, A., & Vishwanathan, S. V. N. (2010b). Lower bounds on rate of
convergence of cutting plane methods. Cambridge MA: MIT Press.

Zhang, X., Song, L., Gretton, A., & Smola, A. (2009). Kernel measures of independence

for non-iid data. In Advances in Neural Information Processing Systems 21.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian
fields and harmonic functions. In Proc. Intl. Conf. Machine Learning, 912-919.

Ziehe, A., & Miiller, K.-R. (1998). TDSEP — an efficient algorithm for blind separation
using time structure. In Proc. Intl. Conf. Artificial Neural Networks, 675-680.

	Acknowledgements
	Abstract
	List of Symbols
	Introduction
	Exponential families
	Graphical models and factorization
	Markov random fields

	Conditional random fields
	Factorization of conditional distributions

	Reproducing kernel Hilbert spaces for exponential families
	Positive semi-definite kernels
	Reproducing kernel Hilbert spaces
	Kernel exponential families and decomposition

	Learning and inference
	Exact methods
	Message passing
	Sampling
	Variational inference

	Regularized risk estimation and optimizations
	Regularized risk minimization
	Survey of existing optimization algorithms
	Cutting plane
	Bundle methods for regularized risk minimization

	Outline

	Conditional Random Fields for Multi-agent Reinforcement Learning
	Conditional random fields and inference
	Conditional exponential families
	Inference and gradient computations
	Tree MCMC sampler for CRFs

	Reinforcement learning
	Policy-gradient algorithms
	Decentralized multi-agent RL

	Conditional random fields for RL
	Experimental results
	Grid alignment
	Sensor networks
	Traffic light control

	Conclusions

	Bayesian Online Learning for Multi-label and Multi-variate Measures
	A Bayesian model for multi-label classification
	Multi-class classification
	Multi-label classification

	Online learning and inference
	A Bayesian view of learning
	Inference on the graph of a given training example with EP
	Dynamic models

	Generalization for multi-variate performance measure
	Formulation of expected F-score
	Algorithms for maximizing expected F-score
	Soundness of approximate Bayesian labeling criteria
	Efficient calculation of empirical expected F-score

	Empirical evaluation
	Dataset
	Algorithms
	Performance measure
	Results

	Conclusion and future directions

	Kernel Measures of Independence for non-iid Data
	Preliminaries of RKHS embeddings of probabilities
	Distance between distributions
	Hilbert-Schmidt independence criteria
	Applications of HSIC

	Embedding distributions with graphical models
	Factorization of mean operators
	Factorization of RKHS for factorized kernels
	Injectivity of factored mean operators
	Factorization of independence criteria

	Estimates for special structures
	Independent and identically distributed data
	Sequence data
	TD-SEP as a special case
	Grid structured data

	Experiments
	Independence test
	Independent component analysis
	Time series clustering and segmentation

	Conclusion

	Lower Bounds for BMRM and Faster Rates for Training SVMs
	Preliminaries
	Lower bounds
	Concepts and notations
	Strong lower bounds
	Weak lower bounds

	A new algorithm with convergence rates O(1/)
	Convergence rates
	A linear time algorithm for simple QP
	Other versions of Neseterov's algorithms

	Structured output space
	Margin scaled maximum margin Markov network
	Efficient projection onto factorized simplex

	Experimental results
	Discussion and conclusions

	Fundamentals of Convex Analysis
	Convex set and convex function
	Fenchel conjugate
	Convex analysis for the log partition function

	Message Update Formulae of Expectation Propagation
	Preliminaries: canonical parametrization of multi-variate Gaussians
	EP updates for all factors in Figure 3.1
	Message passing for the max factor
	Mathematical formulation of messages
	Moments of the maximum of multiple Gaussians

	Detailed Result of Empirical Optimal Threshold
	Modeling Hierarchies in Labels
	Statistical Estimation and Concentration of Measure
	Desirable statistical properties of estimators
	U-Statistics for iid observations
	Statistics for non-iid observations
	Mixing coefficients using Markov properties
	Bounds on "026B30D n"026B30D using Markov property

	Concentration of measure with function space
	Rademacher averages
	Extension to non-iid observations

	Proof for Proposition 44
	Finite linear combination
	Limit of linear combination
	Proof of Lemma 92

	Incomplete Cholesky Decomposition for HSIC-Struct
	Detailed proof for Theorem 57
	Example Dataset and Initial Few Steps
	Asymptotic Rates
	Proof of Theorem 93

