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Abstract. Structured output prediction is an important machine learn-
ing problem both in theory and practice, and the max-margin Markov
network (M3N) is an effective approach. All state-of-the-art algorithms
for optimizing M3N objectives take at least O(1/ε) number of iterations
to find an ε accurate solution. [1] broke this barrier by proposing an
excessive gap reduction technique (EGR) which converges in O(1/

√
ε)

iterations. However, it is restricted to Euclidean projections which con-
sequently requires an intractable amount of computation for each iter-
ation when applied to solve M3N. In this paper, we show that by ex-
tending EGR to Bregman projection, this faster rate of convergence can
be retained, and more importantly, the updates can be performed effi-
ciently by exploiting graphical model factorization. Further, we design a
kernelized procedure which allows all computations per iteration to be
performed at the same cost as the state-of-the-art approaches.

1 Introduction

In the supervised learning setting, one is given a training set of labeled data
points and the aim is to learn a function which predicts labels on unseen data
points. Sometimes the label space has a rich internal structure which character-
izes the combinatorial or recursive inter-dependencies of the application domain.
It is widely believed that capturing these dependencies is critical for effectively
learning with structured output. Examples of such problems include sequence la-
beling, context free grammar parsing, and word alignment. However, parameter
estimation is generally hard even for simple linear models, because the size of the
label space is potentially exponentially large (see e.g. [2]). Therefore it is crucial
to exploit the underlying conditional independence assumptions for the sake of
computational tractability. This is often done by defining a graphical model on
the output space, and exploiting the underlying graphical model factorization to
perform computations.

Research in structured prediction can broadly be categorized into two tracks:
Using a maximum a posterior estimate from the exponential family results in
conditional random fields [CRFs, 3], and a maximum margin approach leads to
max-margin Markov networks [M3Ns, 4]. Unsurprisingly, these two approaches
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share many commonalities: First, they both minimize a regularized risk with a
square norm regularizer. Second, they assume that there is a joint feature map
φ which maps (x,y) to a feature vector in Rp.1 Third, they assume a label loss
`(y,yi; xi) which quantifies the loss of predicting label y when the correct label
of input xi is yi. Finally, they assume that the space of labels Y is endowed with
a graphical model structure and that φ(x,y) and `(y,yi; xi) factorize according
to the cliques of this graphical model. The main difference is in the loss function
employed. CRFs minimize the L2-regularized logistic loss:

J(w)=
λ

2
‖w‖22 +

1

n

n∑
i=1

log
∑
y∈Y

exp
(
`(y,yi; xi)−

〈
w,φ(xi,yi)− φ(xi,y)

〉)
, (1)

while the M3Ns minimize the L2-regularized hinge loss

J(w) =
λ

2
‖w‖22 +

1

n

n∑
i=1

max
y∈Y

{
`(y,yi; xi)−

〈
w,φ(xi,yi)− φ(xi,y)

〉}
. (2)

A large body of literature exists on efficient algorithms for minimizing the
above objective functions. A summary of existing methods, and their convergence
rates (iterations needed to find an ε accurate solution) can be found in Table
1. The ε accuracy of a solution can be measured in many different ways and
different algorithms employ different but somewhat related stopping criterion.
Some produce iterates wk in the primal space and bound the primal gap J(wk)−
minw J(w). Some solve the dual problem D(α) with iterates αk and bound the
dual gap maxαD(α)−D(αk). Some bound the duality gap J(wk)−D(αk), and
still others bound J(wk)−minw Jk(w) where Jk is a uniform lower bound of J .
This must be borne in mind when interpreting the convergence rates in Table 1.

Since (1) is a smooth convex objective, classical methods such as L-BFGS
can directly be applied [5]. Specialized solvers also exist. For instance a primal
algorithm based on bundle methods was proposed by [6], while a dual algo-
rithm for the same problem was proposed by [7]. Both algorithms converge at
O( 1

λ log(1/ε)) rates to an ε accurate solution, and, remarkably, their convergence
rates are independent of n the number of data points, and |Y| the size of the
label space. It is widely believed in optimization (see e.g. Section 9.3 of [8]) that
unconstrained smooth strongly convex objective functions can be minimized in
O(log(1/ε)) iterations, and these specialized optimizers also achieve this rate.

On the other hand, since (2) is a non-smooth convex function, efficient al-
gorithms are harder to come by. SVM-Struct was one of the first specialized
algorithms to tackle this problem, and [9] derived an O(G2/λε2) rate of conver-
gence. Here G denotes the maximum L2 norm of the feature vectors φ(xi,y). By
refining their analysis, [6] proved a O(G2/λε) rate of convergence for a related
but more general algorithm, which they called bundle methods for regularized
risk minimization (BMRM). At first glance, it looks like the rates of convergence
of these algorithms are independent of |Y|. This is somewhat misleading because,
although the dependence is not direct, the convergence rates depend on G, which
is in turn implicitly related to the size of Y.

1 We discuss kernels and associated feature maps into a Reproducing Kernel Hilbert
Space (RKHS) in Section 4.3.
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Optimization
Primal/Dual Type of gap

Oracle Convergence rate

algorithm for M3N CRF M3N

BMRM [6] primal ≥primal gap max O
(
1
λ

log 1
ε

)
O
(
G2

λε

)
SVM-Struct

primal-dual
constraint

max n/a O
(
G2

λε2

)
[9] violation

Extragradient [10] primal-dual duality gap exp n/a O
(

log|Y|
ε

)
Exponentiated

dual dual gap exp O
(
1
λ

log 1
ε

)
O
(
G2 log|Y|

λε

)
gradient [7]

SMO
dual dual gap max n/a

psd: O
(
n |Y| 1

λε

)
[11, Chapter 6] pd: O

(
n|Y| log 1

ε

)
Our algorithm primal-dual duality gap exp n/a O

(
G
√

log|Y|
λε

)
Table 1. Comparison of specialized optimization algorithms for training structured
prediction models. Primal-dual methods maintain estimation sequences in both primal
and dual spaces. Details of the oracle will be discussed in Section 5. The convergence
rate highlights the dependence on both ε and some “constants” that are often hidden
in the O notation: n, λ, and the size of the label space |Y|. The convergence rate
of SMO on M3N is derived from [12, Corollary 17], noting the dual problem (19) is
so-called pairable. It enjoys linear convergence O(log 1

ε
) when the dual objective is

positive definite (pd), and O( 1
ε
) when it is positive semi-definite (psd). The term G in

the convergence rate denotes the maximum L2 norm of the features vectors φ(xi,y).
The convergence rate of Extragradient depends on λ in an indirect way.

Algorithms which optimize (2) in the dual have also been developed. For
instance, the algorithm proposed by [7] performs exponentiated gradient descent

in the dual and converges at O
(

log|Y|
λε

)
rates. Again, these rates of convergence

are not surprising given the well established lower bounds of [13] who show that,
in general, non-smooth optimization problems cannot be solved in fewer than
Ω(1/ε) iterations by solvers which treat the objective function as a black box.

In this paper, we present an algorithm that provably converges to an ε accu-

rate solution of (2) in O
(√

log|Y|
λε

)
iterations. This does not contradict the lower

bound because our algorithm is not a general purpose black box optimizer. In
fact, it exploits the special form of the objective function (2). Before launching
into the technical details we would like to highlight some important features
of our algorithm. First, compared to existing algorithms our convergence rates
are better in terms of |Y|, λ, and ε. Second, our convergence analysis is tighter
in that our rates are with respect to the duality gap. Not only is the duality
gap computable, it also upper bounds the primal and dual gaps used by other
algorithms. Finally, our cost per iteration is comparable with other algorithms.

To derive our algorithm we extend the recent excessive gap technique of
[1] to Bregman projections and establish rates of convergence (Section 2). This
extension is important because the original gradient based algorithm for strongly
convex objectives by [1] does not admit graphical model factorizations, which are
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crucial for efficiency in structured prediction problems. We apply our resulting
algorithm to the M3N objective in Section 3. A straightforward implementation
requires O(|Y|) computational cost per iteration, which makes it prohibitively
expensive. We show that by exploiting the graphical model structure of Y the
cost per iteration can be reduced to O(log |Y|) (Section 4). Finally we contrast
our algorithm with existing techniques in Section 5.

2 Excessive Gap Technique with Bregman Projection

The excessive gap technique proposed by [1] achieves accelerated rate of conver-
gence only when the Euclidean projection is used. This prevents the algorithm
from being applied to train M3N efficiently, and the aim of this section is to ex-
tend the approach to Bregman projection. We start by recapping the algorithm.

Definition 1. A function f : Rn → R ∪ {∞} is called ρ strongly convex with
respect to (wrt) a norm ‖ · ‖ if f − ρ

2‖ · ‖
2 is convex. If f is differentiable and its

gradient is Lipschitz continuous wrt ‖·‖ with constant L, we say f is L-l.c.g.

Let Q1 and Q2 be subsets of Euclidean spaces and A be a linear map from Q1

to Q2. Suppose f and g are convex functions defined on Q1 and Q2 respectively.
We are interested in the following optimization problem:

min
w∈Q1

J(w) where J(w) := f(w)+g?(Aw)=f(w)+ max
α∈Q2

{〈Aw,α〉−g(α)}. (3)

We will make the following standard assumptions: a) Q2 is compact; b) with
respect to a certain norm on Q1, the function f defined on Q1 is ρ-strongly
convex (ρ > 0) but not necessarily l.c.g , and c) with respect to a certain norm
on Q2 (which can be different from that on Q1), the function g defined on Q2

is Lg-l.c.g and convex, but not necessarily strongly convex. If we identify f(w)
with the regularizer and g?(Aw) with the loss function, then it is clear that (3)
has the same form as (1) and (2). We will exploit this observation in Section 3.

If some mild constraint qualifications hold (e.g. Theorem 3.3.5 of [14]) one
can write the dual D(α) of J(w) using A> (the transpose of A) as

D(α) := −g(α)− f?(−A>α) = −g(α)− max
w∈Q1

{〈−Aw,α〉 − f(w)} , (4)

and assert the following (in M3N, both the max and min are attainable)

min
w∈Q1

J(w) = max
α∈Q2

D(α), and J(w) ≥ D(α) ∀ w ∈ Q1,α ∈ Q2. (5)

The key difficulty in solving (3) arises because g? and hence J may potentially
be non-smooth. Our aim is to uniformly approximate J(w) with a smooth and
strongly convex function. Towards this end let d be a σ strongly convex smooth
function (σ > 0) with the following properties:

min
α∈Q2

d(α) = 0, d(α0) = 0, and D := max
α∈Q2

d(α).

In optimization parlance, d is called a prox-function. Let µ ∈ R be an arbitrary
positive constant, and we will use (g + µd)? to define a new objective function

Jµ(w) := f(w)+(g + µd)?(Aw) = f(w)+ max
α∈Q2

{〈Aw,α〉−g(α)−µd(α)} . (6)
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The key idea of excessive gap minimization pioneered by [1] is to maintain two
estimation sequences {wk} and {αk}, together with a diminishing sequence {µk}
such that

Jµk
(wk) ≤ D(αk), and lim

k→∞
µk = 0. (7)

Using (6), (7) and the definition of Fenchel dual, we can derive the key bound
on the duality gap:

J(wk)−D(αk) ≤ Jµk
(wk) + µkD −D(αk) ≤ µkD. (8)

In other words, to rapidly reduce the duality gap, we need to anneal down µk as
quickly as possible, but still allow wk and αk to be updated efficiently.

[1] gave a solution based on Euclidean projections, where µk decays at 1/k2

rate and all updates can be computed in closed form. We now extend his ideas to
updates based on Bregman projections2, which will be the key to our application
to structured prediction problems later. Since d is differentiable, we can define
a Bregman divergence based on it:3

∆(ᾱ,α) := d(ᾱ)− d(α)− 〈∇d(α), ᾱ−α〉 . (9)

Given a point α and a direction g, we can define the Bregman projection as:

V (α,g) := argmin
ᾱ∈Q2

{∆(ᾱ,α) + 〈g, ᾱ−α〉} = argmin
ᾱ∈Q2

{d(ᾱ)− 〈∇d(α)− g, ᾱ〉} .

For notational convenience, we define the following two maps:

w(α) := argmax
w∈Q1

{〈−Aw,α〉 − f(w)} = ∇f?(−A>α) (10a)

αµ(w) := argmax
α∈Q2

{〈Aw,α〉 − g(α)− µd(α)} = ∇(g + µd)?(Aw). (10b)

Since both f and (g + µd) are strongly convex, the above maps are unique and
well defined. By easy calculation (e.g. Eq. (7.2) in [1]), −D(α) is L-l.c.g where

L =
1

ρ
‖A‖2 + Lg, and ‖A‖ := max

‖w‖=‖α‖=1
〈Aw,α〉 . (11)

With this notation in place we now describe our excessive gap minimization
method in Algorithm 1. Unrolling the recursive update for µk+1 yields µk+1 =

6
(k+3)(k+2)

L
σ . Plugging this into (8) and using (11) immediately yields a O(1/

√
ε)

rate of convergence of our algorithm.

Theorem 1 (Rate of convergence for duality gap). The sequences {wk}
and {αk} in Algorithm 1 satisfy

J(wk)−D(αk) ≤ 6LD

σ(k + 1)(k + 2)
=

6D

σ(k + 1)(k + 2)

(
1

ρ
‖A‖2 + Lg

)
. (12)

All that remains is to show that
2 [1] did discuss updates based on Bregman projections, but just for the case where f is

convex rather than strongly convex. Here, we show how to improve the convergence
rate from O(1/ε) to O(1/

√
ε) when f is strongly convex.

3 This paper applies ∇ only to differentiable functions; it never refers to subgradient.
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Algorithm 1: Excessive gap minimization

Input: Function f which is strongly convex, convex function g which is l.c.g .
Output: Sequences {wk}, {αk}, and {µk} that satisfy (7), with lim

k→∞
µk = 0.

1 Initialize:α0←argminu∈Q2
d(u), µ1← L

σ
, w1←w(α0), α1←V

(
α0,

−1
µ1
∇D(α0)

)
.

2 for k = 1, 2, . . . do
3 τk ← 2

k+3
.

4 α̂← (1− τk)αk + τkαµk (wk).
5 wk+1 ← (1− τk)wk + τkw(α̂).

6 α̃← V
(
αµk (wk), −τk

(1−τk)µk
∇D(α̂)

)
.

7 αk+1 ← (1− τk)αk + τkα̃.
8 µk+1 ← (1− τk)µk.

Theorem 2. The updates in Algorithm 1 guarantee (7) is satisfied for all k ≥ 1.

Proof. Since d is σ-strongly convex, so

∆(ᾱ,α) = d(ᾱ)− d(α)− 〈∇d(α), ᾱ−α〉 ≥ σ

2
‖ᾱ−α‖2 . (13)

It is not hard to show that the initial w1 and α1 satisfy the excessive gap con-
dition (7). We now focus on proving by induction that the updates in Algorithm 1
maintain (7). We begin with two useful observations. Using µk+1 = 6

(k+3)(k+2)
L
σ

and the definition of τk, one can bound

µk+1 =
6

(k + 3)(k + 2)

L

σ
≥ τ2

k

L

σ
. (14)

Let β := αµk
(wk). The optimality conditions for (10b) imply

〈µk∇d(β)−Awk +∇g(β),α− β〉 ≥ 0. (15)

By using the update equation for wk+1 and the convexity of f , we have

Jµk+1
(wk+1) = f(wk+1) + max

α∈Q2

{〈Awk+1,α〉 − g(α)− µk+1d(α)}

= f((1− τk)wk + τkw(α̂)) + max
α∈Q2

{(1− τk) 〈Awk,α〉+

τk 〈Aw(α̂),α〉 − g(α)− (1− τk)µkd(α)}
≤ max

α∈Q2

{(1− τk)T1 + τkT2} ,

where T1 = −µkd(α)+〈Awk,α〉−g(α)+f(wk) and T2 = −g(α)+〈Aw(α̂),α〉+
f(w(α̂)). T1 can be bounded as follows

(by defn. of ∆) T1 = −µk {∆(α,β) + d(β) + 〈∇d(β),α− β〉}
+ 〈Awk,α〉 − g(α) + f(wk)

(by (15)) ≤ −µk∆(α,β)− µkd(β) + 〈−Awk +∇g(β),α− β〉
+ 〈Awk,α〉 − g(α) + f(wk)

= −µk∆(α,β)− µkd(β) + 〈Awk,β〉 − g(α)+

〈∇g(β),α− β〉+ f(wk)

(by convexity of g) ≤ −µk∆(α,β)−µkd(β)+〈Awk,β〉−g(β)+f(wk)
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(by defn. of β) = −µk∆(α,β) + Jµk
(wk)

(by induction assumption) ≤ −µk∆(α,β) +D(αk)

(by concavity of D) ≤ −µk∆(α,β) +D(α̂) + 〈∇D(α̂),αk − α̂〉 ,

while T2 can be bounded by using Lemma 7.2 of [1]:

T2 = −g(α) + 〈Aw(α̂),α〉+ f(w(α̂)) ≤ D(α̂) + 〈∇D(α̂),α− α̂〉 .

Putting the upper bounds on T1 and T2 together, we obtain the desired result.

Jµk+1
(wk+1) ≤ max

α∈Q2

{(1− τk) [−µk∆(α,β) +D(α̂) + 〈∇D(α̂),αk − α̂〉]

+ τk [D(α̂) + 〈∇D(α̂),α− α̂〉]}
= max

α∈Q2

{−µk+1∆(α,β) +D(α̂)+

〈∇D(α̂), (1− τk)αk + τkα− α̂〉}
(by defn. of α̂) = max

α∈Q2

{−µk+1∆(α,β) +D(α̂) + τk 〈∇D(α̂),α− β〉}

= − min
α∈Q2

{µk+1∆(α,β)−D(α̂)− τk 〈∇D(α̂),α− β〉}

(by defn. of α̃) = −µk+1∆(α̃,β) +D(α̂) + τk 〈∇D(α̂), α̃− β〉

(by (13)) ≤ − 1
2µk+1 ‖α̃− β‖2 +D(α̂) + τk 〈∇D(α̂), α̃− β〉

(by (14)) ≤ − 1
2τ

2
kL ‖α̃− β‖

2
+D(α̂) + τk 〈∇D(α̂), α̃− β〉

(by defn. of αk+1) = − 1
2L ‖αk+1 − α̂‖2 +D(α̂) + 〈∇D(α̂),αk+1 − α̂〉

(by L-l.c.g of D) ≤ D(αk+1). �

When stated in terms of the dual gap (as opposed to the duality gap) our
convergence results can be strengthened slightly. We omit the proof here.

max
α∈Q2

D(α)−D(αk)≤ 6 Ld(α∗)

σ(k + 1)(k + 2)
=

6 d(α∗)

σ(k + 1)(k + 2)

(
‖A‖2

ρ
+ Lg

)
, (16)

where α∗ := argmaxα∈Q2
D(α). Note d(α∗) is tighter than the D in (12).

3 Training Max-Margin Markov Networks

In the max-margin Markov network (M3N) setting [4], we are given n labeled data
points

{
xi,yi

}n
i=1

, where xi are drawn from some space X and yi belong to some
space Y. We assume that there is a feature map φ which maps (x,y) to a feature
vector in Rp. Furthermore, for each xi, there is a label loss `iy := `(y,yi; xi) which

quantifies the loss of predicting label y when the correct label is yi. Given this
setup, the objective function minimized by M3Ns can be written as

J(w) =
λ

2
‖w‖22 +

1

n

n∑
i=1

max
y∈Y

{
`iy −

〈
w,ψiy

〉}
, (17)

where ‖w‖2 = (
∑
i w

2
i )

1/2 is the L2 norm and we used the shorthand ψiy :=

φ(xi,yi)−φ(xi,y). To write (17) in the form of (3), let Q1 = Rp, A be a
(n |Y|)-by-p matrix whose (i,y)-th row is (−ψiy)>,
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f(w) =
λ

2
‖w‖22 , and g?(u) =

1

n

∑
i

max
y

{
`iy + uiy

}
.

Now, g can be verified to be:

g(α) = −
∑
i

∑
y

`iyα
i
y if αiy ≥ 0, and

∑
y

αiy =
1

n
, ∀ i (18)

and∞ otherwise. The domain of g isQ2 = Sn :=
{
α ∈ [0, 1]n|Y| :

∑
yα

i
y = 1

n ,∀i
}

,

which is convex and compact. Using the L2 norm on Q1, f is clearly λ-strongly
convex. Similarly, if we use the L1 norm on Q2 (i.e., ‖α‖1 =

∑
i

∑
y

∣∣αiy∣∣), then

g is 0-l.c.g . By noting that f?(−A>α) = 1
2λα

>AA>α, one can write the dual
form D(α) : Sn 7→ R of J(w) as

D(α) = −g(α)− f?(−A>α) = − 1

2λ
α>AA>α+

∑
i

∑
y

`iyα
i
y, α ∈ Sn. (19)

3.1 Rates of Convergence

A natural prox-function to use in our setting is the relative entropy with respect
to the uniform distribution, which is defined as:

d(α) =

n∑
i=1

∑
y

αiy logαiy + log n+ log |Y| . (20)

This results in a log-sum-exp form of (g + µd)? (derivation omitted):

(g + µd)?(u) =
µ

n

n∑
i=1

log
∑
y∈Y

exp
(uiy + `iy

µ

)
− µ log |Y| . (21)

The relative entropy is 1-strongly convex in Sn with respect to the L1 norm
[e.g., 15, Proposition 5.1]. Furthermore, d(α) ≤ D = log |Y| for α ∈ Sn, and the
norm of A can be computed via

‖A‖ = max
w∈Rp,u∈Rn|Y|

{
〈Aw,u〉 :

p∑
i=1

w2
i = 1,

n∑
i=1

∑
y∈Y

∣∣uiy∣∣ = 1
}

= max
i,y

∥∥ψiy∥∥2
,

where
∥∥ψiy∥∥2

is the Euclidean norm of ψiy. Since f is λ-strongly convex and Lg =
0, plugging this expression of ‖A‖ into (12) and (16), we obtain the following
rates of convergence for our algorithm:

J(wk)−D(αk) ≤ 6 log |Y|
(k + 1)(k + 2)

maxi,y
∥∥ψiy∥∥2

2

λ

and max
α∈Q2

D(α)−D(αk) ≤ 6KL(α∗||α0)

(k + 1)(k + 2)

maxi,y
∥∥ψiy∥∥2

2

λ
,

where KL(α∗||α0) denotes the KL divergence between α∗ and the uniform dis-
tribution α0. Recall that for distributions p and q the KL divergence is defined
as KL(p||q) =

∑
i pi ln pi

qi
.

Therefore to reduce the duality gap and dual gap below ε, it suffices to take

2 + max
i,y

∥∥ψiy∥∥2

√
6 log |Y|
λε

and max
i,y

∥∥ψiy∥∥2

√
6KL(α∗||α0)

λε
(22)

steps respectively.
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4 Efficient Computation by Clique Decomposition

In the structured large margin setting, the number of labels |Y| could potentially
be exponentially large. For example, if a sequence has l nodes and each node
has two states, then |Y| = 2l. A naive implementation of the excessive gap
reduction algorithm described in the previous section requires maintaining and
updating O(|Y|) coefficients at every iteration, which is prohibitively expensive.
With a view to reducing the computational complexity, and also to take into
account the inherent conditional independence properties of the output space, it
is customary to assume that Y is endowed with a graphical model structure; we
refer the reader to [2] for an in-depth treatment of this issue. For our purposes
it suffices to assume that `(y,yi; xi) and φ(xi,y) decompose according to the
cliques4 of an undirected graphical model, and hence can be written (with some
abuse of notation) as

`iy = `(y,yi; xi) =
∑
c∈C

`(yc, y
i
c; x

i) =
∑
c∈C

`iyc ,

φ(xi,y) = ⊕
c∈C

φ(xi, yc), and ψiy = ⊕
c∈C

ψiyc . (23)

Here C denotes the set of all cliques of the graphical model and ⊕ denotes vector
concatenation. More explicitly, ψiy is the vector on the graphical model obtained

by accumulating the vector ψiyc on all the cliques c of the graph.
Let hc(yc) be an arbitrary real valued function on the value of y restricted

to clique c. Graphical models define a distribution p(y) on y ∈ Y whose density
takes the following factorized form:

p(y) ∝ q(y) =
∏
c∈C

exp (hc(yc)) . (24)

The key advantage of a graphical model is that the marginals on the cliques can
be efficiently computed:

myc :=
∑

z:z|c=yc

q(z) =
∑

z:z|c=yc

∏
c′∈C

exp (hc′(zc′)) .

where the summation is over all the configurations z in Y whose restriction on
the clique c equals yc. Although Y can be exponentially large, efficient dynamic
programming algorithms exist that exploit the factorized form (24), e.g. belief
propagation [16]. The computational cost is O(sω) where s is the number of
states of each node, and ω is the maximum size of the cliques. For example,
a linear chain has ω = 2. When ω is large, approximate algorithms also exist
[17–19]. In the sequel we will assume that our graphical models are tractable,
i.e., ω is low.

4.1 Basics

At each iteration of Algorithm 1, we need to compute four quantities: w(α),
∇D(α), αµ(w), and V (α,g). Below we rewrite them by taking into account

4 Any fully connected subgraph of a graph is called a clique.
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the factorization (23), and postpone to Section 4.2 the discussion on how to
compute them efficiently. Since αiy ≥ 0 and

∑
y α

i
y = 1

n , the
{
αiy : y ∈ Y

}
form an unnormalized distribution, and we denote its (unnormalized) marginal
distribution on clique c by

αiyc :=
∑

z:z|c=yc
αiz. (25)

The feature expectations on the cliques with respect to the unnormalized distri-
butions α are important:

F
[
ψiyc ;α

]
:=
∑
yc

αiycψ
i
yc , and F[ψc;α] :=

∑
i

F
[
ψiyc ;α

]
. (26)

Clearly, if for all i the marginals of α on the cliques (i.e.,
{
αiyc : i, c, yc

}
in (25))

are available, then these two expectations can be computed efficiently.

– w(α): As a consequence of (23) we can write ψiy = ⊕
c∈C

ψiyc . Plugging this

into (10a) and recalling that ∇f?(−A>α) = −1
λ A

>α yields the following
expression for w(α) = −1

λ A
>α:

w(α) =
1

λ

∑
i

∑
y

αiyψ
i
y =

1

λ

∑
i

∑
y

αiy

(
⊕
c∈C

ψiyc

)
=

1

λ
⊕
c∈C

(∑
i

F
[
ψiyc ;α

])

=
1

λ
⊕
c∈C

F[ψc;α]. (27)

– ∇D(α): Using (19) and the definition of w(α), the (i,y)-th element of
∇D(α) can be written as

(∇D(α))
i
y = `iy −

1

λ

(
AA>α

)i
y

= `iy −
〈
ψiy,w(α)

〉
=
∑
c

(
`iyc −

1

λ

〈
ψiyc ,F[ψc;α]

〉)
. (28)

– αµ(w): Using (10b) and (21), the (i,y)-th element of αµ(w) given by (∇(g+
µd)?(Aw))iy can be written as

(αµ(w))
i
y =

1

n

exp
(
µ−1

(
`iy −

〈
ψiy,w

〉))
∑

y′ exp
(
µ−1

(
`iy′ −

〈
ψiy′ ,w

〉))
=

1

n

∏
c exp

(
µ−1

(
`iyc −

〈
ψiyc ,wc

〉))
∑

y′
∏
c exp

(
µ−1

(
`iy′c −

〈
ψiy′c ,wc

〉)) . (29)

– V (α,g): Since the prox-function d is the relative entropy, the (i,y)-th ele-
ment of V (α,g) is

(V (α,g))
i
y =

1

n

αiy exp(−giy)∑
y′ αiy′ exp(−giy′)

. (30)

4.2 Efficient Computation

We now show how the algorithm can be made efficient by taking into account
(23). Key to our efficient implementation are the following four observations from
Algorithm 1 when applied to the structured large margin setting. In particular,
we will exploit the fact that the marginals of αk can be updated iteratively.
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– The marginals of αµk
(wk) and α̂ can be computed efficiently. From

(29) it is easy to see that αµk
(wk) can be written as a product of factors over

cliques, that is, in the form of (24). Therefore, the marginals of αµk
(wk)

can be computed efficiently. As a result, if we keep track of the marginal
distributions of αk, then it is trivial to compute the marginals of α̂ = (1−
τk)αk + τkαµk

(wk).
– The marginals of α̃ can be computed efficiently. Define η = −τk

(1−τk)µk
.

By plugging in (28) and (29) into (30) and observing that ∇D(α) can be
written as a sum of terms over cliques obtains:

α̃iy = (V (αµk
(wk), η∇D(α̂)))

i
y ∝ (αµk

(wk))
i
y exp

(
−η (∇D(α̂))

i
y

)
=
∏
c

exp
(
µ−1
k

(
`iyc−

〈
ψiyc , (wk)c

〉)
−η`iyc + ηλ−1

〈
ψiyc ,F[ψc; α̂]

〉)
. (31)

Clearly, α̃ factorizes and has the form of (24). Hence its marginals can be
computed efficiently.

– The marginals of αk can be updated efficiently. Given the marginals of
α̃, it is trivial to update the marginals of αk+1 since αk+1 = (1−τk)αk+τkα̃.
For convenience, define αc := {αiyc : i, yc}.

– wk can be updated efficiently. According to step 5 of Algorithm 1, by
using (27) we have

(wk+1)c = (1− τk)(wk)c + τk(w(α̂))c = (1− τk)(wk)c + τkλ
−1F[ψc; α̂].

Leveraging these observations, Algorithm 2 provides a complete listing of
how to implement the excessive gap technique with Bregman projections for
training M3N. It focuses on clarifying the ideas; a practical implementation can
be sped up in many ways. The last issue to be addressed is the computation of
the primal and dual objectives J(wk) and D(αk), so as to monitor the duality
gap. Indeed, this is viable without incurring higher order of computations and
we leave the details to the reader.

4.3 Kernelization

When nonlinear kernels are used, the feature vectors φiy are not expressed ex-
plicitly and only their inner products can be evaluated via kernels on the cliques:〈

ψiy,ψ
j
y′

〉
:= k((xi,y), (xj ,y′))=

∑
c

kc((x
i, yc), (x

j , y′c)),

where kc((x
i, yc), (x

j , y′c)) :=
〈
ψiyc ,ψ

j
y′c

〉
. Algorithm 2 is no longer applicable

because no explicit expression of w is available. However, by rewriting wk as the
feature expectations with respect to some distribution βk ∈ Sn, then we only
need to update wk implicitly via βk, and the inner product between wk and
any feature vector can also be efficiently calculated. We formalize and prove this
claim by induction.

Theorem 3. For all k ≥ 0, there exists βk ∈ Sn, such that (wk)c = 1
λF[ψc;βk],

and βk can be updated by βk+1 = (1− τk)βk + τkα̂k.

Proof. First, w1 = w(α0) = 1
λ ⊕c∈C F[ψc;α0], so β1 = α0. Suppose the claim

holds for all 1, . . . , k, then
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Algorithm 2: Max-margin structured learning using clique factorization

Input: Loss functions
{
`iy
}

and features
{
ψiy
}

, a regularization parameter λ, a
tolerance level ε > 0.

Output: A pair w and α that satisfy J(w)−D(α) < ε.

1 Initialize: k ← 1, µ1 ← 1
λ

maxi,y
∥∥ψiy∥∥22, α0 ←

(
1

n|Y| , . . . ,
1

n|Y|

)>
∈ Rn|Y|.

2 Update w1 ← w(α0) = 1
λ
⊕c∈C F[ψc;α0], α1 ← V

(
α0,− 1

µ1
∇D(α0)

)
and

compute its marginals.
3 while J(wk)−D(αk) ≥ ε do /* Terminate when duality gap falls below ε */
4 τk ← 2

k+3
.

5 Compute the marginals of αµk (wk) by exploiting (29).
6 forall the cliques c ∈ C do
7 Compute the marginals α̂c by convex combination:

α̂c ← (1− τk)(αk)c + τk(αµk (wk))c.
8 Update the weight on clique c:

(wk+1)c ← (1− τk) (wk)c + τk
λ

∑
i F
[
ψiyc ; α̂c

]
.

9 Compute the marginals of α̃ by using (31) and the marginals {α̂c}.
10 forall the cliques c ∈ C do
11 Update the marginals (αk)c by convex combination:

(αk+1)c ← (1− τk)(αk)c + τkα̃c.

12 Update µk+1 ← (1− τk)µk, k ← k + 1.

13 return wk and αk.

(wk+1)c = (1−τk)(wk)c +
τk
λ
F[ψc; (α̂k)c] = (1−τk)

1

λ
F[ψc;βk]+

τk
λ
F[ψc; (α̂k)c]

=
1

λ
F[ψc; (1− τk)(βk)c+τk(α̂k)c].

Therefore, we can set βk+1 = (1− τk)βk+ τkα̂k ∈ Sn. �

In general α̂k 6= α̃k, hence βk 6= αk. To compute
〈
ψiyc , (wk)c

〉
required by

(31), we have〈
ψiyc , (wk)c

〉
=

〈
ψiyc ,

1

λ

∑
j

∑
y′c

βjy′cψ
j
y′c

〉
=

1

λ

∑
j

∑
y′c

βjy′ckc((x
i, yc), (x

j , y′c)).

And by using this trick, all the iterative updates in Algorithm 2 can be done
efficiently. So is the evaluation of ‖wk‖2 and the primal objective. The dual
objective (19) is also easy since∑
i

∑
y

`iy(αk)iy =
∑
i

∑
y

∑
c

`iyc(αk)iy =
∑
i

∑
c

∑
yc

`iyc

∑
y:y|c=yc

(αk)iy =
∑
i,c,yc

`iyc(αk)iyc ,

and the marginals of αk are available. Finally, the quadratic term in D(αk) can
be computed by∥∥A>αk∥∥2

2
=
∥∥∑
i,y

ψiy(αk)iy
∥∥2

2
=
∑
c

∥∥∑
i,yc

ψiyc(αk)iyc
∥∥2

2

=
∑
c

∑
i,j,yc,y′c

(αk)iyc(αk)jy′ckc((x
i, yc), (x

j , y′c)),
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where the inner term is the same as the unnormalized expectation that can be
efficiently calculated. The last formula is only for nonlinear kernels.

4.4 Efficiency in Memory and Computation

For concreteness, let us consider a sequence as an example. Here the cliques
are just edges between consecutive nodes. Suppose there are l + 1 nodes and
each node has s states. The memory cost of Algorithm 2 is O(nls2), due to the
storage of the marginals. The computational cost per iteration is dominated by
calculating the marginals of α̂ and α̃, which is O(nls2) by standard graphical
model inference. The rest operations in Algorithm 2 cost O(nls2) for linear
kernels. If nonlinear kernels are used, then the cost becomes O(n2ls2).

5 Discussion

Structured output prediction is an important learning task in both theory and
practice. The main contribution of our paper is twofold. First, we identified an
efficient algorithm by [1] for solving the optimization problems in structured
prediction. We proved the O(1/

√
ε) rate of convergence for the Bregman projec-

tion based updates in excessive gap optimization, while [1] showed this rate only
for projected gradient style updates. In M3N optimization, Bregman projection
plays a key role in factorizing the computations, while technically such factoriza-
tions are not applicable to projected gradient. Second, we designed a nontrivial
application of the excessive gap technique to M3N optimization, in which the
computations are kept efficient by using the graphical model decomposition.
Kernelized objectives can also be handled by our method, and we proved supe-
rior convergence and computational guarantees than existing algorithms.

When M3Ns are trained in a batch fashion, we can compare the convergence
rate of dual gap between our algorithm and the exponentiated gradient method
[ExpGrad, 7]. Assume α0, the initial value of α, is the uniform distribution and
α∗ is the optimal dual solution. Then by (22), we have

Ours: max
i,y

∥∥ψiy∥∥2

√
6KL(α∗||α0)

λε
, ExpGrad: max

i,y

∥∥ψiy∥∥2

2

KL(α∗||α0)

λε
.

It is clear that our iteration bound is almost the square root of ExpGrad, and has
much better dependence on ε, λ, maxi,y

∥∥ψiy∥∥2
, as well as the divergence from

the initial guess to the optimal solution KL(α∗||α0).
In addition, the cost per iteration of our algorithm is almost the same as Exp-

Grad, and both are governed by the computation of the expected feature values
on the cliques (which we call exp-oracle), or equivalently the marginal distribu-
tions. For graphical models, exact inference algorithms such as belief propagation
can compute the marginals via dynamic programming [16]. Finally, although
both algorithms require marginalization, they are calculated in very different
ways. In ExpGrad, the dual variables α correspond to a factorized distribution,
and in each iteration its potential functions on the cliques are updated using
the exponentiated gradient rule. In contrast, our algorithm explicitly updates
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the marginal distributions of αk on the cliques, and marginalization inference
is needed only for α̂ and α̃. Indeed, the joint distribution α does not factorize,
which can be seen from step 7 of Algorithm 1: the convex combination of two
factorized distributions is not necessarily factorized.

Marginalization is just one type of query that can be answered efficiently by
graphical models, and another important query is the max a-posteriori inference
(which we call max-oracle): given the current model w, find the argmax in (2).
Max-oracle has been used by greedy algorithms such as cutting plane (BMRM
and SVM-Struct) and sequential minimal optimization [SMO, 11, Chapter 6].
SMO picks the steepest descent coordinate in the dual and greedily optimizes
the quadratic analytically, but its convergence rate is linear in |Y| which can
be exponentially large for M3N (ref Table 1). The max-oracle again relies on
graphical models for dynamical programming [19], and many existing combina-
torial optimizers can also be used, such as in the applications of matching [20]
and context free grammar parsing [21]. Furthermore, this oracle is particularly
useful for solving the slack rescaling variant of M3N proposed by [9]:

J(w)=
λ

2
‖w‖22+

1

n

n∑
i=1

max
y∈Y

{
`(y,yi; xi)

(
1−
〈
w,φ(xi,yi)− φ(xi,y)

〉)}
. (32)

Here two factorized terms get multiplied, which causes additional complexity
in finding the maximizer. [22, Section 1.4.1] solved this problem by a modified
dynamic program. Nevertheless, it is not clear how ExpGrad or our method can
be used to optimize this objective.

In the quest for faster optimization algorithms for M3Ns, the following three
questions are important: how hard is it to optimize M3N intrinsically, how in-
formative is the oracle which is the only way for the algorithm to access the
objective function (e.g., evaluate the function and its derivatives), and how well
does the algorithm make use of such information. The superiority of our algo-
rithm suggests that the exp-oracle provides more information about the function
than the max-oracle does, and a deeper explanation is that the max-oracle is
local [13, Section 1.3], i.e. it depends only on the value of the function in the
neighborhood of the querying point wk. In contrast, the exp-oracle is not local
and uses the global structure of the function. Hence there is no surprise that the
less informative max-oracle is easier to compute, which makes it applicable to a
wider range of problems such as (32). Moreover, the comparison between Exp-
Grad and our algorithm shows that even if the exp oracle is used, the algorithm
still needs to make good use of it in order to converge faster.

For future research, it is interesting to study the lower bound complexity
for optimizing M3N, including the dependence on ε, n, λ, Y, and probably even
on the graphical model topology. Empirical evaluation of our algorithm is also
important, especially regarding the numerical stability of the additive update of
marginal distributions αk under fixed precision. Broader applications are possi-
ble in sequence labeling, word alignment, context free grammar parsing, etc.



Accelerated Training of Max-Margin Markov Networks with Kernels 15

References

[1] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM
Journal on Optimization, 16(1), 2005.

[2] G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. V. N. Vish-
wanathan. Predicting Structured Data. MIT Press, 2007.

[3] J. D. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-
abilistic modeling for segmenting and labeling sequence data. In Proceedings of
International Conference on Machine Learning, 2001.

[4] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Advances
in Neural Information Processing Systems 16, 2004.

[5] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Pro-
ceedings of HLT-NAACL, 2003.

[6] C. Teo, S.V.N. Vishwanthan, A. Smola, and Q. Le. Bundle methods for regularized
risk minimization. Journal of Machine Learning Research, 11:311–365, 2010.

[7] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. Bartlett. Exponentiated
gradient algorithms for conditional random fields and max-margin Markov net-
works. Journal of Machine Learning Research, 9:1775–1822, 2008.

[8] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, England, 2004.

[9] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6:1453–1484, 2005.

[10] B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured prediction, dual ex-
tragradient and bregman projections. Journal of Machine Learning Research, 7:
1627–1653, 2006.

[11] B. Taskar. Learning Structured Prediction Models: A Large Margin Approach.
PhD thesis, Stanford University, 2004.

[12] N. List and H. U. Simon. Svm-optimization and steepest-descent line search. In
Proceedings of the Annual Conference on Computational Learning Theory, 2009.

[13] A. Nemirovski and D Yudin. Problem Complexity and Method Efficiency in Opti-
mization. John Wiley and Sons, 1983.

[14] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization:
Theory and Examples. Canadian Mathematical Society, 2000.

[15] A. Beck and B. Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3):167–175,
2003.

[16] S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, UK, 1996.
[17] M. Wainwright and M. Jordan. Graphical models, exponential families, and vari-

ational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305,
2008.

[18] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to
MCMC for machine learning. Machine Learning, 50:5–43, 2003.

[19] F. Kschischang, B. J. Frey, and Hans-Andrea Loeliger. Factor graphs and the sum-
product algorithm. IEEE Trans. on Information Theory, 47(2):498–519, 2001.

[20] B. Taskar, S. Lacoste-Julien, and D. Klein. A discriminative matching approach
to word alignment. In Empirical Methods in Natural Language Processing, 2005.

[21] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing.
In Empirical Methods in Natural Language Processing, 2004.

[22] Yasemin Altun, Thomas Hofmann, and Ioannis Tsochandiridis. Support vector
machine learning for interdependent and structured output spaces. In G. Bakir,
T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. V. N. Vishwanathan,
editors, Predicting Structured Data, chapter 5, pages 85–103. MIT Press, 2007.


	Accelerated Training of Max-Margin Markov Networks with Kernels

