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Abstract

Conditional random fields (CRFs) are graph-
ical models for modeling the probability of
labels given the observations. They have tra-
ditionally been trained with using a set of
observation and label pairs. Underlying all
CRFs is the assumption that, conditioned on
the training data, the labels are independent
and identically distributed (iid). In this pa-
per we explore the use of CRFs in a class of
temporal learning algorithms, namely policy-
gradient reinforcement learning (RL). Now
the labels are no longer iid. They are ac-
tions that update the environment and affect
the next observation. From an RL point of
view, CRFs provide a natural way to model
joint actions in a decentralized Markov de-
cision process. They define how agents can
communicate with each other to choose the
optimal joint action. Our experiments in-
clude a synthetic network alignment problem,
a distributed sensor network, and road traffic
control; clearly outperforming RL methods
which do not model the proper joint policy.

1. Introduction

Conditional random fields (CRFs) have been studied
in batch settings, where parameters are optimized over
a training set; and online settings, where parameters
are updated after each iid sample is observed. How-
ever, there is little work on CRFs for modelling tempo-
ral problems such as control or time-series prediction.
The reinforcement learning (RL) community, on the
other hand, has done work on decentralized (multi-
agent) control. RL algorithms optimize a long-term
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measure of temporally delayed rewards in controlled
systems. This paper seeks to improve decentralized
RL methods by using CRF models to exploit the struc-
ture between agents exhibited in many decentralized
RL domains. Examples include sensor networks, traf-
fic routing for roads or networks, pursuer-evader prob-
lems, and job-shop scheduling.

Bernstein et al. (2000) proved that the complexity of
learning optimal coordination in decentralized RL is
generally NEXP-hard in the number of agents. The
simplest algorithms assume all agents are independent,
learning to cooperate implicitly via an appropriate re-
ward function (Bagnell & Ng, 2006). More advanced
algorithms explicitly share information about states,
values, or proposed actions (Boutilier, 1999), but still
avoid modeling the optimal joint policy. Our work is
similar to Guestrin et al. (2002), which does model
the optimal joint policy, using the underlying struc-
ture to factorise Q-values and choose joint actions. In
contrast, our approach focuses on directly optimizing
a joint probability distribution over preferred actions.
Furthermore, we draw on the wealth of approximate
inference methods for graphical models, and CRFs
in particular, to evaluate and optimize policies that
would otherwise be intractable despite the structured
representation.

Traditionally, CRFs use batch training algorithms to
learn model p(y|x;θ), the probability of a label y, con-
ditioned on observable variables x with the CRF pa-
rameters θ (Lafferty et al., 2001). During training we
iterate through a set of training instances (X, Y ) :=
({xi}ni=1, {yi}ni=1), finding θ∗ := arg maxθ p(θ|X, Y ).
To predict the label for a novel observation x′ we se-
lect y′ := arg maxy p(y|x′;θ∗). In this paper, we show
that the same inference methods used for CRFs can
be used to sample node actions from a joint stochastic
RL policy. We also show how to optimize this joint
policy by estimating the gradients of the long-term re-
ward with respect to the policy parameters. Similar



CRFs for Multi-agent RL

methods could be used for RL policies based on arbi-
trary graphical models. From the CRF point of view,
we propose a method of using CRFs for modeling tem-
poral processes.

Section 2 and Section 3 are devoted to describing
graphical models and reinforcement learning respec-
tively, with particular emphasis on CRFs and policy-
gradient methods for RL. We then elaborate on the
combination of CRF and RL in Section 4. Section 5
describes our experiments before concluding.

2. Conditional Random Fields

CRFs are a probabilistic framework for labeling and
segmenting data. Unlike hidden Markov models
(HMMs) and Markov random fields (MRFs), which
model the joint density p(x, y) over inputs x and la-
bels y, CRFs directly model p(y|x) for a given input
observation x. Furthermore, instead of maintaining a
per-state normalisation, which leads to the so-called
label bias problem, CRFs use a global normalisation
that allows them to take global interactions into ac-
count (Lafferty et al., 2001). We now introduce con-
ditional exponential families, and describe CRFs as a
special instance of conditional exponential family.

2.1. Conditional Exponential Families

Given observation x ∈ X , a conditional exponential
family (CEF) distribution over labels y ∈ Y (we as-
sume all spaces are finite), parameterized by the nat-
ural parameter θ ∈ Rd, can be written in its canonical
form as

p(y|x;θ) = exp(〈φ(x, y),θ〉 − g(θ|x)). (1)

Here, vector φ(x, y) is the sufficient statistics of the
distribution p(y|x;θ), 〈·, ·〉 denotes the inner product,
and g(·) is the log-partition function for normalization:

g (θ|x) := ln
∑

y∈Y
exp(〈φ(x, y),θ〉) (2)

It is known that the log-partition function is also the
cumulant generating function of the CEF

∂g(θ|x)/∂θ = Ep(y|x;θ)[φ(x, y)]. (3)

The sufficient statistics φ(x, y) (also called potentials)
represent salient features of the input observations,
and typically depend on the applications and CRF de-
sign.

2.2. Clique Decomposition Theorem

More generally, we consider the structured output
case where y ∈ Ym (m nodes). The clique decom-

position theorem essentially states that if the con-
ditional density p(y|x;θ) factorizes according to a
graph G = (V, E) on y, then the sufficient statistics
φ(x,y) decompose into terms over the maximal cliques
C = {c1, . . . , cn} of G (Altun et al., 2004):

φ(x,y) = vec{φc(x,yc)|c ∈ C} (4)

p(y|x;θ) = exp

(∑
c∈C
〈φc(x,yc),θc〉 − g(θ|x)

)
, (5)

where the vec operator concatenates vectors, c indexes
the set of maximal cliques C, and yc is the label config-
uration for nodes in clique c. For convenience, we will
assume that all maximal cliques have size two, i.e., an
edge between nodes i and j has a feature φij associ-
ated with it. We will also associate potentials φi to
single nodes i. Node features represent the observa-
tion of state available at each node. The edge features
encode the communication between nodes about their
features and potential actions.

CRFs are examples of conditional exponential fam-
ilies with special graphs. For 1-D CRFs, the
graph is a chain, so the edge features are
φi,i+1(x,yi,yi+1). For 2-D grid CRFs, the edge fea-
tures are φiji′j′(x,yij ,yi′j′) where nodes are indexed
by double coordinates and |i− i′|+ |j − j′| = 1.

2.3. Inference and Gradient Computations

CRF training procedures usually minimize the neg-
ative log-posterior of the parameters given the ob-
servation/label training set. As we will see in Sec-
tion 3.1, policy-gradient algorithms instead draw sam-
ples from (5) given the parameters θ and most re-
cent observation x. This involves computing the log-
partition function, which can be done efficiently by
exploiting the clique structure

exp(g(θ|x)) =
∑

y∈Ym

∏
c∈C

exp(〈φc(x,yc),θc〉). (6)

Policy-gradient algorithms also require the gradient of
the log probability of sampled labels/actions ỹ

∂

∂θ
ln p(ỹ|x;θ)

=
∂

∂θ

∑
c∈C
〈φc(x, ỹc),θc〉 − g(θ|x)

= vec{φc(x, ỹc)− Ep(y|x;θ) [φc(x,yc)] |c ∈ C}, (7)

where the last step exploits (4) and (3). Let z be
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the constant normalisation term exp(g(θ|x)), then the
expected sufficient statistics for a fixed clique c′ is1

Ep(y|x;θ) [φc′(x,yc′)] =
∑

y∈Ym

φc′(x,yc′)p(y|x;θ)

= z−1
∑

y∈Ym

φc′(x,yc′) exp
∑
c∈C
〈φc(x,yc),θc〉

= z−1
∑

y∈Ym

∏
c∈C

φ̃c′

c (x,yc) exp 〈φc(x,yc),θc〉 , (8)

where φ̃c′

c (x,yc) := φc′(x,yc′) if c = c′, and a vec-
tor of ones otherwise. Note that both (6) and (8) are
in the familiar sum-product form, which can be com-
puted exactly by belief propagation (BP) (e.g., Chap-
ter 26 of MacKay, 2003). This has time complexity
O(N |Y|w+1), where N is the number of nodes and
w is the tree width of the graph, i.e., the size of its
largest clique minus 1 after the graph is optimally tri-
angulated. For trees and 1-D CRFs (chains), w = 1,
so that calculating (8) directly is feasible. However,
for more general cases like 2-D CRFs (grids), the tree
width w is prohibitively high, and one has to resort
to approximate approaches, e.g., sampling and vari-
ational methods. We now briefly describe one such
method used in our experiments.

2.4. Tree MCMC Sampler for CRFs

The tree Markov chain Monte Carlo (MCMC) sampler
of Hamze & de Freitas (2004) is a state-of-the-art al-
gorithm for sampling from posterior distributions and
computing expectations of sufficient statistics in undi-
rected graphical models with regular structure and
high tree width. Its basic form works on pairwise
MRFs or CRFs whose cliques are either nodes or edges.

The algorithm exploits the property that MRFs can
be split into several disjoint trees (see Figure 1 for
four different choices of partitions). Although BP on
the whole MRF is prohibitively expensive, it is cheap
to run BP on each of the two trees (their tree width
w = 1). So a natural idea is to combine analytical and
sampling steps: conditioned on a sample of one of the
trees, use BP to compute the exact joint conditional
distribution of the other tree and draw a sample from
it; then alternate between the two trees. Moreover,
knowing the exact conditional distribution over the
trees makes it possible to Rao-Blackwellise the sam-
pler to reduce the variance (Casella & Robert, 1996).
Each partition of the tree has to exclude some edges.
In order to reduce the variance in the expectation es-

1For notational convenience we assume componentwise
multiplication of vectors in the last step of (8).

timates of these edges, and to cover all edges in the
graph, we need to partition the graph in several differ-
ent ways. This leads to the four partitions in Figure 1.

(a) Left (b) Up

(c) Right (d) Down

Figure 1: Four different partitions of a 5-by-6 CRF.
Nodes in shaded and white regions are the two trees
and the small black circles represent observations.

Empirically tree sampling is considerably more effi-
cient than other partition based sampling schemes and
the näıve Gibbs sampler, and with provable faster ge-
ometric convergence rate and lower variance (Hamze
& de Freitas, 2004).

3. Reinforcement Learning

A Markov decision process (MDP) consists of a finite
set of states s ∈ S of the world, actions y ∈ Y avail-
able to the agent in each state, and a reward func-
tion r(s) for each state s. In a partially observable
MDP (POMDP), the controller sees only an observa-
tion x ∈ X of the current state, sampled stochastically
from an unknown distribution p(x|s). Each action y
determines a stochastic matrix P (y) = [p(s′|s, y)] of
transition probabilities from state s to state s′ given
action y. The methods discussed in this paper do not
assume explicit knowledge of P (y) or of the observa-
tion process. All policies are stochastic, with a prob-
ability of choosing action y given state s, and param-
eters θ ∈ Rn of p(y|x;θ). The evolution of the state
s is Markovian, governed by an |S| × |S| transition
probability matrix P (θ) = [p(s′|s;θ)] with entries

p (s′|s;θ) =
∑

y∈Y
p (y|s;θ) p (s′|s, y). (9)

We assume an average reward setting where the task
is to find a policy, or equivalently the parameter θ,
which maximizes

R(θ) := lim
T→∞

1
T

Eθ

[
T−1∑
t=0

r(st)

]
, (10)
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The expectation Eθ is over the distribution of state
trajectories {s0, s1, . . . } induced by P (θ).

The core idea of this paper is to treat CRF distribu-
tions over labels, p(y|x;θ), exactly as joint distribu-
tions over multi-agent RL actions, i.e., a stochastic
policy. Each node in the CRF will represent a single
RL agent. The joint stochastic policy will give the
probability of a vector of actions p(y|x;θ). The ob-
servations available to agent/node i are represented
by the sufficient statistics φi(x,yi). However, we also
need the edge “observations” φij(x,yi,yj) to repre-
sent the information that can be communicated be-
tween neighboring agents i and j. Thus all we need
for a CRF-RL model is a family of RL algorithms that
directly optimizes stochastic policies.

3.1. Policy-Gradient Algorithms

Policy-gradient (PG) algorithms optimize polices by
performing gradient ascent on a parameterized policy
(Williams, 1992; Sutton et al., 2000; Baxter & Bartlett,
2001). These algorithms require only a parameterized
and differentiable policy model p(y|x;θ), and a way to
compute the gradient of the long-term reward R(θ).

A number of algorithms (Williams, 1992; Baxter
& Bartlett, 2001; Peters et al., 2005) compute a
Monte Carlo approximation of the reward gradi-
ent: the agent interacts with the environment,
producing an observation, action, reward sequence
{x1, y1, r1,x2, . . . ,xT , yT , rT }.2 For example, under
mild technical assumptions, including ergodicity and
bounding all the terms involved, Baxter & Bartlett
(2001) obtain

∂̂R

∂θ
=

1
T

T−1∑
t=0

∂

∂θ
ln p(yt|xt;θ)

T∑
τ=t+1

βτ−t−1rτ , (11)

where an eligibility discount β ∈ [0, 1) implicitly as-
sumes that rewards are exponentially more likely to
be due to recent actions. Without it, rewards would
be assigned over a potentially infinite horizon, result-
ing in gradient estimates with infinite variance. As β
decreases, so does the variance, but the bias of the gra-
dient estimate increases (Baxter & Bartlett, 2001). In
practice, (11) and all other policy-gradient algorithms
share the same core estimator that make use of an
eligibility trace

et = βet−1 +
∂

∂θ

∣∣∣∣
θ=θt

ln p (yt|xt;θ) (12)

Now δt = rtet is the gradient of R(θ) arising from
assigning the instantaneous reward to all log proba-

2We use rt as shorthand for r(st), making it clear that
only the reward value is known, not the underlying state.

bility gradients, where β ∈ [0, 1) gives exponentially
more credit to recent actions. Additionally, β may be
1.0 for finite-horizon problems (Williams, 1992). The
different policy-gradient algorithms vary in how they
use instant gradient estimates δt.

For the experiments in this paper we adopt an on-
line variation of the natural actor-critic (NAC) algo-
rithm (Peters et al., 2005; Richter et al., 2007). While
the NAC algorithm uses the estimator (12), it im-
proves performance over (11) by: 1) using a critic
that approximates a projection of value function, with
discount factor γ ∈ [0, 1), to reduce variance of the
gradient estimates; 2) using a clever choice of critic
parametrization to naturalize gradients (Amari, 1998);
and 3) using a least squares approach to solve for
the naturalized gradients, making full use of simulated
trajectories. Algorithm 1 is used in our experiments
(Richter et al., 2007).

Algorithm 1 Online Natural Actor-Critic.
1: t = 1, A−1

1 = I, θ1 = [0], e1 = [0]
2: α=step size, γ=critic discount, β=actor discount
3: Get observation x1

4: while not converged do
5: Sample action ỹt ∼ p(·|xt,θt)
6: et = βet−1 + [ ∂

∂θ

∣∣
θ=θt

ln p (ỹt|xt;θ)ᵀ
,xᵀ

t ]ᵀ

7: Do actions ỹt

8: Get reward rt

9: δt = rtet

10: Get observation xt+1

11: wt = [ ∂
∂θ

∣∣
θ=θt

ln p(ỹt|xt,θ)ᵀ,xᵀ
t ]ᵀ−γ[0ᵀ,xᵀ

t+1]
ᵀ

12: εt = 1− t−1

13: ut = (ε−1
t − 1)A−1

t−1et

14: qᵀ
t = ε−1

t wᵀ
t A−1

t−1

15: A−1
t = ε−1

t A−1
t−1 −

utq
ᵀ
t

1+qᵀ
t et

16: [dᵀ
t ,vᵀ

t ]ᵀ = A−1
t δt

17: θt+1 = θt + αdt

18: t← t + 1
19: end while

3.2. Decentralized Multi-Agent RL

Decentralized (PO)MDPs assume a number of agents,
each with a local observation of the state space. Here
the action y becomes a vector giving the action for
each agent. In the general case, optimal decision mak-
ing in Decentralized MDPs is NEXP-hard in the num-
ber of agents (Bernstein et al., 2000), due to the com-
binatorial degree of communication required between
the agents to coordinate actions. Many approximate
approaches exist including no communication (Peshkin
et al., 2000); explicit actions to communicate state in-
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formation (Boutilier, 1999); local sharing of value func-
tions (Schneider et al., 1999); and others with varying
degrees of formalism. Under a common global reward,
and some forms of local reward (Bagnell & Ng, 2006),
agents that do not communicate can learn to cooperate
implicitly to maximize the global reward (Boutilier,
1999). However, unless each agent has access to the
full state description, they will generally not be able
to act optimally. Our contribution is to introduce a
mechanism for agents to efficiently — due to the graph
structure of the CRF — communicate in order to con-
verge to a joint policy. Our choice of policy-gradient
algorithms is motivated by their ease of integration
with CRFs, but they have the additional benefit of
being guaranteed to converge (possibly to a poor local
maximum) despite the use of function approximation
and partial observability. Our model of multi-agent
learning is similar to Guestrin et al. (2002), which
uses an exact form of BP for factorising Q-values and
choosing jointly optimal actions, and hence may still
be intractable for high tree width graphs.

4. Conditional Random Fields for RL

Applying CRFs for distributed RL is relatively
straightforward: simply assume that the policy,
P (y|x;θ), of the POMDP factorizes according to a
CRF. The agents correspond to the label nodes, and
the edges encode the spatial or temporal collaboration
between agents. In order to apply PG methods one
needs: a) the ability to draw an action from the policy
model (step 5 of Algorithm 1, and Eqns. (5),(6)); and
b) computation of the gradient of the log-probability of
the sampled action (step 6,11 and Eqns. (7),(8)). Ef-
ficient implementations rely on approximate sampling
algorithms like the tree MCMC sampler described in
Section 2.4. One can also easily verify that exponen-
tial families in general, and CRFs in particular, satisfy
the mild technical conditions required for PG methods
to converge, as long as all features are bounded.

Interestingly, the CEF policy representation (1) im-
plements exactly the soft-max stochastic policy with
linear feature combinations commonly encountered in
RL applications, e.g., Richter et al. (2007). Only the
edge features prevent the trivial factorization of the
distribution into independent agents that was demon-
strated by Peshkin et al. (2000).

From the perspective of multi-agent RL, CRFs make
efficient decentralized RL possible. By using con-
ditional independence assumptions, the search space
of the policy-gradient methods factorizes, leading to
faster learning. Also, even though a CRF requires only
local connections between agents, global interactions

are still incorporated by belief propagation.

From a graphical models point of view, our technique
is different from the usual online or offline training
methods in two important ways. The training data is
no longer iid. The action at time-step t stochastically
determines the input at time-step t + 1. Furthermore,
the evaluation metric is no longer a loss function but
a reward function that depends on both the current
state.

Superficially, our setup looks similar to dynamic
Bayesian networks (DBNs). DBNs are directed graph-
ical models (in contrast to CRFs which are undi-
rected graphical models) used to represent models
that evolve with time. Typically DBNs are used for
a) filtering: monitor the hidden system state s over
time by computing p(st|x1 . . .xt); b) prediction: com-
puting p(st+1|x1 . . .xt); or c) smoothing: computing
p(st−1|x1 . . .xt). In an RL context DBNs have been
used to estimate the state transition matrix P (y), as
well as the distribution p(x|s), in order to resolve par-
tial observability in a POMDP (Theocharous et al.,
2004). In contrast, we use CRFs as a policy, rather
than as a state transition model.

We have shown how to learn reactive policies that ig-
nore the fact that the true MDP state is unknown.
Fortunately, PG methods still converge in this case.
To take partial observability into account we could en-
code observation history, or a belief state (if P (y) and
p(x|s) are known), into the sufficient statistics.

5. Experimental Results

We performed experiments on one toy domain to
demonstrate why a joint policy is important, and two
benchmark decentralized RL domains.

5.1. Grid Alignment

We constructed an abstract traffic domain, where it
was known that agents would have to coordinate their
actions in order to perform well, even in the case of a
common global reward. Traffic flows along the edges
of an n×n grid, always traversing to the opposite edge
of the grid without turning (see Figure 2). Each inter-
section grid lines is an agent that controls a gate. The
actions of a gate allow traffic to flow vertically or hor-
izontally at each time step. Traffic units arrive with
Pr=0.5 per time step per boundary node (but only the
top and left boundaries). Importantly, traffic cannot
flow until all the gates on the traffic’s path line up.
When this happens, all waiting traffic for that line
propagates through instantly and each unit of traf-
fic contributes +1 to a global reward. One or more
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Buffers
p(arrive)=0.5

r+=3

r+=8

Figure 2: Abstract grid alignment domain.

Table 1: Learning algorithm parameters.
Domain αind αnode αedge β γ runs
Grid .002 .00001 .002 0.6 0.5 100
DSN .0005 .00025 .0005 0.6 0.5 100
Traffic .001 N/A .01 0.9 0.95 50

misaligned gates blocks traffic, causing the length 10
buffer to fill up as traffic arrives. Full buffers drop
traffic. Two observations per node indicate the nor-
malised number of traffic units waiting for the node to
align vertically, and horizontally. Edge features are 1
if the two nodes agree on an alignment, 0 otherwise.
The optimal policy is for the all the n2 gates to align
in the orientation of the most waiting traffic, but since
each node only knows how many traffic units are wait-
ing for it, it must “negotiate” with neighbors on which
way to align.

Learning Parameters: The CRF model is a 2-D
grid, with nodes for each agent, and edges for all nodes
connected by a grid line. Due to the 2-D nature of the
CRF, MCMC estimation of the log partition function,
and its gradient were required. MCMC estimation
needed 10 tree samples. To initialize the tree sam-
pler, we randomly picked a spanning tree of the whole
graph and sampled from the tree. Empirically, this
allows us to obtain a good estimation of the distribu-
tions much faster than starting with independent node
randomization. Other parameters, including the num-
ber of independent learning runs, are summarized in
Table 1. To prevent poor local maxima when n > 5
we needed step sizes for edge feature parameters αedge

to be larger than for node feature parameters αnode,
boosting the effect of edge features on the policy.

Results: The optimal reward is the grid size n. Fig-
ure 3 shows the CRF RL approach compared to a näıve
implementation with independent agents. The CRF
approach obtains the optimal reward all the way to
grid size 10 (100 nodes), at which point some runs fail
to reach the optimal policy. The number of iterations
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Figure 3: Average reward over the last 1000 steps, and
iterations to optimality.

required to reach the optimal reward for the first time
is shown on the right panel.

5.2. Sensor Networks

The distributed sensor network (DSN) problem is a
sequential decision making variant of the distributed
constraint optimization problem described in Dutech
et al. (2005). The network consists of two parallel
chains of an arbitrary, but equal, number of sensors.
The area between the sensors is divided into cells.
Each cell is surrounded by four sensors and can be
occupied by a target. With equal probability targets
can (from left to right) jump to the cell to its left, to its
right, or remain where it is. Jumps that would cause
a collision are not executed. The goal of the sensors
to capture all targets. With initial configuration as in
Figure 4, there are 37 distinct states. Each sensor can
perform three actions resulting in a joint action space
of 38 = 6561 actions. The actions are: track a target
in the cell to the left, cell to the right, or none. Every
track action has a reward of -1. When in one time step
at least three of the four surrounding sensors track a
target, it is hit and its energy level is decreased by 1.
Each target starts with an energy level of 3. When
it reaches 0 the target is captured and removed. The
three sensors involved in the capture are each provided
with a reward of +10, and the goal is to maximize the
total reward of all sensors. An epoch finishes when
all targets are captured. If the DSN cannot capture
all targets within 300 steps, the epoch is terminated,
and a new epoch is started. A set of 50 randomly cho-
sen initial states (with replacement) is cycled through
for one episode. We run for 200 episodes and study
the average reward of each episode. Finally, the whole
process is independently repeated for 100 runs, and
we report the average optimal reward and number of
episodes.

Learning Parameters: We experimented with two
alternative CRF models, a cycle in which neighbor-
ing sensors along the top and bottom are connected
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Figure 4: Sensor net-
work domain with 8 sen-
sors, 2 targets, and 3
cells.

as chains, and the cycle is completed with an edge be-
tween top and bottom sensors on the left and right
ends. The chain is a more complex arrangement. Lo-
cal sensors are bunched into groups of three (one top
sensor, two bottom sensors and vice/versa). These
meta-sensors form one CRF node. All the meta-
sensors are connected in a 1-D chain, so (6) and (8)
can efficiently estimate the log-partition function and
its gradient.

Each node (or meta-node) has access to whether there
is a target in its left and right cells (two binary values
with two dummy cells at the two ends always observ-
ing no target). For the chain topology, the single edge
feature is whether there are at least three out of four
sensors focusing on their common cell. For the cycle
topology, a single edge feature encodes whether con-
nected sensors are focused on the same cell.

Results: The problem in Figure 4 has an optimal
long-term average reward of 42. The best results from
Dutech et al. (2005) use a distributed Q-learning ap-
proach where neighbors’ Q-values are averaged (which
implicitly assumes communication), achieving an aver-
age reward of less than 30. Figure 5 shows that CRF
modeling with NAC achieves the optimal reward for
this problem, and problems where the number of tar-
gets is increased up to 10. The ease with which we
outperform the distributed Q-learning approach is not
surprising, since the CRF allows sensors to agree on
which target to focus on. We obtain similarly good
results when the number of targets is fixed and more
cells are added (Figure 6). The curious peak in the
required iterations for 5 cells corresponds to the dif-
ficult situation where there are not enough sensors,
and targets are able to jump around with few colli-
sions. Adding more cells also adds more sensors, so
that an individual sensor is rarely required to focus
left and right at the same time. In both experiments
the chain CRF does marginally better, probably due
to the tighter coupling of the sensors and exact evalu-
ation of the log-partition function.

5.3. Traffic Light Control

Many drivers have been frustrated by driving along a
main street, to be constantly interrupted by red lights.
This domain demonstrates learning an offset between
neighboring intersections. The domain and simulator
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Figure 5: Results over 100 runs of the Sensor Network
scenario, varying the number of targets.
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Figure 6: Results over 100 runs of the Sensor Network
scenario, varying the number of cells.

code are from Richter et al. (2007), which contains the
full implementation details. We model one main road
with n controlled intersections and n + 1 road links to
traverse. It takes cars 2 time units to travel down a
road to the next intersection. There are 4 actions, cor-
responding to the 4 traffic signal patterns that allow
traffic to move through the intersection safely in any
direction. For this experiment only the action that lets
traffic drive straight ahead along the main road is use-
ful. At each time step (about 5 seconds of real-time)
the controller decides on the action for the next step.
We do not restrict the order of actions, but impor-
tantly, we enforce the constraint that all actions must
be activated at least once within 8 time steps so that
vehicles on side streets would not wait forever. One
car enters the leftmost end of the road every 4 time
steps. We use realistic local rewards for each inter-
section: each intersection has an inductive loop sensor
that can sense a car waiting, producing a -1 reward.

Learning Parameters: Each intersection is a CRF
node that chooses from one of the four actions. For
independent learners the only feature is a constant bias
bit that allows learning of which phase is the most
commonly used. No node features were given to the
CRF. The edge features for the CRF version are an
a× a binary matrix, where a is the number of actions.
Bit i, j is on if the action of the left neighbor i from
2 time steps ago (the time required to drive down the
road edge) matches the chosen action of the current
intersection j. Edge parameters receive j’s reward.
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Figure 7: Results over 50 runs of the road traffic offset
scenario. The X-axis is intersections. The left Y-axis
is the travel time.
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Figure 8: Convergence of NAC on the independent
agents (upper curve) and on CRF model (lower curve).
The number of controllable intersections is 14.

The edge feature matrix has exactly 1 bit set to true
in the matrix in any step. Typically a road traffic
network would be represented as an undirected graph.
But this simple scenario is one long road, thus can be
represented as a chain CRF.

Results: Figure 7 shows the results on the road traf-
fic domain in the same style as previous results. Again,
the CRF model clearly outperforms the independent
agents approach. We observed, however, that early in
learning both the independent agents and CRF learn
that all traffic moves left to right. Giving the max-
imum possible time to this direction is a strong lo-
cal minimum. After that, the independent agents fail
to improve but the CRF model asymptotically ap-
proaches the optimal 0 waiting time.

Figure 8 shows convergence plots for the CRF ap-
proach versus the independent agents.

6. Conclusions

We have shown how to use CRFs to model control pro-
cesses, or equivalently, how decentralized RL can be
performed with CRF optimisation methods. Although
all our examples have been related to controlling a pro-
cess, a special case is where rewards are given simply
for predicting the next input, i.e., time series predic-
tion. From a reinforcement learning point of view we

have presented an efficient policy-gradient solution to
the difficult problem of optimizing joint actions in a de-
centralised (PO)MDP. Future work could explore RL
in general graphical models, and how local rewards
may be propagated through a graphical model.
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